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Abstract
We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and

a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions are

chosen so that they match with those of the spinons of the π-flux spin liquid. Global symmetries of all gauge-

invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard model at

half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average background

π-flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in a strong gauge-

coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2) gauge theory displays

several confining/Higgs phases: a nodal d-wave superconductor, and states with Néel, valence-bond solid, charge, or

staggered current orders. There are also a number of quantum phase transitions between these phases which are very

likely described by 2+1 dimensional deconfined conformal gauge theories, and we present large flavor expansions for

such theories. These include the phenomenologically attractive case of a transition between a conventional insulator

with a charge gap and Néel order, and a conventional d-wave superconductor with gapless Bogoliubov quasiparticles

at 4 nodal points in the Brillouin zone. We also apply our approach to the honeycomb lattice, where we find a

bicritical point at the junction of Néel, valence bond solid (kekule), and Dirac semi-metal phases.
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I. INTRODUCTION

The cuprate high temperature superconductors display a complex phase diagram involving low tem-

perature (T ) phases with d-wave superconductivity, Néel antiferromagnetic order, and charge order, and

the higher T pseudogap and strange metals [1]. The remarkable pseudogap metal phase is of central

importance, and many of its properties can be described by a model of hole pocket Fermi surfaces [2–19].

Such Fermi surfaces enclose an area distinct from the Luttinger volume, and this requires the presence

of a background spin liquid, realizing a state that has been called a ‘fractionalized Fermi liquid’ (FL*)

[20, 21]. Recent works [18, 22] have proposed that the low T cuprate phase diagram can be understood

from a theory of the confining instabilities of a FL* state with a ‘π-flux’ critical spin liquid on the square

lattice. The critical spin liquid emerges from a background into a central role in such confining transitions,

and a detailed understanding of its role then becomes a central ingredient in unraveling the mysteries of

the cuprate phase diagram.

An important feature of the FL* theory is that its fractionalized excitations have the same basic

structure as that in a Mott insulator at half-filling, even though the pseudogap state is at non-zero doping.

The doping is accounted for by the hole pocket Fermi surfaces, which are coupled to the spin liquid. Given

this relatively innocuous influence of non-zero doping, the present paper will investigate a simpler model

which remains at half-filling, but has the same set of conventional symmetry-breaking phases without

fractionalization at low temperatures, as at non-zero doping: a d-wave superconductor with 4 nodal points

for Bogoliubov quasiparticles, and conventional states with Néel, valence-bond solid, charge, or staggered

current orders. There are quantum phase transitions between these states which are very likely described

by deconfined critical points, allowing a systematic study of associated critical spin liquids. Our simpler

model should be amenable to numerical simulations by the well-developed methods of lattice gauge theory

of relativistic systems [23], and shed light on the role of spin liquids in the phase diagram of the cuprates.

We begin by noting a few recent developments which relate to the FL*-confinement proposal of Ref. 18:

3



• Angle-dependent magnetoresistance measurements on the underdoped cuprates [24] are consistent

with hole pocket Fermi surfaces [2–19].

• A long-standing issue with the hole pocket model of the pseudogap metal is that the pairing of

quasiparticles around the hole pocket leads to a d-wave superconductors with eight nodal points

[25]. This problem can be resolved by not viewing the onset of superconductivity from the pseudogap

normal state as a BCS-like pairing of electronic quasiparticles on Fermi surface. Instead, the spin

liquid of the pseudogap already features a singlet pairing of electrons [26], and we should consider the

onset of superconductivity as a confining transition of the π-flux spin liquid by the condensation of

a fundamental Higgs scalar. (In both viewpoints, the non-zero temperature transition of the onset

of superconductivity remains in the Kosterlitz-Thouless universality class.) Then the fermionic

spinon nodal points of the spin liquid annihilate four of the nodal points descending from the hole

pockets, and we obtain a d-wave superconductor with four nodal points [22, 27], as is expected in a

conventional BCS state. Moreover, the large velocity anisotropy of the nodal quasiparticles is easily

obtained in this approach.

• Photoemission observations in the electron-doped cuprates [28] show a gap maximum at an inter-

mediate wavevector away from the edge of the Brillouin zone, and not on the Fermi surface. This

feature is also obtained as a consequence of the background spin liquid [22]. Indeed, even when

the pseudogap metal has no Fermi surfaces intersecting the zone diagonals, the resulting d-wave

superconductor still has 4 nodal points along the zone diagonals, and these are directly descended

from the nodal spinons of the underlying spin liquid [22].

• Numerical fuzzy sphere and other studies have found evidence for π-flux spin liquid criticality, which

ultimately gives way either to ‘pseudo-criticality’ [29] or nearby multi-criticality [30–32]. In contrast,

the commonly used ‘staggered flux’ spin liquid [33] is expected to be strongly unstable to a trivial

monopole [34, 35].

• Numerical studies [36–40] of S = 1/2 square lattice antiferromagnets with first- and second-neighbor

exchange interactions (the J1-J2 antiferromagnet) display a transition from the Néel state to valence

bond solid order [41, 42], across an intermediate spin-liquid regime which is likely described by the

π-flux spin liquid [43]. A gapless Z2 spin liquid has also been proposed for this intermediate regime,

and this can be obtained naturally by condensing Higgs fields on the π-flux spin liquid [44–47] (the

model studied in the present paper can be easily extended to include these Higgs fields, but we will
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not present the extension here [48]). Doping this square lattice spin liquid has recently been shown

[49, 50] to lead to robust d-wave superconductivity, and this establishes a close connection between

the π-flux phase and d-wave superconductivity [51, 52].

• Nuclear magnetic resonance experiments on YBa2Cu3Oy [53] show the appearance of a secondary

spin gap which is possibly connected to the appearance of charge order. This can be associated with

the gapping out of the spinon excitations upon a confining transition to charge order, as we study

in a simplified model in this paper.

• Magnetotransport studies in HgBa2Ca2Cu3O8+δ [54] indicate a direct transitions between magnetic

and charge ordered states. Such direct transitions are possible across deconfined critical points

considered here.

The ‘π-flux’ critical spin liquid is described by a theory of fermionic spinons with Nf = 2 massless Dirac

points in their dispersion coupled to a SU(2) gauge field [55]. This state also has a dual description [43]

in terms of the critical CP1 theory of the bosonic spinons [41]. These dual descriptions are important in

understanding the low temperature states of the cuprate phase diagram as confinement/Higgs transitions

of this spin liquid:

(i) The onset of Néel order is described by the Higgs condensate of the bosonic spinons in the CP1

theory [56], or equivalently, by the confinement of the SU(2) gauge field of the fermionic spinon

theory.

(ii) The onset of d-wave superconductivity with nodal Bogoliubov quasiparticles [27], along with the

onset of charge order, is described by the Higgs condensation of a charge e, SU(2) fundamental

boson B (introduced in Refs. 3 and 33) of the fermionic spinon theory.

As noted above, this paper will study a simpler limit of the theory of Ref. 18. We will move from

the system at non-zero doping, and instead consider only the half-filled square lattice with a particle-hole

symmetric Hamiltonian. Rather than introducing superconductivity and charge-order by doping, we will

explore the onset of such phases at half-filling as may be induced by reducing the Hubbard U [57], or by

introducing additional short-range interactions including pair-hopping terms [58, 59].

At half-filling, there are no hole pocket Fermi surfaces, and this simplifies the treatment of charge

fluctuations. The particle-hole symmetry leads to a Lorentz-invariant form for the dispersion of the

excitations at low energies. We will study zero temperature quantum phase transitions between (A) the

insulating Néel state, (B) a d-wave superconductor with 4 gapless nodal quasiparticles, and (C) a state
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FIG. 1: We are interested in a SU(2) gauge theory with Nf fundamental Dirac fermions, and Nb = 2 fundamental
complex scalars. We show phase diagrams of two distinct large Nf and Nb limits, with Nf/Nb fixed. First order
phase transitions are denoted with a solid line while second order phase transitions are denoted with a dashed
line. (a) Phase diagram of the theory Lψ + LB in (3.1) and (3.7). There is a USp(2Nf )×USp(Nb)×U(1) global
symmetry for v ̸= 0. (b) Phase diagram in an alternative large Nb limit discussed in Appendix A of the theory
Lψ + L̃B in (3.1) and (A4), with a USp(2Nf )×SU(Nb)×U(1) global symmetry for v ̸= 0. The theories in (a) and
(b) co-incide along the line v = 0, when they both have USp(2Nf )×USp(2Nb) global symmetry. The two theories
are also identical for the physically interesting case with Nf = Nb = 2 for all v.

with charge order; see Fig. 1 for the phase diagrams of the continuum field theories to be introduced

in Section III and Appendix A. This field theory is a SU(2) gauge theory Nb = 2 relativistic scalars in

addition to the Nf = 2 massless Dirac fermions of the π-flux state.

We note an earlier work [60] which considered a continuous Néel/d-wave superconductor quantum

transition, but without gapless nodal quasiparticles in the d-wave superconductors, and only easy-plane

Néel order. Also, SU(2) gauge theories of the cuprates have been studied extensively earlier, as reviewed

in Ref. 33, but in reference to a staggered-flux spin liquid which breaks the gauge symmetry to U(1)—we

will not consider this spin liquid because it is expected to be unstable to a trivial monopole [34, 35].

In Section VII, we will consider the consequences of adding charge fluctuations to the Néel-VBS tran-

sition on the honeycomb lattice [61, 62] (VBS order is also known as ‘kekule’ order on the honeycomb

lattice). Following the same procedure as for the square lattice, we find only a Dirac semi-metal phase with

no broken symmetry, in contrast to the superconducting and charge-ordered phases on the square lattice.

As shown in Fig. 2, the Néel, VBS, and Dirac semi-metal phases of the honeycomb lattice are proposed to

meet at a multicritical point, as in the numerical study of the Hubbard model on the honeycomb lattice in

Ref. 63. In our theory, the multicritical point is bicritical [64], and is described by the Nf = 2, Nb = 1 case

of the SU(2) gauge field theory considered in the body of the paper. The same field theory was considered
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FIG. 2: Schematic phase diagram for the SU(2) gauge theory of an extended Hubbard model on the honeycomb
lattice. The bicritical point B [64] is described by the Nf = 2, Nb = 1 SU(2) gauge field theory. The thick line
indicates a first-order transition. The thin lines indicate second-order transitions out of the Dirac semi-metal phase
which are presumed to be described by Gross-Neveu-Yukawa field theories [66] without gauge fields.

earlier by Hermele [65] for a different proposed transition on the honeycomb lattice.

Our main results here are obtained by two different large flavor expansions of our SU(2) gauge theory.

The resulting phase diagrams in Fig. 1 contains first-order boundaries, a multi-critical point M where all

three phases meet, and second-order transitions between Néel/VBS order, charge order, and nodal d-wave

superconductivity. The multi-critical point M and the second-order transition are described by deconfined

critical SU(2) gauge theories. We will determine the scaling dimensions of gauge-invariant Néel, valence

bond solid (VBS), d-wave superconductor, and charge order parameters in these critical theories.

Of particular interest is the scaling dimension of the gauge-invariant electron operator, which we also

determine. This controls the manner in which gapless nodal quasiparticles emerge in the d-wave supercon-

ductor across the transition from an insulator with a non-zero gap to charged excitations. We summarize

the results on scaling dimensions in Table III. Ref. 22 considered a mean-field theory of the corresponding

transition in the electron-doped cuprates: in this case, the transition is to a pseudogap-metal, but the

nodal region of the Brillouin zone can be gapped in the electron-doped pseudogap metal. Thus our theory

has a remarkable feature not present in BCS theory: gapless nodal quasiparticles appear in a supercon-

ductor at a momentum which is gapped in the normal state. As we noted above, Ref. 22 pointed out
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connections of this feature to recent photoemission experiments in the electron-doped cuprates [28].

Section II introduces the square lattice SU(2) gauge theory of interest in this paper. This theory is

defined in terms of fermionic spinons fiα, α =↑, ↓ and charge e bosons Bi on the sites i of the square

lattice. Both the fermionic and bosonic matter fields transform as SU(2) gauge fundamentals, and there

is also a dynamical SU(2) gauge field on the links of the lattice. We then consider the most general lattice

gauge theory for these matter and gauge fields consistent with the projective symmetry transformations

of the π-flux spin liquid, and with gauge-invariant observables having the same symmetry signatures as

the Hubbard model with particle-hole symmetry. In the limit of strong gauge couplings, we can perform

a strong-coupling expansion of our lattice gauge theory by integrating out the lattice gauge fields [23],

and this will lead to the extended Hubbard model corresponding to our SU(2) lattice gauge theory. See

Chapter 14 of Ref. 67 for a simpler example of a conventional theory of gauge-invariant degrees of freedom

obtained from a lattice gauge theory of partons.

Note that our method is the converse of that usually followed in the condensed matter literature. We

do not start from a lattice model of correlated electrons, and then obtain a gauge theory by fractionalizing

the electrons. Instead, we start from a lattice gauge theory and match it to the electronic problem of

interest by general arguments based on gauge invariance and global symmetry. This is a powerful method

of incorporating non-perturbative knowledge of a fractionalized state (in our case, the π-flux spin liquid)

in a very general setting.

Section III describes the continuum limit of the square lattice gauge theory of Section II along the lines

of Ref. 18. This leads to a quantum field theory of Nf = 2 Dirac fermions and Nb = 2 complex scalars,

both transforming as SU(2) gauge fundamentals. We also discuss the generalizations of this theory to

general Nf,b, and the operators corresponding to the gauge-invariant observables of the Hubbard model.

Section IV examines the nature of fermion-boson couplings in the continuum field theory without any

spatial and temporal gradients. We find that there are no allowed terms which are relevant in the large

Nf,b expansion of critical theories. However, we do need to consider the higher-order formally irrelevant

terms because they are important in determining the fate of the spin gap in the Higgs phases where the

bosons are condensed.

Section V describes the Nb = ∞ saddle points of the continuum theories which lead to the phase

diagrams in Fig. 1.

Section VI computes the 1/Nf,b corrections to the scaling dimensions of the d-wave superconducting,

Néel, and charge order parameters, and the electron operator at momenta (±π/2,±π/2). This is carried

out by the SU(2) gauge theory analog of the computations in Ref. 68 for U(1) gauge theories.
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Section VII describes the extension of our results to the honeycomb lattice.

II. SU(2) SQUARE LATTICE GAUGE THEORY

We begin by recalling the SU(2) square lattice gauge theory of Ref. 18 in the simpler setting of a half-

filled square lattice, with no Fermi surfaces in any of the states studied. We also assume a particle-hole

symmetry. This lattice gauge theory is likely free of a sign problem in quantum Monte Carlo.

We write the electron spin operators as

Ci =

 ci↑

c†i↓

 , (2.1)

on sites i of a square lattice. We fractionalize the electrons into fermionic spinons fiα, α =↑, ↓ and charge

e bosons Bi via [3]

Ci = B†
iψi , (2.2)

where

ψi ≡

 fi↑

f †i↓

 , (2.3)

and

Bi ≡

 B1i

B2i

 , Bi ≡

 B1i −B∗
2i

B2i B∗
1i

 . (2.4)

This fractionalization introduces a SU(2) gauge symmetry, where

ψi → Uiψi , Bi → UiBi , (2.5)

under a SU(2) gauge transformation Ui.

Remarkably, essentially all of the physics of the π-flux spin liquid phase, and its descendants, studied

here are consequences of the SU(2) gauge symmetry, the spin rotation symmetry, and the action of other

symmetries on the spinons as summarized in Table. I. The action of the latter symmetries on the B

chargons follows from the decomposition (2.2), and these are also shown in Table I. A key property of

Table I is the relation

TxTy = −TyTx , (2.6)
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Symmetry cα fα Ba

Tx cα (−1)yfα (−1)yBa
Ty cα fα Ba
Px cα (−1)xfα (−1)xBa
Py cα (−1)yfα (−1)yBa
Pxy cα (−1)xyfα (−1)xyBa
T εαβcβ (−1)x+yεαβfβ (−1)x+yBa
C (−1)x+yεαβc

†
β εαβf

†
β (−1)x+yB∗

a

TABLE I: Projective transformations of the fiα spinons and Bi chargons on lattice sites i = (x, y) under the
symmetries Tx : (x, y) → (x + 1, y); Ty : (x, y) → (x, y + 1); Px : (x, y) → (−x, y); Py : (x, y) → (x,−y);
Pxy : (x, y) → (y, x); time-reversal T , and particle-hole symmetry C. The indices α, β refer to global SU(2) spin,
while the index a = 1, 2 refers to gauge SU(2). Also shown are the (non-projective) transformations of the gauge-
invariant electron cα.

which ensures π-flux on both spinons and chargons, and at least two degenerate minima in the dispersion

the chargons.

The degrees of freedom of our square lattice gauge theory are one SU(2) fundamental fermion ψi on

each lattice site, one SU(2) fundamental boson Bi on each lattice site, and a SU(2) link field Uij on each

nearest-neighbor link of the square lattice. We now describe the various terms in the Hamiltonian coupling

these degrees of freedom.

The simplest fermion spinon imaginary time (τ) Lagrangian compatible with Table I is

L(ψ) =
∑
i

ψ†
iDτψi − iJ

∑
⟨ij⟩

[
ψ†
ieijUijψj + i ↔ j

]
, (2.7)

where Dτ is a co-variant time derivative, i,j are nearest-neighbors, J is a real coupling constant of order

the antiferromagnetic exchange,

eji = −eij (2.8)

is a fixed element of the Z2 center of the gauge SU(2) which ensures π flux per plaquette; we choose

ei,i+x̂ = 1 , ei,i+ŷ = (−1)x , (2.9)

where i = (x, y), x̂ = (1, 0), ŷ = (0, 1). The link field Uij = U †
ji is the fluctuating SU(2) lattice gauge

field, and the mean-field saddle point of the π-flux phase is obtained by setting Uij = 1. The hopping

term in L(ψ) has been chosen pure imaginary as that ensures a simple coupling to the SU(2) gauge field,

along with SU(2) spin rotation invariance. The spin operator on each site Si = (1/2)f †iασαβfiβ (σ are the

Pauli matrices) can be expressed in terms of the ψi in the following SU(2) gauge-invariant combinations:

2Szi = ψ†
iψi − 1 , Sxi − iSyi = −εabψaiψbi , (2.10)
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where a, b = 1, 2 are SU(2) gauge indices, and εab is unit antisymmetric tensor. The nearest-neighbor

bond energy operator can be identified with each individual term in L(ψ)

bond energy: ⟨Si · Sj⟩ ∼ Qf,ij = Qf,ji = −i
[
ψ†
ieijUijψj + i ↔ j

]
. (2.11)

In the cuprates, modulations of Qf,ij would show up as modulations in the charge density on the sites

(and similarly for modulations in Qb,ij below).

Turning to the bosonic partons, and following Ref. 18, we can also write down the most general

effective Lagrangian for the Bi, keeping only terms quadratic and quartic in the Bi, and with only on-site

or nearest-neighbor couplings:

L(B) =
∑
i

|DτBi|2 + r
∑
i

B†
iBi − iw1

∑
⟨ij⟩

[
B†

ieijUijBj + i ↔ j
]
+ V(B) . (2.12)

A linear time derivative term is allowed only in the absence of particle hole symmetry, and so has been

omitted. The couplings r, w1 are real Landau parameters, and the quartic terms are in V(B). These

quartic terms are more conveniently expressed in terms of quadratic gauge invariant observables. By

examining the transformations in Table I, we can deduce the following correspondences between bilinears

of the B with those of the bilinears of the gauge-neutral electrons:

site charge density:
〈
c†iαciα

〉
∼ ρi ≡ B†

iBi

(the correspondence between ρi and site charge density holds

only in the absence of particle-hole symmetry; see Section IV),

bond density:
〈
c†iαcjα + c†jαciα

〉
∼ Qb,ij = Qb,ji ≡ Im

(
B†

ieijUijBj

)
,

bond current: i
〈
c†iαcjα − c†jαciα

〉
∼ Jij = −Jji ≡ Re

(
B†

ieijUijBj

)
,

pairing: ⟨εαβciαcjβ⟩ ∼ ∆ij = ∆ji ≡ εabBaieijUijBbj . (2.13)

Note that the bond density observable Qb,ij of bosons above has the same symmetry signature as the

bond energy Qf,ij of fermions in (2.11), and both are identical to the hopping terms in L(B) and L(ψ)
respectively. Now we can write an expression for V(B) by keeping all quartic terms which involve nearest-

neighbor sites:

V(B) =
u

2

∑
i

ρ2i + V1
∑
i

ρi
(
ρi+x̂ + ρi+ŷ

)
+ g

∑
⟨ij⟩

|∆ij |2

+ J1
∑
⟨ij⟩

Q2
b,ij +K1

∑
⟨ij⟩

J2
ij . (2.14)
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We also have the usual flux energy term of lattice gauge theory for the gauge field Uij

L(U) = −1

g

∑
i,j,k,l∈□

Tr [UijUjkUklUli] + c.c. , (2.15)

along with a gauge field kinetic energy [69].

Finally, we can consider quartic terms which couple the spinons and chargons directly. From the

composite operators defined above we can write down the following terms involving only nearest-neighbor

sites

L(Bψ) =
∑
⟨ij⟩

[
λ1 c

†
iαcjα + λ1 c

†
jαciα + λ2Qb,ij Qf,ij

]
. (2.16)

Our aim is to determine the phase diagram of the above square lattice gauge theory as a function of the

boson ‘mass’ tuning parameter r, and the various quartic boson couplings in (2.14). The general physics

is that of a transition between Higgs and confining phases of the SU(2) gauge theory, with deconfined

conformal gauge theories describing continuous transitions between the phases. When r is large and

positive, B excitations are gapped, and we can work with the fermion-only theory in (2.7)—this theory is

expected to confine into an insulator with either Néel or VBS order [29, 43, 70]. On the other hand, when

r is negative, B condenses in Higgs phases, and fully quenches the SU(2) gauge field. The Higgs phases

break one or more of the global symmetries, based upon the correspondence in (2.13).

III. QUANTUM FIELD THEORY AND ORDER PARAMETERS

Now we take the continuum limit of the square lattice gauge theory action in Section II, and obtain

the quantum field theory studied in the present paper. We will take the simplest case in which the

boson hopping terms are only nearest-neighbor, as in (2.12), so there are only two valleys in the boson

dispersion. This will lead to a SU(2) gauge theory with Nf = 2 flavors of SU(2) fundamental Dirac

fermions ψ, and Nb = 2 flavors of SU(2) fundamental bosons B. As for the lattice gauge theory in

Section II, almost everything follows from the symmetry transformations of the fields: the continuum

limits of the transformations in Table I are presented in Table II.

For the continuum limit action of the fermionic spinons, we follow the notation of Ref. [47], which

follows that of earlier related works [43, 46, 71], in obtaining from (2.7) the fermionic Lagrangian

Lψ = iψ̄γµ
(
∂µ − iAαµσ

α
)
ψ, (3.1)

where σα are the Pauli matrices, α = x, y, z, γµ are 2×2 Dirac matrices which act on the sublattice space,

Aαµ is the SU(2) gauge field, and the ψ have an additional Nf = 2 valley (‘flavor’) index which is not shown.

12



From the ψ bilinears, we can make a gauge-invariant 5-component real vector, which represents the 3 + 2

components of the Néel and VBS order parameters [43–45]; the Néel order is a staggered modulation of

the spin in (2.10), while the VBS order is a modulation of the bond energy in (2.11). The properties of

Lψ are invariant under global SO(5)f rotations of this vector, and all our analysis below will preserve this

SO(5)f symmetry (the f subscript merely denotes that the symmetry acts on the fermions).

It is a simple matter to generalize (3.1) to arbitrary integer Nf : we allow the valley index to run

over 1 . . . Nf . After transforming to Majorana fermions, the free fermion Lagrangian has a SO(4Nf )

symmetry, and modding out the gauge symmetry as in Ref. 43, we conclude that the Lagrangian Lψ has

a USp(2Nf )/Z2 global symmetry.

In the bosonic matter sector, we express the lattice Bi bosons in terms of complex bosons Bas, with

a = 1, 2 the SU(2) gauge index, and s = 1 . . . Nb = 2 the valley (‘flavor’) index [18]:

Ba(r) =



−Ba1eiπ(x+y)/2 +Ba2(
√
2 + 1)eiπ(x−y)/2,

x even

Ba1(
√
2 + 1)eiπ(x+y)/2 −Ba2e

iπ(x−y)/2,

x odd

(3.2)

Under particle-hole symmetry C, the transformations in Table I now imply that Bas → B∗
as. Then (2.13)

leads to the following gauge-invariant order parameters in the continuum limit [18]

d-wave superconductor : εabBa1Bb2

x-CDW : B∗
a1Ba1 −B∗

a2Ba2 ≡ B†µzB

y-CDW : B∗
a1Ba2 +B∗

a2Ba1 ≡ B†µxB

d-density wave : i
(
B∗
a1Ba2 −B∗

a2Ba1

)
≡ −B†µyB (3.3)

where µ acts on valley indices. In terms of the lattice order parameters in (2.13), the d-wave supercon-

ductor has ∆i,i+x̂ = −∆i,i+ŷ, but is independent of i. The charge density waves (CDWs) have period 2

modulations of Qb,ij and ρi (the modulations of ρi are absent when there is particle-hole symmetry, see

Section IV), and are site-centered unlike the bond-centered modulations of Qf,ij in the VBS state. The

d-density wave order is odd under time-reversal, and has a staggered pattern of electrical currents Jij .

Note that the CDW and d-density wave orders can be written as a SO(3) vector B†µiB , i = x, y, z. In

combination with the complex superconducting order, the order parameters in (3.3) form a SO(5)b vector,

for reasons very similar to the fermions (again the b subscript denotes that this SO(5) acts on the bosons).

Computing the magnitude of this SO(5)b vector, we obtain an important identity which is easily verified
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by explicit evaluation

(B†B)2 =
(
B†µiB

)2
+ 4 |εabBa1Bb2|2 . (3.4)

The continuum limit of the Lagrangian (2.12) for the bosonic sector is

LB =
∣∣(∂µ − iAαµσ

α
)
B
∣∣2 + r|B|2 + ū|B|4

+ v1

(
B†µzB

)2
+ v1

(
B†µxB

)2
+ v2

(
B†µyB

)2
+ v3 |εabBa1Bb2|2 . (3.5)

The first three terms in LB have the SO(5)b global symmetry, for reasons essentially identical to those

for Lf . All the order parameters in (3.3) are degenerate in this limit. This degeneracy and the SO(5)b

symmetry are broken by the v1,2,3 terms in (3.5), which are simply squares of the order parameters in

(3.3). The identity in (3.3) was overlooked in Ref. [18], and has the consequence that the 5 quartic terms

in (3.5) are not all independent—this has no material consequence to the mean-field results of Ref. [18],

apart from a redundant labeling of couplings. In the Higgs phase where B is condensed, one of the order

parameters in (3.3) must be non-zero, and, in mean-field theory, the choice is determined by the relative

values of v1,2,3 [18].

The generalization of the first three terms in (3.5) to arbitrary integer Nb ≥ 2, Nb even is straightfor-

ward, but the v1,2,3 terms in require further consideration. We limit ourselves to the case v1 = v2, so that

the CDW orders and the d-density wave orders become degenerate. Then we can write (3.5) as

LB =
∣∣(∂µ − iAαµσ

α
)
B
∣∣2 + r|B|2 + ū|B|4

+ v1

(
B†µiB

)2
+ v3 |εabBa1Bb2|2 . (3.6)

Next, we use the redundancy implied by (3.4) to set v1 = 0 in (3.6). Then one extension of (3.6) to general

Nb for the bosonic flavor indices is obtained by replacing εst in the v3 term by Jst the USp(Nb) invariant

tensor, consisting of Nb/2 copies of εst along the diagonal. (An alternative large Nb extension in which

v3 is set to zero is discussed in Appendix A.) In this manner we obtain a Lagrangian valid for any Nb

(following conventions in Ref. [72])

LB =
∣∣(∂µ − iAαµσ

α
)
B
∣∣2 + u

2Nb
(|Bas|2 −Nb/g)

2 − v

Nb

∣∣BTJ εB
∣∣2 . (3.7)

Recall that the indices a, b act on the SU(2) gauge indices, and not the flavor indices, and so do not need a

large Nb generalization. For Nb = 2, the correspondence to the couplings in (3.5) is u = 2Nbū, g = −u/r,
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v = −Nbv3/4. For general Nb, the order parameters in (3.3) are replaced by the SU(2) gauge-invariant

operators

d-wave superconductor : JstεabBasBbt

charge order : B∗
asT

i
stBat (3.8)

where T i are generators of USp(Nb) obeying

T i† = T i , T iTJ + J T i = 0 . (3.9)

We refer to the combined and degenerate CDW and d-density orders simply as ‘charge order’.

We can now use standard methods to generate a large Nb expansion of (3.7) at fixed u, g, and v. The

coupling g will be used to tune across the transition, while v will determine the fate of Higgs phase where

B is condensed. The theory in (3.7) has a global USp(Nb)×U(1) symmetry, and the Higgs phase with B

condensed either breaks the U(1) symmetry leading to d-wave superconductivity, or breaks the USp(Nb)

symmetry leading to degenerate CDW/d-density wave orders.

At v = 0, the global symmetry of (3.7) is enhanced to USp(2Nb)/Z2 (as for the fermionic spinons [43]),

and the superconducting and charge orders all become degenerate. The enhanced symmetry is evident in

the matrix form of the bosonic fields in (2.4), which generalizes in the continuum to

Bs =

 B1s −B∗
2s

B2s B∗
1s

 , (3.10)

obeying the reality condition

Bs = σyB∗
sσ

y . (3.11)

The USp(2Nb) global symmetry Ug then acts as right multiplication B → BUg, where Ug is a 2Nb × 2Nb

matrix acting on both the s flavor index, and the right matrix index of (3.10). The condition (3.11) leads

to the defining conditions for USp(2Nb):

U †
gUg = 1 , UTg σ

yUg = σy . (3.12)

Note, also, that the SU(2) gauge symmetry in (2.5) acts a left multiplication Bs → UBs. As in the

fermion case, the USp(2Nb) and gauge SU(2) share a common Z2 center, and hence the global symmetry

is USp(2Nb)/Z2.

The full action of the microscopic symmetries on the continuum fields is listed in Table II. To retain a

concise representation of the SU(2) spin rotation symmetry, we re-express our spinon degrees of freedom
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Symmetry Ba Xab

Tx −iµxBa µxXab

Ty −iµzBa µzXab

Px Ba −iγxµzXab

Rπ/2 −µx+µz

√
2
Ba e

iπγ0/4e−iπµ
y/4Xab

T B γ0µyX∗

C B∗ Xσy

U(1)c eiθBa Xab

SU(2)g UgB XU†
g

SU(2)s B UsX

TABLE II: We tabulate the action of the microscopic symmetries, along with the SU(2) gauge transformations, on
the continuum fields. To concisely express the action of SU(2) spin rotation symmetry, we represent the spinon
degrees of freedom in terms of a matrix of Majorana fermions X. The γ matrix γ0 is the labels the temporal
component.

in terms of Majorana fermions. Following Ref 43, we introduce the 4 × 2 matrix of Majorana fermions

Xa,s;b. Here a, s, b are the spin, valley and gauge indices, respectively. The relation between X and the

Dirac fermions is given by ψa,s = iσya,bX1,s,b. The SU(2) gauge symmetry acts as Xa,s;b → Xa,s;cU
†
cb and

SU(2) spin rotation symmetry acts as Xa,s;b → UacXc,s;b. The action of all the symmetries apart from

spin rotation symmetry lifts directly to the complex fermions, although a U(1) subgroup corresponds to

a uniform phase rotation ψ → eiθψ. Both representations will be utilized here - the Majorana represen-

tation for when a complete symmetry analysis is required, and the Dirac representation for perturbative

computations.

Along with the gauge-invariant fermion and boson bilinears noted above, we will also consider mixed

gauge-invariant bilinears which lead to the electron operator measured in photoemission experiments.

The quantum field theory yields the electron operator near the 4 nodal points k = (±π/2, π/2). The

particular combination of low-energy spinons and chargons that correspond to these nodal excitations is

rather complicated, as the spinor structure of the Dirac spinons must be unpacked, i.e we consider the

fields ψasα with gauge index a, valley index s, and spinor index α (which microscopically corresponds to

a sublattice index). Suppressing the valley index and taking the Pauli matrices µi to act on both chargon
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and spinon valley indices, B∗
aµ

iψaα ≡ B∗
asµ

i
stψatα, we have

Ck=(π/2,π/2) ∝

B∗
aiµ

y
(
ψa1 +

(√
2 + 1

)
ψa2
)
,

ϵabBa
((√

2 + 1
)
ψa1 − ψa2

)


Ck=(−π/2,π/2) ∝

 −B∗
aiµ

z
((√

2 + 1
)
ψa1 + ψa2

)
ϵabBaµ

x
(
−ψa1 +

(√
2 + 1

)
ψa2
)
.

 (3.13)

As we will show, generic operators of the form B∗
asψas′α and ϵabBasψbs′α are all renormalized in the

same way at criticality, so the details of Eq. 3.13 will not be relevant for computing the scaling dimension

of the electron operator.

We will analyze the theory Lψ+LB in (3.1) and (3.7) in the limit of large Nf and Nb, with a fixed ratio

Nf/Nb. We obtain the leading 1/Nf,b corrections to the scaling dimensions of the gauge-invariant fermion

and boson bilinear order parameters, and also the electron operators in (3.13). We will also obtain the

corresponding properties in an alternative large Nb limit in Appendix A.

IV. FERMION-BOSON INTERACTIONS AND SPIN GAPS

In Section III, we constructed a Lagrangian describing spinon and chargon fluctuations and their cou-

pling to a shared SU(2) gauge field. Importantly, there exist three independent quartic chargon interactions

which are relevant at tree-level and must be tuned in order to reach a continuous transition. In this sec-

tion, we consider symmetry-allowed interactions between the spinons and chargons. The reason for this

is twofold. First, quartic interactions involving two spinons and two chargons are marginal at tree-level,

and corrections to their scaling dimension are important for the behavior of the critical theory. Second,

condensation of the chargons can qualitatively modify the dispersion of the spinons in the charge-ordered

phase, either by producing a gap or generating a Fermi surface. Note that upon condensation of the char-

gons, the spinon becomes associated with the electron, and these dispersion modifications are reflected in

the electronic spectral function. We show that in fact no quartic chargon-spinon interactions are allowed

by the microscopic symmetries in the critical theory, provided we enforce particle-hole symmetry. Relaxing

particle-hole symmetry admits two quartic interactions. In the charge ordered phase, these terms shift the

Fermi energy of the Dirac spinons, thereby inducing a spinon Fermi surface.

In this section, we will use the Majorana representation of the fermionic spinons; the explicit action

of spin rotation symmetry is essential in our symmetry analysis. In this language, a generic quartic

interaction that respects both charge conservation and spin rotation invariance can be expressed in the
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form ∑
α,β,j

Aα,β,jTr
[
BµαB†XγjµβX

]
, (4.1)

where X̄ ≡ X†γ0 and A is a coefficient tensor, not to be confused with the gauge field. The indices

α , β , j run over four variables, the three Pauli and γ matrices as well as an additional identity element.

We perform a systematic search for symmetry-allowed quartic couplings by deducing the action of the

microscopic symmetries on Aα,β,j , which we regard as a 43 = 64-dimensional vector. Symmetry-allowed

quartic terms are given by choices of A which have eigenvalue 1 under all the symmetries, the existence

of which can be checked numerically.

With this approach, we deduce two terms that are allowed by all the microscopic symmetries, but are

odd under particle-hole symmetry which we assume to be emergent in the critical theory:

Tr
[
BB†Xγ0X

]
,

Tr
[
BµzB†XµzγxX

]
+ Tr

[
BµxB†XµxγyX

]
.

(4.2)

One can also consider analogous quartic couplings of the form
∑

α,β,j Cα,β,jTr
[
BµαB†]Tr

[
XγjµβX

]
. The

tensor C transforms identically to A; however, the two quartic couplings in this case vanish identically due

to the anticommutation relations of the Majorana fermions. These results are consistent with taking the

continuum limit of the quartic spinon-chargon interactions on the lattice given by (2.16), where we find that

the leading order terms with no derivatives vanish. Allowing for quartic interactions that break particle-

hole symmetry, such as an on-site chemical potential or a second-neighbor electron hopping, generate the

continuum interactions in (4.2). The first term acts as a chemical potential and, at each of the two gapless

points in momentum space, induces an equal and opposite shift in the Fermi energy on the two species of

spinons.

Quartic interactions do not generate a spin gap in the ordered phases. To find six-term interactions that

can open up a spin gap in the CDW phase, we take the approach of considering the CDW order parameter,

B†µzB and B†µxB for x-CDW and y-CDW respectively, and coupling them to a quartic chargon-spinon

interaction that has the same symmetry transformations. Multiple six-term interactions can be obtained

in this manner; however, only two are capable of producing a spin gap, which are

B†µzBTr
[
BµxB†XµyX

]
,

B†µxBTr
[
BµzB†XµyX

]
.

(4.3)

Note that these terms vanish unless both the x-CDW and y-CDW terms are non-zero. This is consistent

with the fact that, once we are in the CDW phase, one is allowed to add non-gauge-invariant terms to the
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spinon dispersion which break translational symmetry. The symmetry transformations of gauge singlet

and triplet spinon bilinears were tabulated in Ref. 71; from this analysis, one can conclude that the only

possible mass term in the CDW phase, Tr
[
σaXµyX

]
, must be odd under translations in both the x and y

directions. This term also breaks particle-hole symmetry; however, as it is proportional to four powers of

the chargon condensate, it will generically be smaller than the previously-discussed perturbations which

generate a spinon Fermi surface.

V. LARGE Nb SADDLE POINT

This section examines the bosonic theory LB in (3.7), and determines its phase diagram at Nb = ∞.

We introduce decouplings fields λ and ∆ to obtain from (3.7)

LB = |DµBas|2 +
Nbλ

2

2u
+
Nb|∆|2
v

+ iλ(|Bas|2 −Nb/g)−∆JstεabB∗
asB

∗
bt −∆∗ JstεabBbtBas. (5.1)

The saddle point value of iλ will determine the mass of the B bosons, while (Nb/v)∆ is the superconducting

order parameter in (3.8). In order to carry out the Gaussian integral over the B bosons, it is convenient to

define a Nambu basis for B. We would like the quadratic terms in B which are associated with pairing to

be completely off diagonal in our choice of basis and for the rest of the terms to be diagonal. We therefore

use the fact that Jst is anti-symmetric to construct the Nambu basis:

Bm =


B1,2m−1

B2,2m−1

B∗
2,2m

−B∗
1,2m

 (5.2)

Here we have used 1, 2 to label the indices corresponding to the SU(2) gauge symmetry andm = 1, ..., Nb/2.

After integrating out the bosons, the effective action is:

Seff. =
Nb

2
Tr
[
ln(G−1)

]
+
Nbλ

2

2u
+
Nb|∆|2
v

− iλ
Nb

g
, (5.3)

where

G−1 =

iλ− (∂µ + iAjµσj)
2 −2∆

−2∆∗ iλ− (∂µ + iAjµσj)
2

 (5.4)

is a 4× 4 matrix. We assume Ajµ = 0 at the saddle point (preserving gauge and Lorentz symmetry). The

saddle point equation for λ is

iλNb

u
+
Nb

g
=

∫
d3p

(2π)3
(
iλ+ p2

) 2Nb

(iλ+ p2)2 − 4|∆|2 , (5.5)
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FIG. 3: We show the saddle point solutions for λ as a function of 1
gc

− 1
g and v for u = 1.5 for the solution where

only λ is condensed and B and ∆ are both zero. Such a solution only exists when g > gc and we note the value of
λ has no dependence on v when ⟨∆⟩ = 0. The boundary after which λ is nonzero is denoted with a dotted red line.

and that for ∆ is

Nb

v
=

∫
d3p

(2π)3
4Nb

(iλ+ p2)2 − 4|∆|2 . (5.6)

At the saddle point where ∆ = 0, setting λ̄ ≡ iλ we recover the result of Ref. 68.∫
d3p

(2π)3
1

(λ̄+ p2)
=

λ̄

2u
+

1

2g
. (5.7)

In what follows, we will always assume g > 0.

A. Solving saddle point equations

In integrating out the B bosons, we have assumed there is no condensate in B. We will first solve the

saddle point equations under the assumption that ⟨B⟩ = 0 and then consider alternate solutions where B

condenses. Under this assumption, the saddle point equations for ∆ and λ ≡ iλ obtained from integrating

(5.6) and (5.5) are:

1

v
=

1

4π

1

|∆|

[√
λ+ 2|∆| −

√
λ− 2|∆|

]
, (5.8)

λ

u
+

1

g
= − 1

4π

[√
λ+ 2|∆|+

√
λ− 2|∆| − 4π

gc

]
, (5.9)

where 1/gc = Λ/π2, with Λ the momentum space cutoff. We first note the existence of a solution where

∆ = 0 and λ is condensed obtained by neglecting (5.6), setting ∆ = 0 in (5.9), and solving (5.9) for λ.

Such a solution is shown in Fig. 3.

We can also find solutions of Eq. 5.8 and Eq. 5.9 where λ and ∆ are both condensed. Multiplying the

saddle point equation for λ and ∆ together yields a constraint on λ which is independent of ∆:

λ = u

(
1

gc
− 1

g
− v

4π2

)
(5.10)
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FIG. 4: We show the saddle point solutions for λ (a) and ∆ (b) for the class of solution where ∆ and λ are both
nonzero but B is assumed to not be condensed as a function of v and 1

gc
− 1

g . A real, positive solution for λ and
|∆| only exists for the narrow strip shown in the region where g > gc and v > 0. On the lower curve of the region
of existence of this solution we have λ = 2|∆|. The boundary enclosing the region where each quantity becomes
nonzero is denoted with a dotted red line.

We then only need to assume the above relation for λ, substitute this expression into Eq. 5.8 or Eq. 5.9,

and solve for ∆. The resulting solution is shown in Fig. 4, and exists only on a narrow strip for positive

v and 1
gc

− 1
g . On the lower boundary of this strip of solution, we have λ→ 2|∆|.

We now investigate a third class of solution, one where we allow B to condense in addition to λ and ∆

by allowing for a condensate in the m = 1 component of (5.2)

⟨Bm⟩ =
√
Nb


B1,1

B2,1

B∗
2,2

−B∗
1,2

 δm1 . (5.11)

After integrating out the m > 1 components, we obtain the large Nb effective action generalizing (5.3)

Seff. =
Nb

2
Tr
[
ln(G−1)

]
− Nbλ

2

2u
+
Nb|∆|2
v

− λ
Nb

g

+Nb

[
λ(|Ba1|2 + |Ba2|2)−∆B∗

asB
∗
btεabεst −∆∗BasBbtεabεst

]
. (5.12)

The saddle point equations for B are:

λB∗
1,1 − 2∆∗B2,2 = 0 λB∗

2,1 + 2∆∗B1,2 = 0 λB∗
1,2 + 2∆∗B2,1 = 0 λB∗

2,2 − 2∆∗B1,1 = 0 . (5.13)

We note that combining the above equations produces the constraint:

λ = 2|∆| . (5.14)

Additionally, we note that the saddle point equations for B imply that if λ, ∆, and B all condense, the

21



-0.04 -0.02 0.0 0.02 0.04
1
gc
− 1

g

-0.75

-0.375

0.0

0.375

0.75

v

a)

-0.04 -0.02 0.0 0.02 0.04
1
gc
− 1

g

-0.75

-0.375

0.0

0.375

0.75

v

b)

-0.04 -0.02 0.0 0.02 0.04
1
gc
− 1

g

-0.75

-0.375

0.0

0.375

0.75

v

c)

0.00

0.02

0.04

0.06

0.08

0.10

λ

0.00

0.05

0.10

0.15

0.20

2∆
/v

0.00

0.01

0.02

0.03

0.04

0.05

0.06

|B
a
,1 | 2

+
|B

a
,2 | 2

FIG. 5: We show the saddle point solutions for λ (a), ∆ (b), and B (c) for the class of solution where all are allowed
condensed for a the first branch of the solution corresponding to Eq. 5.18 as a function of 1

gc
− 1

g and v for u = 1.5.
The boundary enclosing the region where each quantity becomes nonzero is denoted with a dotted red line. We
note that a solution with a positive and real

√
|∆| only exists for v > 0 and g > gc. The upper boundary of this

solution aligns with the lower boundary of the solution in Fig. 4.

d-wave order parameter in (3.3) also must condense. The saddle point equation for λ becomes:

2|∆|
u

+
1

g
− 1

gc
− (|Ba,1|2 + |Ba,2|2) = −

√
|∆|
2π

, (5.15)

while the saddle point equation for ∆ when B is nonzero becomes:

1

v
− 1

|∆|(|Ba,1|
2 + |Ba,2|2) =

1

2π
√

|∆|
. (5.16)

Combining the two equations yields:

|Ba,1|2 + |Ba,2|2 = −
√

|∆|
2π

+
|∆|
v

=⇒ |∆|
(

1

2v
− 1

u

)
−
√
|∆|
2π

+
1

2

(
1

gc
− 1

g

)
= 0 , (5.17)

such that we have solutions corresponding to
√
|∆|:

√
|∆| =

1
2π ±

√(
1
2π

)2 − 2
(

1
2v − 1

u

) (
1
gc

− 1
g

)
2
(

1
2v − 1

u

) (5.18)

The two branches for which
√
|∆| is real and positive are shown in Fig. 6 and Fig. 5.

The first order phase boundary between phases A and B is determined by where the argument of the

square root in (5.18) becomes negative and lies along the curve:

v = (1/gc − 1/g)
[
(2π)−2 + (2/u)(1/gc − 1/g)

]−1
. (5.19)

Finally, there is a final type of possible solution where only B is condensed, and ⟨λ⟩ = ⟨∆⟩ = 0. Such

a solution must obey |B1|2 + |B2|2 = − 1
gc

+ 1
g , but unlike the solution where ∆ and λ are also condensed,

there is no constraint from the saddle point equations to determine which order parameters in (3.3) are
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FIG. 6: We show the saddle point solutions for λ (a), ∆ (b), and B (c) for the class of solution where all are
allowed condensed for a the second branch of the solution corresponding to Eq. 5.18 as a function of 1

gc
− 1

g and v
for u = 1.5. This class of solution exists only when v > 0 and unlike the solution corresponding to the first branch
of Eq. 5.18 plotted in Fig. 5, the solution corresponding to to second branch exists when 0 < g < gc. We note the
difference in scale of the magnitude of the plotted quantities as compared to Fig. 5 for the same range of v. The
boundary enclosing the region where each quantity becomes nonzero is denoted with a dotted red line.

nonzero when ⟨B⟩ ≠ 0. We argue that the order parameter which condenses can be determined from the

sign of v from the original action in (3.7) by noting that when v is positive, it is energetically favorable for

the superconducting order parameter in the B’s to become nonzero while if v is negative, it is favorable

for the d-density wave or CDW to become nonzero.

We have presented four possible classes of solutions; a solution where only B is condensed, a solution

where only λ is condensed, a solution where λ and ∆ are condensed but ⟨B⟩ = 0, and a solution where λ,

∆, and B all condense. The phase diagram is then determined by plugging each solution into (5.12) and

choosing the one with the lowest free energy. After integration, (5.12) becomes:

Seff.

Nb
=− 1

6π

[(
λ+ 2|∆|

)3/2
+
(
λ− 2|∆|

)3/2]
+

2

3π2
Λλ− 2

9π2
Λ3 +

1

6π2
Λ3ln

[
(λ+ Λ2)2 − 4|∆|2

]
− λ

2

2u

+
|∆|2
v

− λ

g
+ λ(|Ba1|2 + |Ba2|2)−∆B∗

asB
∗
btεabεst −∆∗BasBbtεabεst .

(5.20)

In practice we compute the above with a cutoff Λ = 100, and find the low energy phases shown in Fig. 7.

We note that when B is condensed such that λ = 2|∆|, there is no direct dependence of the effective action

on B in the above.
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FIG. 7: We show the lowest energy saddle point solutions for λ (a), |∆| (b), and |Ba,1|2+|Ba,2|2 and (c) as a function
of 1

gc
− 1

g and v. We denote the boundaries between each phase with a black solid line if the phase boundary is first
order and a black dotted line if the phase boundary is second order. The lowest energy solution for g > gc is the
solution plotted in Fig. 3 with only ⟨λ⟩ ≠ 0 in the region where the solution shown in Fig. 6 (the one where ∆, B,
and λ are all condensed) does not exist; this solution corresponds to either Neel or VBS order since neither ∆ nor
B are condensed. In the region where v > 0 where the solution shown in Fig. 6 does exist, it is always the lowest
energy solution; this solution corresponds to a d-wave superconductor. For 0 < g < gc and v < 0, the only possible
solution is the one where only B is condensed; based off our arguments in the text, since this solution is the lowest
energy only for v < 0, such a solution corresponds to charge order.

VI. COMPUTATIONS AT ORDER 1/Nf,b

For convenience, we present the complete Lagrangian L = Lψ + LB in (3.1) and (5.1) for our SU(2)

gauge theory.

L = iψ̄ /Dµψ + |DµBas|2 +
Nbλ

2

2u
+
Nb|∆|2
v

+ iλ(|Bas|2 −Nb/g)− Jstεab(∆B∗
asB

∗
bt +∆∗BbtBas). (6.1)

The kinetic term for boson should be understood as

|(DµBs)a|2 ≡ (∂µB
∗
a − iB∗

bσ
j
baAj)(∂µBa + iAjσ

j
abBb). (6.2)

We will study (6.1) in a large Nf,b expansion, with Nf/Nb fixed. This is similar to the method followed

in Ref. 68 for a U(1) gauge theory.

A. Multicritical point at v = 0

First we consider the multicritical point M in Fig. 1, where we can ignore the pairing field ∆ in (6.1),

and work with a Lagrangian with USp(2Nf )× USp(2Nb)/Z2 global symmetry:

L0 = iψ̄ /Dµψ + |DµBas|2 +
Nbλ

2

2u
+ iλ(|Bas|2 −Nb/g) . (6.3)
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Taking the Fourier transformation and integrating over the bosons and fermions, we write the free energy

as

F0 = Tr lnG−1
b +Nb

(
λ2

2u
− λ

g

)
+ Tr lnG−1

f , (6.4)

where G−1
b is a 2Nb × 2Nb matrix of block-diagonal form G−1

b =

G−1
A 0

0 G−1
D

 in the Nambu basis:

G−1
A/D = 1

[
δkk′k

2 + iλ(k − k′) +

∫
d3q

(2π)3
Aα(q)A

α(k − k′ − q)

]
± σα

[
(k + k′)µA

µ
α(k − k′)

]
. (6.5)

G−1
f is the corresponding matrix for the fermionic sector

G−1
f = γµ[−δkk′kµ1+Aαµ(k

′ − k)σα]. (6.6)

Next we expand near the saddle point by defining the propagator

GB(k) =
1

k2 + λ̄
, Gψ =

/k

k2
, (6.7)

where λ̄ = iλc is real and positive. We expand the matrix log to second order, see appendix B for details.

The leading correction to the free energy can be computed as

F (1)
0 =

1

2

∫
d3p

(2π)3

{
Πλ(p)λ(p)λ(−p) +Aµα(p)

(
δµν −

pµpν
p2

)
ΠA(p)A

α
ν (−p)

}
+Nb

(
λ2

2u
− λ

g

)
, (6.8)

where the kernels are

Πλ(p) =
2Nb

4πp
arctan

p

2
√
λ̄
,

ΠA(p) = 2Nb

(
4λ̄+ p2

8pπ
arctan

p

2
√
λ̄
−

√
λ̄

4π

)
+Nf

p

16
.

(6.9)

The dressed propagators can also be read off,

Dij
A,µν =

δij
ΠA

(
δµν − ζ

pµpν
p2

)
, Dλ =

1

Πλ
. (6.10)

Here i, j are the gauge indices and µ, ν are the spacetime indices. For simplicity we introduce the standard

notation (Aµ)aa′ ≡
∑

iA
i
µ(σ

i)aa′ . The propagators then become

⟨(Aµ)ab(Aν)a′b′⟩(q) = (2δab′δba′ − δaa′δbb′)Dµν(q) =
2δab′δba′ − δaa′δbb′

ΠA(q)

(
δµν − ζ

qµqν
q2

)
, (6.11)

Notice that at the critical point, the kernels reduce to

Πλ → 2Nb

8p
, ΠA,µν → (2Nb +Nf )

p

16
. (6.12)
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FIG. 8: Correction to boson propagators at v = 0.

1. Dressed boson field

The anomalous dimension of the B field is

dim[Bas] =
3− 2 + ηB

2
=

1

2
+
ηB
2
, (6.13)

where a is the gauge index, and s is the flavor index as usual. The operator is not gauge-invariant on its

own. The corrections come from the gauge fields and λ. We draw the corresponding diagrams in 13.

Since the boson propagator is the same for any flavor (a, s), we can first compute the integral and then

take care of the indices. The integral corresponding to fig. 8(a) is

IA;1 =

∫
d3p

8π3
[GB(k + p)Dµν(−p)(2k + p)µ(2k + p)ν ] |λ̄=0

→ − 4

(2Nb +Nf )π2

(
10

3
+ 2ζ

)
k2 log k,

(6.14)

where the right arrow means we are extracting the k2 log k divergence. Computational details for all the

integrals can be found in appendix B. Taking care of the trace over internal gauge indices,∑
a′,a′′

σjaa′σ
j
a′a′′ =

∑
a′,a′′

(2δaa′′ − δa′aδa′′a) = 3. (6.15)

The integral for diagram 8(b) is

Iλ;1 = i2
∫

d3p

8π3
[GB(k + p)Dλ(−p)]

∣∣
λ̄=0

→ 2

3Nbπ2
k2 log k. (6.16)

Summing everything up, we have

ηB =
2

3Nbπ2
− 12

(2Nb +Nf )π2

(
10

3
+ 2ζ

)
. (6.17)

2. Charge order parameter

Next we work out the vertex corrections to get the

dim[B†
asT

α
stBat] = 2 dim[B] + ηvertex, (6.18)

26



where Tα is some generator of the USp(Nb) group that satisfies (3.9). Again we will first do the integrals

and then take into account the indices. The relevant diagrams are shown in figure 14.
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k2
a′′, t

p
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k1 − p
a, s

k2 − p
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k1
a, s

k2
a, t

p

λ

FIG. 9: Diagrams contributing to the vertex correction of the density wave scaling dimension at leading order.

The following integral will contribute to panel (a):

IA;2 =

∫
d3p

8π3
GB(k1 − p)GB(k2 − p)(2k1 − p)µ(2k2 − p)ν

1

ΠA,µν(p)

(
δµν − ζ

pµpν
p2

)
(6.19)

To extract the divergence, we can simplify the calculation by choosing k1 = k2. The expression above then

gives (more details are presented in appendix B)

IA;2 → − 8

(2Nb +Nf )π2
(1− ζ) log k. (6.20)

Comparing with the tree level diagrams, there is an additional prefactor 3 coming from the trace over

gauge indices ∑
j

∑
a

σja′′aσ
j
aa′ = 3δa′a′′ . (6.21)

Another useful integral that contributes to panel (b) is,

Iλ;2 = i2
∫

d3p

8π3
GB(k1 − p)GB(−k2 + p)Dλ(p) →

2

Nbπ2
log k, (6.22)

where we again have imposed k1 = k2 and extracted the term proportional to log k. Combining the

contributions, we get

ηvertex =
2

Nbπ2
− 8 · 3

(2Nb +Nf )π2
(1− ζ). (6.23)

The dimension of the quadratic boson term is thus,

dim[B†
asT

α
stBat] = (1 + ηB) + ηvertex = 1 +

8

3(2Nb +Nf )π2

(
Nf

Nb
− 22

)
. (6.24)

At Nf = Nb = 2, we have above equal to 1− 28/3π2 = 0.054. Our anomalous scaling dimension is

ηB2 = 1 + 2ηB + 2ηvertex = 1 +
16

3(2Nb +Nf )π2

(
Nf

Nb
− 22

)
. (6.25)
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3. Superconducting order parameter

Next we work out the vertex corrections to get the

dim [BasεabJstBbt] = 2 dim[B] + ιvertex. (6.26)

At v = 0, the result is guaranteed by symmetry to be the same as that of the charge order computed in

the previous section, but we still present it here for completeness. The relevant diagrams are shown in 10.

We will again first compute the integrals and then take into account the indices.

(a)

k1 − p

b, t

−k2 + p
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p

Aµ
(b)
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−k2 + p
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b, t

−k2
a, s

p

λ

FIG. 10: Vertex corrections to the superconducting order parameter.

The useful integral in panel (a) is

IA;3 =

∫
d3p

8π3
GB(k1 − p)GB(−k2 + p)(2k1 − p)µ(−2k2 + p)ν

1

ΠA,µν(p)

(
δµν − ζ

pµpν
p2

)
→ 8

(2Nb +Nf )π2
(1− ζ) log k.

(6.27)

Notice the integral is different from that in (6.19) and the result has opposite sign. Compared with the

tree level, we just have an additional factor −3 coming from the gauge indices

∑
a,b

σja′aεab(σ
j)Tbb′ = −3 εa′b′ . (6.28)

The two minus signs therefore cancel each other and we have the same result as in the charge density wave

case.

The integral relevant to panel (b) turns out to be have the same result same as that in (6.22),

Iλ;3 = i2
∫

d3p

8π3
GB(k1 − p)GB(−k2 + p)Dλ(p) = Iλ;2, (6.29)

with no additional prefactors compared with the tree level result. Combining all contributions, we get

ιvertex =
2

Nbπ2
− 8 · 3

(2Nb +Nf )π2
(1− ζ), (6.30)
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which is not surprisingly the same as that found in (6.17). The dimension of the pairing term is then

dim[BasεabJstBbt] = 1 +
8

3(2Nb +Nf )π2

(
Nf

Nb
− 22

)
. (6.31)

Our anomalous scaling dimension is again

ιB2 = 1 + 2ηB + 2ιvertex = 1 +
16

3(2Nb +Nf )π2

(
Nf

Nb
− 22

)
. (6.32)

4. Correlation length exponent

We compute the correlation length exponent ν of the order parameters,

ξ ∝ (g − gc)
−ν (6.33)

following the method of Ref. 68. As the correlation length is gauge-invariant, the calculation can be

performed in a fixed gauge and ν = νB. We will use the relation

νB =
γB

2− ηB
, (6.34)

where the anomalous scaling dimension of single boson ηB has been computed in (6.17), and γB is defined

as

G−1
B (k = 0) = (g − gc)

γB . (6.35)

We will calculate γB below. We start by defining a convenient parameter λg to measure the deviation

from the critical point, satisfying

1

gc
− 1

g
=

√
λg

4π
. (6.36)

To leading order, it is related to λ̄ by

λ̄ = λg +
Πλ(k = 0, λ̄ = 0)

Πλ(0, λ̄)
Σ(0, 0) , (6.37)

where Σ is the boson self energy, and its second argument refers to the mass in the boson propagator. The

boson propagator can then be written as

G−1
B (0) = λ̄− Σ(0, λ̄) = λg −

(
Σ(0, λg)−

Πλ(0, 0)

Πλ(0, λg)
Σ(0, 0)

)
, (6.38)

where second argument of Πλ also refers to the boson mass. In the following we will evaluate the λg log λg

divergence of the self-energy diagrams appearing in (6.38). The relevant diagrams are shown in fig. 11,
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FIG. 11: Feymann diagrams that contribute to the (6.38). Gauge and flavor indices are supressed.

we list their contributions below:

Σ(a) = 3IA;1,

Σ(b) = 3
∑
µ,ν

∫
d3p

8π3

(
δµ,ν − ζ

pµpν
p2

)
1

ΠA(p)
,

Σ(c) = Iλ;1,

Σ(d) =
3i2

Πλ(0, λ̄)

∫
d3p

8π3
IA;1(p)

(
GB(p)

)2
Σ(e) =

i2

Πλ(0, λ̄)

∫
d3p

8π3
Iλ;1(p)

(
GB(p)

)2
Σ(f) =

i2

Πλ(0, λ̄)
Σ(b)

∫
d3p

8π3
(
GB(p)

)2
= −Σ(b).

(6.39)

where IA;1 and Iλ;1 have been defined in the first equalities of the equations (6.14) and (6.16), respectively.

Since (b) and (f) cancel each other, we just need to extract the divergence in (a)(c)(d)(e). The gauge field

contributions Σ(a) +Σ(d) give:

Σ(a) +Σ(d) → −12

π2

(
7Nf − 18Nb

(2Nb +Nf )2
+

ζ

2Nb +Nf

)
λg log λg. (6.40)

The remaining term to be evaluated is Σ(c) +Σ(e),

Σ(c) +Σ(e) → 3

π2Nb
λg log λg. (6.41)

30



Since the integrals are in parallel to those discussed in ref. [68], we will omit the details here. Combining

the two equations above, we have the total coefficient α in front of the λg log λg divergence as

α =
3

Nbπ2
− 12

π2

(
7Nf − 18Nb

(Nf + 2Nb)2
+

ζ

Nf + 2Nb

)
. (6.42)

Then we re-exponentiate the result and combine with equation (6.38) to get

G−1(0) = λg

(
1− α log

λg
Λ2

)
≈ |g − gc|2(1−α), (6.43)

such that

γB = 2− 2α = 2− 6

Nbπ2
+

24

π2

(
7Nf − 18Nb

(Nf + 2Nb)2
+

ζ

Nf + 2Nb

)
. (6.44)

Using the scaling relation (6.34), we get

νB ≈ γB
2

(
1 +

ηB
2

)
≈ 1− 8

3Nbπ2
− 20

(2Nb +Nf )π2
+

12

π2
7Nf − 18Nb

(2Nb +Nf )2
(6.45)

where we have kept the leading terms. At Nb = Nf = 2, this gives νB = −0.216.

5. Dressed fermion field

Only the gauge field contributes to the correction. The relevant integral is

IA;ψ =

∫
d3q

8π3
γµGψγν(k + q)Dµν(−q) →

8

(Nf +Nb)π2

(
1

3
− ζ

)
/k log k. (6.46)

Tracing over the gauge degrees of freedom, as in the boson case we just get a factor of three:

∑
b,b′

(2δab′ − δabδbb′) = 4− 1 = 3. (6.47)

So the anomalous dimension for dressed fermion propagator is

ηψ =
3 · 8

(2Nb +Nf )π2

(
1

3
− ζ

)
, (6.48)

and the gauge-dependent fermion scaling dimension is

dim[ψ] = 1 +
ηψ
2

= 1 +
3 · 4

(2Nb +Nf )π2

(
1

3
− ζ

)
. (6.49)
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FIG. 12: Vertex corrections for the B†ψ (left) and BTψ (right) operators.

6. Boson-fermion composite

The physical electron is a composite of bosonic chargon and fermionic spinon. We are interested in

the scaling dimension of the electron operator at the four nodal points k = (±π/2,±π/2), whose precise

representation in terms of the low-energy chargons and spinons is given in Eq. 3.13. These are linear

combinations of the operators
∑

aB
∗
asψatα and

∑
ab εabBasψatα, where α labels the spinor component.

As we show below, the details of this linear combination are not essential as each of these terms are

independently renormalized in the same manner.

We first consider scaling corrections to the operator
∑

aB
∗
asψat. There exists a one-loop vertex correc-

tion by the gauge field shown in Fig. 12, leading to

dim[B†ψ] = dim[B] + dim[ψ] + ηB†ψ =
3

2
+

1

3(2Nb +Nf )π2

(
Nf

Nb
− 118

)
. (6.50)

At Nb = Nf = 2, this gives 3
2 − 13

2π2 = 0.84. Importantly, this vertex correction in 12 is unaffected by the

presence of γ matrices, so operators of the form (1± iγx)∑aB
∗
asψat, which project to an individual spinor

component, receive the same scaling dimension correction.

Another gauge-invariant choice is
∑

a,bBasεabψbt, which gives the same contribution as in (6.50). One

can easily check that further adding γ matrices acting in the spinor space of fermions doesn’t change the

result either.

The scaling dimension of the quasiparticle residue of the electron Green’s function, Z, is given by

dim[Z] = 2(dim[B†ψ]− 1) . (6.51)

7. Fermion bilinear

The Néel and VBS correlation functions can be expressed in terms of spinon bilinear operators, and

corrections to the scaling dimension of these operators can be calculated by analyzing the renormalization

of these composite operators. In the absence of chargon fluctuations, corrections due to the SU(2) gauge
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field have previously been computed [45]. To leading order, the only consequence of charge fluctuations is

to modify the prefactor in the effective gauge propagator. The anomalous exponent is hence

ηNéel, VBS = − 16

π2(Nf + 2Nb)
(6.52)

where the results of [45] are recovered by setting Nb = 0.

B. Finite v

Next we consider nonzero v in the Lagrangian (6.1). The matrix Mb in (6.4) now becomes

G−1
b =

G−1
A G−1

B

G−1
C G−1

D

 , G−1
B = −2∆(k − k′)1, G−1

C = −2∆∗(k′ − k)1,

G−1
A/D = 1

[
δkk′k

2 + iλ(k − k′) +

∫
d3q

(2π)3
Aj(q)Aj(k − k′ − q)

]
± σj

[
(k + k′)µA

µ
j (k − k′)

] (6.53)

Notice that the matrix has indices {k, s, a; k′, s′, a′}, where a, a′ is the gauge index and s, s′ labels boson

flavor. Trace performed over k is simply a momentum integration. Further expanding the matrix log to

second order, we obtain

Tr lnG−1
b GB =Nb

∫
d3p

(2π)3
d3q

(2π)3

{
G(q)δp0

∫
d3p′

(2π)3
Ajµ(p

′)Aµj (−p′)

− 1

2
G(q)G(q − p)

[
− λ(p)λ(−p) + 4∆(p)∆∗(p) +

∑
j

(2q − p)µA
µ
j (p)(2q − p)νA

ν
j (−p)

]}
.

(6.54)

The fermionic sector is the same as before. Plugging in the integrals (B3), we arrive at

F (1) =
1

2

∫
d3p

(2π)3

{
Πλ(p)

[
λ(p)λ(−p)− 4∆(p)∆∗(p)

]

+Ajµ(p)

(
δµν −

pµpν
p2

)
ΠA(p)A

ν
j (−p)

}
+Nb

(
λ2

2u
− λ

g

)
,

(6.55)

where the kernels are the same as before in (6.9). In addition to the gauge and λ field propagators in

(6.10), we now also have the ∆ propagator

D∆ = −1

4
Dλ = − 1

4Πλ
. (6.56)

1. Dressed boson propagator

Now we have an additional diagram in fig. 13. The relevant integral is simply −1
4Iλ;1 where Iλ;1 was
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k kp− k

a, s a′′, s′′a′, s′

p

∆

FIG. 13: Additional correction due to ∆ field, compared with fig.8.

computed in in (6.16). The trace over indices are computed as

∑
a′

εaa′εa′a′′
∑
s′

Jss′Js′s′′ = δaa′′δss′′ , (6.57)

which is no different from the tree level diagram. Summing everything up, we now have

ηB =
1

2Nbπ2
− 12

(2Nb +Nf )π2

(
10

3
+ 2ζ

)
. (6.58)

Dimension of single boson can be computed from dim[B] = (1 + ηB)/2.

2. Density wave order parameter

The additional diagram compared with the v = 0 case is shown in figure 14. The relevant integral is

(a)

−k1 − p
a, s

−k2 − p
a, t

k1
a′, s′

k2
a′′, t′

p

∆

FIG. 14: Additional diagram contributing to the vertex correction of the density wave scaling dimension at leading
order, compared with fig. 9.

−1
4Iλ;2 computed in (6.20). Next we take care of the indices,

(
∑
a

εa′aεaa′′)

[∑
s,t

Jt′tTαtsJss′
]
= −δa′,a′′

[
−
∑
s,t

(Tα)Tt′tJtsJss′
]
= −δa′,a′′Tαs′t′ . (6.59)

In the first equality we have used (3.9). Note that there is an additional sign compared with the tree level

result. Combining the all the contributions from vertex corrections, we get

ηvertex =
5

2Nbπ2
− 24

(2Nb +Nf )π2
(1− ζ). (6.60)
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The dimension of the quadratic boson term is thus,

dim[B†
asT

α
stBat] = (1 + ηB) + ηvertex = 1 +

1

(2Nb +Nf )π2

(
3
Nf

Nb
− 58

)
. (6.61)

Taking Nf = Nb = 2, the dimension is 1− 55/6π2 = 0.07. Our anomalous scaling dimension is

ηB2 = 1 +
2

(2Nb +Nf )π2

(
3
Nf

Nb
− 58

)
. (6.62)

3. Superconducting order parameter

The additional diagram is figure 15. The relevant integral is the same as −1
4Iλ;2. Now we look at the

(b)

−k1 − p

b, t

k2 + p

a, s

k1
b′, t′

−k2a′, s′

p

∆

FIG. 15: Additional contribution to the SC vertex correction, compared with fig. 10.

indices,

(
∑
a,b

εa′aεabεbb′)(
∑
s,t

Js′sJstJtt′) = εa′b′Js′t′ , (6.63)

so again no additional prefactor is present compared with the tree level result. Combining all contributions,

we get

ιvertex =
3

2Nbπ2
− 24

(2Nb +Nf )π2
(1− ζ). (6.64)

The dimension of this quadratic boson is thus

dim [BasεabJstBbt] = (1 + ηB) + ιvertex = 1 +
2

(2Nb +Nf )π2

(
Nf

Nb
− 30

)
, (6.65)

Taking Nf = Nb = 2, the dimension is 1− 29/3π2 = 0.02. Anomalous scaling dimension is then

ιB2 = 1 +
4

(2Nb +Nf )π2

(
Nf

Nb
− 30

)
. (6.66)
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k kp− k
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∆
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q

p

λ

FIG. 16: Feymann diagrams in addition to fig. 11 that constribute to G−1(0).

4. Correlation length exponent

In addition to the diagrams presented in figures 11, now we also have figure 16 due to the ∆ field:

Notice that the diagrams such as replacing the dashed λ line in diagram 11(d) by the dotted ∆ line are

not allowed, because the two external boson propagators need to have the same gauge and flavor indices.

The self energies corresponding to the above two diagrams are

Σ(g) = −1

4
Σ(c), Σ(h) = −1

4
Σ(e). (6.67)

Both relevant integrals have been evaluated before, leading to

Σ(g) +Σ(h) → − 3

4π2Nb
λg log λg. (6.68)

Combining with the v = 0 results, we now have the modified total coefficient

α =
9

4Nbπ2
− 12

π2

(
7Nf − 18Nb

(Nf + 2Nb)2
+

ζ

Nf + 2Nb

)
. (6.69)

The correlation function exponent is then (we also need to use the modified anomalous scaling dimension

of B in (6.58)):

νB ≈ 1 +
1

Nbπ2
− 20

(2Nb +Nf )π2
+

12

π2
7Nf − 18Nb

(2Nb +Nf )2
. (6.70)

At Nb = Nf = 2, this gives νB = −0.03.

5. Boson-fermion Composite

One gauge invariant combination is
∑

aB
†
asψat. In the expression dim[B†ψ] = dim[B]+dim[ψ]+ηB†ψ =

3
2 +

ηB+ηψ
2 + ηB†ψ, the only change compared with (6.50) lies in dim[B]. The result is thus

dim[B†ψ] =
3

2
+

1

4(2Nb +Nf )π2

(
Nf

Nb
− 158

)
. (6.71)

Other gauge-invariant choices such as
∑

a,bBasεabψbt, or with γ matrices inserted give the same results as

in (6.71). At Nf = Nb = 2, the above expression gives dim[B†ψ] = 0.837.

We summarize the calculations of scaling dimensions in Table III.
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v = 0 SC channel DW channel

dim[B†
asTstBat] 1 +

8 (c− 22)

3(2Nb +Nf )π2
1 +

(3c− 58)

(2Nb +Nf )π2
1− 16 (c+ 14)

3(2Nb +Nf )π2

dim[BasεabJstBbt] 1 +
8 (c− 22)

3(2Nb +Nf )π2
1 +

2 (c− 30)

(2Nb +Nf )π2
1 +

4 (5c− 38)

3(2Nb +Nf )π2

dim[B†ψ]
3

2
+

(c− 118)

3(2Nb +Nf )π2

3

2
+

(c− 158)

4(2Nb +Nf )π2

3

2
− 2 (c+ 62)

3(2Nb +Nf )π2

νB 1− 8

3Nbπ2
− 20

(2Nb +Nf )π2

+
12

π2

Nb(7c− 18)

(2Nb +Nf )2

1 +
1

Nbπ2
− 20

(2Nb +Nf )π2

+
12

π2

Nb(7c− 18)

(2Nb +Nf )2

1 +
7

3Nbπ2
− 20

(2Nb +Nf )π2

+
12

π2

Nb(7c− 18)

(2Nb +Nf )2

TABLE III: Summary of scaling dimensions at the multicritical point (second column), with the Lagrangians in
(5.1) (third column) and (A1) (last column), respectively. c ≡ Nf/Nb is a constant.

VII. HONEYCOMB LATTICE

The ground state of the large-U Hubbard model on the honeycomb lattice at half-filling has long-range

Néel order, as for the square lattice. Also as for the square lattice, adding frustrating interactions leads

to a phase with VBS (i.e. kekule) order [61–63]. But in contrast to the square lattice, at smaller U the

honeycomb lattice features a semi-metal phase with no broken symmetry, and an electronic dispersion

with 2 massless Dirac fermion points in the Brillouin zone.

In this section we extend the SU(2) gauge theory analysis to the honeycomb lattice. We find just the

three phases noted above, with no additional superconducting or charge-ordered phases. This difference

from the square lattice case can be traced to the fact that the bosonic chargons, B, move in a background

zero flux on the honeycomb lattice [65]. Consequently, the B dispersion has only a single minimum in the

Brillouin zone, and the Higgs phase where B is condensed breaks no symmetries and realizes the Dirac

semi-metal. We sketched a phase diagram for the honeycomb lattice SU(2) gauge theory in Fig. 2.

The details of such a theory have previously been worked out in Ref. 65, but with the interpretation of

the deconfined phase as being stable - our interpretation is that this phase is ultimately unstable to either

Néel or VBS order. The low energy theory consists of Nf = 2 Dirac fermions with an emergent SO(5)

symmetry rotating between Néel and kekule VBS order. As there is only a single minima of the chargon

disperion at k = (0, 0), the spinons are coupled to Nb = 1 bosonic chargons, with the full symmetry

of the low-energy action being SO(5) × SU(2), with the SU(2) chargon symmetry corresponding to the

pseudospin. An important point which is not explicitly discussed in Ref. 65 is the possibility of symmetry-
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allowed quartic interactions between the chargons and spinons, which would be marginal at tree level.

However, this is rather simple to rule out due to the fact that the chargon minima is at k = (0, 0),

and hence transforms trivially under all the lattice symmetries (an exception are transformations which

exchange the A and B sublattice, where the sublattice structure of the chargon eigenvalue causes the

chargon to acquire a minus sign - this has no effect on chargon bilinears). As a result, symmetry-allowed

chargon/spinon quartic interactions demand that the spinon bilinear component is independently allowed

by symmetry, and one can easily verify that no such term exists.

The large-Nf , Nb expansion proceeds identically to the one discussed previously in the paper, with the

exception that the chargon sector does not contain any quartic interactions aside from a B4 term (in other

words, we take v = 0). The results for the various scaling dimensions in Section VI carry over to this

scenario, although some of the chargon bilinears studied can only be defined for even Nb.

We note an interesting relation between the model of Ref. 73 and the SU(2) gauge field theory with

Nf = 2 and Nb = 1. The global symmetry of the quantum field theory of Section III is SO(5)f in

the fermionic sector for Nf = 2, and USp(2)/Z2 in the bosonic sector for Nb = 1. Ref. 73 considered a

honeycomb lattice model in which quantum spin Hall, superconducting, and Dirac semi-metal phases meet

at a multicritical point, and proposed a SO(5) Gross-Neveu-Yukawa field theory for the multicriticality.

The GNY field theory has no gauge fields, and hence there is an additional SO(3)∼=USp(2)/Z2 global

symmetry which acts on the Dirac fermions. So the global symmetries of our SU(2) gauge field theory

at Nf = 2 and Nb = 1 are identical to those of the SO(5) GNY theory. It remains an interesting open

question whether these two theories are the same conformal field theory.

VIII. DISCUSSION

The discovery of high temperature superconductivity in the cuprates sparked decades of theoretical

work on quantum phases proximate to the familiar Néel ordered state of the S = 1/2 square lattice

antiferromagnet. Early work [41] argued that the proximate insulator has valence bond solid (VBS) order.

The nature of the Néel-VBS quantum transition has also been extensively studied [43, 74, 75], and recent

fuzzy sphere investigations [29] have concluded that it is described by a ‘pseudo-critical’ theory with an

approximate conformal symmetry, and a nearly exact global SO(5) symmetry which rotates between the

3 + 2 components of the Néel and VBS orders. One formulation of the pseudo-critical theory has a SU(2)

gauge field coupled to Nf = 2 fundamental massless Dirac fermions: we have used the fuzzy sphere results

to conclude that this gauge theory confines in the infrared with either Néel or VBS order, and the Néel-

VBS transition is weakly first order. The ordering is selected by terms which are formally irrelevant in
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the continuum theory, and we assume here that Néel order is selected.

The present paper extends these investigations by allowing for charge fluctuations, while remaining at

half-filling and preserving particle-hole symmetry. Following earlier work [18], we have shown that adding

charge fluctuations to the SU(2) gauge theory leads naturally to a d-wave superconductor with nodal

quasiparticles, and states with period-2 charge order. We can then consider quantum transitions between

the Néel state and the d-wave superconductor, or between the Néel state and charge order. Such transitions

are described by a direct extension of the SU(2) gauge theory with Nf = 2 fundamental massless Dirac

fermions—there are additional fundamental Nb = 2 massless complex scalars. Given the weakly broken

conformal symmetry for Nf = 2, Nb = 0 [29, 30, 70], and the stability of conformal gauge theories at large

Nf,b, it is very plausible that the Nf = 2, Nb = 2 case exhibits true deconfined criticality with an exact

emergent conformal symmetry.

The Nf = 2, Nb = 2 quantum field theory studied in this paper is defined by the Lagrangian Lψ +LB
in (3.1) and (3.5). Here r is the tuning parameter which takes the system from the Néel state (present

when r is large and positive and B is not condensed) to the states allowed by charge fluctuations (with

d-wave superconductivity or charge order). The coefficients of the quartic couplings v1,2,3 in (3.5) select

among the latter states.

We studied two different large Nf,b generalizations of this theory, defined by the extensions (3.7) and

(A4) in the bosonic sector. The phase diagrams of these theories at Nb = ∞ appear in Fig. 1. The 1/Nf,b

expansions of the second-order quantum phase transitions are described in Section VI and Appendix A.

We computed the scaling dimensions of the gauge-invariant order parameters, which are composites of two

fermions or two bosons, and the electron operators at momenta (±π/2,±π/2), which are the composites

of one fermion and one boson in (3.13). Our results are summarized in Table III. The results are not

expected to be accurate at Nf = Nb = 2, when the 1/Nf,b corrections are quite large.

The scaling dimension of the electron operator determines a novel feature of the quantum transition

out of the d-wave superconductor. The d-wave superconductor itself is conventional, and has 4 nodal

points with gapless Bogoliubov quasiparticles. In BCS theory, such gapless quasiparticles are remnants

of the Fermi surface of the parent metal, and so the electronic quasiparticle residue remains non-zero

across the metal-superconducting transition. However, for the transition from the d-wave superconductor

to the Néel state, there is no longer a simple relationship between the Bogoliubov quasiparticles and the

Fermi surface excitations of a parent metal. Instead, the Bogliubov quasiparticles of the superconductor

are connected to the spinons of the deconfined quantum critical point. As there are no gapless electronic

excitations in the Néel state, and the electronic quasiparticle residue vanishes at the transition out of the
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d-waves superconductor with an exponent determined by the scaling dimension of the electron operator

at the deconfined quantum critical point.

A recent paper [22] has shown that a similar phenomenon can also happen in the electron doped case in

a situation where the normal state has no Fermi surface crossing the zone diagonals: nevertheless, gapless

nodal quasiparticles do appear in the proximate d-wave superconductor, in a region of the Brillouin zone

which is gapped in the normal state. Furthermore, there are connections of this remarkable phenomenon

to the recent photoemission observations of Ref. 28 on the electron doped cuprates.

Along the same lines, we believe the d-wave superconductor found in the quasi-one-dimensional nu-

merical study of Ref. 50, by doping the spin liquid of the J1-J2 antiferromagnet, will have 4 nodal points

in the two-dimensional limit.

Finally, we note the analysis of Section VII, where we applied the same line of thought to the Néel-VBS

transition on the honeycomb lattice [61, 62]. We found only a single additional phase upon including

charge fluctuations: a Dirac semi-metal with no broken symmetries. All these phases (Néel, VBS (kekule),

Dirac semi-metal) have been observed in experiments on monolayer graphene [76, 77]. It is interesting to

speculate that the absence of a superconducting phase on the honeycomb lattice in our theory, in contrast

to the square lattice, is the underlying reason for the low superconducting Tc’s observed in the graphene

family of compounds.
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Appendix A: Alternative Large Nb Limit

This appendix considers an alternative large Nb limit of the Nb = 2 case of the action LB in (3.7). We

use the identity (3.4) to write (3.7) at Nb = 2 as

L̃B =
∣∣(∂µ − iAαµσ

α
)
B
∣∣2 + u

2Nb
(|Bas|2 − 1/g)2 +

v

Nb

(
B∗
asσ

i
stBat

)2
. (A1)
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(For simplicity, we have ignored a renormalization of the values of u and g arising from the l.h.s. of (3.4).)

Note that v now appears with the opposite sign in the last quartic term compared to (3.7). The form (A1)

is not suitable for a large Nb generalization because it has ‘flavor’ Pauli matrices which will generalize to

the N2
b − 1 generators of SU(Nb). To over come this difficulty, we use the following Nb = 2 identity to

transfer the Pauli matrices from the flavor to the gauge indices

σiss′σ
i
tt′B

∗
asB

∗
btBbt′Bas′ = σjaa′σ

j
bb′B

∗
asB

∗
btBb′tBa′s . (A2)

Here the index j = 1, 2, 3 labels the adjoint gauge SU(2) components; (A2) can be established by applying

the following identity to both sides:

σiss′σ
i
tt′ = −δss′δtt′ + 2δst′δts′ . (A3)

Then we can write (A1) as

L̃B =
∣∣(∂µ − iAαµσ

α
)
B
∣∣2 + u

2Nb
(|Bas|2 −Nb/g)

2 +
v

Nb

(
B∗
asσ

j
aa′Ba′s

)2
, (A4)

and the flavor indices s, t can be extended to range over general Nb values. The theory L̃B in (A4) has

a SU(Nb)×U(1) global symmetry, in contrast to the theory LB in (3.7) with a USp(Nb)×U(1) global

symmetry. By construction, the two theories are the same at Nb = 2, but are distinct for Nb > 2.

We can now proceed with a large Nb expansion of (A4). We decouple the v term in (A4) by a real

Higgs field Hj which is an adjoint under gauge SU(2), but a singlet under flavor SU(Nb). In this manner

we obtain, in place of (5.12), the action

S̃eff. =
Nb

2
Tr
[
ln(G−1)

]
+
Nbλ

2

2u
−
NbH

2
j

4v
−iλNb

g
+iλ(|Ba1|2+|Ba2|2)−HjB

∗
a1σ

j
aa′Ba′1−HjB

∗
a2σ

j
aa′Ba′2 (A5)

where

G−1 =

iλ− (∂µ + iAjµσj)
2 −Hjσ

j 0

0 iλ− (∂µ − iAjµσTj )
2 +Hjσ

j

 (A6)

is a 4× 4 matrix. AS in the main text, we assume Ajµ = 0 at the saddle point.

The saddle point equation for λ is as before after interchanging 4|∆|2 for H2
j :

iλNb

u
+
Nb

g
−Nb

(
|B1|2 + |B2|2

)
=

∫
d3p

(2π)3
(
iλ+ p2

) 2Nb

(iλ+ p2)2 −H2
j

, (A7)

and that for Hj is identical to the saddle point for ∆ after after interchanging 4|∆|2 for H2
j and taking

v → −v:

−Nb

2v
− Nb

Hz

(
B∗
a,1σ

j
aa′Ba′,1 +B∗

a,2σ
j
aa′Ba′,2

)
=

∫
d3p

(2π)3
2Nb

(iλ+ p2)2 −H2
j

. (A8)
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In working out the saddle point equation for B, we will assume that if Hj is condensed, it aligns only with

Hz to simplify the saddle point equations. Under this assumption, we obtain the saddle point equation

for B:

iλB1,1 = HzB1,1 iλB2,1 = −HzB2,1 iλB1,2 = HzB1,2 iλB2,2 = −HzB2,2 (A9)

After integration, these saddle point equations for Hz and λ ≡ iλ obtained from integrating (A8) and

(A7) are:

− 1

2v
− 1

Hz

(
B∗
a,1σ

z
aa′Ba′,1 +B∗

a,2σ
z
aa′Ba′,2

)
=

1

4π|Hz|

[√
λ+ |Hz| −

√
λ− |Hz|

]
(A10)

λ

u
+

1

g
− (|B1|2 + |B2|2) = − 1

4π

[√
λ+ |Hz|+

√
λ− |Hz| −

4π

gc

]
, (A11)

where 1/gc = Λ/π2, with Λ the momentum space cutoff. If we set B to zero then we will find all the same

saddle point solutions in the main text where B = 0 if we exchange v → −v and 2|∆| → Hz. If we allow

B, Hz, and λ to all condense, we will find that the saddle point equations will again enforce λ = |Hz| and

the saddle point equation for Hz can be rewritten as:

− 1

2v
− 1

λ

(
|B1|2 + |B2|2

)
=

√
2

4π
√
λ

(A12)

This is again the same as our previous saddle point equation for ∆ if we exchange v with −v and 2|∆|
with |Hz| = λ. We also note the types of solutions we find when B is condensed. An example solution

which solves the saddle point equation for B when Hz is nonzero has:

B1,1 ̸= 0 B1,2 = 0 B2,1/2 = 0 (A13)

Such a solution will condense the CDWx order parameter in [22]. We could also have chosen a different

example solution for B:

B1,1 = B1,2 ̸= 0 B2,1,2 = 0 (A14)

which would result in condensing the CDWy order in [22]:

Finally we could have chosen a solution where only the d-density wave is condensed with:

B1,1 ∝ i B1,2 ∝ 1 B2,1/2 = 0 (A15)

A general solution will have different nonzero strengths for each of the above continuum order parameters.

There is no solution allowed by the saddle point equations where the d-wave pairing continuum order

parameter is also condensed. The phase diagram for this large Nb limit is shown in Fig. 1b.
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1. Large-N corrections for the alternative formulation

The leading correction to the free energy is now

F (1) =
1

2

∫
d3p

(2π)3

{
Πλ(p)

[
λ(p)λ(−p)−Hj(p)Hj(−p)

]

+Ajµ(p)

(
δµν −

pµpν
p2

)
ΠA(p)A

ν
j (−p)

}
+Nb

(
λ2

2u
+
H2
j

2w
− λ

g

)
,

(A16)

We now have the propagator of the Hj fields

DH = −Dλ = − 1

Πλ
. (A17)

a. Dressed boson propagator

Now we have an additional diagram in fig. 17.

k kk − p

a, s a′, sa′′, s

p

Hj

FIG. 17: Additional correction due to ∆ field, compared with fig.8.

The relevant integral is simply −Iλ;1 where Iλ;1 was computed in in (6.16). The trace over indices

simply gives an additional factor of three, such that

ηB =
2

3Nbπ2
(1− 3)− 4 · 3

(2Nb +Nf )π2

(
10

3
+ 2ζ

)
= − 4

3Nbπ2
− 12

(2Nb +Nf )π2

(
10

3
+ 2ζ

)
.

(A18)

Dimension of single boson can be computed from dim[B] = (1 + ηB)/2.

b. Density wave order parameter

The additional relevant diagram is shown in figure 18. The relevant integral is −Iλ;2 computed in

(6.20). The indices gives a factor of three, leading to

ηvertex =
2

Nbπ2
(1− 3)− 8 · 3

(2Nb +Nf )π2
(1− ζ)

= − 4

Nbπ2
− 24

(2Nb +Nf )π2
(1− ζ).

(A19)
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(a)

k1 − p
a, s

k2 − p
a, t

k1
a′, s

k2
a′′, t

p

Hj

FIG. 18: Additional diagram contributing to the vertex correction of the density wave scaling dimension at leading
order, compared with fig. 9.

The dimension of the quadratic boson term is thus,

dim[B†
asT

α
stBat] = (1 + ηB) + ηvertex = 1− 16

3(2Nb +Nf )π2

(
Nf

Nb
+ 14

)
. (A20)

Taking Nf = Nb = 2, the dimension is 1−40/3π2 = −0.35 which is unfortunately negative but an artifact

of the small N ’s chosen. Our anomalous scaling dimension is

ηB2 = 1− 32

3(2Nb +Nf )π2

(
Nf

Nb
+ 14

)
. (A21)

c. Superconducting order parameter

The additional diagram is figure 19. The relevant integral is the same as −Iλ;2. Index summation gives

(b)

k1 − p

b, t

k2 + p

a, s

k1
b′, t

k2
a′, s

p

Hj

FIG. 19: Additional contribution to the SC vertex correction, compared with fig. 10.

minus three as in the gauge field correction, resulting in

ιvertex =
4

2Nbπ2
(1 + 3)− 8 · 3

(2Nb +Nf )π2
(1− ζ)

=
8

Nbπ2
− 24

(2Nb +Nf )π2
(1− ζ).

(A22)

The dimension of this quadratic boson is thus

dim [BasεabJstBbt] = (1 + ηB) + ιvertex = 1 +
4

3(2Nb +Nf )π2

(
5
Nf

Nb
− 38

)
, (A23)
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Taking Nf = Nb = 2, the dimension is 1− 22/3π2 = 0.26. Anomalous scaling dimension is then

ιB2 = 1 +
8

3(2Nb +Nf )π2

(
5
Nf

Nb
− 38

)
. (A24)

d. Correlation length exponent

In addition to the diagrams presented in figures 11, now we also have figure 20 due to the Hj field:

Notice that other diagrams such as replacing the dashed λ line in diagram 11(d) by the dashdotted Hz

(g)

k kk − p

a, s a′, sa′′, s

p

Hj

(h)

k k

a, s a, s0

q

p

λ

FIG. 20: Feymann diagrams in addition to fig. 11 that contribute to G−1
B (0).

line will cancel each other since we need to sum over boson bubbles with different gauge indices. The self

energies corresponding to the above two diagrams are

Σ(g) = −Σ(c), Σ(h) = −Σ(e). (A25)

Both relevant integrals have been evaluated before, leading to

Σ(g) +Σ(h) → − 3

π2Nb
λg log λg. (A26)

Combining with the v = 0 results, we now have the modified total coefficient

α = − 3

Nbπ2
− 12

π2

(
7Nf − 18Nb

(Nf + 2Nb)2
+

ζ

Nf + 2Nb

)
. (A27)

The correlation function exponent is then (we also need to use the modified anomalous scaling dimension

of B in (A18)):

νB ≈ 1 +
7

3Nbπ2
− 20

(2Nb +Nf )π2
+

12

π2
7Nf − 18Nb

(2Nb +Nf )2
. (A28)

At Nb = Nf = 2, this is νB = 0.037.

e. Boson-fermion Composite

In the expression dim[B†ψ] = dim[B] + dim[ψ] + ηB†ψ = 3
2 +

ηB+ηψ
2 + ηB†ψ, the only change compared

with (6.50) lies in dim[B]. The result is thus

dim[B†ψ] =
3

2
− 2

3(2Nb +Nf )π2

(
Nf

Nb
+ 62

)
. (A29)
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Again other gauge-invariant choices such as
∑

a,bBasεabψbt, or with γ matrices inserted give the same

result. At Nb = Nf = 2, we have dim[B†ψ] = 3
2 − 7

π2 = 0.79.

Appendix B: Useful integrals

Below we present some details of the integrals that appear in the main text.

We first present more details for the derivation of the effective action in section VIA. Expansion of the

matrix log gives, in the bosonic sector,

Tr lnG−1
b GB =2Nb

∫
d3p

(2π)3
d3q

(2π)3

{
G(q)δp0

∫
d3p′

(2π)3
Aαµ(p

′)Aµα(−p′)

− 1

2
G(q)G(q − p)

[
− λ(p)λ(−p) +

∑
j

(2q − p)µA
µ
α(p)(2q − p)νA

ν
α(−p)

]}
.

(B1)

For the fermion sector we have

Tr lnG−1
f Gψ = −Nf

2

∫
d3p

(2π)3
d3q

(2π)3
Tr[Gψ(q)γµAαµ(p)σαGψ(p+ q)γνAβν (−p)σβ]. (B2)

The integrals can be evaluated, we summarize the results here:∫
d3q

(2π)3
1

q2 + λ̄
= −

√
λ̄

4π
,

∫
d3q

(2π)3
Tr[γµ/qγν(/p+ /q)]

q2(p+ q)2
= − 1

16q
,∫

d3q

(2π)3
1

(q2 + λ̄)
(
(q − p)2 + λ̄

) =
1

4πp
arctan

p

2
√
λ̄
,∫

d3q

(2π)3
(2q − p)µ(2q − p)ν

(q2 + λ̄)
(
(q − p)2 + λ̄

) = −
(
δµν +

pµpν
p2

) √
λ̄

4π
−
(
δµν −

pµpν
p2

)(
4λ̄+ p2

8pπ
arctan

p

2
√
λ̄

)
.

(B3)

The leading correction to the free energy is thus (6.8). Notice the first and second order bosonic contri-

butions to ΠA combine to give a simple expression.

Next we evaluate the integrals IA;i and Iλ;i with i = 1, 2 that appear in the main text.

IA;1 =

∫
d3p

8π3
[GB(k + p)Dµν(−p)(2k + p)µ(2k + p)ν ] |λ̄=0

= − 16

2Nb +Nf

∫
d3p

8π3
4kµkν + 2kµpν + 2pµkν + pµpν

p(k + p)2

(
δµν − ζ

pµpν
p2

)
= − 16

2Nb +Nf

∫
d3p

8π3
1

p(k + p)2

[
(4k2 + 4k · p+ p2)− ζ

p2
(
4(k · p)2 + 4p2(k · p) + p4

)]
= − 16

2Nb +Nf

∫
dp

4π2

∫
dθ

p sin θ

(k2 + p2 + 2kp cos θ)

[
(4k2 + 4kp cos θ + p2)− ζ

(
4k2 cos θ2 + 4kp cos θ + p2

)]
= − 16

2Nb +Nf

∫
dp

4π2

[
4p+

2k2 − p2

2k
log

(
k + p

k − p

)2

+ 2ζ
k2 − p2

p
− ζ

k3

2p2
log

(
k + p

k − p

)2 ]
→ − 4

(2Nb +Nf )π2

(
10

3
+ 2ζ

)
k2 log k,

(B4)
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where the right arrow in the last line means we are extracting the k2 log k divergence.

For (6.16), we have

Iλ;1 =i2
∫

d3p

8π3
[GB(k + p)Dλ(−p)]

∣∣
λ̄=0

=
8

2Nb

∫
d3p

8π3
p

(k + p)2

=
8

2Nb

∫
dp

4π2

∫
sin θdθ

p3

k2 + p2 + 2kp cos θ

=
2

2Nbπ2

∫
dp

p3

2kp
log

(
k + p

k − p

)2

→ 2

3Nbπ2
k2 log k.

(B5)

As for (6.20), we have

IA;2 →
16

2Nb +Nf

∫
d3p

8π3
(2k − p)µ(2k − p)ν

(k − p)4
1

p

(
δµν − ζ

pµpν
p2

)
=

16

2Nb +Nf

∫
d3p

8π3
1

p

[
(2k − p)2

(k − p)4
− ζ

[(2k − p) · p]2
p2(k − p)4

]
=

16

2Nb +Nf

∫
dp

4π2

∫
dθ sin θ

[
p
4k2 − 4kp cos θ + p2

(k2 + p2 − 2kp cos θ)2
− ζ

(2kp cos θ − p2)2

p(k2 + p2 − 2kp cos θ)2

]
→ 16

2Nb +Nf

1

4π2
(1− ζ)(−2 log k) = − 8

(2Nb +Nf )π2
(1− ζ) log k.

(B6)

In the last line we have again extracted the term proportional to log k.

In (6.22),

Iλ;2 =i2
∫

d3p

8π3
GB(k1 − p)GB(−k2 + p)Dλ(p)

=− 8

2Nb

∫
d3p

8π3
p

(k1 − p)2
1

(k2 − p)2
.

=− 8

2Nb

∫
dp

4π2

∫
dθ

p3 sin θ

(k2 − 2kp cos θ + p2)2

=− 8

2Nb

∫
dp

4π2
2p3

(k2 − p2)2

→− 8

2Nb

1

4π2
(−2 log k) = +

2

Nbπ2
log k.

(B7)
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