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Bulk universality for complex eigenvalues of real
non-symmetric random matrices with i.i.d. entries

Sofiia Dubova* Kevin Yang*
April 29, 2024

Abstract

We consider an ensemble of non-Hermitian matrices with independent identically distributed
real entries that have finite moments. We show that its k-point correlation function in the bulk
away from the real line converges to a universal limit.
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1 Introduction

Universality of local eigenvalue statistics has long been of interest in random matrix theory. In
the case of Hermitian Wigner ensembles this is the content of Wigner-Dyson-Mehta conjecture [24],
which was resolved in [17] using a three-step strategy:

e Local law for the resolvent G(z) = (H — 2)71;
e Bulk universality for the perturbed ensemble H, = H + \/tB, where B is Gaussian;
e Comparison of local statistics of H with local statistics of the perturbed matrix Hy.

This strategy has since been widely used to show universality of local statistics of other Hermitian
ensembles [21, 2]. An established method of carrying out the second step of the strategy for Hermitian
ensembles is Dyson Brownian motion (DBM), a system of stochastic differential equations for the
eigenvalues of H;. For non-Hermitian random matrices, the natural analogue of DBM involves the
left- and right-eigenvector overlaps of the ensemble, which makes its analysis very complicated; see
Appendix A in [6], for example. In [11] Cipolloni, Erdds and Schroder side-stepped the non-Hermitian
DBM using Girko’s formula [19] to show the universality of local statistics in the edge regime for both
complex and real non-Hermitian i.i.d. ensembles. Girko’s formula allows access to the eigenvalue
statistics of a non-Hermitian matrix A through the resolvent G,(n) of the Hermitization of A:

-1
—3 A—z
Gz(n)—<A*_nZ —in) :

This strategy has not yielded the universality of local statistics in the bulk due to difficulty controlling

the correlation of G, and G, in the intermediate regime |z; — 22| < \/Lﬁ Current techniques only

allow to show independence of G, and G, in the regime |z; — 25| > N~27¢, see [14].

Recently, Maltsev and Osman proved bulk universality for complex non-Hermitian i.i.d. matrices
in [23] using a different approach based on supersymmetry for the second step of the three-step
strategy. They derived an exact integral formula for the k-point correlation function of a random
complex non-Hermitian matrix A perturbed by a Gaussian /B and performed asymptotic analysis
to show its convergence to the k-point correlation function of the complex Ginibre ensemble with
Gaussian entries. This method was also used to show bulk universality for weakly non-Hermitian
complex matrices in [25]. For the purposes of bulk universality, it is enough to take t = N~
(see Section 7 in [23]), though the analysis in [23] holds until the time-scale N ~1/?*% assuming the
initial data matrix satisfies technical (third-order) local law estimates. (Here, €p,d > 0 are any small
parameters independent of N.)

In this work we establish bulk universality for the real non-Hermitian i.i.d. ensemble away from
the real line using the strategy of [23]. This builds on [28], in which the first four moments of the
entries of A are assumed to match those of the Gaussian distribution. (We note that [28], which



builds on the methods in [27] for Hermitian matrices, applies to both real and complex matrix
ensembles and both real and complex eigenvalue statistics.) We discuss the additional complications
that arise in the real case compared to the complex case after we state our main results.

To be precise, the random matrix ensemble of interest in this paper is given by A = (Aij)f\,[j:p
where NV > 1 is the matrix size, and A;; are i.i.d. real-valued random variables that satisfy EA;; =0
and E|4;;|> = N~ and E|4;;|*? <, NP for all p > 1. (Throughout this paper, we write a < b if
la| < C|b|, with subscripts to indicate what parameters the constant C' depends on.)

Let us now introduce the main objects and constants appearing in this paper.

e First, we define t = N~ to be the time-scale of the Gaussian perturbation, where ¢y > 0 is
independent of N.

e Forany z € C, we define H.(n) := [(A—2)(A—2)*+7?]"" and H.(n) := [(A—2)*(A—2)+n?]~".
We also define the Hermitization
0 A—=z
o= (s )

and recall the resolvent G (n) = [H. —in]~!. It turns out (see [23]) that

inH.(n)  (A- Z)Hz(n)>
G.(n) = - . 1.1
0= (a2 it )
e Let 1., solve t(H.(n.4)) = 1, where (H) = —L-Tr H is normalized trace for any square
matrix H. See the proof of Theorem 1.1 in [23] for existence and uniqueness of such 7, for

t = N~ (and for the estimate %t < 1.+ < Ct, which holds whenever the local law in Lemma
26 holds).

e Set g.t = N2(H-(n2)) and a.; = 773,t<HZ(77z,t)gZ(77z,t)>- Set Bzt = nz,t<HZ(772,t)2(A - z))
and v, = 773,t<Hz (77Z,t)2>' Define 0,1 = v, + 7z_,z}|ﬁz,t|2'

Now, recall that the k-point correlation function (for any integer k£ > 1) of a point process {¢;}, on
C is the function p(z1,..., zx) satisfying

E Z O(Ciyye vy Ciy) _/(ck (21,5 2k)p(21, - oy 26)d2 . dzg.

i1 £l Al

The goal of this paper is compute the k-point correlation function in the large N limit for eigenvalues
of A in the complex plane, i.e. away from the real line. To state this result precisely, let us fix k > 2
and define

1 |2 2 k
péki)nUE(zl, ooy 2g) = det [— exp {—% + zﬁj}]
T o
7,j=1

This yields essentially the local distribution of k-many eigenvalues for a matrix whose entries are
(normalized) complez Gaussians. Remarkably, as we further explain shortly, it also gives the local
eigenvalue distribution for real, non-symmetric Gaussian ensembles away from the real line.

Theorem 1. Fiz any k > 2. For any O € C>°(CF) and z € C such that |z| < 1 and Im(z) # 0, we
have that

1 1
E Z O(N%Oﬁniv,z[z - )‘il]v tee 7N%U§niv,z[z - /\lk])
i1 FG2F . Fig

— /k O(z1,. .. ,zk)p](li)iv_rz(zl, vy zk)dzy . dzg
C



vanishes as N — 00, where ouniv,. > 0 is independent of the distribution of the entries of A, where
{A\j}; are eigenvalues of A, where

pg:])ivyz(zl, coszk) = Du(21, .00, zk)pgcileE(zl, cey 2E),
and where ®,(z1,...,2,) is independent of the distribution of the entries of A.
By Theorem 11 in [5], we know ®,(21,...,2x) = 1, i.e. that local bulk eigenvalue statistics away

from the real line agree with those in the complex case. We only stated Theorem 1 in this way to
parallel it with Theorem 2. We note a similar analysis of local laws as in Section 7 of [23] shows
Ouniv,> = 1, but we omit this extra computation.

The main step in proving Theorem 1 is to first prove the same statement but for matrices with
a Gaussian perturbation. In what follows, B is a real Ginibre matrix of size N x N, i.e. its entries
are independent real Gaussians with mean zero and variance N ~!.

Theorem 2. Fix any k > 2. If we set t = N~ then for ¢y > 0 sufficiently small and for any
O € C(C*) and z € C such that |z| < 1 and Im(z) # 0, we have that

1

E| S OWieZ[z=\(),...,Nic?
i1 FG2F . Fg

— / O(z1,. .. ,zk)p](li)ivﬁz_t(zl, vy 2zk)dzy . dzg
Ck i

oz = A (1))

vanishes as N — oo, where {\;(t)}; are eigenvalues of A+ \/tB, where

k k
pl(_ln)iv,z,t('zl’ s vzk) = (I)z,t(zlv s vzk)pg}i)nUE(Zlv s vzk)v
and where ®, ((z1,. .., z) is independent of the distribution of the entries of A.

We give proofs of Theorems 1 and 2 in the case k = 2 for (notational) convenience. For general
k > 2, the same argument with minor adjustments works; see [23] for details.

Now we discuss additional difficulties that arise in case of real non-symmetric i.i.d. ensembles
in comparison with the complex case. In [23] the authors obtain the integral formula for the k-
point correlation function through a change of variables in the space of complex non-Hermitian
N x N matrices My (C) obtained by consecutive Householder transformations with respect to the
eigenvectors. In our case, since real matrices still have complex eigenvalues, we have to adapt
each step of the change of variable to isolate conjugate pairs of eigenvalues. This leads to another
integration parameter 6, where 26 is the angle between the corresponding right eigenvectors. It turns
out 6 concentrates around the value 7/4. Showing this is one of the key steps, and the main challenge
is that local law estimates do not seem to help; instead, we control the region |0 — 7 /4| > N—1/2+9
directly (here, 6 > 0 is any small parameter). Additionally, to carry out the asymptotic analysis
we need to show that certain resolvent quantities have universal deterministic approximations. In
particular, we derive the local law and the two-resolvent local laws at scales proportional tot = N~
for the Hermitization of Is ® A — A ® Iy, where A is a deterministic 2 x 2 matrix. This is a 2 x 2
analogue of the 1 x 1 results in [7, 3, 4, 9]. We prove this using the cumulant expansion argument
commonly used for the proofs of two resolvent local laws, see [12, 8, 13, 1]. Our final step is to
remove the Gaussian component /B, which amounts to a standard “three-and-a-half’ moment
comparison approach and the Girko formula as in [18, 10], respectively.

Finally, let us mention that approximately a week before posting to the arXiv, [26] was posted
to the arXiv, in which the same result was proven by the same general strategy, but with different
approaches to some of the technical challenges alluded to in the previous paragraph. (These technical
differences potentially affect the smallest time-scale ¢ achievable.) Tt is possible that combining the
methods of our paper with those of [26] may prove Theorem 2 for the optimal time-scale t = N —1/244
Osman [26] also proves bulk universality on the real line; for this, another method based on “spin
variables” is employed to handle additional difficulties occuring therein. See [26] for details.



1.1 Notation

We use big-O notation, i.e. a = O(b) means |a| < C|b| for some constant C' > 0. Any subscripts in
the big-O notation indicate what parameters the constant C' depends on. We also write a < b to
mean a = O(b) and a 2 b to mean b = O(a), with the same disclaimer about subscripts. We use the
notation [[a,b]] = [a,b] N Z for an integer range.

1.2 Acknowledgements

We thank Benjamin McKenna, Horng-Tzer Yau, and Jun Yin for very helpful discussions (and in
particular Jun Yin for helping with details in the moment comparison step). We would like to thank
Mohammed Osman for helpful comments on an earlier draft (and pointing out a mistake). K.Y. was
supported in part by the NSF under Grant No. DMS-2203075.

2 Change-of-variables

The goal of this section is to reproduce ideas in [23] but for real non-symmetric matrices.

2.1 Preliminary steps
Define the manifolds
Q=01 X Qa X M(n_4)x(n-1)(R)

Q=R xRy x [0,2) x V2RY) x Miy-o)(R),

Q=R xR, x [0, g) X V2(RY™2) x M(y_p)x2(R).
Above, V2(R?) is the Stiefel manifold

VARY) := O(d)/O(d — 2) = {(v1,v2) € ST! x S¥71 - v}wy = 0},

where S?~! is the unit sphere in R%. Define the map ® : Q — My n(R) given by

Aa. , Wi *
(I)(alub17917v7W17a27b27927W7 W27M(2)) = Rl(V) ( 1671’91 M(11)> Rl(V) )

where

A, Wy %
MO = o) (Mot ) Ratur

Above, Ry : V2(RY) — O(N) is a smooth map such that for any v = (v1,v2) € VZ(RY), we have
Ri(v)e; = v; for i = 1,2. Similarly, Ry : V2(RY~2) — O(N — 2) is a smooth map such that for any
u = (u1,u2) € VZ(RV=2), we have Ra(u)e; = u; for i = 1,2. Lastly, the matrix A, ;¢ is given by

btan @
Aaps = ( ab an ) '

" tanf a

Throughout, we will use the notation \; = a; + ib;.
Lemma 3. The Jacobian of the map ® is given by
J(®) = 256b%b3| cos 201 || cos 202
| sin? 26 | sin? 26, |
2 2
x Jdet (M@ = )| det (M = x5)|

| A1 — A2P A1 — Aol



Proof. See Appendix C. O

Define the following probability measure on My« n(R), in which A is a deterministic matrix:

N2
2

pWMM:(%J md}%ﬁ@%ﬂﬂM—@@Mﬁ

By the change-of-variables formula and Lemma 3, we have

2
N )NT 256b7b3| cos 2601 || cos 265 | D= A2 — Tal?

M)dM = [ —
pM) (27rt | sin? 26 | sin? 26, |
2 2 N
X ‘det (M<2> - )\1)‘ ’det (M<2> - Ag)’ exp {——Tr((l)‘lM)*(qflM)}
2t
x daydbydf,dvdW, dasdbsdsdudWed M P,

where ® 1M is formal notation for the following matrix:

@71M — <Aa1,b1,9 Wl* > ,

0 M

A Wy

i az,bz2,0 2
< 202 ’ M(Q))'

We will integrate out all variables except ai,b1,as,bs. In this subsection, we focus on integrating
out just Wy, Wa, and M3,
Now, we write A in terms of the basis induced by Ry (v) and Ra(u). Precisely, we write

A, B .
A= Rl (V) < 63‘11 A(b) Rl (V)

(1)
AW = Ry(u) (1‘221 ﬁg) Ry(u).

We clarify that A;; and Agll) are blocks of size 2 x 2. Finally, set B := M2 — A®?) An elementary
computation shows that

Tr (@' M) (&' M) = [ ® A Auy 5,0, @ IV

2
+ H {12 ® AW — Ay by 0, @ IN—2} UH

+Tr (W1 — B1)* (W — By)]
+ Tr (W2 — Ba)*(Wa — By)]
+ Tr (B®)*B@.

From this, we get

p(M)dM = j(ay,b1,01,v, Wi, az, bz, 02, u, Wa, B?)
x daydbydb,dvdW,dasdbydfsdudWed BP |



where p(a1, b1, 601, v, Wi, az, b, 02, u, Wo, B?)) is given by
N2
( N )2 256b2b3| cos 201 || cos 202

| 2 N |2
— AL — A2 A — X
2t | sin2 20, | sin? 26, | Ar = el 20 = e

x ‘det[A(Q) +B® )\1]‘2 ‘det[A(Q) +B® Ag]f e~ HT(BD) BO
N
X exp {—g 2 ® A= Ay by.0, @ IN] v||2}
N 2
X exp {—— H |:.[2 & A Aaz)b2792 ® IN_2:| U_H }
2t
N *
X exXp {—ng“ [(Wl — Bl) (Wl — Bl)]}
N *
X exp {—%TI‘ [(WQ — BQ) (W2 — BQ)]} .

We note that dM ) has turned into dB(?); the change-of-variable factor here is 1 because the map
M® — B® is translation by A®). Also, we clarify that B and B; are functions of all parameters
except for Wy, Wy, respectively. Thus, by Gaussian integration, we have

N omt\ V2
/ exp { =5y T 11 = B (7 — 1) paws = (37
Mn_—2)x2(R) t

N omt\ V!
/ exp{—2—Tr [(WQ —BQ)*(WQ —BQ)]}dWQ = (W) .
Mn—a)x2(R) t

So, by integrating out Wy, W5, which appear only through the Gaussian weights in the last two lines,
we get

/ / ﬁ(alublu917v7Wlua27b27927u7W27B(2))dW1dW2
Mn—2)x2(R) J M(n_4)x2(R)

||)\1 = XA = Xof?

N2_aN412
B ( N ) 2 256b2b3| cos 201 || cos 202
—\2nt | sin® 26, | sin® 26,

2 *
e 2T (B®)" B

2
x ‘det[A@) +B® - )\1]’ ‘det[A@) +B® _ )

N
X exp {_E [[Ia ® A= Aoy py.0, @ IN] v|2}

N 2
1 [CXYCETWE I S

We now integrate the previous expression over B(?). First, let Mj, (R) be the space of k x k matrices
with real entries.

Lemma 4. We have the identity

N2—42N+12
<£> TT 1det[A®) + B@) — x|z 2T (B B yp)
27Tt MN,4(R) j=1.2
N 2N+4 ~
=26( — e 2 XX PEIM(X)]dX, (2.1)
21t
Mkew (C)



where M3 (C) is the space of 4 x 4 skew-symmetric complex matrices, and

X®In_y A\(zg)

M(X):=| (A@)T X oIy ]’ (2.2)
LoA® —we Iy 0
@ ._ |2 N-4 .
Aw’ [ 0 (L®A® —w®Iy_4) (2:3)

W= <A01 ;)2) . (2.4)

Proof. This is very similar to the proof of Lemma 5.1 in [23]. We first use vectors x1, x2,¥1, 2 of
anti-commuting Grassmann variables to write

|det[A® + B® — \]|? = /e—x?(&-—A<2>—B<2>>Xj—w;f@—(A@))*—(B%*)%dxjdwj_
From this, we get

—%Tr (3(2))*3(2)

e

2 2
‘det[A@) +B® Al]‘ ‘det[A@) +B® Ag]‘

N * * * *
— [expq -5 T B BY 1B Y g - (B Y v
j=1,2 j=1,2

xexpd = Y x5y — APy = Y (N — (AP) ")y ¢ dyadxadirdips.
=12 j=1.2

We can integrate the first exponential factor over B, since it is a Gaussian integral. We have

(N—4)2
2

<£> / e BT (B BO T BO ST (B T, vt (@)
27t My _4(R)
2
N-4
=exp § 5 Z (X kX jom + Vjmtjk)

= exp —%jé_Zm(x;wxwzxj)—§<x{>@><x;xl>—%w?wz)w;wl) ,

where the last identity follows by anti-commuting of Grassmann variables. By Gaussian integration,
we can again write

t * *
e - 3 (i) (2.5)
§0=1,2
N\* +
— (_> / e~ T Y =i 30, oy o (YVieX et Y jevi X5) gy (2.6)
it MZ(C)
N\* v
= 24 <—> / ei%TrY*Yfi Zj,l:l,z(YHX;d’lJrYjészj)dY (27)
27t Mg((C)



and, similarly,

t N o
N(xipm)(xéxl) =2 . e~ TSP -iSxe—isxix g g (2.8)
Y
N NP2 —iT T e — T b
(¢1 o) (Y3h1) = 25 € R (2.9)

Now we change the integration variables from Y, S, T to X € M;**(C) defined by
0 S
¥ _ —iS 0
—iy"

iy
0 T
-7 0
The Jacobian of this change of variables is 1. Since all remaining terms involving Grassmann

variables are now quadratic in x, 1, we can combine them into an exponent of a quadratic form and
integrate

/e,;quM(X)abdgb =PfM(X)],

where ¢7 = (x%, x5, 0L, 0T xT xT, —¢f, —3) and M(X) is defined in the statement of the lemma.
It remains to collect the Gaussian weights

N N
exp {—? (TrY*Y + |S]> + |T|2)} = exp {—ngX*X}
and the proof is finished. |

2.2 Re-parameterizing \; and )\,

By Lemma 4, we have

M(n—2)x2(R) ﬁ(alv b1,01,v,Wi,a2,b2,02,u, Wo, B(2))dW1dW2dB(2)
My —2)x2(R)
M(N—2)x(n-2)(R)
_ 96 <£)2N+4 256b3b3| cos 291|| cos 260
2mt | sin? 26 | sin? 26, |

||)\1 — Xo?| A1 = Xof?
X / e~ 2 XX PEM(X)]dX
]w*kew((c)
N
X exp {_E I[I2 ® A — Agy by .0, ®IN]V||2}

N 2
X exp {_E H |:12 & AN — Aaz,b2,92 ® IN_2:| U_H }
= p~()\17917v7)\27927u)'

Recall A\; = a; + ib;. We now re-parameterize A;, A2 as to be in a neighborhood of a fixed point
z = a+ib € C of radius v/ N; we emphasize that we always assume b > 0. Set z = (21, z2) and define

pi(z,2; A) =

(2.10)

22
+ ;
N2 2 p< w/NUzt \/NUz,t>
)\1,A2 = / / / / N()\l,Ol,v,)\2,92,u)d91d92dvdu. (211)
0,%] 2(RN-2)



Here du and dv are defined as integration with respect to the rotationally invariant volume form on
V2(RY) and VZ(RN~2), respectively. In view of the previous definitions, we will also always identify

Aj =2+ Nﬁl/zaz_}ﬂzj for j =1,2. We now follow [23] and define

~ 4N «
F(z;A®) = — |2 — 22|z — 22 e 2 XX PEIM(X)]dX
7T4t40'§7t Mi;kcw((c)

N
Ki(z) = (22 / expd — Nl ® A= A, s, 00 ® In] V|2 b dv
27Tt V2(RN) 2t UYL

N
- N N 2
Ko(zo) := | — / exp{ —— H {12 @ AL — Aoy b0y ® IN,Q} uH du
2nt Vz(RNfz) 2t

- _ N
dvi(v) == Ki(21) Lexp {—g I ® A= Agy by.0, @ IN] v|2} dv,

_ N 2
dug(u) = K2(22)71 exp {—% H |:IQ [o9] A(l) — Aa1751791 [ IN72:| uH }du

The scaling above is chosen because the VZ(RY) and V2(RM~2) integration resemble Gaussian
integration with variance N~'; this is why we want NV factors with K;(z;) terms. Finite powers
of N, on the other hand, will not be important to keep track of carefully (since all error terms will
be either come from multiplicative factors 1+ o(1) or be exponentially small in N).

Again, by identifying \; = z + N_l/zo;gﬂzj, in the formula (2.2) for the matrix M(X), we can
write
z4+ == 0
W — /No. ¢
0 e

\/No. ¢

With this notation, we can write

p(z;2z,A):

256b2b2| cos 261 || cos 20| ~ - -
/ - 22| - |2| 2 F(z; AP) K (21) Ko(22)dvs (v)dva (w)d6: d6;
(0.z)2  |sin®26;|sin” 20s]

X [1 +0(N-%))] .

We will estimate F(Z;A(Q))following the ideas in [23]. We will then give a preliminary Fourier
transform computation for K;(z;). Ultimately, the main problem for real non-symmetric matrices
is the integration over 6, which we explain further and start dealing with in the next section.
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2.3 Estimating F(z; A®)

The goal of this subsection is to prove the following analog of Lemma 4.1 in [23]. Before we state
this lemma, we first introduce the following notation (in which j € {1,2}):

_ (0 %
Z; = (zj 0)’ (2.12)

820 = ([Ho(n:,0) (A = 2)]?), (2.13)
z 5z - 32
1oy = 0 et Pes (2.14)
'-Yz.,to'z.,t

1 _

) = exp {—7\/WtTr (G:(2.0)Z;5] — Re(TZ,tz?) + |zj|2} (2.15)
Vi VvV 0 0

Vl = Vl(v) = (Ol 02 1 Vg) ) (216)

u; Uq 0 0 ) (2 17)

‘/2 = ‘/2(11) = (0 0 u; Uq

We clarify that the dimension of V; is 2N x 4 and the dimension of V5 is 2(N — 2) x 4. Also, for the
rest of this paper, when we say “locally uniformly in a;, b;”, we mean for a;,b; = O(1), so that the
eigenvalues are \; = z + O(N~/?) uniformly in N. (We will also use “locally uniformly in z;” to
mean the same thing.) Next, let us introduce the constant

Vs = [ NEE = N{(A = 2)* () H=(012,0) (A = 2))
X [Nt = N((A = 2) Ha (2,0 Hz (12,0) (A = 2))] -

Lastly, we emphasize that all estimates hold with high probability with respect to randomness of A,
i.e. with probability at least 1 — o(1). We only need a finite number of estimates, so the end result
holds with high probability (i.e. on an event which contributes o(1) in the expectations in Theorems
1 and 2). To avoid being verbose, we will not always explicitly mention this, e.g. when it concerns
local law estimates in Lemmas 26 and 29.

Lemma 5. We have the following locally uniformly in z1, zo, where k > 0:

F(z; A® 32713z — 72
= A7) _ i 12210 22 qetf(A - 2)* (A — 2) + 2, (2.18)
Piinug (21, 22) A Y2405 1V 4
x IT 1det[Vy @Y= (n..0)V;][P0; [1+ O(N~)] . (2.19)
j=1,2

Proof. Before we begin, let us first comment on the strategy. The argument amounts to removing
the diagonal 2 x 2 blocks from generic X € M***(C) in the integration in F(z; A®). Indeed, in
view of the proof of Lemma 4, these diagonal blocks correspond to extra terms which differentiate
the real case from the complex case as in Section 5 of [23]. After this, we are left with a very similar
computation as in Section 5 of [23]. (In fact, bulk correlation functions should agree between real
and complex matrix ensembles for eigenvalues away from the real line, so we must arrive at the same
Harish-Chandra-Itzykson-Zuber integral as in the complex case of [23].)
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For any X € M;*¥(C), set P = XX* and Q = X*X. For § > 0 small but fixed, write

/ e~ 2 XX PEM(X)]dX
Mskew((c)

1
-3

= / e~ 2t XX PEM(X)]dX + T
112 (llmax <N
="Ty+ 7T,

where ||||max is the max-entry norm, and T is an error term that satisfies the bound

| < Z / , X ded M) Fax

Pjj 77zt|>N

+ Z / e-%TrX*Xmet[M(X)n%dX

Qjij nz t‘>N

’ Z /m@uwﬁflef%TrX*deet[M(X)]l%dX

2

1

J.4k=1,...4 | Por— ﬁzt\<NJ 1

1

|Qur—n2 J<N°~2
:ZT1+T2—|—T3.

(We have used the fact that since X is size O(1), we know [P — 1?2 ;||lmax = O(N°~1/?) is equivalent
to [|Q — 12 llmax = O(N°71/2). We also used | Pf[M]| < | det[M]|'/? for a skew symmetric matrix
M.) We first bound T. We treat the region |Pj; —n2,| > N°~/2 for j =1,...,4. We claim

| det [M(X)]| = | det[M(X)M(X)"]|? (2.20)
< det[P @ In_y + AD (AD)*]7 det[Q @ Iny_4 + (AD)* AR5 (2.21)

The second line follows by computing explicitly the diagonal entries of M(X)M(X)* and then using
Lemma 2.2 in [23] (Fisher’s inequality) to bound | det[M (X )M(X)*]| by the product of determinants
of its diagonal blocks. If we again compute each matrix in the second line and apply Lemma 2.2 in
[23], we obtain

| det[M(X)]

S T ldet[Byy + [A® — X)) det[Qyy + JA® — A1,

where A3 = A; and Ay = Ap. Multiply and divide by det[(A — 2)*(A — z) + 72 ]. This gives

| det[M(X)]|? < det[(A — 2)*(A— z) +12,]
det[(A®) — X)) (AP —\)) +n2,]
H det[(A—2)*(A—2)+ n,?,t]

7j=1,2

o [ {GelA® S A) A - g 4 By '
det[(AR) = X))* (A®) = ;) + 2]

j=1,...,4

det[(A® — X)) (A®) — X)) + Q] '
< 11 det[(A® — X;)* (A — Nj) +n2 ]

j=1,...,4

12



Let us control the first product, i.e. the ratio of determinants. We first have

det[(A®) — X;)*(A®) — X)) + 72,

2.22
Je[(A= 2 (A= 2) + 2] (2.22)
det[(A®) — )" (AR — X)) + 02 ] det[(A — X)) (A=) + 12 ] (2.23)
C det[(A—= X)) (A—N) +n2]  det[(A—2)*(A—2)+n2] '
det st A=A
det[(A®) — )" (A®) — \)) + 2] (A=X)" inag (2.24)
det[(A_/\j)*(A_/\j)+77§.t] d < Mzt A—Z) '
’ et Tl
(A-2) N2
det[(A®) — X;)* (A — X)) + 72,
= — d 1— ——G.(n.4)Z; 2.25
QU (A =) (A= Xy + 72 om0 2 (2.25)

We now rewrite the last determinant as exponential of trace of log, after which we expand the
logarithm to get

cepl-S L )"
B p{ ;k(z\mz,t)%Tir (G-1-0) }}

We can bound the k& > 3 contribution by using the trivial operator norm bound [|G;(n:¢)llop S
Mot ! <t7'. Using also uniform boundedness of o, ; away from 0, this gives (for some C' = O(1))

det ll — #Gz(nz,t)Zj

Ozt

1
= exp {Tr log [1 - TGz(nz,t)Zj
z,t

oo

Z NO'Z t % [(GZ(nznf)Z

3 2

<Zc’w—&+1t% N~%n,
k=3

“Folw

assuming ¢t = N~ with ¢y > 0 small. Let us now separate the k = 1,2 terms:

exp {_Néoz,t% <GZ(77Z,t)Zj> -

(G, (nZ,t)ZjGZ(nZ,t)Zj>} :

2Uz,t

A straightforward computation using (1.1) and (A — 2)*H.(n) = H.(n)(A — z) shows that

1 1 _
~ 55 (G2 (1) 25G=(:.) Z5) = ——nZ 1| [*(H= (n:,0) H- (1-.1))
Ozt Ozt
B Zg2<[(A - Z)*HZ(WZ,t)]2>
20—z7t
 F(H (=) (A = 2)P)
2Uz t .
By definition of 0., we know that the first term on the RHS is equal to |z;|> — 82,07 {7.¢]%]%
Next, note ([H.(1..:)(A — 2)]*) = ((A — 2)*H.(n.+)]?) since H.(n..) is self-adjoint. So, the second
and third terms on the RHS of the previous identity combine to Re(6Z7tU;%zJ2-) = —Re(maz,%z?) +

205 t% I}Re( 2). Thus, in total, the previous display is < |z;|* — Re(maz_} 23), and

Nl

exp {—N%az,t (Gno)2y) —

20—z7t

<Gz<nz,t>szz<nz,t>Zj>}

1
< eXp{— 30, 2 (Ga(n.4)Z;) — Re(Ta05127) + |Zj|2} = ;.

|
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Thus, we have

G (nz.,t)Zj

det |1 - ———
A/ Ngz,t
=, exp{— T [(G(1:4)7)) }}
kzzg k(No.4)?
= [1 + O(N_%ﬁz_,f)} :
We now compute the remaining ratio of determinants using Cramer’s rule to replace A by A1)

and then by A. This is the same procedure as in (5.7) of [23], but now the subspaces that we project
resolvents onto must be spanned by pairs v € V2(RY). Specifically, this gives

det[(A®) — X;)*(A® — X)) +n2 ]
det[(A — Xj)*(A = Xj) +n2,]

=11 ‘det {I@*Gg’i’l)(nz,tﬂ/@} ;
(=1,2

(2.26)

where G (1) is the same as G, (1) but replacing A by A®). We now replace G(f;l) by GY Y. We
have

‘det [VZ G(l, 1)(77z,t)V£” = ‘det [V[G(Z_l)(ﬁz,t)ve}

z

‘det [Vé G(e b (M20) H
’det [V* a H

and, by the resolvent identity, we also have the following (in which Gy, = G (1.,¢) for convenience):

’det {V[Gg\éj_l) (nz,t)VE:| ’

‘det [V*Ggé_l)(nz )w” (2.27)

}det [H(Ve GV TV (GY - GUYyy, }

1

Uz,t

= |det

(‘/E*Gg—l)w)—l‘/e*Gg@—l)Zng\gj_l)w

To control this determinant we are left with, we will again write it as exponential of a trace of a log
and then expand the log. To this end, we need the following estimate, which uses only Lemma 2.1
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of [23] and some elementary manipulations:

k

N5 Ty [(WG?‘”W)*V;G&“”ZjG(fj”Vzm
—NH |y [Gii_l)w(w*Gi“)W)1Vz"Gi“)ij
SN e v e vy vtz
< COFNS Ggl,*l)W(‘/}*Gg_l)W)_lVfG,(f_l) k

J op
< OOV QU GV G| eI,
< CEN=5 || [Im(GU) -1 ’:p|‘[Ggé—1)]—1G(Aifl)||§p
= CFN~3 |[[Im(GY1) 1)1 ' [+N 30,726 )

op ’ J op

= N2 F(1+ O(N 201 ))).

We clarify that the operator norm bound for the trace follows because the matrix in question rank
O(1). Since 7, ¢ > N~1/2, the big-O term in the last line is < 1. Thus, we have

det [1 - (VG DV~ G 2,65 (2.28)
O'z,t
0o 1 e B k
< exp {Z ENi%Uz,tg Tr [(W*Gglfl)w)flvé*cwgfl)Zng\éj 1)‘/2:| }} (229)
k=1
:exp{ZO(CkN_%n;f)} =1+O(N_%77;%). (2.30)
k=1

Gathering all of this, we deduce

| det[M(X)]|* < det[(A - 2)"(A = 2) + 12 21t [] det[VFGEY () Ve
=12

I {det[(A(2) — 1) (AP = \)) + Py }i

. det[(A® — X;)7 (A — X)) + 12,]

Jj=1,...,4
1

[ {2eld® =2 4 =)+ g *
© A detl(A® A =g w2 ] f

It remains to control the last two products over j; we treat the first, since the second is handled
2
in the same way. By resolvent perturbation and the inequality log(1 + z) < x — (aszv we have the
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following, for which we use the notation H )(j)(nz,t) = Ag\i)’*Agi) + 02,

det[(A® — X))*(A® — X)) + P};]
det[(A@ — X\))*(A@ — X)) +n2 ]

= det [ Iy + (P — 02 ) A (n..)]
= exp {Tr log {IN—AL + (Pj; — nﬁ,t)ffg) (nz,t)} }
3(Pj; —n24)

6+ 4‘Pji7;n“‘

z,t

<exp (P —n2 )T HY (n:0) — T [A2 (n..0))

By combining the previous two displays and by %Tr H, (n2.4) = 1, we have the following parallel to
(5.6) in [23]:

2ant
TiSe det[(A — 2)"(A = 2) + 12 JPeave [] |det[Vy G (n. ) Vil
=1,2
xz/ pd -2 ST 2 S hy(nz2lgl) p AX
J ] )
VVVVV Py — Uﬁ,t|§N67% 4 j=1,...,4 4 Jj=1,....4
where p; = Pj; —n2, and ¢; = Q;; — n?, and
4 2 2

oy et (@) o 327 i 2) 7
hy(@) = ST AL )P 2o = o (WAL )] = Tr [ (02.)]) @

By interlacing of eigenvalues and the bound ||ﬁ)(j)(77z1t)|\op < .7, we replace N~'Tr [ﬁg) (n2.4)]2
by N~ Ty [fl,\j (n:0)> + O(N 177;?) By the same token, we can also replace N~ 'Tr [fl)(j)(nz,t)] by
N~1Tr [fl,\j (N24)] + O(N_lnzﬂf ). We can then use a resolvent perturbation to show

] 7 1
Tr [H)\j (nz,t)] —Tr [Hz (nz,t)] = 2N77 tTI‘ Im(G)\]. (nz,t) — Gz(nz,t))
1 EE
N 2Nn., tIInTr [N 0.fGx M24)Z;G2(N21)
= O(N"#12}).

Lastly, we have the lower bound N~'Tr [Hy;(1.+)]?> > C > 0, since gx(ﬁz,t) is the resolvent of a
bounded operator. So, we obtain the lower bound h;(z) > Cn3 ( 1+21 N;E‘ x) > antl% because

n = N~ with ¢g > 0 small. (The discrepancy in the powers of 7., compared to [23] will not be
important; they come from using trivial bounds for resolvents as opposed to local law estimates.)
In particular, if we take ey > 0 small enough in 7, ; = N™%, then as in [23], the integration over
|Prk — n2,| > N~1/2%9 is exponentially small, i.e. for some > 0, we have

ant

TiSe e det[(A = 2)"(A = 2) + 2 Pynte [ 1detVyGE D )Val?. (2:31)

£=1,2
By reversing the roles of X and X*, the same argument implies

ant

Ty Se e det[(A = 2)"(A = 2) + 2 Pynte [ [detVyGE D )Val?. (2:32)

0=1,2
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So, we are left to bound Ts; let us treat the case (j,£) = (1,2), since the other terms in Y5 are
treated in the same way. For this, we again start with (2.20). Now, let P; denote the upper left
2 x 2 block of P = XX*. We now use Fisher’s inequality (Lemma 2.2 in [23]) again, but now with
the top left 2 x 2 block, the (3,3) entry, and the (4,4) entry as our diagonal blocks. This gives
det[P ® In_4 + AQ (AD)"]
<|det[Pi @ In—a+ (12 ® A® —we In_s)(I2 ® A® —w® In_4)"]|
x | det[Ps + (A® — A1) (AP — \1)*] det[Prg + (A® — 29) (AP — \p)"].
We now use the Schur complement formula to get the first line below, after which we factor out
Pyy + |A®) — Xy|? from the second determinant:
det[Py @ In 4+ (I ® A® —w@ In_4)(la @ A —w @ Iy_4)*]
= det[P11 =+ |A(2) — /\1|2] det[ng =+ |A(2) — /\2|2 — Plg(Pll + |A(2) — )\1|2)71P12]

= det {1 — |P12|2H>(3) (Pll)H)(j)(P22)] det[P11 + |A(2) — /\1|2] det[ng + |A(2) - /\2|2].

(Recall HP () = [(A—w)(A—w)* +7%~L.) Now, we use the inequality det(I + B) < ¢™ B and the
lower bounds H >(3 (P11),H )\3 (Pa2) > C > 0 (since they are resolvents of covariance matrices with
bounded operator norm) to get

det [1— |PiaPHY) (P H (Pro)] (2.33)
< exp { ~[ P Tr B (P H (Po)}

= exp { ~|Pua*Tr [H (Poo)|F HD (Pr) [ (Po)] }

< exp{—CN|P12[*}.

A similar bound holds for @ in place of P. Let us clarify that the effect of using Fisher’s inequality
with one 2 x 2 matrix is to produce the determinant factor in (2.33), which produces an a priori
exponential bound on the off-diagonal entry of said 2 x 2 matrix. We shortly apply this principle
again. We can now follow our computations for the bounds on Y7 and Ys; the only difference is the
presence of exp{—C N|Pi2|?} and exp{—CN|Q12|?}. But we restrict to the set | Pra|, |Q12| > N°~1/2.
Ultimately, we deduce

2N77§’t

T3 SeNe T det[(A - 2)"(A—2) + 02 i [ 1det[VEGE Do) ViI? (2.34)
=12

We are left with To. We must compute M (X)M(X)* more precisely as follows:

N Bl A | ol =i (2.35)
(_Aw )T X ®IN74 (Aw )* X® IN74
- XX @Iy 4+ AP [A‘(ag)]* -X® IN—4A‘(N—2) + AP X @ Iy 4
—APPX @ Iy 4+ X* @ In_a[AD] XX @ Iy_q +[AD] 4D

In particular, we must compute the off-diagonal blocks. Note that the bottom left block is the
adjoint of the upper right block (indeed, M(X)M(X)* must be Hermitian). So, we compute the
top right block. First, since X € M;*¢¥(C), we can write

X, X, Yu Y

¥ — Xty _ -Xi, X3, Yo Yo
YT Xx? Y -Ya X} Xi
Y2 -Y® X3 X3
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where X!, X2 € M3k (C) and Y € May2(C). By definition, AP X @ In_y is equal to

A@ _ 0 0 0 Xt X, Yu o Y
0 A®) ), 0 0 ~Xiy X3y Yoy Yo
0 0 AR X 0 Y —Ya X} X}
0 0 0 A® X, ) \-Yi2 Y22 X2 X3,

The top left 2 x 2 block of this 4 x 4 matrix is given by

X4AD — X)) XLIA® - A]
“XLIA® < o] XA — X))

We can compute X ® [ N*4AE~*2) in the exact same way. Its top left 2 x 2 block is equal to

XH[AD —X]  XL[A® — Xy
—XH[A® = X] X5[A® —Rg])

Thus, the top left 2 x 2 block of —X ® IN,4AEN_2) + A‘(,‘%)X ® In_4 is equal to

XL =M XL[R — A
<_)éil2[xl — A9 Xllz Ny — >\2]) ' (2.36)

The top left 2 x 2 block of —[AEVE)]*X* RIN- 4+ X*® IN_4[A£3)]* is just the adjoint of the previous
display, as we mentioned earlier. Now, return to (2.35). We apply Fisher’s inequality (Lemma 2.2
in [23]) once again with the following choices for blocks. First, we choose the 2 x 2 block made up
of the (1,1) entry of XX* ® In_s + AD[AP]*, the (2,2) entry of X*X @ Iy_s + [AD]* AP the
(1,2) entry of (2.36), and the (2,1) entry of its adjoint (in the bottom left block of the second line
of (2.35)). Precisely, this block is

<P11 + (AB) = A) (AP — Ay X{oAe = M] )
X12[A2 — A1) Qa2 + (A®) — X)) (AP — \p) )~

This picks out a 2 x 2 diagonal block in (2.35). Note that its determinant is given by
P+ (A(2) — )\1)(14(2) — )\1)* X%Q[Xg — )\1]
det ~ By (2) *(A2)
Xi2[A2 — ] Q22 + (A™ = A )" (A = Ay)
= det[Pyy +|A® — A1 ] det[Qa + [A®?) — Naf?] det[l — | X1, [Re — M PHY (VP AL (VQ22))-

For applying Fisher’s inequality, we now take the 1 x1 blocks given by the remaining diagonal entries
of the second line in (2.35). We get the following (in which |L|> = LL*):

detM(X)M(X) ] < ] Idet[Py; +[A® = X;]?)|[ det[Q;; + AP — A;[?]]
j=1,...,4

x det[l — | X5 2R — MPHY (VPO AL (VQ22)).

Now, because Pi11,@11 = O(1) by our cutoff in the integration domain of Yy, as in (2.33), we know
that the second line of the previous display is < exp[—CN|X1,[?|A2 — A|%]; this follows by the
same argument as in (2.33). But \; = z + O(N~1/2) locally uniformly in a;,b;, and z ¢ R is
fixed, so [A2 — A1|? 2 1 locally uniformly in a;, b;, and thus the second line of the previous display
is < exp[~CN|X{,|?] locally uniformly in aj,b;. We can now proceed as in our bound on Y3 to
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restrict further the integration domain in Tq to the set where | X12| < N—1/249 for any small § > 0.
We can do the same for every other entry of X' and every entry of X? as well. Ultimately, we have

TO = Tmain + T47

where for some k£ > 0 small but fixed, we have

_ Ny Xt
Tmain ::/ HP_772thnaxSN67% e 3¢ 1T X XPf[M(X)]dX, (237)
X lmaseo | X2 ana SN2
T, < —CN" 72N?§‘t A—2) (A — 2 12 *G(lfl) 2
T4l Se e det[(A — 2)"(A = 2) + 02 JPenvoe ] etV GE (e ) Vil

(=12
In view of the cutoff of Tain, we now decompose M(X) as
M(X) = M(Y) + M(X", X?),

where M(X', X?2) is a diagonal 4 x 4 block matrix with diagonal entries X' ®@Iy_4, X2®In_4, X ¥ ®
In_4,X%* ® Iy_4, and where M(Y) is the following block matrix:

0 Y ®IN-4 LAY —w® I 4 0
Y ®In-4 0 0 LAY —W® In 4
—IQ®A(2)’* +wRIN_4 0 0 _7®IN74
0 —LRAD* L TR In_a Y*"®In_4 0

Because we take Pfaffian, We can change basis by sending e; + e1,e3 — e3,e4 — €3,e2 — e4. In
this new basis, we then have

| PEM(X)]| = | PEM(Y) + M(X, X2)]| = | det[M(Y)]|2| det[1 + M(Y)"'M(X", X2)]|2, (2.38)

where
X'®In_4 0 0 0
1 y2y 0 X2* @ In_4 0
M(X7, X7) = 0 0 X2 @ In_4 0 ’
0 0 0 Xb*® In_4
_ 0 Mo(Y')
M(Y) - (—MQ(Y)T 0 ’
B Y @ In_4 LA® —welIy_,
Mo(¥) = <—I2 ®AD* + W@ In_y Y*®@In_4 '
We now expand
|det[1 +M(Y)'M(X!, X?)]| (2.39)

%’I‘r M(Y)"'M(X, X2))2 + 0 (N—%+36+Ceo)}

= exp {%T&“M(Y)‘lM(Xl,X2) —
= exp {_it[‘r M(Y)"'M(X, X3)2 + 0 (N—§+35+ceo)} 7

where the bound on the third and higher order terms follows by || X ||max, || X2[[max < N~1/2H9
and [|[M(Y) ! op < N9, which we verify immediately below. The second identity follows because
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M(Y)~M(X!, X?) has zero diagonal; this can be checked directly. We now collect a few properties
of M(Y)~!. First, we define the following modification of M(Y") obtained by replacing w by z = zI5:

M. (Y) = (—MO,(:(Y)T MO,S(Y)> ;

. Y ®In_4 L®A® —z® Iy 4
Mo,=(Y) := (—Iz QAP L TR IN_4 Y*®In_4 '
An elementary computation shows
-1 _ 0 —Mo)z(Y)_l’T
Mz (Y) - (MO,Z(Y)l 0
Mo (V)™ = Y*® In-oH (V) —[l® A® 2 Iy_JJ B (V)
X L ®A® —z0 Iy_J*H(Y) Y ® Iy 4HP (V) ’

HY2Y) =YY" @In_ga+ (T, A —20 In_4) (I ® A® —z@ In_4)*] !
DY) =YY @Iy g+ L0 A® —20 Iy 4) (L ® A® —z& Iy )] .

Because we restrict to | XX — 02, |lmax, [|X*X — 172, lmasxo [|[ X max, [ X[ max < N=Y2H0 for § > 0
small, and because 72, =2 N~2 with €y small, we know that [[YY™* =2 [[max, [Y*Y =12 [lmax S
N~V and thus HP(Y), HP (V) < 122 < N2, This implies [M(Y) ™ lop < NP for some
C = O(1) with high probability (note that A(® is bounded in operator norm with high probability;
indeed, use interlacing to remove the superscript (2) and by the local law in Lemma 26, for example).
On the other hand, we know | M. (Y)=M(Y)||op < N~/ locally uniformly in 21, zo. Thus, resolvent
perturbation shows M(Y)™! = M, (Y)~'[1 + O(N~1/2+C<)] where the big-O is in operator norm.
Finally, we define the matrices below obtained by evaluating resolvents at 7, ; instead of Y

-1 0 —MO,z,nz,n(Y)_l)T
Mz,nz,t(y) - <M07Z7nz,t (Y)_l 0
Y* @ Iy g H® [ © AP — 20 Iy i A,
. (Y)_l ) % Iy o H. (77z,t) [ 2 ® Z ®~ N—4] z (nz,t)
EiTl b [I® A® — 2@ Iy 4" HE? (n..4) Y @ In— a5 (1:.4) |

HP(mon) =2, + (L@ A® — 2@ In_4)(l @ A® —z2® Iy_4)*]""
(

TP ) =2+ (@AY —2@ Iy 4) (L ® AP —z2@ Iy_4)] "
Before we proceed, we clarify that flz@)(nz,t) is block diagonal with entries fng)(nz,t) and fléz)(nz,t);
a similar statement holds for Hz(2)(77z1t). Thus, its products with I» ® A2 —z® Iy_4 can be analyzed
via the local laws in Lemmas 26 and 29. We will use this shortly.

The bounds [[YY™* = 12, [max, [|[Y*Y = 72, [lmax < N~/?%% and resolvent perturbation as before
show [[M.(Y) =M., ,(Y)llop S N=V2H0 and ML (V)™ ~M.p (Y) Hlop S N~1/2HHCo  Com-
bining this with M(Y) ™! = M, (Y) ' [L+O(N~1/2+C)] we deduce | M(Y)™ ' =M. ;.. ,(Y) op <

N~1/2+0+C¢_ Also, by the a priori bounds || X1|/max, | X2[lmax < N71/2+%, we also have the estimate

~
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IM(XY, X2)|op < N71/249. Thus, we have
exp {—i (Tr [M(Y)""™™M(X ", X?)]> = Tr [M.,,_, (V)" "M(X", XQ)]Q)}
—exp { - {TEMOY) IMOE, XMV - ML, (V) IMOE ) |

e { T IMOY) = M () MO XML, (V) MOE X))

— exp {O(N—%+26+Ceo)} 7

where 9, €9 > 0 are small. In particular, we deduce

exp {—iTr [M(Y)—lM(Xl,X2)]2} (2.40)

= exp { T ML (V) MOE X+ 0 (o)

An elementary computation shows the following, in which A®)(z) := I, ® A® —z ® Iy_4, and in
which Y, X!, X2 are identified with Y ® In_4, X' ® In_4, X2 ® In_4, respectively, for convenience:

1 —
— T M, (V) TIMX X = o Te Y HD (.,0) X L (12,0 VX
1 ~ .
o ETI‘ A(2) (Z)HéQ) (nz,t)XQI'* z£2) (nz,t)A(Q) (Z)TXQ
1
_ ETI‘ A(2) (Z)*Hz@) (nz_’t)XleQ) (nz,t)A(2) (Z)XL*

1 ~ ~
_ ETrYHz(2)(nz,t)X2)* (2)(nz,t)YTX1)*-

z

Now, observe that H}” (Mz0)s m? (Mz0)s Hz£2)(77z,t), f[g) (12.t), AP (z), A®)(Z), AP (z)* are all of the
form Ir ® K for some K € Mp_4(C). Thus, we can factorize the traces on the RHS to get
1

1 —
T My (V) MO, X = = 5T B (2 HE () Tr Y X T X2

1 N N

_ 5Tr A® (Z)Hz(z) (ﬁz,t)Hg) (nz,t)A(Q) (Z)Tr X 2% Y2
1

— iTr AP (z)*Hf) (nzyt)Hg) (Wz,t)A@) (z)Tr Xixl*

1 - -
= T HP (e ) H (2 ) T Y X2y T X

Next, we compute

N N N N
expd ——TrXX*p =expd ——Tr X1 X1* bexpd ——Tr X2X2* bexpd ——TrYY™ 5.
2t 2t 2t t
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Therefore, we have

N 1
xexps — = + T A (2) B () HY (n.0)A® (2) ) s Tr X1 X!
t z I z ’ 2
_l (2) (2) * v 157 2_1 77 (2) 77(2) 2,5y T v 1,%
x exp 4 —=Tr H{P (0, o) S () Tr Y X VX2 — “Te B () B () T Y X2 YT X
2 z ) Z I 2 z ’ z ?
X exp {—gTrYY*} )

Because X!, X2 are 2 x 2 skew-symmetric, we know that Tr X?*X? = 2|zo|? and Tr X X! =
2|x1|? for 21,22 € C. Moreover, by the a priori estimate ||Y|lop < 7.¢ < ¢ that we restrict to in

~

Y main, wWe also know that TrY*X'Y X? = ¢z and TrY X2 YT X1* = 37T for constants
c1,c2 = O(nZ,) = t*. Next, we use Lemma 29 to bound from above both ’I‘er(Q)(nm)Hg) (n2,¢) and
Tr Hz(2)(77z,t)Hz£2)(77z,t) by O(Nn;f) with high probability. In particular, we deduce

1 — 1 - -
exp {—5TY H) (1) B (12, T Y XAV X2 = T B (1., B 312, T YXQ’*YTXL*}

= exp {C3£L'1,T2 =+ 645152} R

where ¢3,¢4 = O(N). By combining the previous two displays, we obtain

exp {—%Tr M. ,.. (V)" 'M(X, XQ)]Q} exp {—%Tr XX*} (241)

= exp {_ (i;) TN,t2(1:.1) (i;)}

where Ty ¢ 5(n:+) is the 2 X 2 matrix

T  (TNitz11 TNizi2
N,t,z — T T )
Nitz21 TnNitz22

N N »
TN tz11= r + TrA(Q)(Z) Hz(z)(nz,t)Hsz(nz,t)A(z)(Z)a

N ~ ~
Ty oz = 7+ T AP @B (0. ) B (1) AP (@),
ITN,t,z,12| + TN tz21] SN

We now combine (2.37), (2.38), (2.39), (2.40), and (2.41) to deduce

Ny Yy 1
Toini= [ o ey AV I et My (242)

1
X e, 12X [l S N° 72

X exp {— (i;) TN,t,z(nz,t) (i;) } dridxs {1 + 0 (N_%+35+Ceo)} .

For this, we note the change of variables dX to dY dz1dxs has Jacobian 1. Because of the constraints
1 X | mase; | X 2|l max < N°—/2 above, we can replace || P — 72 tlmax < NO—12 by |YY™* — 72 tlmax <
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N°®=1/2 in (2.42). Next, by Lemma 29, the on-diagonal terms of TNtz are > Nt=1 Thus, Ty iz 2
Nt=1. Since t = N~ we can remove the constraint || X ||max, [| X2 |lmax < N°~1/2 from (2.42) by
using the Gaussian weight in the second line. In particular, we can perform the Gaussian integration
over x1,r2 and obtain

Yo = | e F Y| det [MU(Y)] ¥ det Ty .| Y [1 4+ O(N )]
HYY*777z erdx<N6 /2

for some £ > 0. As mentioned earlier, the on-diagonal entries of Tn ¢ . are 2 N —1. whereas the
off-diagonal entries are O(N). Thus, for some x > 0, we have det Tn ., = TN 1211 TN t,2.22[1 +
O(N—")] = v;f[l + O(N—")] (recall v, from before the statement of this lemma). Therefore, we
have

Yo =27 | FT detMY) Y [L+ OV (243)
T IYY 02 flmax <NO-1/2

Now, observe |det[M(Y)]|*/? = det My(Y). At this point, we proceed as in Section 5 of [23] to
compute the integral in (2.43). Ultimately, after changing variables Y +— Uy SU5 via singular value
decomposition with Uy, Us € U(2) and S > 0 positive semi-definite, we deduce the following (which
is the Fy formula in Section 5 of [23]):

2N 2
t z

Tmaln - U72 det[(A ) (A - Z) + nz t 67

X H|detVG(J D(n..0)V; exp{
Je

t

“Uzt nzt)Z>}

7j=1,2
X |V01(U(2))|2/ du(Uy, Us ~Tosy Lgn=1,2(C=(M2.0) 2k G (n=.0) Zns)
U(2)xU(2)
></ H 2Nz (s5—12.)% \/N—(SJ etV T (G (12,6)" Z“]| S1 —32|2d51d32
R

?j=1,2
X [1 + O(N—%+~)] ,
where Z has 2 x 2 blocks Zj;, indexed by j, k = 1,2, which are defined as

o 0 (Ul*ZUl)jk
L = ((USZUz)jk 0 '

We omit the details because they follow exactly as in the complex case (the entries of A essentially
have nothing to do with this argument, as long as ||Allop = O(1)). Now, we change variables
VAN~ +(s; —n.+) — s;. This introduces a Jacobian of ﬁ%, and the Vandermonde determinant

|s1 — s2|? gives another factor of I

Nl . Hence, we have
Yzt

1 N 2
z

S _ 2 12,202
16N2'}/z tv det[(A ) (A Z)+nz,t] €

t

Tmain =

_ N
< ]I |det[Vj*G,(zj1)(77z,t)vj]|2€Xp{_ <Gz(77z,th>}

g
=12 =t

X |V01(U(2))|2 / d,u(Ub U2>€7#ZJ 2 ik=1,2(Ge(M2,0)Zjk Gz (M2,t) Zij)
U(2)><U(2)

/ H e~ 1 ]e 2\/m 55(G=(n=,6)Zj5) |:1+O(N72+C€o+n):| |S —82| dsydss.
Jj=1,2
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Let us first compute (G, (1:,4)ZjkG~(02,1)Zk;). To this end, we compute
izt H 2 (12,) H,(n24)(A— Z)) ( 0 (U1*ZU1)‘7€)
Gz . Z — 5 5 ’ oL, — J
(=) Zii (A=2)"H.(20) 02t H(120) (U32U2) jk 0

_ ((UEZUz)ijz(ﬁz,g)(A —z) N (Uizlh) i Hz(02,0) )
1 (UsZUs)ju Ho(n20) - (Ui2U1)j1(A = 2)"H.(n21) )

The same formula holds for G (), ) Zy; if we swap j, k. Hence, we have
Tr[G.(n2.) 2k G- (0=,1) Zij)
= =02 (UF2U1) 1 (U3ZU2) 5 Tr H. (02 ) H. (12 1)
+ (U32U2) ji (U3 ZUs) 1 T [(H= (12, ) (A = 2))?]
—12 t(U55U2)jk(UfZU1)kj77f,tTY H. (12,0)H=(n:.1)

+ (U7 201) 1 (U3 2U1 )i Tr [((A = 2)" H2 (12.))]
= —2Na ¢ 2zU2)Jk(U1zU1)ka (U1zU1) jk (U3 ZU2) 1]
+ (U3 ZU2) 1 (U3 ZUs) 15 T [(H (11:,6) (A — 2))7]
+ (U7 201) 1 (U3 2U1 )5 T [((A = 2)" Ha (24))?].
When we sum over j, k and divide by N to take normalized trace, we get
1
2% Z (G=(n2) Zj1G=(1t) Zjk)
Zt k=12
Ay, - _ _
= LT UszUsUsalUy — s— ([H.(n2,0)(A — 2)*) (3} + 23)
Ozt 2Uz ,t
1 ,
By ; (((A=2) HZ(nLt)] >(21 + Z%)
02, z
= T UsaaUsals — Y Re | —2
Tzt j=1,2

Next, we compute (G(n.,:)?Z;;). To this end, we first note that
(G2(n:0)Zj5) = (U72U1) 5 {[G= (12,6)*]21) + (UsZU2) 5 ([G (n2,6) *a2),
so only the off-diagonal blocks of G (1, +)? matter. These off-diagonal blocks are
G. (Wz,t)2]12 =in. 1 H; (nz,t)2(A —z) + s Ha (1) (A — Z)f{Z(nz,t)
= 2i77z,tHz (nz,t)2(A - Z)u
G (77Z,t)2]21 = inz(A— Z)*HZ(nZ,t)Q + iWZ,tﬁZ(nz,t)(A — 2)"H;(12t)
= 2inz,t(A - Z)*Hz (nz,t)z'

Note that ([G.(n..¢)?|12) = ([G=(n2.t)%]21) = 2iB.+ by invariance of trace under transpose since H,
is self-adjoint. We deduce

(G.(n:.4)*Zj5) = 2iB.,:(Us2U2) 5 + 2if3, ,(Uy 2U1) j;.
We can now rewrite the R? integration in Yyain as follows (where s = (s1, 52)):

/ H Je\/msj [ﬁz,t(U§ZU2)jjJFBz,t(U;ZUl)J'j]

j=1,2

|81 — 82|2d81d52

1.2 ————TTrs[B.,+(UszU2)+B, ,(UjzU;)]
:/ e 38 o VImtmat o e |s1 — s2|%ds1dss.
RZ
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Note that the Uy, Us dependence in the integrand of this R? integral is invariant under right trans-
lation by unitary matrices. Thus, we can replace U; by U1V and U by UV, and average over
V € U(2) according to Haar measure. Then, with a change-of-variables factor of w |s1 — 822,
we can replace integration on R? x U(2) by integration on the space M5%(C) of Hermitian 2 x 2
matrices. Ultimately, we deduce that the integral in the previous display is equal to

2 *m = *
8w e—gTrQ e\/h’lt—az’tTr [Bz,t(UzZU2)+ﬂz,t(U1ZU1)]QdQ

Vol(U(2))] Jpsse
1674 . {|Bz7t|2

= ————— X
Vol(T(2))] P 72020

) —2
X exp{;’tTr[Ug*ZUgUQ*ZUQ] + ATI‘[U{FZUlUl*ZUl]}

Tr [U;ZUszZUl] }

2'-)/z,t0'z,t '-Yz,to'z,t

167T4 Oyt |ﬂz t|2 _ zt
- J 2 ) Ty [UszUs Uy zUy Re J
Vol(U(2))] P (o " Vs + )

Vz,tO0 2zt j=1,2 V2,02t

where the integral is computed by Gaussian integration. Putting it altogether to compute Y ain,
we deduce

L3OV D) det(A — )" (A — 2) 4 12 2 72

Tmain — TAnO.92 9o
16N27z t z ,t

x TT 1detlV; GU 0 e, Vi) exp{ - <Gz<nz,tzj>}

g
j=1,2 z,t
5, 422

X 167T4|\701(U(2))|6(;§7":7Zj:1’2 RC( C’;"j>ezj:1’2RC(z%€j‘>

x/ d (Ul,Ug)exp{< w‘”' > [U;ZUgUl*zUl]}.
U(2)xU(2) Ozt Vzt0zt

Now, recall that o ; + |Bz,t|27z_} = 0.+, so in the last line, the factor in front of the trace is 1. So,
we can combine terms and obtain the following, in which the last two identities are proven by the

Harish-Chandra-Itzykson-Zuber formula as in [23], definition of pgi)nUE, and [Vol(U(2))| = (27)3:

[l +O(N~

")l . T
Tmain - N2’7Z2 tht det[(A — Z) (A — Z) + n?)t]ze t "zt
x T 1det[VyGY=0 (., ) Vi) Pohye™
j=1,2
« [Vol(U(2)| / o U Ua) 5 (T U370 07
X
1+ OWN"")] 2 12, —2N,2 det[e**/]
= T O T detf(A — 2) (A — 2) + 12, JPe~ i [Vol(U(2))| S
N27z,t“?,t o’ |A(z)[?
x [T 1detV;GY=D (..0) Vil Py
j=1,2
8’ 2 12 —2Np2 pgi)nUE(217z2)
= mdet[(fl z)" (A—Z)‘i‘??z,t] e ' W
x [T 1det[V;GY=D (n..0) Vi1 4.
j=1,2
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Now, by using our error estimates for Y1, Yo, T3, T4 and trivial bounds v, ; St and v, < NP for
some D = O(1), we have

A(z)2/ e T XX Qet[iM (X)]dX = A(2)* T imain (1 + O(N 7)) (2.44)
M3y 2(C)

4N|z—%|?
t47r4a'21t

locally uniformly in z1, z2, at which point we multiply by to finish the proof. O

2.4 Fourier transform computation for K;(z;)

We require the following analog of Lemma 2.3 in [23] for real matrices and V2(RY).

Lemma 6. Suppose f € L'(Mayx n(R))is continuous in a neighborhood of V*(RYN) = O(N)/O(N —
2). Let M3*(R) be the space of symmetric 2 x 2 matrices, and define

o 1 . «
f(P):= ’/F/ e IIPXXT (XY dX, P e M5%(R). (2.45)
T S Mayn (R)

Then we have
/ f(V)dv = / e P f(P)dP. (2.46)
V2(RY) M5*(R)

We recall that dv is integration with respect to the rotationally invariant volume form on V2(RN).

Proof. We first define

1 | o2
I(f) = —— e TIXXT L) (XY d X
(f) 5203 /M2XN(R)€ 3 f(X)

We use change of variables X = OP %, where O € V2(R") is a matrix of size 2x N and P is a positive

definite matrix of size N x N. This change of variables has Jacobian dX = I det(P) ¥deuN72(O),
where 1y 2 is the rotationally invariant volume form on V2(R¥); see Proposition 4 in [15]. Thus,

1 / e~ ETP-1) (PP,
P>0

)= 5ma
[, 10PHiuna0).
V2(RN)

g(P) == idet(P) =

We take the dP integral to be over 2 x 2 positive definite matrices since all but two eigenvalues of
P are 0. After doing so, (212€%) ! exp{—5-Tr [(P — I3)?]} is an approximation to the delta function

at P = I,. Indeed, first, shift P := P — I,; the 7~ 2¢2 comes from scaling the matrix entries of P
to be Gaussians which integrate to 1. Recall g is continuous at P = I,. Taking ¢ — 0, we get

= / F(0)dun 2(0),
V2(RN)

L) —emso idet(P) ;

which we can formally rewrite by replacing O by v and duy 2(0O) by dv. We now compute I.(f)
differently; by a Hubbard-Stratonovich transform, we have

1 1 _1 i _xX*
LD =533 [ o Gt ey ¢ 0axap
2m2€% Insuw (®) (27)2 S Mage ()
- / O R / e TP F(X)dX dP,
222 Jyze(R) Max n (R)
at which point we conclude by definition of f(P). O
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With this in hand, we can now start to compute K;(z;). First, we introduce some notation:

Ao, =@ AU — Mgy, @ Doy,
OO (AGD gD

aj,bj,éj : aj,bj,éj aj,bj,éj’
ir(i—1) AT G- 21-1
Haijjﬂj (n) := [(Aajvbjﬁj) Aa]-,bj,ej 0

Lo o
Hl(liﬁbj,)% = Hg,bj,)ej (N2,¢)-

Lemma 7. We have

N2i+14=2i—1 502 ¢

Kj(z) = det[(AY D, ) AU D g2 13

22+ 72t @i:by:03) a1

x / e3P det[1 +i[HY 7V, 13 (P ® Iy-aj42)[HY Y, 13173 dP.
SQ(R)

Proof. By definition, we have

N
K;(z) = N / exp v 0D v idy
I 2rt V2(RN -25+2) @;5,b;,0;

N 2
~ (X it N (-1 2
a (%) ‘ /VQ(RszJr?)exp{ 2t [O“begﬂ +77z7t]v dv.

By Lemma 6 and a change-of-variables P — 3 P in the dP integral therein, we know

_ N\Y/N\? [1 -
() — | —— . — et
K;(z) (2ms> (2t) V27 ¢

N x* (]
></ e 2tTrP/ o (€70 0,42 HiPOIN - 22X g ap
M3a(R) R2N —4j+4

We now perform the dx integral explicitly since it is a Gaussian. The previous display thus equals

ot \ VTR AN AN NN [T
_ _ —_ ——et Izt
N o7t 2t 277

></ 2P det[(AV-D, yx AU 1)9 + 02, +iP® Iy_gj2) 2dP
MSO/(R) VR R

aj,bj,

:27 7— 72‘]72N2‘]+1t 27— letnzt
a;,b;,0;

x / 5T det[(AT )V AT L2 HiP @ Iy aj40] RdP.
M@

By factoring out ﬁg _bjl-)ej from the last determinant, the proof follows.

O

Combining our computations thus far for F(z; A®)) and Kj(z;) yields the following in which
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k > 0 is independent of N:

_2N 2 —K
pe(zz A)  32de 1 4 O(N)] / 0,6, 2P8b13] cos 261 cos 26| (2.47)
0.3]

Nt47z2,t0§,tv,§,t | sin? 26 | sin? 26, |

5 =
pg}i)nUE(Zlv 22)

<11 /V dp; (v;)| det [V GY=D (. ) V5]

=12 2(RN —2j+2)

* j— 1
x 1 5 det[(A = 2)"(A = 2) + 2 Jdet[(AT,)) )7 ATV a2 73
j=1,2

2

N2i+14=2i—1 502 ¢ Nrep Go1) 11 o
det[I +i[A V) 15 (P o DAY, 13]7%dP
Tt fygy A+ P DAL

| sin? 26, | sin® 26,

_ N7b4[1+O(N_”)]/ 40+ do 256| cos 261 || cos 26|
167T4t127z2,t‘7§,tvg,t [0,%] e

<11/ s (45) etV GO )V
212 V2(RN-2j+2)

x T wsdetl(A - 2)"(A - 2) + 02, ] det[(AY )y ) AT D g2 J7%

j=1,2
< 11 / T det[T +4[HYV, 5P DAY, 13]78dP,
=12 M”(R) FARS AN

where the second identity follows by combining factors of N, ¢, w2, viewing V; as a function of v;
in the last line above, and noting that b1,by = b+ O(N~'/2) (recall b > 0 is positive).

3 Estimating the integral over 6y, 6

Recall AflJ] Tbi-),ej from before Lemma 7. Let © denote the df;df- integration of interest:

2 26 26
o [ anapZileotllenty
[0,%]2 | sin® 261 | sin” 20|

x T @y detl(A—2)"(A—2) +n2 Jdet[(AV Y, ) AU D, +p2 )74

u’j7 s
j=1,2
i Tr rp(i—1) 41 1) 41,1
<] /sa e'ae? Pdet[[+Z[H‘§jvbj;)9j]2(P®I)[Hl§j7bj7)9 ]2]72dP.
Jj=1,2

Technically, © depends on vy, vy (the integration variables in V2(RN~=2/+2) for j = 1,2), though
this dependence will not play a role in this section. Now, for 7 > 0 small and fixed (depending only
on ¢p), define

Ip = {9 10— 74| < N‘1/2+T}
T, = [0, g} \ Zo.
> Ok,

7,k=0,1

We write

where ©;;, is the same as O, but the integration in df,df; is over §; € Z; and 0y € Z;,. Our goal in
this section is the following.
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Proposition 8. There exists k > 0 independent of N such that if (j,k) # (0,0), then O, =
O(e™N") locally uniformly in aj,b;.

As an immediate consequence of this result, we have the following estimate.
Corollary 9. First, define

Nb* 1+ O(N—*
Pmain (Zu Z; A) = [ (3 2)] pgi)nUE(Zlu 22) /2 d91 d92
Z;

- 441242
167Tt ’Yz,to'z,tvz,t

256 cos 204 || cos 20|
| sin? 26, | sin® 26,

< TI /V dysi (v,)] det[VGID (. )V

j=1,2 2(RN72j+2)

x [T i detl(A = 2)"(A—2) +n2,]det[(AY )V, ) AU Dy 2 73

a;,b;j,0; a;j;bj,0;
j=1,2
< 1 / e 5T det [T +i[H D, 13 (P e DAY, 13]72dP,
j=1,27 M35 (R)
There exists k > 0 independent of N such that

pt(2,2; A) = pain(z,2; A) + O(e_NK). (3.1)

3.1 Preliminary bounds for integrating on 7,

The crux of this subsection is control integrating 6; € Z;; in this region, we do not have local laws

for AEIJJ 7b1,)9_ and its related resolvents since the operator norm of AflJ] 717?91' blows up as 6 — 0, 3.

The first step we take is the following bound on the product of determinants.

Lemma 10. There ezists a constant C' > 0 such that for any j > 1, we have the following locally
uniformly in a;,b;:

g detl(A — 2)7 (A — )+ 02 | det[(AY D ) AT D, )

aj,b;,0; a;,bj,0;

< NY0exp {—Cb?anﬁt[tan 0; —tan™"60,]*} .
Proof. As shown in the proof of Lemma 5, we know that

Wi det[(A —2)"(A —z) + 02 ] = det[(AY™Y — X;)*(AVY =) + 02 ]

X ﬁ ’det {w*G&i_l)(nz,t)W} ’_1 [1 + O(Niﬁ)}
=1

for some x > 0 locally uniformly in a;, b;. We now bound the inverse-determinants in the second
line. We first claim that the following holds:

H Ve mam]

_ —1
- Hw veel maov] v
op

op

— * — 71 * —
3 HG&i D) Ve VG P eVe] VG )

op

(e=1)

S H[ImHA- (nz,t)]ilHOP S 77;,1}
J

The first line follows because V; is projection onto its image, and [V;* Gg\éj_l) (02.4)Ve]~tis a map from
said image to itself. The last line follows by Lemma 2.1 in [23]. Thus, since ., = N, it suffices
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to show that
det[( AU = x)" (A0 — ) 2, detl(AL ) ) ALy, + 2]
< exp {—Cb?NQUit[tan 0; —tan™ " 0,]*} .

We claim the following holds:

det[(AU™D — X)) (AU=D — xj) 2 Jdet[(AVD) ) ATD a2 73 (3.2)

aj ,bj,ej

=

_ i—1 1= (j—1 i—1 IR
= {det [1+¥2(tan 0, — tan" 0,)%2 HY ) () YD (o) HY D 012004}
Assuming this, the proof follows quickly. Indeed, we know by definition that
o Vo o N
HY ™D (.) HY ™D (. ) HY ™V (n.0)°

= [(AU7D = 0 (AGTD = a7 )7

X (AT =R (AVTY = Xg) 42 )
X [(AUTD = M\)(AUTD =) 2,72

The operator norm of each matrix we take inverse of on the RHS is O(1); there is no #-dependence.
So, we know that for some C' > 0 independent of IV, 6, we have

Hg_l)(nz,t)% ~§i_l)(nz,t)H)(\i_l)(nz,t)% > C.
This gives
{det [I + b7 (tan 6; — tan~" 9j)277§,tH>(\i71)(77z,t)% q (j,il)(nz,t>H§\iil)(77z,t)%} }_

< {det [T+ Cb3(tan 8, — tan~"6,)%n2,]}

<(1+ Cb?(tan 0; —tan Hj)znf)tf% < e~ NObInZ ((tan 0, —tan™" 0,)*

At this point, the claim follows, so it suffices to prove (3.2). To ease notation, let us focus on j = 1.
We let matrices R and L consist of right and left eigenvectors of Ay, p,.0,. More precisely,

I 1 /1 —itant; n_ 1M1 —itan~ 16,
V2 \1l itan6; )’ V2 \1 itan™'60; )°
Then it is easy to see that

Aa17b1,91 =R (0 Xl) L’ Aa17b1x%—91 =R (0 Xl) L.

Consider a permutation matrix

In 0 0 O
J— 0 0 Iy O
0 Iy 0 O

Now, we introduce the following 4N x 4N matrix:

—1
i Aal 1,01
l—‘>\1,91 (77) = (A 1 -7b o ) .

ai,b1,5—01 &
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It is straightforward to check that
 (R*®IN 0 G)\l(n) 0 L® Iy 0
Do () = < 0 R'® IN) J ( 0 Gm)’\ 0 ren)

2

Thus
det Ty, g, (1) = det Gy, (n) det G, (n) = {det [(A — M\ )(A—X)* +n°]}

} -2
n A— )\
= < det < . .
{ ‘ (AT A )}
We plug this in to get

det[(A = A1)"(A = M) +nZ ] det[A7 g, Aay by, +02,]7

a1,b1,01

)2t A-—)\ (L Aab@)}
— det it . det el 1,b1,61
(AT _ /\1 Mzt ) { <Aa1,b1,91 Mzt
1 _1
= {det ( inz,t Au’,lvblxel)}2 {det ( inzyt Aalthel)} ?
Az,b,%fﬁ WMzt Azhbl;el (LR
1
0 0’
= {det [Luv + a0, (02,0) ((Aal,bl,g—el —Aaypoy) ®In O)]}
1
2

Gy, (12 0 .
= oo [ty = (P55 () 0 Gt~ oy o a7

R* 0
(5 n)s
_ i (—(tan6; —tan™ " 6y —(tan 0y + tan~! 6;) % E
9 tan@; + tan—! 6, tan@; — tan~' 6, (2)

0 0

Thus, we can compute the LHS of the identity in (3.2) as follows:

=

NG

where

L 0
Qf’l_‘](o L)

1

— o O O
O = OO
= o O OO

0
0
0
0
)
and, for any integer k > 1, we set

det[(A — A\)*(A = \p) +n2,,] det[A] Ay oy +12,]72

a1,b1,01

~ et Ly + % (tan 01 —tan~! 91)2 G, (02,t) E(ny % (tan2 01 — tan—2 91) Gg‘l (N2,t) E(n) -
—% (tan? 6, — tan—2 ;) G5, (n=,t) B Iy — % (tan 6y — tan—"' 6;) G5, (0:4)E(n)

(S

Since the (1,1) and (1,2) blocks of this matrix commute, this determinant is equal to

1) 1)
{det KIN + 271 (tan 6, — tan~! 91)2 G, (nz7t)E(N)> <I - 271 (tan6‘1 —tan ! 91)2 le (’I]Z7t)E(N)>
Y (an? 20)° G G
_ Z (tan 1 — tan 1) ™ (nz,t)E(N) ~ (nz,t)E(N)

N

ib
- {det [I + 71 (tan6; — tan™! 91)2 (Gx, (02,) = G5, (0=.1)) E(vy

1
+ b% (2 — tan2 91 — tan_2 91) G)\l (nz,t)E(N)GXI (nz,t)E(N)} } 2 .
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Note that

0 A=A
Gou1:1) = G5, 0000 = G (20) (5, 5 ™) 65,0000

= 2b1iGx, (02,0) (E(n) — E(v)) G5, (0z,1).
Combining the previous three displays gives (3.2). O
We now control the dP integral.

Lemma 11. Fiz j > 1 and 0; € [0,F]. We have

/ TP det[T+4[AYV, 13 (P o DAY, 14 hap
M%R)

,S NC 4 ONNflo(N72j+6)9j—2N 4 N75N+10j+129j—2N.

If 0; € [§, %], the same bound holds upon replacing 0; by T — ;.

Proof. We write the proof in the case where §; < %. For the case 6; > %, it suffices to use the same
argument but replace 6; by § —0;.

For the sake of an upper bound, we can move the absolute value inside the integration and drop
the complex exponential. For any P € M5*(R), write P = UDU", where U € U(2) is unitary and
D is diagonal. Change-of-variables then shows

[ Jdetlr il P o DIAYY, 1 ap
SG(R) [/l

5 / / |det[[+iHD®IN,2j+2H]|7%|D11 —D22|dD11dD22dU,
U(2) JR2
where o )
H:=U" ® IN—2j+2H¢§ijj7)9j (nz,t)iU ® IN_2j+2.

Because U(2) is compact, we only need to control the integral on R? uniformly in U. We split the
R? integration as follows:

|det[] + iHD ® In_;42H]| "% | D1y — Day|dD11dDas
R2
= / |det[I + ‘HD X IN72J’+2H]|7% |D11 — D22|dD11dD22
|D11],|Da2| <N10
T / |det[I + iHD & In_9;42H]|" 2| D11 — Das|dD11d Doy
|D11|,|D22|>N10

+ /D11|<N1° | det[I + iHD ® Iy _a;42H]| "2 | D11 — Dap|dD11dDsy
\D22|§N10

+ / w0 | det[I + iHD ® In_o;4oH]| "% | D1y — Day|dDy1dDss
[D11|>N
|Daa | <N1°

=T+ +1V.

Since HD ® Iy _2j4+oH is self-adjoint (as H is self-adjoint), we get that | det[/ +iHD® In_z;+oH]| >
1. This implies |I] < N¢. Next, we note that

|det[I +7HD ® In_o;12H]|7Y? < |det[HD ® In_ojoH]|~1/?

= |Dyi|” TE T Do |- T  det H2| /2
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for the same reason. But the eigenvalues of H? are those of H ((li E:)ej (92,1), which are uniformly > 93—

by definition of Hg;,l) (n2,1) and a bound on the operator norm of AU=D - of < 9;2. This gives

5,05 a;,bj,0;

N —2j+42 N—2j+42

|H|§/ D11~ 2 Dol 2 072N [Dyy — Dag|dDyydDag
[Di1],|D22|>N10

< CNN710(N723'+6)9;2N.

We are left to bound III; the bound for IV follows by the same argument but swapping Di; and
Doo. For convenience, write

. 0 0
H, =7+:H (O D22> (24 IN72j+2H.

We have
|det[] +iHD ® In_2j12H]|
= | det[H4]| x det [I—l— iHl_%H (DOH 8) IN2j+2HH1_§:|

) 0 O
det [I—I— iH? (O D22) ®IN2j+2:|
where the last inequality holds because the second factor in the second line has the form | det[I +iA]]

with A self-adjoint. Now, write H? = (Lll Lo
L1z Lo

2 0 0 ) o 0 L12
H (0 Do @ IN-2j+2 = D22 0 Loy’

>

) , and compute

This gives us

. 0 0
det |:I+ ZH2 (O D22> ® IN2j+2:|

Since Lgs is a diagonal block of H?, and since H is self-adjoint, we know that Loy is self-adjoint.
We also recall H? > 9]2- from earlier in this proof. This implies Ly > 9]2- by restricting to vectors in

the block corresponding to Lgo. Thus, the previous display is > C~V Dévzfzj +29;2N . Ultimately,

det <1 1D2oLi12

0 1 —H’Dgngg)‘ > | det[DysLas]|

[T < |d€t[D22L22]|7% |D11 — Daz|dD11d Do

| D11 <NO
[Daa|> N0
_ N-2j+42

SN / CNDyy = 0;°NdDyy
- |Daa|2N10 !

< ON N—5N+10j+129—2N
~ J :
As mentioned earlier, the same bound holds for IV. This completes the proof. O

By the previous lemmas, we can now bound the integral df; when 0; € ;.

Lemma 12. Fiz any j > 1. There exists & > 0 such that locally uniformly in aj,b;, we have

cos 20, . i v 4 (Gi— _1
/ L0205 detl(A — 2)7(A — 2) 12 det (AT, )7 AUV, 1 )
o sin 29] 3:Y3,Y3 3593593

<[P e i, P o DIEYY, 1 dpas,
M3 (R)

< e NT,
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Proof. We break up Z; = Z11 U Zi2, where 7, = [0, — N~Y247] and T, = 3+ N-1/247 7). We
will prove the estimate

cos 20; N 1) e (-1 1

/ [€08203] - qetf(A — 2)* (A — ) + 7] det[(AY D,y AU D 2 7

11181n29j VERNENN] VERNENS]

X / s P det[I +i[HY D, 12(P e DAY Y, 13]72dPdy;
]WQ*‘Q(R) 3+93:Y3 3-Y3-Y5

<e N

The estimate for Z;5 instead of Z; follows by the same argument after changing variables 6; — %—Hj.
By Lemmas 10 and 11, it suffices to show

26
/ 7| C.OZ il N exp {—C’b?Nan ([tan@; — tan™? Oj]Q} (3.3)
7,, sin”26; ’

c - —2j —2N - j —2N
% {N 1 oN N 2]+6)9j Ny 5N+10]+129j 2 }de
<e N
Now, further decompose Z1; = [0,c] U [¢c,  — N~1/247] where ¢ > 0 is a small, fixed constant.
Assume first that 0; € [c, 7 — N~1/2%7]. We know [0; — T| > N~1/2*75_ for 7 > 0 small and
fixed. Thus, the exponential in the first line in (3.3) is O(exp[~CN?7]), and | cos 26,/ < N'/2. So

o _N-1/247
4 | cos20;| o 2872, 2 —1p12
— > N¥%¢ —CbsN tan@,; — tan™ " 0;

/c Sin? 29;‘ XP{ ' nz,t[ J ]] }

% {Nc +CNN—10(N—2j+6)9j—2N +N—5N+10j+129j—2N} db;

27 K
S DNech 5 efN

)

where D = O(1). We now handle the integral on [0,¢|. In this case, if ¢ > 0 is small enough, we
have the lower bound | tan6; —tan=' ;| > Hj_l. We can also bound | cos26;| = O(1). Thus, we have
the following estimate for D = O(1) and C > 0:

“ | cos 26|
0 sin2 29J

% [NC_|_ONN710(N72j+6)9j—2N+N75N+10j+129j—2N} do;

N exp {-Cb;N?n? [tanf; — tan"" 6,]*}

¢ 1 N pn—2N 2a72, 2 pn—2
</0 o DO Pl CHNE 0,700

But ]\]277;,5 > N since n,; 2t = N7°. So, the exponential decays faster than 9;2N or sin™?2 20;
blow up as 6; — 0. In particular, the last line is S exp[—N"*] for some x > 0 by elementary calculus.
This completes the proof. O

3.2 Proof of Proposition 8

Lemmas 10 and 11 and a straightforward bound |det[Vj*G,(zj_1)(77z,t)Vj]| < ||G»(zj_1)(77z,t)||4p <n i<

o z, bt~

N*€ shows that ©g < NP for some D = O(1). Thus, ©19, 011 = O(exp[—N*]) by Lemma 12. O
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4 Estimates for py.n(z,2z; A)

Let us recall

NV 1+ O(N7")] (2 256| cos 26, || cos 26,
main < ;A = ) dt do
Pmain(2,2; A) 167T4t12’}/2t0'§ tvgthmUE(Zl 22)/1 172 |sin2 291|sin2 205 |
<11 s ()| e[V GO ) V)
12 V2 (RN —2i+2)
j=
* 1 —1 _1
x TT ) detl(A—2)"(A—2) + 52 ] det[(AV ) AU, 2 )75
j=1,2
< 11 / e F TP det [T +i[HY D, 13(P o DHY Y, 13)72dP,
7j=1,2

The goal of this section is to express every term above in terms of traces of resolvents.

4.1 Ratio of determinants

As in the proof of Lemma 10, we start with the estimate

¥ det[(A — 2)* (A —z) +n2,] = det[(AU™D = X)) (AU — X)) + 02 ]

X ﬁ ‘det {w*G&i_l)(nz,t)W} ‘71 [1 + O(Niﬁ)}

=1

for some x > 0 locally uniformly in a;,b;. The second line will be addressed by Lemma 13 below, so
we deal with the first determinant on the RHS. Unlike the proof of Lemma 10, we want to compute
(3.2) more precisely in terms of traces of resolvents; the point is that we now have the a priori
estimate |0 — 2| < N~1/2F7_ since we restrict to 0; € Zy. So, take the RHS of (3.2) and expand
in terms of the trace. In partlcular we have

det[(AU™D = X\)(AUTD — xj)* 42, det[AV V) (AVTY, ) a2 )7
. - k
= exp{ Z kak (tan@; — tan~! Gj)anﬁﬁTr |:H>(\Jj_1)(772,t)HXj (nz,t)] } .

Since 0; € Iy, we know that |tan6; — tan='0;| < N~V/2 7"} where 7 > 0 is small. Thus, if we

trivially bound the trace of the k-th power by O(Nn;fk), since 1, = N~ with ¢y > 0 small, the
contribution of the sum from k = 2 and on is O(N~"). In particular, we have

)—‘

© . N k
exp{ Z E F(tan@; — tan™" 6;)* 2% Tr [H)(\]j_l)(ﬁz,t)HXj (Wz,t)] }
k=1
= exp {—b?(tan 6; —tan~"' 6;)*n2 , Tr H(J 1)(nz t)H(J )(nz,t)} [1+O(N")].
By Cauchy interlacing and trivial resolvent bounds, we can remove the superscript:
o i o Lo o N
Tr HY ™ (02 HY ™ () = T HY D (02) 2 BY 7D () HY 7V (20)2 (4.1)

= Tr Hy, (n:4)? Hy (n:0) Ha, (n20)7 + O(N 272 0)
=Tr H)\j (nzvt)ng (77Z7t) —+ O(N_1+2T77;15D)'
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The error term on the RHS is obtained by our bound on #; — 7 and a trivial operator norm bound

on resolvents of 7, t . But 7, = N7, so if we choose ¢y small enough, this cost is < N~". Putting
this altogether, we have

Wy detl(A — 2)* (A — 2) + 02 ] det (AT D ) A 0+ 07, tr%

1
A exp {—b?(tan 0; — tan™" 0;)*n2 , Tr H,, (ﬁz,t)H (M2t } H ‘det [Vz G(ZV 1)(77z t)W} ‘ ,

where ~ means equal to modulo a factor of 1 + O(N~").
4.2 Estimating det[V}*ng_l)(nz,t)Vj]
Write ngfl) = ngfl)(nz,t) and Hz(jfl) = Hz(jfl)(nz,t). For simplicity, we focus on the case j = 1.

We comment on the more general case at the end of this subsection. For vi € VZ(RY), we write
vy = (v11,Vi2). By the block representation for G, we have

invigH.via invi H.via VviiH.(A—2)vi1 viiH.(A—2)vio

VG Vi = mvizH=v1y visHzvi VigH (A = z)vii VipH.(A = 2)va
L Viy(A—2) Hovir vi(A—2)"H.viz Z'77VT1I}QV11 inVTll}’zvu
Vig(A—2)"Hovin vip(A—z)"Hovio invisHzvin invigH.via

Before we estimate its determinant, we must introduce notation. For any «a,b, 0, define H, (1) =
(o ®A—Aapo@IN) T2 @A —Napo@IN)* +0%7  and Hypp = Hapo(Nst)-

Lemma 13. For any p = O(1), there exists k > 0 such that
[ 106tV Gl VilPdia (v) = |det G [1+ OV )],
V2(RN)

where G s the following 4 X 4 matrix:

_ gll g12
g21 g22
2t = Tr Hoy by 0y (He ® Er1) iy 5 Tr Hoy 0, (H. © Ex2)
(

ZTIZ t%Tr gal b1,01 HZ ® EQI) inz,t%Tr f{al,bl,el (HZ ® E22)

’I‘I’Halxbhel [H (A - Z) ® Ell] %’I‘r‘élahblxel [HZ(A - Z) ® E12]>
LTy Hal b1,01 ( - Z) & E21] %TI‘ Ha1751=91 [HZ (A - Z) & EQQ]

(
o= (7 i
Goy = ( T%Hal,bl,el{( —2)*H, ® By %Trflahbh@l&A—z)*HZ®E12]>
(

CTy Hyy by 0, [(A— 2)*H, @ Ex] £ v Hyy 0, [(A — 2)"H. @ Eao]

znz,tﬁ’I‘rIz[al,bl,Gl(‘lg[z ®E11) ”7,2 tN’I‘I’—E[ahbl, 1(—E[ ®E12))
”/z,t%’I‘rHal,bl,Gl (HZ ® E21) ”7,2 tN’I‘I’Hal,bl,Gl (H ® E22)

1 0 0 0 0 1 0 0
E11 = (0 O) y E22 = (O 1) E12 = (0 O) E21 = (1 O) .

Proof. Let Agp o =10 ® A — Ay ® Iy, For any Hermitian matrix F, we start by introducing
— 0= Tr Ha bq.,0 F
e 2N 1,b1,01 N . rt
me(r) = Kay b1.01 /v2<RN> o {_7"* <A“1’b1’91Aa1’b1’01 - NF) V} w

2N 2
e 3 T Hay oy 0, F 3002 N y 9 rt
= i expq ——V AL b0y Aay b0y 50— NF v dv,
a1,b1,601 V2(RN)
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where Kg, p,,0, i a normalizing constant chosen so that mp(0) = 1. By Lemma 6, as in the proof
of Lemma 7, we can compute

N (.. rt
/ exp {_TV ( a1,b1,91A¢11,b1,91 + nf,t - NF> V} dv
V2(RN)

, rt B
:CN,t/ 61¥Tfp{det (Azl,bl,elAa1,b1,91+77§,t__F+iP®IN)} dP
M3+ (R)

N
1
* 2 rt 2
= CN,t det al,bl,elAal,blﬁl + et — —F

Nl

N
-3
PN Ty 7 (rF) . 7 (rEF)
X /MSQ(R) eiF TP {det (1 A\ H,y ) 9, (iP® IN)\/Hal,bl,m)} dp,
2
where ﬁéﬁi,el = (A% y 0. Aabo + 12 — RF)'. Above, and throughout this proof, Cy ; is a

constant that comes from our application of Lemma 6; its exact value is not important. Next,

* 2 rt 7é
det Aal,bl,elAa17b1)91 + nz,t - NF

. 5 1 ~ 1 rt -1 B
= {det (Aa1,b1,91Aa1751,91 =+ nz,t)} : {det <1 - Ha21,b1,01 NFHui,bl,Gl

N _1 1 .1 rt ~1
= {det (A5, b, 0, 4016100 +02:) ) exp {_§Tf log (1 - ‘flvbl"’lNFH‘fl’bl"’l) } ’

1
2

7 (0
where Hg, 1, .6, := Hél?bhel. Next, we compute

-1
- ~ ~ 2
/MSG(R) GNP {det (1 +/HY) , (1P Iy) Hé:iim)} dP
2
iNTr 1 r(rF . rr(rF
- /MSG(R) TP oxp {—ETr log (1 +JHIT) (P INnghbgﬂl) } dP,
2

Putting all the previous displays together, we get

N2
Cn €2t =t -

m(r) = e oo {det (A%, 4,0, Aarbr60 + 112 4) } (4.2)

N

ay,bi,01 N
iNTr P 1 rr(rF) : iy (rF)
X /MSG(R) et exp {—ETr log (1 + \/[{ahbhe1 (iP ® In)4/ Hal,b1,01> } dP.
2

L1 L1
This identity can only hold if 1 — H? , %F H7 4 6, > 0; we will always have this condition for

any F we take. To control the second line, we have the following as in Lemma 6.2 of [23]:

too- 1 O
X exp {—;—NI&«HQI,IJMOIF — 5T log (1 ~ A T—FH;hbhel)}

t ~ 1 1 rt _ ~1
exp {_ﬁ’I‘r Ha1,b1,91F - Q’I‘r 10g (1 - H2 _FHazlyblvel)}

ai;b1,01 N
2
1 -1 rt -1
2 2
'S exp ~ 1 ~ 1 Tr Halyblqel NFHal,blﬁl
|1 —H? nEH? I
ai,b1,01 N ai,b1,01 110P
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Let us now control the dP integral in (4.2). Next, by Taylor expansion as in Section 6 of [23],

1 Fr(r ; T
exp {—5’1‘1" log (1 + m(ﬂ? ® In) Héﬁl&)}

. 2
:exp{—%Tr art (P®IN) JZ iTr( alrt (P®IN) a2 ) +5},

a1,b1,01 ay,bi,01 ay,b1,01 ay,b1,01

where € satisfies both [e€] = O(1) and |E] < Nn_¢||P||3,. Note that

—1
- o ra— —rt /7 -
Hz(zl,b)l,el = Hal;bhel (1 - \/Halxbhel NF\/Halxbhel) \/Halxbhel'

~ 1 ~ 1
2 rt 2
Now, assume that ||Hal7b1)91NFHahblﬂ1

llop S ﬁit uniformly in N. We will also always have this

L1 S
constraint, and it clearly implies 1 —H7 , 4 %FH;I boy >0 if n.+ > N—ste, Next, we compute

rr(rF rr(rF rr(rF
Tr Hél,bz,el(P‘X’IN) Hél,bz,el :’I‘rHél,b)l,el( In) (4.3)

P®
~ ~ rt ~ -1 ~
=Tr Hll17b1,91 (1 -V Hlll,bl,@l NF\/ Hahblxel) \V Hlll,bl,@l (P ® IN)

3 NG
= TI’H01J71791(P® IN) +0 (nT|P”0p> )

z,t

where the last line also uses ||ﬁa1,b1,91 llop < nz_f By the same token, for some constant C' > 0, we

have
(1 - iﬁ; IIPlip) Tr (W(P ® Iy) ﬁal,bl,glf (4.4)
<Tv (M(P@IN)M)Q
< <1 - %IPIIQ Tr (WUD@IN) ﬁal,bl,el)Q.

z,t

This has two consequences. First, by the lower bound above and the lower bound ﬁal,bl,el =1,

2
Tr (\/ H) 4, (P® In)y/ Hé:,sz,&) > N|Pu® + N|Paf* + N|Poaf” (4.5)

Thus, we can restrict the P integration to | Py1|+|Pi2|+|Pa2| < N™Y2log N at the cost of something
exponentially small in N. In particular, we have & = O(N ~'/2*#) for some x > 0 small. This bound
on entries of P combined with (4.3) also implies that

Te /B o (PoIn) /AT , =TeATY)  (P®Iy)

ai,b1, a,b1,01 ai,b1,

) NQH
=Tt Hop 0, (PO Iy) + O (W) |

Moreover, in the region |Pyq| + |Pi2| 4 | P < N71/21log N, we have

2
TI“( Hal;bhel(P@IN) Ha1,171791> Sn;tclogQN'
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By combining this with (4.4), in this region, we have the following for £ > 0 small:
—— —— 2 - - 2 N+
Tr (\/Héi,bi,el (P®In)y/ Héi,bi,e) =Tr (v Hay 0, (P @ In)/ H) "o <W> |
z,t

Ultimately, for possibly different but still small x > 0, we get

. 2
1 rr(rF rr(rF 1 rr(rF 7 (rF
exp{—§ﬂ H o,(P & I HG) o, — 7T (\/Hél_’bi_rel(P®IN)\/Hél_’bz_rel) +5}
i - | ~ = 2
= exp{_iTr Hlll,bl,@l(P@)IN) Hlll,bl,@l - ZTT (\/ Ha17b1791(P®IN) Ha17b1791> }
N* N*
xexpliO| ——]+0 (—) .
{ (ani,t> Nnigf

Note that the second line above, which contains the main term on the RHS of this identity, is
independent of r. Thus, by the previous display, we have mp(r) < mp(0) as long as F is Hermitian
and Hga%l.,bl,elrﬁtFﬁa%l,bl,GlHOP < % < 1. Recalling that mp(0) = 1, under this condition, we
have mp(r) = O(1). Concentration of matrix entries of V;*G.V; now follows as Lemma 6.2 in [23].
In particular, we will apply this inequality for r = N~"% with £ > 0 small and for the following
choices of F:

F=mn,,Re [E® H,],
F=mn.Im[F®H,],
F=n,Re [E ® IL] ,

F= nz,tIm |:E ® I:Iz:| )

F=Re[E®H.(A-2)],
F=Im[E®H,(A-=z)],

where F is any of the four matrices

10 0 1 0 0 0 0

0 0/’\0 0/’\1 0/’\0 1)°
and Re X = $(X*+X), Im X = £(X*—X). (We note that our choice of r is larger than the choices
made in the proof of Lemma 6.2 in [23], giving weaker concentration estimates, but this is fine.)

Let us illustrate one example. Upon treating j; as a probability measure over v, by the Markov
inequality, we have

t ~
Hj (V*FV a NTI’Hal,bh%F 2 T') = e_KT2mKF(T)'

Choose F = n,;Re [E® H,] and r = N~% and K = N3¢ for k > 0 small. Then we have the

-1 1
estimate [|H? , o, KEFH? , 4 llop S N71+2"77Z_)§’ < 1, so mip(r) = O(1). This shows that the
event on the LHS is exponentially small in p;-measure. By the same token, we know the same is
true if we replace > r on the LHS by < r, and we can replace Re [E ® H,| by Im[F ® H,]. For

example, this implies vi H v = 77ZT’”5Tr He, py.0,H. + O(N™") outside an event of jui;-probability
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that is exponentially small. Doing the same procedure for each entry of V;*G.V; shows that each
said entry matches the corresponding entry of G up to O(N ") outside an event of yu;-probability
that is exponentially small. Since the determinant is smooth in its entries, and since the entries of
Vi*G, V1 are O(n;%) = O(N~%) deterministically with ey > 0 small, we deduce

/ | det[Vi"G.(n2,)V1][Pdpa (vi) = [det G|P + O(N™").
V2(RN)

We now claim that | det G|P > nz_)tD for some D = O(1), since we can take 7, , = N~ for ¢y > 0
small enough so that n;tD > N~". This implies that the RHS of the previous display is | det G[P[1 +
O(N~")] for possibly different £ > 0. But said claim is equivalent to | det[V;*G,(n.,0)VA]| 2 n;tD
because of the previous display, and this bound is shown in the proof of Lemma 10. O

By the same argument, we deduce the following analog of Lemma 13 but for arbitrary j > 1.

Lemma 14. For anyp > 1 and j > 1, there exists k > 0 such that
/ [det[V; U™ (1..0) V3] Pdys; (v;) = | det g7 [L + O(N—)]
V2(RN —2j+2)

where G; is the following 4 x 4 matriz:

Gira ity = <Qj,aj,bj,11 gj,aj,bj,m)

Gja;b;.21  Gjazb;,22

G in. tNTI“H(J 1) (H(jfl) ® Er1) inz,t%T‘rfIgTbj_?gj (Hg*l) ® Ea)
e iT]z tNTI‘Hth bl)e (H(J Y ® E21) inz t%TI' Héjgl)g (Hékl) & E22)
G _ %Tng) ]1) 0, [HI™V(AGD — 2) @ Eyy] 4 ~Tr H§i7bj?9] [HY™D(AG-D — 2) @ By
‘,a]‘,b]‘, = . -
j 12 %Tng,bgl,)e [HY V(A = 2) @ By LT Hﬁfbf)e [HY™D(AG-D) — 2) @ By
1 w (=1 1) w (=1
g' . b 21 - — %TrHai’bJ’)eJ[(A(J 1 Z) Hé] )®E11] ; TrHlSj, J, ][( (J 1 ) H,gj )®E12]
J>aj,bj, %Tng,bjl,) J[(A(J 1) Z)*H(J—l) ® Ey] L LTy Hzgi, J17 J[(A(J 1) )*HZ(J—I) ® ol
Giu b 29 = in2 tNTinJ bl)(-) (H(J_ Yo By) in. tNTng bl)(, (HI™Y ® Eyy)
e mz’t%ﬁHgTbj-?ﬁj (Y™ @ En) in. tNTng bl)e (HY™V ® B)

1 0 0 0 0 1 0 0
By = <0 O>’ Eas = (O 1> by = <O 0> By = <1 O>'

The final step in this computation is to show that in G; 4, ,, we can replace a;,b; by a,b (i.e.
replace A\; by z) and remove the (j — 1)-superscripts. For the exact formula for G; ., appearing in
Lemma 15 below, see (4.11).

Lemma 15. Define G; .5 in the same way as in Lemma 14 but replacing (a;,b;) by (a,b) and 6; by
7/4 and removing the (j — 1) superscript. Then we have |det Gj o, 5|7 = |det Gj o p|P[1 + O(NT")]
for some k > 0.

Proof. Resolvent perturbation implies that ||1flggjl)9] — fléjl;%) llop S n;tCHaj —al+[bj —b|+10; — 1.
But a;—a,b;—b = O(N~'/?)and |0;—Z| = O(N~Y/2+%p_}). Moreover, if we use Cauchy interlacing
as in (4.1), then for any k,¢ € {1,2}, we have

mzt Tng bl)’r (H(J D ® E1) — Trﬁaj,bj,%(ﬁz ® En)| S %”ﬁa],bg,@ ||0p||H H0p S N_lnz_tc'
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A similar estimate for removing (j — 1)-superscripts in entries of G; 4, 5, also holds. Thus, the entries
of Gj.a;.0; —Gyap are O(N~1/2Hr+C0)  Since the determinant is smooth in its entries, we deduce that
|det Gja,.0, [P = [ det Gja |7 + O(N~1/2H40). Now, again use the lower bound |det Gj.a, 5,17 2 5.1

for some D = O(1) to get |det Gja; 5,7 2 77z,tD- This implies that | det G, q5|P + O(N 1/2+460) =
| det G ap|P[1 + O(N~1/2+4<0)] and completes the proof. O

4.3 The dP integration over M5*(R)

We start by a similar computation to the dP integration in the proof of Lemma 13. By det[1+ A] =
exp Tr log[1 + A] and Taylor expansion of log, we have

(S

det[I +i[AYY) 15 (P o DAY, 13 (4.6)
1) 41 F(—1) 11
‘exp{‘iTr[ 0, 12<P®I>[Hé§,bﬁeﬂ2}
1 ~ i
<exp {3 ([0, 18P e DI, )P o DAY, 1) |
x exp {O(NnZ ¢ || PJ3,)}

We also have the following bound (by an essentially identical Taylor expansion) which is an inequality
version of the previous display:

rrr(i— 1 1.1
det[l +4[H .V, 15 (P& DIH Y, 18] (47)
1 il i
< exp {—§TY (1S PP e DS, (P I>[H§j,;.?9j1%)} .

Py Pia

If we write P =
we wri <P12 Poy

) , then an elementary computation shows

1 S(i—1) 11 rr(i—1 D13
exp {—fr (170,01 (P @ DI, )P @ DI, 12)

*

Py G Py
=exp{ — | P2 Qajj,bj,ej Py ;
Pss Pss
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in which we use the notation

i7(i—1) rr(i—1)
FU-1 <Ifa;,bj,9j,11 Ha,,bj,ej,m)

(-1 (51
aj,bj,éj,IZ aj,bj,Oj,22

aj,bj,ej

j—1 j—1
QY = (1R, QYL QYY)

Tr [Hg,bjl,)ej,u]z
G=1 1 _ (-1 (-1
[Qajj,bj,ej]l = 2Tr{{azl,)b 6, 1117([az,11)),,9j,12T
J J—
TrHy o, 12[Haj,bj,9j,12]

(G-1) (G-1)
2Tr Haj,bj,ej,llHaj,bj,ej,m ‘

i1 1 21 1
[Ql(zjj,bj),ej]Z = 2TYH¢§?,I> )9 11H(] b )9,-,22 +2Tr [Htg,bj,)éj,lQP

aj,
G G-
QTYHaJ,b 0; 22Haj,bj,0j,12
i7(i—1) rr(G—1) T
’I‘I‘Ha]‘,bj,9j,12[Ha]‘,b]‘,9j,12]
Go1) . _ LG B
[Qaj,bj,ej]3 - 2’:[‘1‘ Ha]‘,b]‘,ej,QQHa]‘,bj,ej,lQ

rr(g—1
Tr [H(Sj,bj ,)9]‘,22]2

We clarify that Q(J b0 is a 3 x 3 matrix. To continue with this computation, we need the following
auxiliary bound. (It is a refinement of (4.5).)

Lemma 16. If 0 € Iy, then Qgi;?ej pe Nn;f.

Proof. This is shown for §; = /4 in Appendix B.1. For general 0; € Ty, we will perform resolvent
perturbation in the entries with respect to 6;. We show one example; we claim that

i iy .
Tr [Hg,bj,)ej,u]z =Tr [Hg,bj,)g,n]Q +O(N=7?)

for § > 0 small. For this, note ||H

1 -2 .
ay.b;.0;,11lop < 72 - Thus, resolvent perturbation shows

rr(i—1 rr(i—1
NS 0 = T Pllop S 028 1| (Aay .0, — Nayy3) © In—ai,

for some D = O(1). Since 0 € Zy, we know [|Aa; b0, — Moy by, xllop S 10— F| S N2ty ¢ with
7 > 0 small. So the RHS of the previous display is < N*1/2+T z,D for different D = O(1) and 7 > 0
small. We deduce

1 1 1 1 .
T (A0, WP = T P NIET D, 3P = Y 2 e S NP

at which point the claim follows if g > 0 in 7, , = N~ and 7 > 0 are both small enough. A similar

estimate holds for all entries of QEIJJ ;7?,9]-' This implies

1QY Y, = QY op S N2

with ¢ > 0 small. Since the lemma is true for §; = 7/4 as noted at the beginning of this proof, and
since an_f > N2+ for § > 0 small, the lemma must be true for all 0; € Iy. O

By Lemma 16 and (4.7), we deduce the following for any v > 0

/IIPI >NTTHY Trpdet[I+Z[H(] ]1) ]%(P‘X’I)[ﬁg,_lv:,)ej]%]*%dp < exp[-CN?].
op 2 Nz,
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In particular, we can restrict to the region ||Pllop < N~1/2Vp, ;. In this region, we can use the
identity (4.6) and control the last line therein (the cubic term) by N~/2¥37 for 7 > 0 small. In
particular, we have

/ e3P det [ + [y 12 (P @ DH LD, 12]72dP
MSG(R) 3505595
—K N ) - (iq 1 N i
= [1+O(N )]/ e 2tPeXp{——TI‘ [Hé;,bj,)%]z(P®I)[H(§;7bj))9j]2}
| P||op <N —1/24vp, 2
1 1o ? 1.7, 2 v
e {_ETI‘ ([Héi7bj?ej] ; (P ® I)[H(Sj,bjl,)ej](P X I)[ngj bl)G ]é)} dP + O(eXp[—C’N2 ])
A similar argument lets us extend the integration back to all M35%(R). We ultimately have
/ P det(1 +ilH ) 1B (P @ DIAT,Y, 1272 dP
M G(R) 3:0;:0,

—K i X Tr { rr(7—1 1 (j—1 1
~p+ow ) [ o Pop { g AL, JH P o DA, ¥

*

Py o) Py
exp{ — | P2 Qai7bj70j Pis dP + O(exp[—C’N2“]).
Py Py

We can compute the dP integration above since it is just a Gaussian Fourier transform; this gives

/ w1 P det[1 +4[H )V, 13(P e DAY, 15173 dP (4.8)
MSG.(R)
=1 [14+0(e )] |aet QYY) |74
~ (i1 * ~ (i1
% —Tr z(zi bi)ej,u % —Tr z(zi b>7)9j,11
1 j—1 — 1
xexpq —Co [ —2Tr Hﬁfb 0;,12 [Ql(zjj,bj),ej] H it Hﬁfb 0;,12
21 -1
% - Tr Hg,bj,)ej,n % - Tr Hg,bj,ej,m

+ O(exp[-CN?")).

Above, C; and C; are constants coming from the Gaussian integration. We now remove superscripts
(j — 1). By Cauchy interlacing, we know TngTbjl-,)ej,lie =TrHa, b0,k + O(n;f), where the big-O
comes from a trivial bound on the operator norm of He, b;.0;-

Now, note Q b 9 Z an ;. We now claim that

~

(J 1)
aj,bg ,05,11 . b
—2TI‘HaZ bj,05,12 5 NiJrnnz_,t ) (49)
7 (J 1)
aJ b;,0;,22
where k > 0 is small and D = O(1). To see this, we first remark that if aj = a and b; = b and

0; = 7 and j — 1 =0, then the Vector on the LHS is the zero vector; see Appendix B. We now use
Cauchy interlacing and a; —a = O(N~?) and b; — b= O(N~V/2) and 0; — T = O(N~/2+rp 1)
for §; € 7y and standard Green’s function perturbations to conclude.

We now combine the previous display with Tr H( iy )9 e =Tr Haj b; .0,k T O(nz t) and Lemma
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16 to get

N rr(i—1) ¥ N rr(i—1)
T - TrHaj,bj,Gj,ll T - Tr aj,bj,éj,ll
ir(i—1) (-1 1-1 rr(3—1)
exp —Co [ —2TrHg 5 1 Qq) 5,.0,] —2Tv Hy oy g, 10
N r7(G—1) N _ 1m.ogG-1
T - T‘I.Ha]‘,b]‘,ej,QQ T - §T‘r aj,bj,9j722
*

N ] N [T
T Trﬁaj,bj,ej,ll T Trﬁaj,bj,ej,ll

=expg —Co | 2T Hypp 0,02 | QY 17" [ —2Tx 0,00
2T H, .

N
T Tr Haj,bj,ej,QQ T Tr Haj,bj,ej,QQ
N r(i—1) * r/ N r7(i—1) ~
T Tr I{aj,b)jﬂj,ll ( ) T Tr I{aj,b,-,ej,ll % — TrHaj,bj,Gj,ll
rr(i—1 Jj—1 -1 rr(i—1 ]
xexpq —Co | —2TrH, 7y 1o Q. 0,.0,] —2TrHg %912 | = | —2TrHa, 6,02
N ir(i—1) N _ 1m.fpl=D) N_TvrH .o,
T TrHaj,bj,Gj,22 L\7 — §TrHaj,bj,9j,22 t a;,bj,0;,22 ]
N o * r/nN _ rr(i—1) N ~
T _TrHaj,bj,Gj,ll ( 1) t ’I‘r—E([‘_ljvfjivejwll T _TrHaj,bj,Gj,ll
] i— -1 = .
xexpq —C2 | —2Tr Ha,;p;,6,,12 [Qaj,bj,ej] _2TrHaj.bj.9j.12 — | —2TrHa; ;0,12
N _ Ty A RN N =
T —TrHy,; b0, N _ 1 ( Y _TrH, 50,
t aj,bj,0;,22 L 7 QT‘IlHaj,b]‘,Gj,QQ T aj,b;,0;,22 ]

N 7 * N g
T~ TrHajp;.0,,11 (-1) T — T Ha,p;.0,,11
] J— —1 r] —K
= exp —Cg —2T‘ngj)bj)9j)12 [Qa]._’b]._"gj] _2T‘ngj,bj,9j,12 [1 + O(N )]
N N
T TrHaj,bj,Oj,22 T TrHaj,bj,Oj,22

for some x > 0. Let us now move to removing (j — 1) from the Q matrix. To this end, use Cauchy
. . . (-1 - j—1 _
interlacing as in (4.1) and ||H(J ) lop S 57 to get |\Q((1Jj7bj)70j —Qq; 0,0, llop S nzytD for some D > 0.

aj,bj,éj
Resolvent perturbation and Lemma 16 then give || [ngj_blj)ej]’l—Q;jlbj o, llop S n.y N72 < N~ D<o,
Therefore, we have

N r7 N r7

T TrHa]‘,b]‘,ej,ll T TrHa]‘,b]‘,ej,ll
7 (=1 -1 i

exp{ —Co | —2TrHy, p;.6,,12 [Qaj,bj,ej] —2Tr Ho; b;.6,,12
N r7 N r7

T TI'Haj,bj,Gj,22 T ’I‘rHaj,bj,Gj,22

N 7 * N ]
T _TrHaj,bj,ej,ll T _TrHa]‘,bj,Gj,ll
~ _1 ~ -
= exp _02 _2T‘r Haj)bjxej)12 [Qa]‘,b]‘,ej] _2T‘r Hu‘j7bj70j)12 [1 + O(N K)] :
N 3 N r7
T TrHaj,bj,Oj,22 T TrHaj,bj,Gj,22

A similar argument shows that | det Qu-Y |2 = |det Qa; .00, |=2[1 + O(N~*)]. Ultimately,

llj,bj,@j

R L A DR
Mésa(R) 7273973 7

= O(exp[~CN?)) + Cy| det Qu, p,.0,] 2

N 3 * N ]
T _TrHa]‘,b]‘,Gj,ll T _TrHa]‘,b]‘,ej,ll
- . - B
xexp{ —Ca | —2Tr Hy, 0,12 (Qa, 0,.0,] —2Tr Hq, p;.0,,12 [1+O(N")].
N r7 N r7
- —TrHaj)bj)@jgg + —Tl"Haj,bj,@j,22
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4.4 Putting it altogether

By our computations of the ratio of determinants and the dP integration, we have the following
estimate locally uniformly in a;, b;:

16N"b4[1 + O(N— "
[ 3( 3 )]pgi)nUE(ZlaZ2)/I2 dfdo-
(8]

441242
T Vz,taz,tvz,t

X H/ d/l,j(Vj)ldet[V}*G,(zjil)(nz,t)‘/j]'j
=12/ V@Y 23t2)

| cos 201 || cos 265|
sin2 91 sin2 92

Pmain (Zu Z; A) =

X exp {—b? (tanf; — tan ! 9]-)2773)15% Hy, (’I]Z7t)ﬁxj (nzﬂ:)}

N 7 * N |
B T TrHaj,bj,Oj,ll T TrHaj,bj,Oj,ll
_1 ~ 1 ~
X Cll det Qaj,bj,éj | 2 exp _C2 —2Tr Ha]‘,b]‘,ej,12 Qaj7bj79j —2Tr Ha]‘,b]‘,ej,lQ
N 7 N 7
T Tr Haj,bj,ej,QQ T Tr Haj,bj,ej,ZQ

+ O(exp[-CN™).

By (2.47), Proposition 8, and our computation of the remaining 4 x 4 determinants (see Lemmas 14
and 15), we deduce

16N7b4[1 + O(N—9)] 2)

S @ e, 22) / 06, d6,
7T4t12’72,t0'z,tvz,t Zg

X H |det Gjapl? x exp {—b?(tan 0; —tan* 9j)2773,tTr Hy, (nz,t)ng (ﬁz,t)}

20 20
pil2,2 A) = [ c08 26| cos 26,

4.10
sin® 0; sin? 0, ( )

Jj=1,2
N 7 * N 3
i T Tr Haj,bj,ej,ll T Tr Haj,bj,ej,ll
_1 ~ 1 ~
X Cl| det Qa]‘,b]‘,ej | 2 exp _02 —2Tr Ha]‘,b]‘,ej,12 Qaj7bj70j —2Tr Ha]‘,b]‘,ej,lQ
N 3 N 7
T TrHaj,bj,Oj,22 T TrHaj,bj,Oj,22

+ O(exp[-CN")),

where, to be totally explicit, G; 4,5 is the 4 x 4 matrix

Girap = (gj,a,b,u gj,a,b,12> (4.11)

Giap21 Gjab22

Gy <inz,t%mgra,b,;<Hz ® En)  ine T Hop x (H. ®E12>>

I ' inz,t %TI‘ Ha,b.,% (Hz & EQl) Z.le.,t %TI‘ Ha.,b,% (Hz & E22)
Gy e (%Tr Hopz[Ho(A—=2)@ Eu] £TrHgpz[H(A-2)® E12])

J@mae %TFH,I@%[HZ(A—Z)@EQH %’I‘I‘Ha)b7%[HZ(A_Z)®E22]
Ginpor = <%Tl“ I’;’a)b& [(A — Z)*Hz X Ell] %Tl“ I’;’a)b& [(A — Z)*Hz X Elg])

Jamet %TI‘Haﬂby%[(A—Z)*HZ ®E21] %TI‘Haﬂby%[(A—Z)*HZ ®E22]
g. b 1= (”72 t%Tr I~{a b,%( 1z & Ell) inz,t%Tr I?a,b,% (INJZ & E12)>

P ' inz,t NTrHa,b,% (Hz & E21) inz,t%Tr Ha,b,% (Hz ® E22) ’

1 0 0 0 0 1 0 0
Eyy = (O O) ,  Fag = (0 1) Eyp = (O O) Ea = (1 0) ;
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and Qg p,;.6, 1s given by

Qaj,bj,(')j = ([Qajvijej]l [Qaj’bj’ejh [Qaj’bj’ej]3)7
NTngjvij(?jvll
(Qaj.,.0,]1 = | 2T Hay ;0,01 Hay ;0,12
Tr Ha, b;,0;,12H0 1 0,10

_ 2TrHayy0,11Ha, 050,02
(Qa;.p,.0,]2 = | 2Tr Haj7bj79j)1~1Haj,bj,9j,2~2 + 2’I‘rH3j,bj,9j712

2Tr Hajybj,ej,zzHaj,bj,ej,IZ

TrI{aj,bj,ej,lzf{gj,bj,ej,u
(Qa, 0,03 = | 2Tr Ha; ,.0,.22Ha, 5,.6,.12

2
T‘r Haj,bj,ej,22

5 Replacing resolvents in (4.10) by universal local law ap-
proximations

The RHS of (4.10) is pgi)nUE(Zl,ZQ) times a quantity that depends only on traces of resolvents.
Thus, we can replace each such trace by its local approximation to obtain a quantity of the form
D, (21, 22) as in Theorem 2.

5.1 Replacing the constants, e.g. 7.,

We start with the following result, which approximates constants appearing in the introduction with
universal quantities.

Lemma 17. There exists a constant k > 0, which is independent of €y > 0, as well as constants
Nuniv,t> Quniv, z,t» Buniv,z,£, Yuniv,z,t, Ouniv,z,t, Which do not depend on the distribution of the entries of
A, such that with high probability. we have

Nzt = nuniv,z,t[l + O(N_N)]a

Oz,t = Ouniv,z,t

[

Yzt = 7univ,z,t[1 +0
[
[

Vz,t = Uuniv,z,t

Proof. We will give details for the 7, ; bound. By definition, t(H,(n,)) = —ith%(Gz (N24)E11) = 1.
Let Nuniv,z,¢ be such that —itn;nliv)z)t<Ma,b7%(nuniv,z’t)Elﬁ = 1, where Ma,b&(n) is the local law
approximation to G(n) from Lemma 26. Now, suppose funiv,»+ < t (i.e. it is bounded above and
below by a constant times ¢). We will show this shortly. In this case, by Lemma 26, we have the
estimate (G (Nuniv.z,t)E11 — Mo p,= (Muniv,z,t) F11) < Nflnufnzivyzyt, where < means bounded above up
to a factor of N7 for any fixed 7 > 0 with high probability; see Definition 25. Thus, we have

_itn;nliv,z,t<Gz (Muniv,z,¢) E11) = 1+ O< (N7177u_n21v,z,t)v

-2

-1,,—2
nuniv,z,t'

/N t}) means something whose absolute value is < N ~*

where, similarly, O~ (N
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The LHS of the above display is t{H (Muniv.z,¢)}, S0 t({Hz(Nuniv,z,t)) — (Hz(n2,1))) < N_lnglfiv7z7t.
Standard resolvent perturbation and the operator bound || H(Muniv,z,t)|lop = 1 (which holds with
high probability since ||A|op < 1 with high probability) imply that

t(ng,t - 77121r1iv,z,t)

N TI’Hz(nuniv,z,t)Hz(nz,t) Z t2|77,z,t - nuniv,z,t|'

|t<HZ(77uniV,z,t)> - t<HZ(77z7t)>| =

We deduce that |1, — Nuniv.2¢| S N7t < N7t for some k > 0, since t = N~ with ¢y > 0
small. This proves the desired 7, ; estimate, provided we can show that nuniv,.+ =< t. This follows by
Mot < tand [0, 1 —Nuniv.2 | S N7 < N7t (To avoid a circular argument, one can use a standard
continuity argument. In particular, in this proof so far, replace M, p = by sMap = + (1 — )G, and
use continuity in s € [0, 1] to show that nuniv .+ < t.) The other estimates follow similarly, though
Ouuniv,z,¢, for example, is defined instead using the two-term local law in Lemma 29. O

5.2 Replacing |det G |

The matrix G; 4, has size 4 x 4, and its entries are given by normalized traces of products of two
resolvents. Thus, Lemma 29 will allow us to replace its determinant by that of a matrix which does
not depend on the distribution of the entries of A.

Lemma 18. There exists a 4 x4 matric Guniv such that | det Gj o 5| = | det Guniv|[1+O(N ")), where
Kk > 0 and Guniv has entries independent of the distribution of the entries of A.

Proof. It suffices to show that for any matrix entry indices k, ¢, we have (G q.0)ke = (Guniv)ke[l +
O(N—%)], where (Guniv)ke denotes a quantity which does not depend on distribution of the entries of
A. Indeed, the determinant is a polynomial in the entries, and the entries of §; 4 ; are easily checked
to be < 77;? < N*%_ and we can choose ¢y > 0 sufficiently small. We will choose k,/ = 1; the other
choices of k, £ follow by similar arguments, since each matrix that is tensored with E11, E12, Eo1, Fos
in Gj o is a block in G.(n.,+). In particular, we want to show that

. t =

an,tNTr Ha,b,% (nz,t)(Hz (nz,t) & Ell)

is equal to a universal quantity times an error 1 + O(N~"). First, we replace 1, by Nuniv,z,; from
Lemma 17. Since Ha,b& and H, have operator norms < 77;?, we have

. t -
Uzt NTI‘ Ha,b,% (nz,t)(Hz (nz,t) oy Ell)

. b - .
- Znuniv,z,tNTr Ha,b,% (nuniv,z,t)(Hz (nuniv,z,t) ® Ell) + O(N nz,tD>

for some D > 0. Since ga,b,g > C and H, > C with high probability (it is the inverse of a covariance
matrix of a shift of A), and because Nuniv,z 1t < N~2% (see the proof of Lemma 17), the RHS of the
previous identity is equal to

. t ~ ke
UMuniv,z,t N’I‘r Ha,b,% (nuniv,z,t)(Hz (nuniv,z,t) ® Ell)[l + +O(N )]

for possibly different x > 0. Now, apply Lemma 29 for 6 = 7; this shows that the first term on the
RHS of the previous display is universal (i.e. independent of the distribution of the entries of A)
plus an error of O(N~"). We now absorb this additive error of O(N ") as a multiplicative error of
1+ O(N~*) (for possibly different x > 0) using the same argument that gave the previous display.
This completes the proof. O
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5.3 Replacing Tt H,, (1., Flx (1.
We move to the exponential factor in the second line in (4.10). The only term we must deal with
here is nfﬁt times the trace of two resolvents. For this, we use Lemmas 17 and 29.

Lemma 19. There exists a constant T = Ty, that is independent of the distribution of the entries
of A and such that the following holds for k > 0 and for all 0; € Zy:

exp {—b? (tanf; — tan™" 6;)*n2 , Tr Hy, (ﬁz,t)ﬁxj (nz)t)}
= exp {—b3(tan6; — tan™" 0;)%n2 ;. ., T} [1+ O(N 7).
Proof. We first have the decomposition
b2 (tam 65 — tan™" 0,202 Tx H, (n:.0) By (1-.) (5.1)
= b? (tan; — tan™"' 6;)*n2 s, ., Tr Hy, (ﬁuniv,z,t)ﬁxj (Muniv,z,¢)
+ b?(tan 0 —tan™" 9j)2[773,t - nﬁniv,z,t]T‘rH)\j (Uz,t)ﬁxj (12,t)

+ b? (tand; — tan ™! 9]’)27712miv,z,t [Tr Hy, (HZ,t)HXj (12¢) = Tr Hy, (nuniV,z,t)ng (Thaniv,z,t) | -

We bound the last two lines in (5.1). We start with the third line. By Lemma 17, we know
nf)t—nﬁniv)z)t < N~ for some £ > 0 with high probability. Moreover, |[Hx; (02.t)lop, | Hx. (12,¢)llop S

j
1.7 Finally, because 0; € Ty, we know |tan6; —tan=16;|* < |0 — 2|2 < N~ 2 for small 7 > 0
depending on at most €y. Thus, the third line satisfies

b (tan 0; — tan ™" 0;)2[02 , — My 2. ) T H, (0:,0) Hy (12,0) S NTNT2T0 28N

S N7K+2TT]76

z,t»

which is < N7%/2 if we choose 7, ¢y small enough. For the last line in (5.1), we have

HH)\j (nz,t)gjj (nz,t) - H)\j (nuniv,z,t)gjj (nuniv,z,t)

op
Szt IHx, (0:0) = H, (univ,z,0) lop + 027 [Hx, (026) — Hy, (univ,z.) lops

and by resolvent perturbation, the last line is < n;tD|77Z,t — Nuniv,zt] S N‘“n;tD for some k > 0 and

D = O(1). (The last bound follows by Lemma 17.) Using this and the bound | tan§; —tan=16;|> <

0 — 22 < N~ 7 for small 7 > 0 and 6, € Zo, we deduce

b?(tan 0; —tan™" ej)277121niv,z,t Tr Hy; (02,¢) by (2,6) — Tr Hy, (Uuniv,z,t)HXj (Nuniv,z,t)
< N—1+2TNN—N77;£:> < N—H+2T,'7;1P,
which is < N—%/2if 7€y > 0 are small enough. Thus, we have
b? (tan6; — tan~! Hj)znitTr Hy, (ﬁz,t)ﬁxj (Mzt) (5.2)
= b? (tan6; — tan~" 9j)27712miv,z,tTr Hy, (ﬁuniv,z,t)ﬁXj (Nuniv,z,t) + O(N™"),

where k > 0 is possibly different than earlier in this proof. Now, we can apply Lemma 29 to the
trace in the second line in (5.2). This shows that for some T as in the statement of this lemma, we
have the following, where the last line uses |tan6; — tan=16;|* < [0 — Z|> < N~'*27 7 and holds
if €9 > 0 is small enough:

b? (tan@; — tan~"! ej)2n3niv,z,tTr Hy, (nuniv,z,t)HXj (Nuniv,z,t)

= b?(tan 6; — tan~! ej)2n121niv,z,t‘z + O(|tan6; — tan™! 0j|27711_n[i)v,z,t)'

If we exponentiate the previous two displays, the desired estimate follows. |
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5.4 Replacing Qg .,

We now deal with the third line in (4.10). The first step is to replace both copies of Qq; 5,0, therein
by universal quantities. Since the entries of Qq; »,,0, are given by traces of products of blocks of two
resolvents, we can again use Lemma 29.

Lemma 20. There exists a 3x 3 matriz Quniv,g; such that Quniv,e; 1s independent of the distribution
of the entries of A, and there exists k > 0 such that the following estimates hold. First, we have
| det Qu, b;.0,] 2 = | det Quaiv,o;| 2 [1 + O(N~")]. We also have

N 3 * N |
T~ TrHaj 6,11 T —TrHgjp;0,11
ks . ~
exp ¢ —Co N—2Tngj,bj,9j,12 Q. 0,0, N—2Tngj,bj,9j,12
T —TrHajp,6,.22 S —TrHap,6,20

~ * -
% - ’I‘I’Haj)bjlejxll % - ’I‘rHajvijejxll

z -1 z -k
=expl —Cy | —2Tr ng7bj79j712 univ,6; —2Tx ng)bj)9j712 [1 + O(N )} .

N N
T —TrHaj)bj)@j)gz + —Tl"Haj,bj,Oj,22

Proof. We claim there exists a 3 X 3 matrix Quniv,p, independent of the distribution of the entries of
A such that [|Qq; b;,0, = Quniv,; [lop S le"nz_’t with high probability for some D = O(1). To prove
this claim, we first show || Quq; 5,0, — Qa;.b;,0; (Muniv,z,)[lop S le’“n;tD, where Qq; b;,0, (Muniv,z,t) 15
just Qg b,,6, but evaluating all resolvents at nuniv,»,¢ instead of 1, ;. To see this, we first note that

HQaj7bj70j - Qllj7bj70j (nuniV,Z,t)Hop S ||Qaj;bj;9j - Qaj7bj70j (nuniwzi)”max since matrices in question are
3 x 3. We now estimate the entries of Qu,; 0,0, — Qay ;.0 (Muniv,z,t). We illustrate one example; other

entries are treated similarly. We are claiming that Tr Hy, 3, 0,11(n2)* = Tr Haj,bj,ej,11(77univ,z,t)2 +

O(le’”"n;f)). This follows by Lemma 17, the bound ||ﬁa].1b].19j111 llop S n;f, and resolvent identities.

The matrix Quniv,s, is then constructed by applying Lemma 29 to each entry in Qg b, 6, (Muniv,z,t)-
We now prove the two proposed estimates. For the first determinant estimate, we note that

1
| det Quniv,9j| :| 2
|det Qaj7bj70j|

1
| det Quniv,ej | - | det Qaj,bj,ej | 2
| det Qaj,bj,ej | '

Since the entries in Qq; b6, are < Nn;,P for some D = O(1), the same must be true for Quniv,9,

_1 1
| det Qaj,bj,ej | 2= | det Qunivﬁj | 2 |:

= | det Qunivﬂj |_% |:1 +

by the operator norm estimate [|Qq;,5,,0, — Quniv,0;[lop S le’“n;tD. This same estimate combined
with an elementary expansion of the determinant (as a cubic in the entries of these 3 x 3 matrices)
then shows that |det Quniv,o;| — |det Qq; b,,0,| = O(N3_”77;tD) for possibly different D = O(1). On
the other hand, Lemma 16 shows that | det Qq; 5,0, & N 377; 9 We deduce from this paragraph, the
bound 7, <t = N~ with ¢y > 0 sufficiently small, and the previous display that

| det Qu, b,.0,1 = | det Quaivg, |72 [1+O(N )] .

This is the first desired estimate. We move to the exponential estimate. We must estimate the

difference of inverses Qflb, 9. — Q;nliv o.- By resolvent identities, we have
LV AV ] LV

aj
-1 1 A1 -1
Q.ib,.0, — Quniv.o, = Quyp,.0, (Quuivie, — Qa;b,.0,) Quuniv, -

Lemma 16 shows that Qq; b, univ 2 Nn;?. The operator bound [|Qa; b,,0, — Quniv,0, [lop S Nl_”n;tD,
if we choose ¢y > 0 sufficiently small, then implies the same for Quniv,¢;.- Thus, if we choose ¢y > 0
small enough, we get

-1 1 2.4 Afl—k, —D 1=
”Qaj,bj,ej - Quniv,Gj ||0p 5 N nz,tN an,t S N .
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To derive the proposed exponential estimate, we use (4.9) and Cauchy interlacing to get

N ~
T Tr Haj,bj,ej,ll B

7 s+7,,—D
_2TrHa]‘,b]‘,9j,12 ST N2 nz7t )
N ~

T Tr Haj,bj,ej,22

where 7 > 0 is as small as we want. (To be clear, <, means bounded above up to a constant

depending on 7; in this case, the constant blows up as 7 — 0.) Combining the previous two displays
yields the quadratic form estimate

g Tfﬁaj,bj,ej,u ' X Tfffaj,bj,ej,u
2T Hap0,02 | Qupno, | 2T Hapbyo,2
G5 —TrHa, ;0,2 5 —TrHgjp;.0,20
r— TrHa,p,0,11 ' X TrHyjp;.0,,11
= N_2’I‘ngj)bj)9j712 Q;nliv,éj N_2T‘ngj)bj70j)12 + O(N*RJrQTn;tD)
G5 —TrHgjp;.0,,22 G5 —TrHg,j b0,

for k > 0 and 7 > 0 (which we can choose to be small) and D = O(1). If we choose 7 > 0 and ¢y > 0
sufficiently small (depending only on k), the error term in the second line of the previous display
becomes O(N~?) for some § > 0. Exponentiating the resulting estimate completes the proof. |

5.5 Replacing the vector in the quadratic form

The final step is to replace the traces in the vector in the third line (4.10) by universal quantities.
To this end, we use Lemma 26.

Lemma 21. There exists v € R® whose entries are independent of the distribution of the entries of
A, and such that the following estimate holds for some k > 0:

N F; * N ]
T _TrHa]‘,b]‘,ej,ll T _TrHaj,bj,ej,ll
L 1 2
exp{ —Csy N_2’I‘ngj7bj)9j712 univ,; N_2T‘ng/j)bj)9j)12
T —TrHaj)bj)@j)gz T —TTHaj,bj,Oj,m

= exp {—CQD*Q;}W)%U} [1 + O(Nf'/")}

Proof. We first claim there exists v € R3 whose entries are independent of the distribution of the
entries of A such that for some x > 0 and D = O(1), we have the following with high probability:

% - Trﬁaj,bj,éj,ll .
—ZTIngybjygj_’u —of| SN2TF, (53)
% - TrHa]‘,b]‘,Gj,QQ

We first note the following, where the last line follows by computations in Appendix B:

Tr Haj,bj,ej,ll = Tr Haj,b- 11 + Tr [Haj,bj,ej,ll - Haj,bj,%,ll]

VR
_ r7 r] * * r7
=Tr Hajvij%vll +Tr Haj-,bj-,ej-,ll[Aa]‘,b]‘,%Aajvij% - A(l]‘.,b]‘.,ejAaj-,bj-,ej]Hajvij%vll

N . -
o * *
= _t + TrHaj,bj,Gj,ll[Aaj7bj7%Aaj,bj,% — Aaj)bj)ejAa].7b].79j]Ha].7b].7%711.

- ~1/2 ~1/2
Since |0, — Z| < N~/ we know 1A%, 0,2 40,02 = Ad, b0, 4a,0,.0,lop SN /247 swhere 1 > 0

G.j7

is small. In particular, by resolvent perturbation, Lemma 17, and trivial resolvent bounds, we have

- y . -
TrHaj,bj,@le [Allj7bj7%Aaj)bj)% - Aaj,bjﬂjAaj,bjﬂj]Haj,bj,%Jl

=Tr {Haj ,b;,05,11 (nuniv,z,t) [Azj,b

Aas b3 — AzjvbjﬁjAajvij(’j]Haj-,bj-,%-,ll(nuniv,z,t)} + O(Nl/Qfﬁ),

o .
5 d J>a
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where £ > 0 is fixed and independent of our choice of small ¢y > 0. By another resolvent identity,
we have

Tr {E[aj,bj,@j,ll("7univ,z,t)[*A:;]7bj7 = Aa],b], T A:;j,bj,@j Aaj,bj,ej]ﬁaj,bj,%,ll(nuniv,z,t)}

=Tr I:Iaj,bj,@j,ll(nuniv,z,t) —Tr Haj,bj,%,ll (nuniv,z,t)'
In particular, the previous three displays imply

N ~ - ~
? - TI'Haj,bj,Oj,ll = ’I‘rHaj,bj,%,ll(nuniv,z,t) - TI’Haj,bj,Gj,ll(nuniv,z,t)'

The RHS of the previous display is equal to a quantity which does not depend on the distribution
of the entries of A plus O(n; ) for some D = O(1); this is by the local law in Lemma 26. The
aforementioned “universal” term is our choice of v1, the first entry of v. The rest of v is constructed
using a similar argument. We now compute

N 7 * N 7
T —TrHa; ;0,11 5 —TrHa, p;,0,11
—1 [ * y—1
—2TI‘Ha] bj,0;,12 Quniv.ﬂj N_2TrH}}j-,bj-,9j-,12 -0 Quniv,GjU (54)
T TrHa] bj,0;,22 T TrHaj,bj,ej,QQ
* N ~
T _TrHa]‘,b]‘,ej,ll T _TrHa]‘,bj,Gj,ll
~ 1 Z
= N_2Tr ngybjﬁjyl? -0 Quniv,j N_2Tngj7bj79j-,12
T ’I‘rHaj,bj,Gj,22 T TrHaj,bj,Gj,22
N -
T Trﬁaj,bj,ej,ll
to Qumv 0; —2Tr ng,bj,ej,l2 -0

K —TrHg, 0,2
By (4.9), the last vector in the second line of (5.4) has norm < N2+75- P for 7 > 0 small and D =

O(1 ) By (5 3)7 the same is true of v. Moreover, as shown in the proof of Lemma 20, we know that
Q.. JSN ~1n2 ; with high probability. So, the second line in (5.4) is < Nzt Nz—*y DN 2, <
N~ 'H‘Tnz + for possibly different D = O(1) and for small 7 > 0. By the same token7 the same is
true for the last line in (5.4). Thus, we get

N 7 * N ]
T _TrHaj,bj,ej,ll T _TrHa]‘,b]‘,Gj,ll

[ —1 7 _ wx0)—1 _ k+7,,—D
N_2Tr H}}j-,bj-,ej-,lQ Quniv,éj N_2Tr ng,bj,ﬁj,12 v Qunivﬂju - O(N nz t )
T Tr Haj,bj,ej,QQ T Tr Ha]‘,b]‘,ej,QQ

It now suffices to choose 7, ¢y > 0 small enough to make the RHS O(N~%/2), at which point we then
exponentiate the resulting bound to conclude the proof. O

6 Proof of Theorem 2
Combining (4.10) with Lemmas 17, 18, 19, 20, and 21 shows that

pi(z,2;A) = @, 4(21, zz)pgi)nUE(zl, 22) [1 + O(Nf'{)} + O(exp[-CN")), (6.1)

where k > 0 and ®, 4(z1, z2) is as in the statement of Theorem 2. Recall p;(z,z; A) is the two-point
correlation function for local eigenvalue statistics near z; more precisely, we have the following (in
which we recall z = (21, 22)):

O(z1,22)p1(2,2; A)dz1dzg = E Z O(N%Uzt[z =X, (D], N%Uzt[z — X, (D))

2 —
c i1#12

o1



Above, O(z1, 29) € C°(C?) is arbitrary. Since p;(z,2; A) is a probability density (up to a scaling by
a deterministic, O(1) factor) with respect to dz1dza, the estimate (6.1) gives

/ O(z1, 22)pi(2,2; A)dz1dze = / O(z1, 22)pt(2,2; A)[1 + O(N™™)]dz1dzg + O(N™")
Cc2 c2
= / O(z21,22)®. (21, ZQ)p(C?i)nUE(Zlv Z9)dz1dzo + O(N™")

(C2

for some x > 0. It now suffices to combine the previous two displays. |

7 Proof of Theorem 1

It suffices to prove Theorem 1 for Ay == A1 +1, where t = N~ as in Theorem 2. Indeed, let
pA.z (21, z2) be the two-point correlation function for eigenvalues of A near z, and PA, (21, 22) is the

same but for A;. Then, for any O € C°(C?) we have

Z1 Z1

1
0 (21, 2)dzndzs = ——— | O , (21, m)ded
/«:2 (21, 22)pa.2(21, 22)d21d2o e /cc2 < T él_i_t) Pi, (21, 22)dz1dz

Z1 Z1
— O —, —— = , 29)dz1dze + O(t
/(Cz (\/1—|—t Vl-i—t) PA, (71, 22)d21dzo ()

:/ 0(21,Zg)pAt7z(21,Zg)d21d22+O(f)
c2

by change of variables on C2. Since t = N~ — 0, we have reduced to proving Theorem 1 for A,
instead of A. To this end, the main ingredient we require is the following “three-and-a-half moment
matching” theorem, which we state in more generality. Before we state this theorem, we first say
that X, X match up to three and a half moments if:

1. X isan N x N matrix whose entries X;; are real i.i.d. variables that satisfy E|X;;|P <, N—7/2
for 1 <p<4.

2. X is an N x N matrix whose entries Xij satisfy the same properties.

3. EXP = EX?, for p = 1,2,3, and E[X;;|* = E|X;[* + O(N~27°%) for some § > 0. (Note that
N~279 is the below the natural scale of N2 for fourth moments.)

Lemma 22. Suppose that X and X are N x N matrices that match up to three and a half moments.
Let {\X}; and { X}, be eigenvalues of X and X, respectively. Fiz any k > 1 and z € C such that
|2| <1—7 and Im(z) > 7 for some T > 0 fized. For any O € C2°(C*), we have

Eq > [O(N%[Z_AX],...,N%[Z_AX])_O(N%[Z_AX],...,N%[Z_A;’E]) s No 0.
i1 F£da . Al

Proof of Theorem 1 given Lemma 22. Let t = N~ as in Theorem 2. By Lemma 3.4 in [18], we
can find N x N matrices A and B such that B is real Ginibre (entries are independent N (0, N~1)
random variables), such that A and B are independent, such that A + v/tB and A; match up to
three and a half moments, and such that E|A;;|? <, N7P/2 for all p > 1. (Indeed, for this last
property, note that it is true for A, by assumption and for B.) We necessarily have E|A;;|? = N~}
(again, since E|A;]?> = (1 4+ t)N~! and E|B;;|> = N~'. Ultimately, by Lemma 22 (for the test
function O precomposed with scaling by a universal O(1) constant), it suffices to prove Theorem
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1 for A + /1B instead of for A;. This amounts to replacing o, in Theorem 1 by its universal
approximation oypiv,z,+ from Lemma 17, and then using Theorem 2. We give the details below.

Let {/\fJ”/EB }; denote the eigenvalues of A + /tB. Fix z € C as in the statement of Theorem
1, and let 0.+ be defined as in the introduction but for A and its resolvents. We first claim that

E|S O(Nio2,[z— A, Nio2, [z — A)) (7.1)
i1#12

=E Z O(N%Uéniv,z,t[z - Ail]’ N%O'éniv,z,t[z - /\11]) + 0(1)7
i1 F£42

where oupiv,» ¢ is from Lemma 17. Indeed, with high probability, we know that o, ; = ouniv,z¢[1 +
O(N~")] for some r > 0. If ps /7 (21, 22) denotes the two-point correlation function for A + VB
near z, then

E|S OWiol,, [z =Xl Niol [z =)

univ,z,t
i1 F£02

le dZQ,

[0 (ohunarmon oot ) 1 =

= gl g 21,07 s a z —— 5 z ———A ——
univ,z,tY z,t “1s Yuniv,z,tY 2t ~2 5 2 PA+ViB ’

C2 N Ozt /No.; /No.;

at which point (7.1) follows by auniv’z’ta;% =14+ O(N~") and an elementary Taylor expansion of
O. To conclude the proof, we now combine (7.1) with Theorem 2 (applied to A). O

7.1 Proof of Lemma 22

By a standard approximation procedure, it suffices to prove Lemma 22 by functions of the form
O(z1,...,21) = fP(z1) ... f*®)(2;). The idea behind the following calculation is to use Girko’s Her-
mitization formula to bring Lemma 22 into the realm of real symmetric matrices; this computation
was also explored in [10]. Before we proceed, we introduce some notation. Define

—i X -z ~ —1i X -z
GZ("):_<X*17? —in>’ GZ(n):_<X*?z —in)'

We use different font to distinguish from G, which was meant for A earlier in this paper. We also
define m?*(w) to be the unique solution to

1 |22

=w+m*(w) — wEmw) Im[m? (w)]Im[w] > 0. (7.2)

m*(w)

By the inclusion-exclusion principle, it suffices to show that if o; and 7; denote eigenvalues of X and
X, respectively, we have

Eﬁ iZNjfw (ai)—l/f@(z)d?z :Eﬁ iﬁjﬂﬁ(a)—l/f@(z)d% +O(N)
j=1 Ni:l v m™Jp" Y j=1 Ni:l v mJp" Y

where we introduced the rescaled test functions

fz(j)(z) = N (\/N(z — ZJ)) , z€C,
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and the implicit constant in O(-) depends on [[AfW| zi(c) for j = 1,..., k. We adjusted notation
slightly to fit that of [10]. By Theorem 2.4 in [10], we have

1 N
(NZf.;?( / (= >=IE<X,f§jf>>+6
i=1

where € > 0 is arbitrary, where E|&| <, N‘iGHAf(j)Hp((c), and where

(X, 59 = / AfD() / ) T i)

N-—1—¢

(Recall that () denotes normalized trace.) The same computations and estimates hold for X in
place of X. Thus, the proof of Lemma 22 reduces to proving the following. (In Lemma 23 below,
the constant ¢ > 0 is the exponent in the moment matching EX}, = EX}; for p = 1,2,3, and

E|Xi;|* = E|X;;|* + O(N~27°).)

Lemma 23. Take the assumptions in Lemma 22. Fiz any k > 1. There exists small € = e(k,d) > 0
such that uniformly over N™17¢ < ny < N7'%€ for £ =1,...,k, we have

k k
EH (ImG, (ine) — ITmm (in,)) — EH <1m62£ (ine) — Imm™ (im)> =0 (N"®). (7.3)
=1 =1

The proof of Lemma 23 uses a standard Green’s function comparison argument. We adopt the
continuous comparison method introduced in [22], which is based on the following construction.

Definition 24 (Interpolating matrices). Define the following matrices:

0'7"'7 0 X 1. o 0 X
H ._H_<)?T 0), H ._’H—(XT 0)

Let p?j and pzlj denote the laws of 7:21-]- and H;j;, respectively. For 0 € [0, 1], we define the interpolated
laws pfj =(1- H)p?j + lelj. Let {H% : 0 € (0,1)} be a collection of random matrices that satisfy the
following properties. For any fized 8 € (0,1), the triple (7—[0, HY, 7—[1) of 2N x 2N random matrices
are jointly independent, and the matriz H? = (7—[?-) has law

1% (ar)
i<j
(We do not require H% to be independent of H% for 1 # 65 € (0,1).) For A € C and indices 1, j,
we define the matriz H?Z.’;‘) as
( 0_,?\) — Hf;a lf {k7l} 7é {7’7]}7
D)/ N if k) = {5}

Correspondingly, we define the resolvents

0 =z -1 0 =z -t
G = (He‘(z; 5)”’”) + Gilin() = (Hf53‘<zzf 5)”“) |

For any function F : R2N*2N _; C, we have the basic interpolation formula

d 0,1}, 0,13,
GEF (M) =2 [IEF (H(m ) ~EF (H(m )} (7.4)

.3

provided all the expectations exist.
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Proof of Lemma 23. We will use (7.4) with the choice

=

F(H?) =] (ImG) — Imm*") (7.5)

l

1

We omit @ from the notation m?* since the entries of the H? have the same variances for all . Hence

mz is independent of #. In the remaining, we will prove the following bound for our choice of F' in

(7.5), which implies Lemma 23: for all § € [0,1] and 1 <i,j < 2N,
1 0
EF <Hf ”) EF <Hf”> L N-2HCes, (7.6)

Combining (7.4) and (7.6), if we choose € > 0 small enough, then we deduce Lemma 23. In particular,
are left to prove (7.6). By Theorem 5.2 in [4] (see also [10]), we have the following for any 7 > 0
with very high probability (i.e. probability at least 1 — O(N~P) for any D = O(1)):

HG? =M |max S N

~

The max-norm is sup-norm over entries. By resolvent expansion, for any A\, A € R, we have the
following (in which we drop subscript ¢ for simplicity):

K
K+1
BY 0.\ 0.\ / 0.\ o\ 6.\
Gl =G + ;G(m {[()\ ~N)Ay]G ”)} + G {[( N) Ay GO } . (1)
-1
Above, A;j are 2N x 2N matrices defined as
(Aij) gy = Oridij + Or;0u
Combining the above two statements and the trivial bound ||G¢|| < (1/7,), we get

ez, -m]_ <

max

for any 7 > 0 with very high probability. Now, use (7.7) with A = 0 and \' = H; and K = 7. In
doing so, we use E[H;[P <, N—P/2. We also apply the local law (Lemma 26) to control the Green’s
function entries. Ultimately, we get the following in which we again drop the subscript ¢:

4
.
[Gf]’” [G?Zf)} +3 XD (1, k) + €, 1<a,y<2N,ye€{0,1). (7.8)
Y k=1

Above, £ = O(N~°/2%7) with very high probability (for any fixed 7 > 0), and

XD (k) = (~HE)" G

(i3)

2y G"lj)}, with X (7 ) e < N7H/25C%,

max

Notice that G?i’ N is independent of ’H,U,”y € {0,1}. Moreover, note that

=[5 [ossts]), <

for any entry indices a, b, since we have shown that the entries on the LHS are < N7 for any
7 > 0, but they are also deterministically bounded by O(n~") for some D = O(1), and n > N2
Thus, with the expansion (7.8), we can write

NCEJrT

S

EF ( (-)ZJ))(”) Z Z (Z k < 4) Ckl Koy ]H (E(H;Y])kt) + O(N75/2+CE)

5 kiko- ks t=1 t=1

55



where Cg, ky...k, = O(NYTT) for any 7 > 0, and Ck, ,...r, does not depend on . We now use this
for v = 0,1. The LHS of (7.6) is thus given by

DD D! <Z ky < 4) Chv koo | [ (B(HE™) = ] EHE) ) | + ON—3/2HC),
s kikaks  \t=1 t=1 t=1
By the moment matching condition, the first term above is O(N ~2+¢¢+9) 50 (7.6) follows. O

A Resolvent estimates for G, ()

For k> 01let 0 € [k, 5 — k|, a € (—=1,1), b € [K,1). Suppose A € My(R) is a random matrix with
ii.d., centered, variance 1/N entries. Define

—1
B B —in Iy ®A—=Aupe®In
G(ﬁ) - Ga,b,é(n) - (12 ® AT _ Aib,@ ® IN _in )
where )
a btan
A=Agpo = (_ b N >
tan 0
and let w = a + ib. We will also use the notation
. 0 LA B _ 0 Nopo® 1IN
W_(IQ®AT 0 ) Z_Z“v”")_(A;ﬁbﬁ@IN 0 '

In this notation G p0(n) = (W — Zape —in)~'. We recall
Aupo =1 @A —Agpo®IN

Then .
inHap0 Ha,b,an,bﬁ)

G = .
a0 (1) (AibﬁeHa,b,O nHgp0

where

N - —1

Hyp0:=Hapo(n) = (AzbﬁAa,b,H +n?)
—1

Hyp0:=Hapo(n) = (Aa,b,9A£b79 +n?) .

Define a linear operator S : Myn(C) — My (C) as follows. Given a matrix T € Myn(C) consisting
of 16 blocks T;; € Mn(C) for ¢,j € [[1,4]], let

In this Appendix we use the standard technique of cumulant expansion to derive the determin-
istic approximations of the resolvent G, ;¢ and products of two resolvents G 161 Gqp,9 for some
deterministic matrices T'. See e.g. [12] for a similar argument for the resolvent of Wigner ensemble.
We are not concerned with the optimality of the error bounds is 77 since we only apply these estimates
with 7 = N~¢. To state the estimates we use the notion of stochastic domination defined here.
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Definition 25 (Stochastic domination). Suppose that X = {Xn(s): N € Z,,s € Sy} and Y =
{Yn(s): N €Zy,s €Sy} are sequences of random variables, possibly parametrized by s. We say
that X is stochastically dominated by Y uniformly in s and write X <Y or X = O(Y) if for any
e, D >0 we have

supP (Xn(s) > N°Yn(s)) < N~ P

SN

for large enough N.
Lemma 26. Forn > N~'/?*¢ and any o, B € [[1,4]],

(a1 = Map o)) Fors)] < 5
uniformly in a,b, 8, where Eq g =eq.8 @ In € Myny(R) and
ea,p € Ma(R),  (eap)ar,pr = Sar=adp=p
and M(n) = My p.o(n) € Mun(C) is the solution to the matriz Dyson equation (MDE)
[in+Z+S(M(n))] M(n)+1=0, (A1)

satisfying nIlm M (n) > 0.

The existence and uniqueness of the solution to matrix Dyson equation (A.1) satisfying nIm M (n) >
0 was shown in [20]. Before we prove this lemma we introduce the notation used to control the error
terms in the proof.

Definition 27 (Renormalized term). For any smooth function f: Man(R) — Maon(R) define
WAW) = W W) =B W (9:1) (W),

where W is an independent copy of W.

Note that EWW (8.f) (W) is the first order term in the cumulant expansion of EW f(W) with
respect to W. The following lemma lets us control the renormalized terms. The proof is deferred
until the end of this Appendix.

Lemma 28 (Renormalized term bounds). Forn > N—3%¢ gnd any o, B,/ 5" € [[1,4]], we have

(WGE,5)| < ﬁ (A.2)
‘<WGEa7ﬂGEa/,B/>’ < NLWS (A.3)

uniformly in a,b, 0.

Proof of Lemma 26. From the definition of renormalized term we see that
1
WG =-8(G)G — NT(G)G + WG,

Then 1
—I=—-(W—-Z—-in)G=(Z+in+S(G))G+ NT(G)G—W_G,

where
0 0 Tz Tos

0 0 T To
T31 T4 O 0
T30 Ty O 0

T(T) =

o7



We take a normalized trace separately for every N x N block in this equation to get

005 = (7 + i+ 8(O))gr (GFap) + 3 T(G)GEas) + (WGEeg).

y=1

Note that + (T(G)GEqg) < NLHQ by a trivial bound and (WGE,z) < NLHQ by Lemma 28. Then

4
1 . 1
_Z(Sou@ = Z (Z + m + S(G))a'y <GE%3> + o (NT]2)
y=1

and the result of Lemma 26 follows by stability of the solution of MDE (A.1). O

Lemma 29. Forn > N-5+¢ and any o, B,a/, 5 € [[1,4]],

1
<Ga,b79EaﬁGa7b70Ea/ﬁ/> = <Ma,b,9EaﬁMa_’b79X71(Ea/ﬁ/)> + O <N776)

uniformly in a,b, 8, where operator linear X = X4 9 acting on My(R) by
Xa,b,e(') =1- S(Ma,b,e . Maybﬁg).

Proof. From the definition of G and (A.1) we see that
GzM—l—MS(G—M)G—MWG—i—%T(G)G, (A4)

Now we consider GE, gG. The integration by parts formula gives

GEo\p3G = ME, gM + MS(GEaﬁG)M + MEa”g(G — M) (A5)
+ MS(G — M)GE, 3G+ MS(GE, 3G)(G — M)

1 1
+ NMT(G)GEQ_’L-;G + NT(GE(LL"G)G — MWGE, gG.
Define a linear operator B acting on Myn(C) by
B(:)=1I—-MS(-)M.

We move the second term of (A.5) to the left, apply B~! on both sides, multiply by E,/ g on the
right and take the normalized trace to get
(GE, 3GEy ) = (B~ (MEo3M)Ey g)
MEy3(G—M))Eq p)
MS(G — M)GEQ7/3G)EQ/7[3,>
MS(GEaﬁG)(G - M))Eo/.ﬂ/>

e e

+(
+(B~!
+(

+ — (B (MT(G)GE.pG)Eqy )
+ - (B (T(CEsC)C) Eur )

— (BN (MWGEw3G)Ear ).

Now we notice that operators B and & are related thorough the following identity. For any By, By €
Myn(C), we have
(B~'(B1)By) = (B1X™(Ba)) .
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Thus, we have

(GEa,sGEw g1) = (MEq sMX ™ (Ear g1))
+(ME43(G— M)X ' (Ewp))
+(MS(G — M)GE43GX ' (Ew p))
+ (MS(GEapG) (G — M)X (Ea p))
+

(MT(G)GEWsGX™ ' (Ea )
+ 5 (T(GEapG)GX ™ (Bar 1))
— (MWGEw3GX ™ (Bar 1))

To bound the error terms we use that ||S|lop S 1, [T ]lop S 1 and || X||op 2 1 (see section A.1). Note
that in the 2nd and 4th terms G — M appears and it is multiplied by a 4 x 4 block matrix. In the
3rd term G — M appears inside of the operator §. Thus every instance of G — M on the right can
be bound using Lemma 26 by NLn? Every other instance of G or M on the right we control using
the operator norm bound |G|, ||M]|| < % In the final term we use Lemma 28 for the renormalized
term. Putting this together we get

1
ME,5(G— M)X " (Ea p)) < N

o~~~

1
MS(G — M)GE, 3GX ™ (Eqr pr)) < ~——,
S(G = M)GEa sGX ™ (B 3)) < 75

_ 1

(MS(GEq3G)(G— M)X H(Eq p)) < NoE
1 1 1
N <MT(G)GEQ75GX (Eo/,ﬁ/)> < N’]’]57

1 1
= E, X Y Ew g —
7 (T(GEasG)GX ™ (Ear 1)) < N

1

MWGE,gGX ™ (Ey ) ) < —=.

< WGEa3GX ™ (Ear )> Nop
This concludes the proof. O

Proof of Lemma 28. We show the proof of (A.2) here. The proof of (A.3) is analogous. Every extra
G in the trace gives rise to an additional % in the bound.

The proof of (A.2) follows closely the proof of Theorem 4.1 of [12], so we outline the differences.
Similarly to [12], we use the cumulant expansion

Km+41 m
EA; f(W) = Z WEaAijf(W)v
m>1

where K, is mth cumulant of V' N Ajj.
We introduce matrices A% € Myy(R) for 7,5 € [[1, N]], such that

(AU) —6;E 2N+16y ]+5w 3N+15u N+]+6 —]51/ 2N+z+5m N+]5u 3N+i-

Then W = 32N A;;AY. Consider the second moment of (WGE, g) and use the cumulant expan-

1,7=1

59



sion with respect to both W. The first derivative terms of of the second moment are

N
E|(WGEa ) = Y SE(AVGEas) (s sGAY)
ij=1
N N 4 ’
30 Y BE(ATGA GEL ) (Bl G ATGIATT )

i,j=11 =1

The first term can be written as a sum of 16 terms of the type
R * *
SE(GUBIGYB, ),

where || B ]|, || Bz < 1 and G is indicating G or G*. Since we do not need to control (A.2) by

Nan we bound (GB1GBs) trivially by nlz Similarly, the second term can be written as a sum of 162

terms of three types

[\

K

(GYBIGY B.GY By G By )

23|

<G<*>Bl> <G(*)B2G(*)BgG(*)B4>

=
N}

N_22 <G<*>31G<*>BQ> <G<*>BBG<*>B4>

2
All these terms can be bound by N'Z—2n4 Similarly for higher order terms in the cumulant expansion
each extra derivative adds another GG into the term, which we bound by % and another \/Lﬁ due to

taking a higher order cumulant of the entry of A. Analogous calculation works for 2p-th moment.
We refer the reader to [12] for details. O

A.1 Properties of the operator X.

Note that matrix Dyson equation (A.1l) invariant under transposition of M and under conjugation
of M by a permutation matrix

II =

— o O O
o= O O
o O O

0
1
0
0

The solution to MDE satisfying the condition nIm M (n) > 0 is unique by Theorem 2.1 of [20]. Thus
for n > 0 the solution is

_ My My A(in + M)t
(in + Mq1) " TAT My, FM, F ’

=0 o)

and My, € Ms(C) is satisfies iM7; < 0 and

where

~M ' =in+ FM F — A(in + M) AT

By a trivial computation we can derive the expansion of the solution in 7.

1
Mii(n) =iv/1—a? —b? (tano 0 0 ) +1nS + O(n2),

tan 6
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where S € M3%(R) has entries

1+tan=26 (1—a?)(1—tan"20)

S =—1
" tli—e—m 4b?
1+ tan?6 (1 —a?)(1 —tan?0)
Spg = —1
»2 tia—e—m 4b?

512 = 521 = —%(tan@ — tan_l 6‘)

Recall that the operator X acts on My(C) by X(-) = I — S(M(n) - M(n)) and X*(:) = I —
M(=n)S(-)M (—n). Using the formulas for M (n) above, it is easy to verify the following.

e Operator X has an eigenvalue 1 with multiplicity 8. In particular, the left eigenspace of X
corresponding to this eigenvalue is the space of 2 x 2 block matrices with 0 diagonal blocks.

e Define

B+ (tan® +tan"' )y, [_ =2(1 —a® —b?)

1
21— [w?

Y =1—a?+02+ /(1 — a2 +b2)2 — 412,

and

Operator X has two eigenvalues of the form S_ 4+ O(n), two eigenvalues of the form 84 + O(n),
two eigenvalues of the form v_ + O(n), two eigenvalues of the form v; + O(n).

e As a consequence, we have | X||op 2 7.

B Computation of resolvent quantities at ¢ =

INE

In this section we compute certain functions of G, 5 = (1) explicitly based on the observation that
at 6 = 7§ this resolvent reduces to the regular resolvent G, (1) as follows. It is straightforward to
check that for w = a + ib

G,z (n) = U (Gwo(n) Gmo(n)> v

where

1

V=5

O = O =
o = O

Note also that

1
UE33U" = 3 (Boo+ Esu+Eso+ Esy)

N 1
UEy U = 3 (Eop — Eou — Ego+ Fya)
7

UE34U" = - (B2 — Eou+ Es2 — Ey4)

UE 3U" = - (—=E22 —Es 4+ Ey0+ Ey4)

NCNRCN o)
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Suppose z = a + ib and 1, ; is defined by ¢ (H.(n,,)) = 1. We show here that

% —TrHapz 1

14

2Ty Hypz12 | =0.

.z,
N
T —TrHgpz 2

Indeed,
- 1 1 Guw(n) 0 ¥
TrHyp =11 = TrGgupxFs3 = - T UFs3U
r g p,x 11 o rGap,z £33 o T ( 0 Gu() 3,3
1 G.(n) 0 >
- T Eso+FEsy+Es0+E
2'“7z7t < 0 GE(”) ( 2,2 2,4 4,2 4,4)

1. . 1. - N
= -TrH. +-TrH: = —.
2 *3 t

Similarly, ’I‘I‘Ha7b)%712 =0 and TI“E[GJ, ™ 99 — N

VI t -

B.1 Computing Qg z.

> N wuniformly in a,b.

Lemma 30. Fora € [~1,1],b€ [x,1) and n > N~ we have Qup,x :

Proof. Note that as a quadratic form on M3%(R),

AN 0 0\\
Qa,b,% = _? <(Ga,b,% (O P)) >

Thus, we can compute the entries of @) in the basis

We get

o))
This matrix has eigenvalues 2N < ~Z2> 2N < ~z ~5> , N < ~z ~5>, all of which are bounded below by
Nn~=2 by [13]. 0

C Jacobian calculation

Let us recall the Schur decomposition construction. Define the manifold
Q=R xRy x[0,7/2) x VZ(RY) x M(n_2)x2(R),

where V2(RY) is a Stiefel manifold, i.e.

VERY) = O(N)/O(N —2) = {(v1,v2) € SN x SV~ vTwy = 0}.
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Choose a smooth map R : VZ2(RY) — O(N) such that for any v = (vi,v2) € VZ(RY) we have
R(v)e; = v; for i = 1,2. For any (a,b,0) € R x Ry x [0,7/2) define

a btand
Nopo = ( b ) .

" tan6 a

Define a map
P:Qx MN,Q(R) — MN(R)

such that A "
abs W
R O G N i
Note that if v = (vy, ’UQ)_, then cosfv; + isinfvs are eigenvectors of the right-hand side with corre-
sponding eigenvalues A\, A\ = a + bi.

Lemma 31. The Jacobian of ® is

J(®) = 1(5192&22| ‘det (M<1> - )\) ‘2 (C.1)

|
sin®

Proof. Consider a smooth atlas on VZ(R) and let ¢ : U — U € R*N =3 where U C V2(R), be a chart
in this atlas. Denote the standard coordinates in R?V =3 by (u?,...,u?N~?). By abusing notation,
in the the rest of the proof we view v; as

vV, = ’U,L'(’Lbl7 N ,U2N73) - (@71(’“1; R 7u2N73))i

for i = 1,2. Similarly, we will view R(v) as a function from U to My(R). Note that
J(@) = J(®op™")J(p).
We start by computing J(® o o~ 1). By differentiating the definition of ®, we get

A, wT A, wT
dM = dR(v) ( (’)b’e M(1>> R(v)" + R(v) ( (’)b’e M(1>) dR(v)"

dA, dwT
+ R(V) ( O’bﬁ dM(1)> R(V)T.

Consider dM = R(v)TdMR(v). Since R(v) is orthogonal, the volume form on My(R) can be
expressed in terms of dM as /\f\]:1 /\;V:1 dM;; = /\ZJ\;1 AX L dM;;. Note that

Jj=

~ Aq wt A wT
dM_R(v)TdR(v)< 6” M(1)> ( 6” M(l)) dR(vV)TR(v)

dAhapy dWT
0 dM® |-

Since R(v)e; = v; for i = 1,2, the first two columns of R(v) are v; and vz. Denote the rest of the
matrix R(v) by R(v). Since R(v) is orthogonal, R(v)"v; = 0 for i = 1,2 and, thus, dR(v)"v; =
—R(v)Tdv;. Then

T
R(V)TdR(v)_—dR(v)TR(v)_<de di >

dH R(v)TdR(v)
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where
df = vl duvy,
0 1
=)
dH = (dH,,dHy) = (R(v)Tdv, R(v)" dvs).

Plugging this into the expression for dM , we get
- AM Y gpr2)
= (dM(21> dM(22>>
where
AMIY) = dA, o+ df (BAape — AapoE) — WTdH,
dM? = dWT + df EWT — dH" MW + Ay odHT — WTR(V)TdR(v),
dM®Y = dHAy 49 — MM dH,
dM® = dMD + dHWT + Rv)TdR(v)MY — MV R(v)TdR(v).

Now we compute the volume form by changing the order and noticing that dW and dM (1) appear
only in dM (12 and dM??) respectively.

A At

i=1j=1

N-2 2 2 N-2 N—-2N-2
YA AN AN 17 e AN AN,V A N AN AN A
i=1 j=1 i=1 j—l i=1 j=1
N-2 2 N—-2N-2
dvit o N\ /\dM<21>A/\ /\ aw n N\ d).
i=1 j=1

=1 j=1 =1 j=1

||
>l\3
>l\7

N
Il

-
<.
I

-

I
~.
>l\3

s
Il
-

<.
Il
-

Notice that
FAaso — AapoF = b(tand — tan~ ) ((1) _01)

and
_ da tan@db—i—COQedﬁ
dhabs = (— tan~! 0db + by do da
Thus we can simplify the first two terms of the volume form:

2 N-2 2
/\ MU A NN dMEY = (da + b(tan 6 — tan™" 6)df)
J:

=1 j=1

|\>m

tan Odb + 9d9> A (da — b(tan§ — tan™" §)df)

N—-2 2

( tan "L gdb + ) A N darY
sin? =1 j=1

N—-2 2

tan 6 Lo ~(21)
— ROt O db A do A df A N N\ i
sin 0 cos 6 FR J

N-2 2

cos 260 ~(21)
— —16b2 da AdbAdOAdf A dnr Y
sin? 20" d /:\1 Ji\l i
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To simplify dM??) consider its two columns dM1(22) and dM2(22). Then
arrPY\  fa—MO  —ptan16\ (dH,
anr{ )\ btanf  a— MW ) \dH>

2 N-2 2 N-2
AN ait? =det{AL, 0 s = Lo MO} N\ di;.
j=1 i=1 =1 i=1

Consider matrices Ly, Rg € M>(C) consisting of left and right eigenvectors of A, ¢ such that
LiRg =1. Then AT, , = Lj </\ 0

Thus

0 /\> Ry. Then the determinant above is equal to

det {AT, g @ In-s — & MW}

\ X—MD 0
= det {L9®IN2 ( 0 )\—M(l)) R9 ®IN2}

2
- ‘det(M(l) - A)‘ .

It remains to show that
2 N-2

J(@ydf n N\ N\ dHi; = dv,

j=1 i=1

where dv is the rotationally invariant volume form on V2(R). First, choose a translation invariant
local coordinate chart, so that J(¢) is constant in v (we can always do this because the action of
O(N) on VZ(RY) = O(N)/O(N — 2) is transitive). For any (v1,v2) € VZ(RY), choose a smooth
lift to (vi,ve,...,un) € O(N). We have

N—-2
dn N\ NdH;= N ofdy

7=1,2 i=1 i=1,...,N

i,j=1,...,N
j<i
is translation invariant (see the bottom of page 16 of [16]). But this is a smooth lift of Ai=1,... .~ v; dv;,
i=1,2
Jj<i
so the proposed translation invariance follows. O
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