
Is 3-(F)WL Enough to Distinguish All 3D Graphs?

Wanghan Xu
Xi’an Jiaotong University

WhoisYt@stu.xjtu.edu.cn

Abstract

The problem of graph isomorphism is an important but challenging problem in
the field of graph analysis, for example: analyzing the similarity of two chemical
molecules, or studying the expressive ability of graph neural networks. WL test is
a method to judge whether two graphs are isomorphic, but it cannot distinguish all
non-isomorphic graphs. As an improvement of WL, k-WL has stronger isomor-
phism discrimination ability, and as k increases, its discrimination ability is strictly
increasing. However, whether the isomorphic discrimination power of k-WL is
strictly increasing for more complex 3D graphs, or whether there exists k that can
discriminate all 3D graphs, remains unexplored. This paper attempts to explore
this problem from the perspective of graph generation.

1 WL test and graph generation

The process of WL test is to map graphs to labels. When the the multiset of the final labels of two
graphs are the same, but the two graphs are not isomorphic, we call these two graphs a counterexample.
If we take the WL test as a function WL(·), then the input of its inverse function is a multiset of labels,
and its output is a graph. We can regard the inverse function of WL test as a graph generation function
GG(·). Exploring the corresponding relationship between the input and output of this function can
help us analyze whether there are counterexamples in WL test. In extreme cases, if GG(·) is one to
one (one input to one output), there must be no counterexample in this WL test. But if GG(·) is one
to many, we also hope that the number of outputs is as small as possible. Because the fewer graphs a
set of labels can generate through GG(·), the more spatial information is contained in these set of
labels.

2 Tricks in graph generation

For a WL test algorithm and a set of labels, there are often many generated graphs, which is due
to three uncertainties in the generation process, that is, exchange tricks, turn-over tricks and
symmetry tricks.

2.1 Exchange tricks

Let us first understand A through a concrete example. Figure 2.1 shows a group of pictures that
cannot be discriminated by 2-WL. By comparing G1 and G2, it is easy to find that the difference
between them is that node 3 in G1 is changed to node 3′ in G2, and node 6 in G1 is changed to node
6′ in G2. But why can’t 2-WL catch such a change?

For 2-WL, the N1 neighbor of the 2-tuple (i, j) is to replace i with any node, that is, the set of edges
from all nodes to j. Similarly, the N2 neighbors of (i, j) are the set of edges from all nodes to i.
Initialize 2-tuple with distance (d(i, j)), then the two-layer WL tree of the 2-tuple (1, 2) and the
2-tuple (1′, 2′) is as shown on the right side of Figure 2.1.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

ar
X

iv
:2

40
2.

08
42

9v
1

 [
cs

.O
H

]
 2

4
Ja

n
20

24

Figure 1: Counterexample of 2-WL and WL tree of 2-tuple. Yellow dotted lines indicate equal values.

It can be seen from the WL tree that node 3 is associated with edge (1, 2) through two distances, that
is d(1, 3) and d(2, 3). Suppose d(1, 3) is d1, and d(2, 3) is d2. Similarly, node 6 is associated with
edge (1,2) through d(1, 6) and d(2, 6). Suppose d(1, 6) is d3, and d(2, 6) is d4. We call {d1, d2} the
associated information inf((1, 2), 3) of node 3 on edge (1, 2). Similarly, inf((1, 2), 6) = {d3, d4}.

In the reverse process, graph generation, of a WL test algorithm, although we can know the WL
tree of tuple (1, 2) based on the tuple label and the update function of WL test, we cannot divide
d1, d2, d3, d4 into two groups and figure out inf((1, 2), 3) = {d1, d2} or inf((1, 2), 6) = {d3, d4}.
In fact, by exchanging d1 and d3 in inf((1, 2), 3) and inf((1, 2), 6), we can generate new associated
information inf((1, 2), 3′) = {d3, d2} and inf((1, 2), 6′) = {d1, d4}, which is also geometrically
true. Figure 2.1 shows that the same set of labels can correspond to different graphs due to this
exchange tricks.

Figure 2: Exchange trick.

2

Formally, for a k-tuple p and nodes i, j that do not belong to p, when the graph generation process
cannot distinguish whether a p’s neighbor q belongs to inf(p, i) or inf(p, j), then some elements
in inf(p, i) and inf(p, j) can be exchanged, resulting in non-unique output graphs. We call this
uncertainty the exchange trick.

2.2 Turn-over tricks

Besides the exchange trick, another type of uncertainty that arises during graph generation is the
turn-over trick, which means that even if the associated information is not exchanged, there is still
uncertainty when the elements belonging to a set of associated information are combined.

As shown in Figure 2.2, suppose inf((a, b, c), i) = {(a, b, i), (a, i, c), (i, b, c)}, but when we specifi-
cally analyze the connection relationship between these 3-tuples (triangles), we cannot determine
the direction of them. For example, for (a, b, i), it has a common edge with (a, b, c) (the method of
determining the common edge will be introduced later), but by turning over, (a, b, c) and (a, b, i)
have two ways of connection, which leads to non-unique output graphs.

Figure 3: Turn-over trick.

2.3 Symmetry tricks

The symmetry trick is that even though the exchange tricks and the turn-over tricks do not occur
during graph generation, neighbor k-tuples still have multiple possible spatial positions that are
symmetric about the root k-tuple. As shown in Figure 2.3, the spatial relationship of j with respect to
(a, b, c) has been determined, but there are still spatial positions in two spaces that are symmetrical
about (a, b, c).

Figure 4: Symmetry trick.

3 3-FWL doesn’t have tricks

In this section, we will start from the update function 1 of 3-FWL and prove that during the graph
generation process of 3-FWL, there will be no exchange tricks, turn-over tricks or symmetry tricks.

ct+1
v = HASH(ctv, {{(ctΦ1(v,j)

, ctΦ2(v,j)
, ctΦ3(v,j)

)|j ∈ [N]}}) (1)

3.1 3-tuple initialization

When initializing the color of 3-tuples, it is necessary to satisfy "same color ⇐⇒ node isomorphism".
There are many initialization methods that meet the conditions. The following is a color initialization
method we designed (for the convenience of subsequent analysis, this initialization method is used by
default in this paper):

3

For 3-tuples (a, b, c), d(a, b) represents the distance from node a to node b (if a = b, then d = 0).
Arrange d(a, b), d(b, c), d(c, a) from small to large to form a new tuple (d1, d2, d3). Corresponding
d1, d2, and d3 to the values of the three channels in the RGB color respectively, the initial color
c0 = (d1, d2, d3) of (a, b, c) is obtained. (In detail, in order to prevent the distance from exceeding
the upper limit 255 of RGB, all distances can be normalized.)

RGB color initialization meets the initialization requirements, because for two 3-tuples, if the multiple
sets of distances between them are the same, i.e. (d1, d2, d3) = (d′1, d

′
2, d

′
3), then the two tuples must

be isomorphic. The purpose of choosing this initialization method is that the lengths of the three
edges in the 3-tuples can be easily obtained through the color.

3.2 3-FWL doesn’t have exchange tricks

It can be seen from function 1 that {ctΦ1(v,j)
, ctΦ2(v,j)

, ctΦ3(v,j)
} = inf(v, j). In other words, 3-FWL

does not need to group tuples to determine which tuples belong to the associated information of the
same node. This is a natural advantage of 3-FWL.

3.3 Identify common edges

Select any 3-tuple v without repeated nodes, and set v = (a, b, c). In function 1, ctΦ1(v,j)
means to

replace the first element a in 3-tuple v with j. After initialization with RGB, c0Φ1(v,j)
can be expressed

as (dj,1, dj,2, dj,3). When j traverses all nodes, (dj,1, dj,2, dj,3) can be divided into two types:

• 1) 0 < dj,1 ≤ dj,2 ≤ dj,3, when j /∈ {b, c}.

• 2) 0 = dj,1 < dj,2 = dj,3 = d(b, c), when j ∈ {b, c}.

Pick out all c0Φ1(v,j)
belonging to class 2), two in total, that is j = b or j = c. Then we can know

that the length of the common edge between Φ1(v, j) and v is d(b, c), denoted as CE(Φ1(v, j), v) =
d(b, c). Although we don’t know the specific numbers of a, b, c, we can know which edge of the
3-tuple Φ1(v, j) is the common edge in v through CE(Φ1(v, j), v) = d(b, c). In the same way, we
can also identify the common edge of Φ2(v, j) and v, and the common edge of Φ3(v, j) and v.

After knowing the common edges between Φ1(v, j),Φ2(v, j),Φ3(v, j) and v, we are equivalent to
knowing how Φ1(v, j),Φ2(v, j),Φ3(v, j) and v are connected.

3.4 3-FWL doesn’t have turn-over tricks

After identifying common edges, Φi(v, j) and v are connected by CE(Φ1(v, j), v), but there is still
an uncertainty, that is, turn-over tricks. Except the common edge, we call the other two edges in
Φ1(v, j) the new edges (NE). Then after removing CE(Φ1(v, j), v), cΦ1(v,j) becomes (NE1, NE2)
from (dj,1, dj,2, dj,3). Do the same for cΦ2(v,j) and cΦ2(v,j) to get (NE3, NE4) and (NE5, NE6).

These new edges form a multiset NESET = {{NE1, NE2, NE3, NE4, NE5, NE6}}, which is
actually the set of three edges copied once (since each edge appears in two tuples, as shown in Figure
2.2). The histogram of NESET has only the following three possible situations:

• 1) Three lengths, and the ratio is 2:2:2. That is, the three edges are not equal to each other.

• 2) Two lengths, and the ratio is 4:2. That is, two of the three edges are equal.

• 3) One length. That is, all three edges are equal.

For case 1), turn-over tricks cannot happen. As shown in the Figure 3.4, the premise of NE1 and
NE2 turn-over trick is: (NE1 = NE4 OR NE1 = NE3) AND (NE2 = NE5 OR NE2 = NE6),
which is contradictory to case 1). In the same way, NE3 and NE4 turn-over trick, and NE5 and
NE6 turn-over trick are also impossible to happen.

For case 2), turn-over tricks may occur. But these turn-over tricks don’t change any spatial rela-
tionships. Assume that among the three edges, the edges’ lengths corresponding to NE1 (NE6)
and NE2 (NE3) are equal, that is, (NE1 = NE2 = NE3 = NE6) AND (NE4 = NE5) AND
(NE1! = NE4). At this time, it is impossible for NE5 and NE6 to turn over because NE5 is not

4

Figure 5: Examples of new edges (NE) and v.

equal to NE1 or NE2. Similarly, it is impossible for NE3 and NE4 to turn over. NE1 and NE2

may have turn-over trick, but this trick will not affect any spatial relationship, because NE1 = NE2,
the spatial structure remains unchanged before and after turning over.

For case 3), turn-over tricks may occur, but these tricks don’t change any spatial relationship. Because
all NEs have the same length, the spatial structure remains unchanged before and after turning over.

In summary, for any (ctΦ1(v,j)
, ctΦ2(v,j)

, ctΦ3(v,j)
) in the function 1, it is impossible for them to turn

over when they are spliced with the root 3-tuple v. After determining the connection shape between
the Φi(v, j), i = 1, 2, 3 and v, "close" the three faces Φi(v, j), i = 1, 2, 3 to obtain a tetrahedron with
(a, b, c) as the base and j as the upper vertex. In turn, the spatial relationship of node j to (a, b, c) can
be obtained.

3.5 3-FWL doesn’t have symmetry tricks

Although the relative position of j with respect to (a, b, c) is deterministic, it is still uncertain which
edge of the face j is on, that is symmetry trick, as shown in Figure 2.3.

The above analysis only uses the information of the 2-layer WL tree, which can help determine the
spatial relationship between "root tuple and neighbors", but cannot determine any spatial relationship
between "neighbors and neighbors". In order to further determine the spatial relationship between
neighbors, neighbors’ neighbors must be expanded, that is, a 3-layer WL tree is used, as shown in
Figure 3.5.

Figure 6: 3-layer WL tree.

We call the possible spatial positions of all external nodes (nodes other than those in v) of the
root tuple (a, b, c) as candidate point (CP). Because the spatial positions of external nodes cannot
coincide, and their symmetry positions about a plane cannot coincide, so |CP | = 2(n− 3) (Suppose
the number of nodes in the graph is n). It should be noted that when a graph is determined, if all
external nodes of (a, b, c) are symmetrical about the (a, b, c) plane, then a mirrored and same graph
will be generated. In order to avoid this situation, we need to randomly select a node among the
external nodes, and fix its position first, so as to distinguish the two edges of (a, b, c). This node is
called anchor, denoted as m. Remove it and its symmetry points from the CP set. Therefore, we

5

use CP ((a, b, c),m) to describe the candidate point set. After removing the anchor point and its
symmetry point, |CP ((a, b, c),m)| = 2(n− 4). When n = 5, the example of CP is as follows:

Figure 7: Candidate point.

Now, we pick a neighbor (a, b,m) of the root tuple and continue to expand its neighbors. The process
of analyzing "neighbors of neighbors" is exactly the same as the process of analyzing "neighbors
of root nodes". This means that we can also generate a candidate point set ‘CP ((a, b,m), c) of
(a, b,m). Let’s look at the association of CP ((a, b, c),m) and CP ((a, b,m), c).

CP ((a, b, c),m) and CP ((a, b,m), c) both describe (V − a, b, c,m) (suppose V is the set of all
nodes) a total of (n−4) nodes 2× (n−4) possible spatial positions. It can be seen from the existence
of the graph that there are at least (n − 4) same points in CP ((a, b, c),m) and CP ((a, b,m), c)
(for real points, It must appear in every candidate point set). When the number of the same points
(intersection) in CP ((a, b, c),m) and CP ((a, b,m), c) is (n− 4), the spatial positions of all nodes
are uniquely identified. In fact, |CP ((a, b, c),m) ∩ CP ((a, b,m), c)| may be larger than (n − 4).
Still, we want this number to be as small as possible, because it means we can determine the positions
of more points.

Figure 8: Determine node positions by comparing different candidate point sets.

Each point in the set represents a spatial position where a node may exist. 1 and 1’ are points of
symmetry about the plane (a, b, c), and so on. Blue represents the parts that are the same in both sets,
red is the remainder. By comparing the two sets, it can be concluded that there is no node in the red
candidate point. This is because it does not exist in another candidate point set, that is, for another
plane, it is impossible to have a point at this spatial position. Therefore, red candidate points should
be removed. When 1 is removed, there must be a node for 1’, so add 1’ to the certain points set. After
removing the points that cannot exist and the points that have been determined, only 3 and 3’ are left
in the candidate set, which are still undetermined. After the candidate points are deleted by the above
method, the remaining candidate points must be shared by all CP s and symmetrical to the plane of
each CP .

If the intersection of multiple CP s is not an empty set, there are always undetermined nodes.
But in reality, this is unlikely to happen. Suppose there is a subset W of a CP , W is the set of
candidate points that cannot determine through CP1, CP2, CP3, CP4 (respectively referring to
CP ((a, b, c),m), CP ((a, b,m), c), CP ((a,m, c), b), CP ((m, b, c), a)). From Figure 3.5, it can be
seen that W must meet the following two conditions:

• 1) Every node in W appears in CP1, CP2, CP3, CP4.

6

• 2) The points in W are symmetrical about (a, b, c), (a, b,m), (a,m, c), (m, b, c).

In physics, the symmetry plane of a particle system must pass through its center of gravity. It is easy
to conclude that each symmetry plane in W must intersect at one point (which is the center of gravity
after taking each point in W as a mass point with the same mass).

However, since (a, b, c), (a, b,m), (a,m, c), (m, b, c) are four faces of the tetrahedron (a, b, c,m),
they certainly not at one point. Therefore, W is asymmetric about at least one of the planes. This
contradicts condition 2), for which W does not exist. That is, after comparing CP1, CP2, CP3, CP4,
it is impossible for any node to remain symmetrical, and it is impossible for any node to remain
undetermined.

3.6 3-FWL can generate a unique graph

According to the 3-FWL algorithm (including HASH correspondence) and the label of the tuple, we
can get the WL tree of the tuple.

Since there is no exchange trick in 3-FWL, each (ctΦ1(v,j)
, ctΦ2(v,j)

, ctΦ3(v,j)
) in function 1 corresponds

to the associated information of an external node.

After identifying the common edges, triangles Φi(v, j), i = 1, 2, 3 can be spliced with triangle v.
And since there is no turn-over trick in 3-FWL, there is only one correct way of splicing.

After the splicing, the spatial relationship of the external nodes with respect to the bottom face (a, b, c)
can be obtained by closing the triangles. Since 3-FWL does not have symmetry tricks, it can only
generate one graph in the end.

3.7 3-FWL can distinguish all 3D graphs

Given the 3-FWL algorithm, a set of node labels generates a unique 3D graph. The converse-negative
proposition is that two non-isomorphism 3D graphs generates different labels through 3-FWL.
Therefore, there is no counterexample to 3-FWL, that is, 3-FWL can distinguish all 3D graphs.

4 Does 3-WL have tricks?

The update function of 3-WL is as follows:

ct+1
v = HASH(ctv, {{ctΦ1(v,j)

|j ∈ [N]}}, {{ctΦ2(v,j)
|j ∈ [N]}}, {{ctΦ3(v,j)

|j ∈ [N]}}) (2)

By comparing with function 1, we can find that the biggest difference between them is that the update
function of 3-WL cannot directly obtain which Φi(v, j)s are the associated information belonging
to the same node. In other words, it is difficult to find {Φ1(v, j),Φ2(v, j),Φ3(v, j)} ∈ inf(v, j).
Moreover, it is unknown whether this grouping is unique.

4.1 Edge equality analysis

Although the update function of 3-WL is different from that of 3-FWL, the method of identifying
common edges introduced in Section 3.3 is still applicable. By looking for tuples belonging to
class 2) in {{(ctΦ1(v,j)

)|j ∈ [N]}}, common edge CE(Φ1(v, j), v) can be determined. Similarly,
CE(Φ2(v, j), v) and CE(Φ3(v, j), v) can also be obtained.

Apply the method similar to that in Section 3.4, remove CE(Φ1(v, j), v) in ctΦ1(v,j)
, and get

(NEj,1, NEj,2) for every j. Similarly, get (NEj,3, NEj,4) and (NEj,5, NEj,6) from ctΦ2(v,j)

and ctΦ3(v,j)
, respectively.

The process of grouping is to take out three tuples from {{(NEj,1, NEj,2)|j ∈ [N]}},
{{(NEj,3, NEj,4)|j ∈ [N]}}, {{(NEj,5, NEj,6)|j ∈ [N]}} respectively. Moreover, these three
tuples must satisfy edges equality conditions. And edge equality is transitive, which makes the
analysis process extremely cumbersome. We use the following Figure 4.1 for edge equality analysis.

7

Figure 9: Edge equality analysis.

Each tuples in {{(NEj,i, NEj,i+1)|j ∈ [N]}}, i = 1, 3, 5 is represented by a 1 × 2 rectangular
block, that is, each square in Figure 4.1 represents a NE. The yellow ones represent the tuples in
{{(NEj,1, NEj,2)|j ∈ [N]}}, the green ones represent the tuples in {{(NEj,3, NEj,4)|j ∈ [N]}},
and the blue ones represent the two-tuples in {{(NEj,5, NEj,6)|j ∈ [N]}}. The two blocks
connected by the black line represent that their corresponding NEs are spliced together, so the lengths
of the edges corresponding to the blocks connected by the black line are the same (corresponding to
the same flute in the tetrahedron). Figure 4.1 shows the real grouping situation, that is, the tuples in
each row come from the same j.

We reformulate the tuples grouping problem as the following problem: Is there another matching
(grouping) way that can produce new "tetrahedrons"? We use the following two examples to illustrate
how to use the "edge equality analysis" for this problem.

Figure 10: Two edge equality analysis examples.

First, select a yellow rectangle, a green rectangle, and a blue rectangle (the reason for each one
is that they are to be spliced with the three edges of the root triplet), and connect them with a red
line. The meaning of the red line and the black line are the same, that is, it represents the NE
splicing corresponding to the two squares. Therefore, the corresponding edges’ lengths of the blocks
connected by the red lines are also equal. After connecting all the squares with the red line, it means
that a new grouping has been created.

Then analyze which edges are of equal length. For any unnumbered square, assign it an unused
number, such as 1. Subsequently, since all the edges joined to this edge have the same length, the
squares connected to this square (including black lines or red lines) are marked with the same number.
Since equal edge lengths are transitive, all squares connected to a numbered square must be marked
with the same number.

Repeat the above labeling process until all squares have labels. Squares with the same number
indicate that their corresponding NEs are of equal length. Then, remove the black line, and expand

8

all the rectangles into the structure shown in Figure 4.1 according to the connection of the red line.
By comparison, in the two examples in Figure 4.1, no new tetrahedron is generated.

In fact, the new grouping (the grouping represented by the red line) can be changed from the real
grouping (the grouping represented by the black line) in two ways: 1) exchange tricks, 2) turn-over
tricks. Through these two tricks, the grouping shown by the black line can be changed to the grouping
shown by the red line. Although many possible groupings can be produced by these two tricks,
at the same time, each time these tricks are used, a new constraint will be added, that is, the edge
equality constraint. As can be seen from Figure 4.1, due to the existence of black and red lines and
the transitivity of edge equality, many edges must be the same. In other words, both exchange tricks
and turn-over tricks are at the expense of "edge length freedom".

4.2 Future work

So far, we have not found an effective way to prove that 3-WL can distinguish all 3D graphs, nor have
we found a counterexample. We will use the "edge equality analysis" method to analyze whether
3-WL is sufficient to solve all 3D graphs isomorphism problem.

References

[1] Li Z, Wang X, Huang Y, et al. Is Distance Matrix Enough for Geometric Deep Learning?[J]. arXiv preprint
arXiv:2302.05743, 2023.

[2] Morris C, Ritzert M, Fey M, et al. Weisfeiler and leman go neural: Higher-order graph neural net-
works[C]//Proceedings of the AAAI conference on artificial intelligence. 2019, 33(01): 4602-4609.

[3] Huang N T, Villar S. A short tutorial on the weisfeiler-lehman test and its variants[C]//ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 8533-8537.

[4] Shervashidze N, Schweitzer P, Van Leeuwen E J, et al. Weisfeiler-lehman graph kernels[J]. Journal of
Machine Learning Research, 2011, 12(9).

[5] Cai J Y, Fürer M, Immerman N. An optimal lower bound on the number of variables for graph identifica-
tions[J]. Combinatorica, 1992, 12(4): 389-410.

9

http://arxiv.org/abs/2302.05743

	WL test and graph generation
	Tricks in graph generation
	Exchange tricks
	Turn-over tricks
	Symmetry tricks

	3-FWL doesn't have tricks
	3-tuple initialization
	3-FWL doesn't have exchange tricks
	Identify common edges
	3-FWL doesn't have turn-over tricks
	3-FWL doesn't have symmetry tricks
	3-FWL can generate a unique graph
	3-FWL can distinguish all 3D graphs

	Does 3-WL have tricks?
	Edge equality analysis
	Future work

