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Abstract

We present a numerical study, using the vortex filament model, of vortex tangles
in a flow of pure superfluid 4He in the T = 0 limit through a channel of width D =
1mm for various applied velocities V . The flat channel walls are assumed to be
microscopically rough such that vortices terminating at the walls are permanently
pinned; vortices are liberated from their pinned ends exclusively through self-
reconnection with their images. Sustained tangles were observed, for a period of
80 s, above the critical velocity Vc ∼ 0.20 cm s−1 = 20κ/D. The coarse-grained
velocity profile was akin to a classical parabolic profile of the laminar Poiseuille
flow, albeit with a non-zero slip velocity ∼ 0.20 cm s−1 at the walls. The friction
force was found to be proportional to the applied velocity. The effective kinematic
viscosity was ∼ 0.1κ, and effective Reynolds numbers within Re′ < 15. The
fraction of the polarized vortex length varied between zero in the middle of the
channel and∼ 60% within the shear flow regions ∼ D/4 from the walls. Therefore,
we studied a state of polarized ultraquantum (Vinen) turbulence fuelled at short
lengthscales by vortex reconnections, including those with vortex images due to
the relative motion between the vortex tangle and the pinning rough surface.

Keywords: superfluid helium, quantum turbulence, dissipative flow, vortex tangle,
pinning, friction
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1 Introduction

Flow of superfluid 4He through a channel is only non-dissipative when its velocity is
below the channel-specific critical velocity vc. Above it, the dissipative regime sets in,
in which the chaotic motion of quantum vortices (called Quantum Turbulence) results
in the transfer of the flow momentum to the channel’s walls, i. e. a friction force.

Experimental evidence has shown that this friction force becomes greatly reduced
for T < 0.7 K [1] and that vortex pinning becomes much weaker with lowering tem-
perature below T < 0.4 K [2]. Approaching T = 0, the density of viscous normal
component vanishes and the mutual friction which couples it to the vortex tangle of
turbulent superfluid is negligible, thus the direct interaction between vortex lines and
irregularities of the walls of the channel (vortex pinning) must be considered.

Early evidence of quantized vorticity sticking to rough surfaces was observed in
1958 by Hall and Shoenberg in torsional-oscillator experiments [3]. Further studies
involving rotating quantum turbulence [4], thermal counterflow [5] and vortex cap-
ture probes such as wires [6] and MEMS devices [7] aid in providing confirmation of
the influence of surface roughness and vortex pinning on superfluid flows. Numerical
studies have examined vortex motion in the presence of solid boundaries through use
of the vortex filament model (VFM) [8–16] and the Gross-Pitaevskii model [17].

In these computer simulations, we model a flow of superfluid 4He at T = 0 between
two parallel solid walls. We assume the limit of extremely rough walls, where the
areal density of sharp protuberances is greater than the density of vortex lines in
the vortex tangle. Then the processes of un-pinning (due to a self-reconnection with
an image vortex) of each vortex line from the pinning protuberance and re-pinning
at the nearest protuberance occur on the lengthscale smaller than the characteristic
scale of the vortex tangle (of order mean inter-vortex distance ℓ), i. e. independently
of other vortices. This is different from the the generation of dense vortex tangles by
larger-scale irregularities of the profile of solid wall simulated by Stagg et al. [17].

In numerical simulations vortex lines are represented by chains of discrete points
with the set inter-point scale δ, the smallest resolved lengthscale is ∼ δ. Within the
mechanism of pinning-unpinning mentioned above, the elementary distance between
the unpinned-pinned ends of a vortex line becomes of order ∼ δ. Hence, in our
framework, δ is a proxy of the scale of roughness of the solid wall.

2 Numerical Methods

The VFM [18] has been used to great effect to simulate and visualise the dynamics
of vortices in superfluid helium. In the limit of zero temperature, using the VFM, the
local self-induced vortex velocity ṡ evaluated at the point r along a vortex line may
be described entirely by the Biot-Savart integral

ṡ(r, t) =
κ

4π

∫

L

(s− r)× ds

|s− r|3
, (1)

where κ = h/m4 is the quantum of circulation in superfluid 4He. The line integral over
L represents inclusion of the complete vortex configuration, which is discretized into
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points si for (i = 1, ..., N). The discretized integral, after removing the singularity by
separating the local and non-local contributions, becomes

ṡi =
κ

4π
s′i × s′′i ln

(

2
√

l+l−

e1/2a

)

+
κ

4π

∫

rc

(s1 − si)× ds1
|s1 − si|3

, (2)

where l+ and l− represent the arc lengths to adjacent vortex points si+1, and si−1, s
′
i

and s′′i are the local tangent and curvature respectively, and a ∼ 1 Å is the size of the
vortex core in He-II. Here the first term is akin to the local induction approximation
(LIA) and the second term describes the non-local contributions, including the effect
of image-vortices due to any solid boundaries present [9]. To reduce the number of
computations required to simulate vortex tangles in a timely manner, the integral has
been reduced to only include contributions from points within a cut-off radius rc of
the target point si, defining a sphere of contributing non-local vortex points as shown
in Figure 1 (right). The cut radius was chosen to be half the container size rc = D/2.

The simulation volume was a cubic cell D ×D ×D with periodic boundary con-
ditions in the x, y directions. The boundaries at z = 0 and z = D were modelled as
a rough solid plane surface with strong pinning. To satisfy the solid boundaries the
method of images allows the duplication and reflection of the vortex configuration
across each solid boundary. This combined with a periodic wrapping of the system
at the x, y boundaries gives 26 copies of the original volume: 2 reflected at solid
boundaries, 8 simply periodic and 16 periodic-reflected copies. An illustration of the
boundary conditions in the x and z directions is given in Fig. 1 (left). All 27 cubes
were considered in evaluating Equation 2.

̂z

̂x

rc

̂z

̂x

̂y

Fig. 1 (Left) Visualisation of simulated boundary conditions. The periodicity of the boundaries is
shown only in the x direction such that 9 out of 27 cubes are displayed. The original computational
volume in the centre is shown by the black box outline. Flat grey surfaces represent the solid bound-
aries and are extended into the periodic boundaries in the x-direction. The vortex tangle in each cube
is coloured to indicate the type of transformation applied: periodic-translation (red), solid-refelction
(blue) and a combination of the two (purple). (Right) Illustration of the sphere of velocity contribu-
tions centred on a point, si, near the corner of the volume. Red vortex segments, within the sphere,
contribute to ṡi and vortex lines outside of the sphere are neglected.
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The spatial resolution δ of the simulation is preserved by removing points on
the same vortex line that move within δ/2 of each other. Similarly, new points are
introduced, according to the local curvature of the line, when adjacent points are
more than δ apart. Additionally, if two non-adjacent points on the same vortex line or
otherwise, become closer than the critical distance δ/2, a line-line reconnection occurs,
altering the vortex configuration and causing dissipation from the removal of vortex
line length. The reconnection procedure used was of Type-III [19].

To produce channel flow in the T = 0 limit a positive finite superfluid velocity V
is applied in the x direction such that instantaneous velocity of the discrete vortex
point is

ui = ṡi +





V
0
0



 . (3)

The time-evolution followed a third order Adams-Bashforth scheme:

sn+1
i = sni +

∆t

12

(

23un
i − 16un−1

i + 5un−2
i

)

+O(∆t4) (4)

where ∆t is the size of a time step and n = t/∆t is the current time in integer steps
[20].

The presence of solid wall boundaries alters the vortex motion since no flow is
allowed through the walls. The solid boundaries are assumed to be microscopically
rough such that the ends of vortex lines, terminated at the walls, are permanently
pinned and fixed in position with u(z = ±D/2) = 0. Liberation of the vortex line is
only possible through its self-reconnection with its image following the same recon-
nection criterion that triggers a line-line event. Thus, a vortex point, which comes
within a distance δ⁄4 of the wall, reconnects with its image, thus liberating the line
before it becomes pinned again ∼ 0.7δ away, as demonstrated in Figure 2. Here, the
reconnection was triggered by the blue line segment, which is then removed from the
simulation alongside the adjacent red line segment. The new end of the vortex is then
instantaneously pinned by artificially adjusting the z coordinate to coincide with the
surface, which generates a kink in the filament just above the wall. The model mim-
ics a vortex line “walking” along a flat rough surface, with the vortex end jumping
between sharp protuberances spaced on the scale of the spatial resolution δ [21].

Effectively, this mechanism assumes the existence of a critical angle between the
vortex and the wall for unpinning. Such an assumption was recently used in simulations
of vortex lines attached to a microelectromechanical (MEMS) oscillator, with a chosen
critical angle of θc = π/6 [16].

The potential benefits of our approach are in that one could investigate the role
of Kelvin waves emitted on vortex lines by discrete steps; although to assure an ade-
quate resolution of those waves one might need to introduce a separate lengthscale
for the kink generated by an image-reconnection such that the wavelength of injected
distortions is larger than the resolution.

To examine the rate of momentum transfer to the walls, two equivalent methods
of determining the friction force were used. Both have been validated by comparison
with the analytical solution for a vortex semi-ring travelling along a flat rough surface.
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δ ̂z

���δ ̂x
Fig. 2 Progressive snapshots of a single vortex line, which is initially pinned vertically between two
flat rough surfaces, evolving under an applied velocity V = 0.05 cm s−1. Vortex lines drawn in grey
are shown at times: 50ms, 100ms, 150ms, 200ms, 255ms and 260ms. The region displayed is the
lower 5% of the channel with the solid green line marking the solid boundary. The dashed green line
shows the critical distance for vortex-wall reconnection. The solid black lines show the filament in
the instant before and after the first time the vortex reconnected with the wall at t = 253.69ms.
Coloured line segments (red and blue) show the length removed by the event, and the blue segment
is responsible for the reconnection. The size of arrows indicates the spatial resolution, δ and the
distance between new and old pinning sites. The inset illustrates the moment of reconnection, with
the image-vortex drawn symmetrically behind the boundary.

The rate of change of the total impulse of all vortex lines in the simulation volume,
termed the integral method:

F = ρsκ

∫

(ṡ× s′)dξ, (5)

where ρs is the superfluid density and ξ is the arc length along a vortex line. The
second method assumes that the vortex line tension ft (energy per unit line length)
is constant. The angle θ between the surface and the pinned segment can be used to
obtain the components of the line tension for a single terminated line. Thus, summing
over all the pinned ends gives the total friction force in the streamwise direction

Fx = −ft
∑

i,pinned

cosθi = −
ρκ2

4π
ln
( b

a

)

∑

i,pinned

cosθi, (6)

where b was a cut-off length scale chosen as δ/2 which is the effective size of pinning
sites in the vortex walking and a = 1 Å. We term this the tension method.

To examine the velocity profile, the instantaneous mean velocity as a function
of the wall-normal direction z must be calculated. This was achieved by slicing the
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simulation volume into N slabs with thickness D/(N − 1), the mean velocity of all
line segments within a single slab was then time-averaged during the steady state to
obtain the coarse-grained velocity profile 〈u(z)〉. The component in the direction of
flow, 〈ux〉 then gives the cross-channel velocity profile. Fixed segments of the vortex
line were omitted from such calculations to avoid skewing the average velocity, with
upinned = 0, in the top and bottom slabs. The variation in the coarse-grained vortex
line density across the height of the channel 〈L(z)〉 was obtained similarly, but without
the need to exclude fixed segments.

3 Results

The parameters for simulations were: D = 0.1 cm, δ = 2 × 10−3 cm, with temporal
resolution dt = 8 × 10−5 s. Initially, at t = 0, the volume was populated with 80
randomly placed and randomly oriented vortex rings with equivalent radii of 0.012 cm;
with an instantly acting applied superflow of V = 0.30 cm s−1. Snapshots of the early
development of the tangle is shown by the inset panels of Fig. 3. At early times (t < 1 s)
frequent reconnections between vortex rings in the centre of the channel cause an
immediate drop in the total vortex line length, Λ, of the system, which is also shown
in Fig. 3. Gradually vortex rings become attached to the walls and begin “walking”
across the surface in the direction of flow. Within t = 4 s both surfaces are decorated
with several terminating vortices.

0 20 40 60 80 100 120 140 160
t (s)

0

1

2

3

4

5

6

7

Λ 
(c

m
)

V = 0.08 cm s−1

V = 0.20 cm s−1

V = 0.26 cm s−1

V = 0.30 cm s−1

V = 0.34 cm s−1

t = 4 ms t = 400 ms t = 4000 ms

Fig. 3 Vortex line length as a function of time shown for 5 different simulations. Solid lines show
data and dashed lines show fitted curves. The inset plots are early-time snapshots of the developing
vortex tangle for V = 0.30 cm s−1.

As the flow develops further vortex lines become stretched along it causing a grad-
ual increase in the total line length as a vortex tangle forms between the walls. Both
line-line and image-line reconnections occur frequently, each process removing a small
portion of vortex length, which becomes approximately stable when the rate of dissi-
pating length from reconnections is similar to the rate of vortex growth at the walls.
At t = 80 s the vortex tangle is comfortably in the steady state with the total vortex
length in the simulation volume Λ = 4.14 cm, and the walls are decorated with 14
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pinned vortex lines. The tangle at t = 80 s is the same as the configuration shown in
Fig. 1.

To simulate flows at any other applied velocity in the range 0.08 cms−1 ≤
V ≤ 0.34 cm s−1 for further 80 s, the same initial configuration of the vortex tangle
was used, namely, the one for V = 0.30 cm s−1 at t = 80 s.

The evolution of Λ for a selection of V is shown in Fig. 3 in the range 80 s≤
t ≤ 160 s. Vortex tangles, sustained for at least 80 s as in Fig. 4, were observed above
the critical applied flow velocity Vc = 0.19± 0.01 cm s−1, i. e. VcD/κ ∼ 20. Below Vc,
the tangle is not sustainable; all vortex lines eventually detach from the walls at some
point and move with the flow without gaining any energy – hence the tangle decays.

V = 0.20 cm s−1 V = 0.22 cm s−1 V = 0.24 cm s−1 V = 0.26 cm s−1

V = 0.28 cm s−1 V = 0.30 cm s−1 V = 0.32 cm s−1 V = 0.34 cm s−1

Fig. 4 Snapshots of vortex tangles in the steady state at t = 160 s for all V > Vc. The flow is
directed towards the right.

For each applied superfluid velocity V , the mean flow velocity was calculated as

〈ux〉 = D−1
∫D

0
ux(z)dz and is plotted against V in Fig. 5a. They are proportional to

each other with relation 〈ux〉 ≈ 0.96V .
The stream-wise component of friction force was evaluated from equations (5) and

(6), time-averaged over the steady state and normalised by the reduced vortex line

tension ft = ρκ2

4π ln
(

b
a

)

, where b = δ/2 is the effective size of a pinning site. The

observed force-velocity relation, shown by Fig. 5b, was approximately linear within the
range of flow velocities selected. Friction force per number of pinned vortex ends was
constant across all velocities at (0.626± 0.007)ft demonstrating that the total friction
force is proportional to the number of pinned ends in the simulation box and the
effective critical angle in the direction of flow is & cos−1(0.626) = 51◦. Both integral

and tension methods of determining the friction force consistently agreed to within
1%.

The total vortex line length Λ fluctuates with the dominant period ∼ 10 s (cor-
responding to the time constant ∼ 2 s). This could be compared with the time
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Fig. 5 (a) Time-averaged mean flow velocity as a function of the applied superflow shown for
both sustained (closed symbols) and unsustained (open symbols) turbulence. (b) The coarse-grained
friction force exerted by vortex lines on the channel walls, normalised by a constant vortex line tension,
shown to be proportional to the mean flow. (c) Time-averaged vortex line density as a function of
the mean flow. Open circles represent unsustainable line densities.

D/Vc ∼ 0.5 s for the mean flow to pass the cell size, the intrinsic quantum time con-
stant D2/κ = 10 s and our chosen observation time of 80 s. Fig. 5c demonstrates the
variation of time-averaged vortex line density, 〈L〉 = 〈Λ〉/D3, which appears to be
cubic with velocity. Interestingly, the values of 〈L〉 for unsustained tangles do not fall
far from the V 3 line.

The coarse-grained stream-wise velocity profile 〈ux(z)〉 was steady and nearly
parabolic albeit with a non-zero slip velocity, as seen in Fig 6. We fit the profile with
the form of a classical Poiseuille profile, adapted for finite slip boundary conditions at
the walls,

〈ux(z)〉 = umax − 4(umax − umin)

(

z

D
−

1

2

)2

, (7)

where umin represents the slip-velocity at the walls and umax is the maximum local
velocity in the centre of the channel. The agreement is relatively good, but the fits
consistently underestimate umax. The slip-velocity varied only weakly across the sim-
ulations with values in the region of Vc as seen in Fig. 7 (left). The universality of the
flow profiles is shown in Fig. 6 (right). Deviations from the universal profile were only
observed for the lowest V which still produced a steady flow - possibly due to the
smaller number of line segments leading to less averaging off of fluctuations.

The effective kinematic viscosity ν′ = 〈F 〉
8D(umax−umin)ρ

was in the range 0.3κ – 0.1κ

– shown in Fig. 7 (right) – meaning the effective Reynolds number Re′ = D(V −Vc)/ν
′

was between 0 and ∼ 15. Clearly this was insufficient to support quasi-classical tur-
bulence in the coarse-grained velocity field. Thus, we have polarised ultra-quantum
turbulence driven by injections of short-wavelength Kelvin waves, enabled by the fre-
quent reconnection of vortex ends due to the relative motion between the vortex tangle
and the rough wall.

The coarse-grained vortex line density profile, shown in Fig. 8a, demonstrates the
tangle formed maximally dense regions ∼ D/4 away from each surface, with minima
in the centre of the channel and at the walls. Such a spatial variation in 〈L〉 is similar
with simulations at finite temperature where flows were driven by a normal fluid flow
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Fig. 6 Cross-channel coarse-grained velocity profiles. (Left) Absolute values, reduced by the slip-
velocity at the walls. (Right) Normalised by the range of velocity present in the flow.
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Fig. 7 (Left) Results of fitting velocity profiles with equation (7) as function of 〈ux〉. Dashed line
follows umax ∝ 〈ux〉. (Right) The effective kinematic viscosity as function of 〈ux〉. The vicinity of Vc

is shown by the shaded area in both graphs.

described by a Poiseuille profile [22]. The peaks are mirrored by the polarised line

density 〈Ly(z)〉 (Fig. 8b) and their ratio
〈Ly(z)〉
〈L(z)〉 (Fig. 8c) shows the polarisation of the

vortex tangle, whose total was between 0 and 60% depending on the distance from
walls, in all simulations.

4 Conclusions

These simulations demonstrate a critical velocity Vc = 0.19 ± 0.01 cm s−1 ≃ 20 κ
D for

pure superfluid flow in channels, above which the turbulent state of the vortex tangle
sustained for at least 80 s. There is a finite slip velocity at the solid boundary, whose
value is similar to Vc, resultant from the “walking” of terminated vortex lines along
the rough surface due to frequent reconnections with their images. The coarse-grained
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Fig. 8 (a) Coarse-grained vortex line density profile. (b) Polarised vortex line density profile. (c)
Time-averaged polarisation of the vortex tangle.

velocity profiles ux(z) were similar to classical laminar profiles (albeit with a non-
zero velocity at the walls) – consistent with the effective Reynolds number Re′ ≤ 15
too small to sustain quasi-classical turbulence that typically requires Re > 3000. We
thus had ultra-quantum (Vinen’s) regime of quantum turbulence. The fraction of the
polarised vortex length reached ∼ 60% within the shear regions near both walls, and
decreased to zero in the middle of the channel. The effective kinematic viscosity ν′,
computed for the shear regions, tends towards ∼ 0.1κ with increasing the applied
flow velocity – in quantitative agreement with experimental observations for quantum
turbulence in superfluid 4He [1]. The flows exhibited an approximately proportional
dependence of the friction force Fx(V ) and near cubic dependence of the vortex line
length Λ(V ) on the mean flow velocity V . These dependences held even below Vc –
for metastable vortex tangles of lifetime shorter than 80 s.
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