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We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the spe-
cific case of an atomic condensate. We first describe the quantization of the Nambu-Goldstone
(NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian
by invoking the generalized Gibbs ensemble, which enables a thermodynamical description of the
problem. The quantization procedure involves a Berry-Gibbs connection, which depends on the
macroscopic conserved charges associated to each broken symmetry and whose curvature is not
invariant under generalized gauge transformations. We extend the formalism to Floquet states si-
multaneously breaking several symmetries, where Goldstone theorem translates into the emergence
of Floquet-Nambu-Goldstone (FNG) modes with zero quasi-energy. In the case of a spontaneous
Floquet state, there is a genuine temporal FNG mode arising from the continuous time-translation
symmetry breaking, whose quantum amplitude provides a rare realization of a time operator in
Quantum Mechanics. Furthermore, since they conserve energy, spontaneous Floquet states can
be shown to possess a conserved Floquet charge. Both the temporal FNG mode and the Floquet
charge are distinctive features of a spontaneous Floquet state, absent in conventional, driven sys-
tems. Nevertheless, these also admit a thermodynamic description in terms of the Floquet enthalpy,
the Legendre transform of the energy with respect to the Floquet charge. We apply our formalism
to a particular realization of spontaneous Floquet state, the CES state, which breaks U(1) and time-
translation symmetries, representing a time supersolid. Using the Truncated Wigner method, we
numerically compute its quantum fluctuations, which are theoretically predicted to be dominated by
the temporal FNG mode at long times, observing a remarkable agreement between simulation and
theory. Based on these results, we propose a feasible experimental scheme to observe the temporal
FNG mode of the CES state.

I. INTRODUCTION

Noether and Goldstone theorems are two of the most
fundamental results in Physics, and can be regarded as
the sides of the same coin [1]. The former states that any
continuous symmetry is translated into a conservation
law, while the latter asserts that solutions spontaneously
breaking one of those symmetries have associated a zero-
energy mode, known as Nambu-Goldstone (NG) mode.
Spontaneous symmetry breaking is still a hot topic of
research, motivating the search for novel phases of quan-
tum matter which simultaneously break several symme-
tries, such as supersolids [2, 3], quantum Hall ferromag-
nets [4–7], spinor [8–10] and rotating [11] condensates, or
quantum droplets [12–15].

A fascinating perspective is provided by time crys-
tals [16, 17], which spontaneously break time-translation
symmetry, perhaps the most fundamental symmetry in
nature. Although a no-go theorem ruling out them as
first conceived was proven [18], time crystals are still
possible in the out-of-equilibrium arena. Discrete [19–26]
and continuous time crystals [27–30] have been observed
in a wide variety of systems, ranging from cold atoms
to superconducting quantum computers. In particular,
discrete time crystals emerge in Floquet systems as a
subharmonic response to the external periodic driving
[31, 32]. In general, Floquet systems [33–35] provide rich
scenarios to study a number of out-of-equilibrium fea-
tures such as prethermalization [36], topological insula-
tion [37], dynamical phase transitions [38], high-harmonic

generation [39], or protected cat states [40] and flat-band
superfluidity [41].

It was recently suggested that Floquet physics can
also arise in time-independent configurations, where the
system self-consistently oscillates as a Floquet state of
its effective Hamiltonian due to many-body interactions
[42]. A specific realization of spontaneous Floquet state
was proposed using an atomic Bose-Einstein conden-
sate (BEC), the so-called continuous emission of solitons
(CES) state [43, 44]. As a result, the CES state breaks
U(1) and continuous time-translation symmetries, pro-
viding the temporal analogue of a supersolid, which has
been labeled as time supersolid [27]. Some natural ques-
tions then arise: how to combine several broken sym-
metries when one of them is time itself? What is the
temporal version of Goldstone theorem?

In this work, we study simultaneous symmetry break-
ing in spontaneous Floquet states, focusing on the spe-
cific case of an atomic BEC close to zero temperature
for illustrative purposes. We first discuss simultaneous
symmetry breaking in stationary states within the frame-
work of the generalized Gibbs ensemble [45–47], which
emerges in the study of thermalization in isolated sys-
tems, where each conserved charge further restricts the
available phase-space for the dynamics. The equitative
treatment of each broken symmetry provided by the gen-
eralized Gibbs ensemble allows for a general and complete
description of the problem, including its thermodynam-
ics.

The NG modes emerge as zero-energy modes of the
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spectrum of collective excitations. Each NG mode is
paired with a Gibbs mode, which accounts for the fluctu-
ations of the quantum state with respect to the associated
conserved charge. These fluctuations stem from the fact
that a symmetry-broken state cannot be an eigenstate of
the charge generating the corresponding symmetry trans-
formation. Remarkably, these Goldstone-Gibbs modes
can be elegantly described by a geometrical approach
that involves a generalization of the Berry connection de-
fined within a manifold whose variables are the conserved
charges, denoted as a result as the Berry-Gibbs connec-
tion. This connection is extended to the full manifold
which includes the continuous parameters of the broken
symmetries, where its curvature gives rise to a symplec-
tic form that provides the commutation relations between
the amplitudes of the Goldstone-Gibbs modes, hence be-
having as conjugate coordinate-momenta. This relation
is also translated to the dynamics, where the amplitude
of the Gibbs modes behaves as a conserved momentum,
since it represents the quantum fluctuations of the cor-
responding charge, while the amplitude of the Goldstone
modes displays a ballistic motion, with a velocity propor-
tional to the momenta. Moreover, by invoking only ther-
modynamic considerations, we show that the Goldstone-
Gibbs sector can be diagonalized in terms of a set of
uncoupled NG modes, which determine how the origi-
nal NG modes hybridize within the different branches of
the spectrum in the low-frequency limit. Our results for
simultaneous symmetry breaking in a stationary state
thus generalize the original works of Refs. [48, 49] to
an arbitrary number of broken symmetries, and provide
a deeper understanding of the nature of the Goldstone-
Gibbs modes.

As an example, we apply our formalism to a cnoidal
wave in a superfluid, a model that has been used to un-
derstand fundamental aspects of supersolidity [50], vali-
dating our theoretical results. An important conclusion
of this study is that periodic motion along a closed or-
bit spawned by the broken generators may result in the
misidentification of time-crystalline behavior, not repre-
senting a genuine symmetry-breaking of time-translation
invariance.

The generality of the developed framework allows
its application for the study of simultaneous symmetry
breaking in Floquet states, where the NG modes are now
translated into Floquet-Nambu-Goldstone (FNG) modes
with zero quasi-energy. In particular, since spontaneous
Floquet states break continuous time-translational sym-
metry, they present a genuine temporal FNG mode. For
a complete characterization of the problem, we develop
the (t, φ) formalism, denoted in this way because of its
analogy with the conventional (t, t′) formalism [51, 52].
In combination with the generalized Gibbs ensemble, the
(t, φ) formalism leads to a thermodynamic description
analogous to that of stationary states, which we term
as Floquet thermodynamics. For spontaneous Floquet
states, this is a direct consequence of energy conserva-
tion, which implies the existence of a conserved Floquet

charge. Conventional Floquet states also admit a ther-
modynamic description in terms of the Floquet enthalpy,
the Legendre transform of the energy with respect to the
Floquet charge. This is because driven systems are isope-
riodic, i.e., they operate at an externally fixed frequency,
which is the conjugate variable of the Floquet charge,
in analogy with isobaric and isothermal systems where
the environment fixes the pressure or the temperature,
respectively. The temporal FNG mode and the Floquet
charge are thus the distinctive features of a spontaneous
Floquet state, absent in driven systems.

The quantization of the FNG and Gibbs modes is per-
formed along the same lines as in the stationary case,
described by a Berry-Gibbs connection that results in a
similar coordinate-momentum correspondence. However,
a novel feature is that the amplitude of the temporal
FNG mode can be regarded as an effective time coordi-
nate, whose conjugate momentum represents the energy
fluctuations. Therefore, the quantum amplitude of the
temporal FNG mode represents a unique realization of a
time operator in Quantum Mechanics.

Finally, we apply our formalism to the CES state, com-
puting its quantum fluctuations with the help of the
Truncated Wigner method [53, 54]. Theory predicts
that, at long times, the temporal FNG mode dominates
the density-density correlations, observing an excellent
agreement with the numerical results. Based on these
results, we propose a feasible experimental scheme to ob-
serve the temporal FNG mode of the CES state.

The article is arranged as follows. Section II discusses
how the general results from Goldstone theorem are re-
covered in variational approaches in many-body systems.
Section III addresses simultaneous symmetry breaking in
stationary states within the generalized Gibbs ensemble.
Section IV applies the formalism of Sec. III to a cnoidal
wave in a superfluid. Section V extends the results of Sec.
II to Floquet states, both spontaneous and conventional.
Section VI discusses simultaneous symmetry breaking in
Floquet systems. Section VII applies the formalism of
Sec. VI to study the quantum fluctuations of the CES
state. Technical details are presented in the Appendix.

II. VARIATIONAL GOLDSTONE THEOREM

Originally derived within the framework of relativistic
quantum field theory [55], the general idea behind Gold-
stone theorem is universal, namely, solutions which break
some continuous symmetry of the equations of motion in-
clude a linear zero mode associated to the broken symme-
try. This feature is even present in classical mechanics.
Consider a particle of mass m moving within a potential
V (x) which is invariant under some continuous symme-
try transformation of the coordinates, V (x′) = V (x),
x′ = x′(x, α), where α parameterizes the transformation
in such a way that α = 0 corresponds to the identity
transformation, x′(x, 0) = x. As standard in Lie theory,
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the symmetry transformation can be expanded as

x′ = x + αξ + . . . (1)

where the vector ξ = −iLx describes the symmetry
transformation at the infinitesimal level and L is the gen-
erator of the continuous transformation on the coordi-
nates. At the same time, Noether’s theorem guarantees
the existence of a conserved quantity associated to that
symmetry.

Time-independent solutions to the equations of motion
are given by the equilibrium points x0 which extremize
the potential, ∇V (x0) = 0. Linearized motion around
equilibrium positions is characterized by the eigenvalues
mΩ2

i of the matrix ∂2
ijV (x0). In particular, potential

minima are stable equilibrium points, as then all Ωi are
real and represent the frequencies of the normal modes
of oscillation.

It is immediate to show that the symmetry of the po-
tential implies

∂2
ijV (x0)ξj0 = 0, ξ0 = −iLx0, (2)

where hereafter we use Einstein convention summation
unless otherwise stated. Thus, if the symmetry is bro-
ken by the equilibrium position, which means that is not
invariant under the symmetry transformation, Lx0 6= 0,
then there is a zero-frequency normal mode, the Nambu-
Goldstone mode. Qualitatively, this zero mode results
from the fact that there is no restoring force along the
orbit of the equilibrium point under the symmetry trans-
formation because potential energy is conserved there.

A simple example to visualize this behavior is given
by a particle in a 2D y-independent potential, V (x, y) =
V (x), with V (0) a global minimum and V ′′(0) = mω2

x.
In that case, if we consider that the particle is placed at
the equilibrium position x = (0, y0), small displacements
along the x-axis lead to oscillations with frequency ωx.
However, due to the symmetry of the problem, ωy = 0,
and any small displacement along the y-axis leads to an
unbounded motion with constant velocity, y(t) = y0+vyt,
since there is no restoring force in that direction.

The previous concepts can be straightforwardly ex-
tended to quantum many-body systems. In that context,
it is common to use variational approaches based on trial
wave functions characterized by a reduced number of pa-
rameters in order to tackle the exponentially large com-
plexity of the problem. For example, in the Dirac-Frenkel
variational principle, the ansatz state |Ψ(t)〉 is required
to extremize

L(t) ≡ 〈Ψ(t)| i~∂t − Ĥ |Ψ(t)〉 , (3)

which would yield the exact Schrödinger equation if no re-
striction were imposed on |Ψ(t)〉 [56]. The Dirac-Frenkel
formalism can also be extended to finite temperatures
[57]. Other variational methods are based on a La-
grangian approach, where the trial wave function extrem-
izes some action; indeed, Eq. (3) can be regarded as an ef-
fective Lagrangian. A large number of well-known equa-
tions fall under this class of approximation, including the

Gross-Pitaevskii (GP) equation [58], the Hartree-Fock
(HF) equations [59], the Gutzwiller ansatz [60], or the
MultiConfiguration Time-Dependent Hartree (MCTDH)
method [61, 62]. In all cases, if we group the variational
parameters in a generic vector X , the resulting equations
of motion take the form

i~
dX i

dt
= Hi

j(X)Xj , (4)

where the vector components X i can be orbital wave
functions (GP and HF equations), wave-function co-
efficients (Gutzwiller ansatz), or even both (MCTDH
method). The matrix Hi

j(X) can be nonlinear in the vec-

tor components X i, acting as the effective Hamiltonian
of the problem. For the present moment, we take the
original Hamiltonian Ĥ as time-independent, so Hi

j(X)
only depends implicitly on time through X .

Now, we assume that there are stationary solutions of

the form X i(t) = X ie−iǫit/~, satisfying the self-consistent
eigenvalue equation

Hi
j(X)Xj = ǫiX i. (5)

The spectrum of collective modes associated to this sta-
tionary solution is obtained by considering small pertur-
bations X i(t) = X i + δX i(t), which yields a linear equa-
tion of the general form

i~
dδX i

dt
= M i

j(X)δXj, (6)

with M i
j(X) some matrix that depends on the back-

ground stationary solution. The eigenvalues of M i
j(X)

are the energies of the collective modes. This is indeed
the case of the Bogoliubov-de Gennes (BdG) equations
for both the GP equation [58] and the Gutzwiller ansatz
[63], and of the Time-Dependent Hartree-Fock Approxi-
mation (TDHFA) for the HF equations [64].

In the same fashion as in the classical example, if the
stationary solution X spontaneously breaks a continuous
symmetry of the problem, so X ′ = X ′(X,α) = X −
iαLX + . . . is also a stationary solution, then the vector
LX 6= 0 is a zero mode of the linearized equations of
motion,

0 = M i
j(X)(LX)j. (7)

This is the NG mode associated to the spontaneous sym-
metry breaking. We note that this derivation also applies
to pseudo-NG modes [65, 66], which emerge from ex-
tended symmetries in the equations of motion that were
not present in the original Hamiltonian.

III. SIMULTANEOUS SYMMETRY BREAKING
IN MANY-BODY FIELD THEORY

We proceed to review how symmetries emerge in
many-body systems. For the sake of definiteness, we
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consider the following general time-independent second-
quantization Hamiltonian, valid for both interacting
bosons and fermions [67],

Ĥ =

ˆ

dx Ψ̂†(x)

[

− ~
2

2m
∇2 + V (x)

]

Ψ̂(x) (8)

+
1

2

ˆ

dx

ˆ

dx′Ψ̂†(x)Ψ̂†(x′)V(x − x′)Ψ̂(x′)Ψ̂(x),

where the field operator Ψ̂, the external potential V (x),
and the interacting potential V(x−x′) may present a ten-
sorial structure due to internal degrees of freedom (spin,
pseudospin. . . ). The corresponding Heisenberg equation
of motion for the field operator is

i~∂tΨ̂(x, t) = [Ψ̂(x, t), Ĥ ] =

[

− ~
2

2m
∇2 + V (x)

]

Ψ̂(x, t)

+

ˆ

dx′ Ψ̂†(x′, t)V(x − x′)Ψ̂(x′, t)Ψ̂(x, t). (9)

The classical version of this equation can be derived from
the Lagrangian

L ≡
ˆ

dxL, L = i~Ψ†∂tΨ −H, (10)

with H the Hamiltonian density arising from Eq. (8).
The canonical momentum associated to the field Ψ is
Π(x) = i~Ψ†(x), giving rise to the Poisson bracket

i~{Ψ(x),Ψ†(x′)} = δ(x− x′). (11)

This Lagrangian correspondence allows, via Noether’s
theorem, to identify the conserved charges arising from
the symmetries of the Hamiltonian. Specifically, any con-
tinuous symmetry transformation that leaves invariant
the action gives rise to a conserved charge

Q =

ˆ

dx
[

ξ0L + i~Ψ†∆Ψ
]

. (12)

In the above equation, ξ,∆Ψ describe the infinitesimal
variations of the coordinates and the field under the sym-
metry transformation, respectively:

x′µ = xµ + αξµ(x) + . . . , Ψ′(x) = Ψ(x) + α∆Ψ(x) + . . .
(13)

where we use the standard relativistic notation xµ =
(t,x). In particular, ∆Ψ = −iTΨ, with T the genera-
tor of the transformation on the field.

The most common symmetries are invariance under
phase transformations, temporal and spatial translations,
and rotations, i.e.,

Ψ′ = Ψe−iθ, (14)

t′ = t− t0,

x′ = x + x0,

x′ = R(ϕ)x,

leading to the conserved charges

Qθ = N =

ˆ

dx Ψ†Ψ, (15)

Qt = E ≡ H =

ˆ

dx H,

Qx = P =

ˆ

dx Ψ†(−i~∇)Ψ,

Qϕ = L =

ˆ

dx Ψ†[−i~(x×∇) + S]Ψ,

which are the particle number, energy, momentum and
angular momentum, respectively. In the latter case, the
spin S arises due to the internal structure of the field Ψ.

In the following, lowercase Latin indices a, b, c . . . la-
bel both continuous symmetry transformations and the
associated conserved charges, a = α,A; lowercase Greek
indices α, β, γ . . . label symmetry transformations, α =
θ, t,x . . .; and uppercase Latin indices A,B,C . . . label
the conserved charges Qα,β,γ associated to the symme-
tries α, β, γ, A = N,E,P . . . The continuous symme-
try parameters, generators and conserved charges will be
grouped in vectors α, T, Q, respectively.

It is well-known that the conserved charge Qα gener-
ates the corresponding symmetry transformation α, as
revealed by the Poisson bracket

{Ψ(x), Qα} =
δQα

δi~Ψ†
= ∆Ψ = −iTαΨ. (16)

In particular, since most of the symmetries do not involve
the time coordinate, ξ0 = 0, and hence their conserved
charges can be written as a simple bilinear expression in
the field

Qα = ~

ˆ

dx Ψ†TαΨ = ~ 〈Ψ|Tα|Ψ〉 , (17)

with

〈χ|Ψ〉 ≡
ˆ

dx χ†(x)Ψ(x) (18)

the usual scalar product. The generators Tα are Her-
mitian operators under this scalar product, so symmetry
transformations are implemented by unitary operators of
the form U = e−iα·T. For instance, for typical symme-
tries, Tθ = 1, Tx = −i∇, Tϕ = x × Tx + S. We note
that these derivations apply for an arbitrary many-body
system, including both bosons and fermions.

A. Spontaneous symmetry breaking in the
generalized Gibbs ensemble

We now address the case in which the state of the sys-
tem spontaneously breaks n symmetries, where in the
following we restrict the vectors α,Q,T to have n com-
ponents corresponding to those broken symmetries. Fur-
thermore, we assume that those symmetries do not in-
volve time [taking the form of Eq. (17)] and that their
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generators commute between themselves,

[Tα, Tβ ] = 0. (19)

In order to explicitly account for spontaneous symme-
try breaking in the dynamics, we introduce a Lagrange
multiplier λα for the conserved charge Qα associated to
each broken symmetry,

L =

ˆ

dx iΨ∗∂tΨ −H + λαQα. (20)

By assumption, the broken symmetries do not involve
time and commute between themselves, so this con-
strained Lagrangian yields exactly the same conserved
charges Qα. However, the Hamiltonian is now replaced
by the generalized Gibbs Hamiltonian

K = H − λαQα = H − λ ·Q. (21)

For illustrative purposes, we consider the specific case
of a BEC of spin-0 particles close to zero temperature,
where the classical scalar field Ψ describes the macro-
scopic wave function of the condensate. Hereafter, we
take the pseudopotential V(x − x′) = gδ(x − x′) as
the interacting potential, and set units such that ~ =
m = gn0 = 1, where n0 is some characteristic den-
sity that rescales the field so it becomes dimensionless,
Ψ → √

n0Ψ. The condensate dynamics is determined
by the classical equation of motion derived from the La-
grangian (10), which is the usual time-dependent GP
equation

i∂tΨ =

[

−∇2

2
+ V (x) + |Ψ|2

]

Ψ ≡ HGPΨ, (22)

with HGP the effective nonlinear GP Hamiltonian. This
equation takes the same self-consistent form of Eq. (4)
by choosing X as a two-component vector X = (Ψ,Ψ∗).

Symmetry-breaking states are described as stationary
solutions of the constrained Lagrangian (20), obtained by
extremizing K with respect to variations of the macro-
scopic wavefunction, leading to the Gross-Pitaevskii-
Gibbs (GPG) equation:

δK

δΨ∗
= 0 =⇒ KGPΨ0 ≡ [HGP − λ ·T]Ψ0 = 0. (23)

We remark that each component TαΨ0 of the vector TΨ0

is nonvanishing as they are broken symmetries by as-
sumption. Furthermore, we also assume in the following
that they are linearly independent, meaning that there is
no constant vector u satisfying uαTαΨ0 = 0. If this were
the case, the conserved charges would not be independent
between themselves because then uαQα = 0. Neverthe-
less, even in this situation, one could further restrict the
vectors α,T,Q in such a way that the components of
TΨ0 are all linearly independent.

The standard time-independent GP equation is re-
trieved from the GPG equation for λα = 0, α 6= θ,

and λθ = µ, where µ is the chemical potential, the La-
grange multiplier associated to the particle number N ,
emerging due to the spontaneous symmetry-breaking of
the U(1)-invariance under phase transformations. When
additional continuous symmetries are broken, the gener-
alized Gibbs ensemble allows us to treat all of them on
equal grounds, leading to the GPG equation.

The actual dynamics of the symmetry-breaking state is
obtained by inserting the stationary GPG wavefunction
in the original time-dependent GP equation (22). Taking
as initial condition Ψ(x, 0) = Ψ0(x) gives

i∂tΨ = HGPΨ = (λ ·T)Ψ =⇒ Ψ(x, t) = e−iλ·TtΨ0(x).
(24)

Hence, the Lagrange multipliers λ are the velocities along
the orbits generated by the broken-symmetry transfor-
mations, α̇ = λ. This generalizes the well-known result
that the chemical potential is the velocity of the phase
for a stationary GP wavefunction, Ψ(x, t) = Ψ0(x)e−iµt,
to an arbitrary number of spontaneously broken symme-
tries.

Apart from a dynamical role, Lagrange multipliers also
play a thermodynamical one, as they can be obtained
from the usual energy E = K + λαQα, still conserved as
{K,Qα} are conserved charges. Evaluating its expression
for Ψ0 and making use of the GPG equation yields

E =

ˆ

dx

[

−Ψ∗
0∇2Ψ0

2
+ V (x)|Ψ0|2 +

|Ψ0|4
2

]

(25)

=

ˆ

dx

[

Ψ∗
0HGPΨ0 −

|Ψ0|4
2

]

= λαQα −
ˆ

dx
|Ψ0|4

2
.

In order to proceed further, we first take derivative with
respect to the charge Qα in the GPG equation,

KGP∂AΨ0 + (∂A|Ψ0|2)Ψ0 = ∂Aλ
βTβΨ0, (26)

and then evaluate the scalar product with Ψ0, arriving
at

Qβ∂Aλ
β =

ˆ

dx
∂A|Ψ0|4

2
, (27)

where we have used that KGP is an Hermitian operator
and KGPΨ0 = 0. With the help of this result, we simply
find

∂AE =
∂E

∂Qα
= λα ≡ λA (28)

where, for any vector v with upper indices α, we lower
indices as vA ≡ vα. This notation will be justified in Sec.
III B, from where a simpler derivation of this result can
be obtained [see Eq. (48) and ensuing discussion]:

∂AE =

ˆ

dx (∂AΨ∗
0)HGP Ψ0 + (HGPΨ0)∗∂AΨ0

= iλβ(zA|zβ) = λα. (29)
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Interestingly, since p = |Ψ0|4/2 is the local pressure,
we can rewrite Eq. (25) as

E = λαQα −
ˆ

dx p, (30)

where we note that the conserved charges are macro-
scopic extensive magnitudes, resulting from integrals over
the whole volume. By combining this expression with
Eqs. (27), (28) and identifying the element of volume
as dV ≡ dx, we retrieve the generalization for non-
homogeneous systems of the first principle of Thermo-
dynamics (notice that we work at T = 0),

dE = λαdQα − pdV, (31)

and of the Gibbs-Duhem relation,
ˆ

dV ∂Ap = Qβ∂Aλ
β . (32)

B. Nambu-Goldstone modes in the generalized
Gibbs ensemble

Once we have characterized the spontaneous
symmetry-breaking states within the generalized
Gibbs ensemble, we study the emergence of NG modes
in their spectrum of excitations. For a condensate, these
are described by the BdG equations. In a classical con-
text, the BdG equations result from taking Ψ′ = Ψ + ϕ
in the time-dependent GP equation (22) and expanding
up to linear order in the field fluctuations ϕ,

i∂tΦ = M(t)Φ, Φ =

[

ϕ
ϕ∗

]

, M(t) =

[

N(t) A(t)
−A∗(t) −N∗(t)

]

,

(33)
where

N(t) = −∇2

2
+V (x)+2|Ψ(x, t)|2, A(t) = Ψ(x, t)2. (34)

In general, any continuous parameter a on which the
wavefunction depends, but the original Hamiltonian does
not, has an associated time-dependent BdG solution:

i∂tza = M(t)za, za ≡
[

∂aΨ
∂aΨ∗

]

. (35)

This includes the spontaneously broken symmetries,

zα =

[

∂αΨ
∂αΨ∗

]

=

[

−iTαΨ
i(TαΨ)∗

]

, (36)

since Ψα = e−iα·TΨ is also a solution of the time-
dependent GP equation.

Applying the same reasoning to Ψ0 and the time-
independent GPG equation (23), we obtain that zα is
here a zero mode of the BdG-Gibbs (BdGG) equations:

M0zα = 0, M0 =

[

N0 A0

−A∗
0 −N∗

0

]

, (37)

where now

N0 = −∇2

2
+V (x)+2|Ψ0(x)|2−λ·T, A0 = Ψ2

0(x). (38)

We can then identify zα as the NG mode associated to
the spontaneous symmetry breaking in a particular ap-
plication of the general result of Eq. (7). In turn, each
NG mode zα is paired with a Gibbs mode zA, obtained
by taking derivative of the GPG equation with respect
to the corresponding conserved charge Qα [see Eq. (26)],

M0zA = i∂Aλ
βzβ , (39)

which means that zA is a zero BdGG mode with a source
term. Another way to put it is that the Gibbs modes are
zero modes of the operator M2

0 , M2
0 zA = 0.

We note that the linear independence of the NG modes
zα is already guaranteed by the assumption of the lin-
ear independence between the components of the vec-
tor TΨ0 [see discussion after Eq. (23)]. As an exam-
ple, consider a one-dimensional (1D) plane wave solution
Ψ0(x) = eiqx in a homogeneous system, which apparently
spontaneously breaks both U(1) and spatial-translation
symmetry. However, since TxΨ0 = qTθΨ0 = qΨ0, then
zx = qzθ, and we only have one independent NG mode.
Indeed, the resulting BdG dispersion relation is that of a
homogeneous system plus a Doppler shift [68]. The mo-
mentum is also proportional to the particle number as
P = qN . In general, when the system is in the ground
state, there are counting rules relating the number of in-
dependent NG modes and broken-symmetry generators
[69–71].

The BdGG dynamics is obtained by performing a uni-
tary transformation on the GP wavefunction in Eq. (22),

Ψ(x, t) = e−iλ·TtΨ′(x, t), (40)

which yields the time-dependent version of the GPG
equation,

i∂tΨ
′ = KGPΨ′. (41)

Considering fluctuations around the stationary GPG
wavefunction, Ψ′(x, t) = Ψ0(x) + ϕ(x, t), yields at lin-
ear order the time-dependent BdGG equations

i∂tΦ = M0Φ. (42)

The matrix M0 is a time-independent linear operator, so
the solutions to Eq. (42) can be always decomposed in
terms of a complete set of eigenmodes,

M0zn = ωnzn, zn ≡
[

un

vn

]

. (43)

These modes form an orthonormal basis under the inner
product

(zn|zm) ≡ 〈zn|σzzm〉 =

ˆ

dx u∗
num − v∗nvm, (44)
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since M0 is pseudo-Hermitian, (zn|M0zm) = (M0zn|zm),
where 〈zn|zm〉 is the usual scalar product for two spinors
and σi are the Pauli matrices. The pseudo-Hermiticity
of M0 also implies that the inner product is conserved
for two solutions of the time-dependent BdGG equation
(42). However, both M0 and the inner product are not
positive definite. Indeed, by defining conjugate modes as
z̄n ≡ σxz

∗
n, it is easy to see that

M0z̄n = −ω∗
nz̄n, (zn|zm) = −(z̄m|z̄n) = −(z̄n|z̄m)∗.

(45)
In the following, for simplicity, we assume that there are
no dynamical instabilities (i.e., there are no complex fre-
quency modes) and that the only modes with zero fre-
quency are the NG modes. It is immediate to show that
one can separate the BdGG modes into two orthogonal
sectors: the Goldstone-Gibbs sector formed by the paired
modes {za} = {zα, zA}, and the regular Bogoliubov sec-
tor formed by the finite-frequency eigenmodes {zn},

(zn|zm) = δnm, (46)

(za|zn) = 0.

C. Berry-Gibbs connection

The derivation of the orthogonality relations within the
Goldstone-Gibbs sector is more delicate. First, we note
that the modes za are self-conjugates, za = z̄a, so their
inner product is purely imaginary, (za|zb) = −(za|zb)∗,
and they have zero norm, (za|za) = 0. In particular,
for the NG modes, since by assumption [Tα, Tβ] = 0,
〈Ψ0|[Tα, Tβ]|Ψ0〉 = 0, and then

(zα|zβ) = 〈TαΨ0|TβΨ0〉 − 〈TβΨ0|TαΨ0〉 = 0 (47)

as the generators Tα are Hermitian. In general, deriv-
ing a conserved charge with respect to any continuous
parameter b yields

∂bQα =

ˆ

dx (TαΨ0)
∗∂bΨ0 + (∂bΨ0)∗TαΨ0 = −i(zα|zb).

(48)
Since the conserved charges are independent variables,
we obtain that

(zα|zB) = i∂BQα = iδAB. (49)

Finally, we only need to study the orthogonality be-
tween the Gibbs modes zA. We show that one can
indeed choose (zA|zB) = 0 by performing a general-
ized gauge transformation as follows. The wavefunction
Ψχ = e−iχ·TΨ0 is also a solution of the GPG equa-
tion, where the vector χ only depends on the conserved
charges, χ = χ(Q). Under the transformation Ψ0 → Ψχ,
the Gibbs modes zA and their inner product transform
as

∂AΨ0 → e−iχ·T
[

∂A − i∂Aχ
βTβ

]

Ψ0,

(zA|zB) → (zA|zB) + i(∂Aχ
β − ∂Bχ

α), (50)

while the rest of the orthogonality relations remain un-
changed. By defining a real antisymmetric tensor FAB ≡
i(zA|zB), we see from the equation above that we can set
(zA|zB) = 0 if we find a generalized gauge transformation
satisfying

FAB = ∂AχB − ∂BχA, (51)

which means that F is the exterior derivative of χ,
F = dχ. It is easy to check that FAB obeys the Bianchi
identity

∂CFAB + ∂BFCA + ∂AFBC = 0. (52)

Hence, the exterior derivative of F vanishes, dF = 0.
This implies, via Poincaré’s Lemma, that F is exact, i.e.,
it can be written as the exterior derivative of some vector
field W , F = dW . Thus, by directly taking χA = WA,
we can always set (zA|zB) = 0. In fact,

FAB = i(zA|zB) = i(〈∂AΨ0|∂BΨ0〉 − 〈∂BΨ0|∂AΨ0〉)
(53)

is nothing else than the usual Berry curvature evaluated
for the GPG wavefunction, which here depends on the set
of conserved charges Q (we recall that they are not intrin-
sic parameters of the original Hamiltonian). We then im-
mediately identify F = dW , with WA = i 〈Ψ0|∂AΨ0〉 [72].
As a result of this analogy, we denote the vector W as
the Berry-Gibbs connection and FAB as the Berry-Gibbs
curvature. Its main differences with the standard Berry
connection are i) 〈Ψ0|Ψ0〉 does depend on the connection
parameters (specifically, 〈Ψ0|Ψ0〉 = N); and ii) we can
perform generalized gauge transformations, which go be-
yond the usual phase transformations Ψ0 → e−iθ(Q)Ψ0,
under which FAB is not invariant.

The Berry-Gibbs curvature can be extended to the
complete Goldstone-Gibbs manifold with coordinates
xa = (xα, xA) = (α,Q) as

Fab ≡ i(za|zb) = i(〈∂aΨ0|∂bΨ0〉 − 〈∂bΨ0|∂aΨ0〉), (54)

where we recall that ∂αΨ0 = −iTαΨ0. In matrix nota-
tion, it reads

F =

[

Fαβ −In
In FAB

]

, (55)

In being the n × n identity matrix. The off-diagonal
blocks are determined by Eq. (49). In this work, we
have assumed that the generators of the broken symme-
tries commute between themselves. This implies that
Fαβ = 0, Eq. (47), and that one can always set FAB = 0
by means of a generalized gauge transformation, as dis-
cussed above. Actually, within the complete Goldstone-
Gibbs manifold, a generalized gauge transformation is
just a change of coordinates

x′α = xα + χα(Q), x′A = xA. (56)

We can then summarize all the orthogonality relations
as

(zn|zm) = δnm, (za|zn) = 0, (za|zb) = −iFab = iΩab,
(57)
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with Ω the 2n× 2n symplectic form,

Ω =

[

0 In
−In 0

]

. (58)

This symplectic form allows us to lower (rise) indices as

xb = xaΩab, xa = xbΩ
ba, (59)

where Ωab is the inverse of the symplectic matrix, Ω−1 =
−Ω = ΩT , satisfying ΩacΩ

cb = ΩbcΩca = δba.

D. Quantization

When returning to the quantum theory, quantization
à la Dirac prescribes that Poisson brackets are promoted
to commutators as [Â, B̂] = i~{A,B}. Therefore, the
field and the conserved charges are promoted to quantum
operators which satisfy [see Eqs. (11), (16)]

[Ψ̂(x), Ψ̂†(x′)] = δ(x− x′), (60)

[Ψ̂(x), Q̂α] = TαΨ̂(x).

In the case of a fermionic field operator, the commutator
is replaced by an anticommutator. The symmetry trans-
formations on the field operator can be implemented as

eiα·Q̂Ψ̂(x)e−iα·Q̂ = e−iα·TΨ̂(x), (61)

where Q̂ is a vector containing the second-quantized
charges Q̂α, in turn satisfying [Ĥ, Q̂α] = [Q̂α, Q̂β ] = 0.
The Heisenberg equation of motion for the field operator
(9) results in the quantum version of the time-dependent
GP equation (22):

i∂tΨ̂(x, t) =

[

−∇2

2
+ V (x) + Ψ̂†(x, t)Ψ̂(x, t)

]

Ψ̂(x, t).

(62)
We now adapt the reasoning behind Eq. (40) by per-
forming a unitary transformation

Ψ̂(x, t) ≡ eiλ·Q̂tΨ̂′(x, t)e−iλ·Q̂t = e−iλ·TtΨ̂′(x, t), (63)

equivalent to working in a Gibbs picture where the dy-
namics is governed by the generalized Gibbs Hamilto-

nian, Ψ̂′(x, t) = eiK̂tΨ̂′(x)e−iK̂t. The resulting equation
of motion in the Gibbs picture is the quantum version of
the time-dependent GPG equation:

i~∂tΨ̂
′(x, t) = [Ψ̂′(x, t), K̂] (64)

=

[

−∇2

2
+ V (x) + Ψ̂′†(x, t)Ψ̂′(x, t) − λ ·T

]

Ψ̂′(x, t).

These results are general and exact, easily translatable
to an arbitrary many-body system. In the specific case
of a condensate, we can expand the field operator around
the GPG expectation value, Ψ̂′(x, t) = Ψ0(x) + ϕ̂(x, t),

recovering at linear order the quantum time-dependent
BdGG equations (42),

i∂tΦ̂ = M0Φ̂, Φ̂(x, t) =

[

ϕ̂(x, t)
ϕ̂†(x, t)

]

. (65)

Using that {za, zn} form a complete of set of modes, we
can expand the quantum fluctuations of the field operator
as

Φ̂(x, t) = γ̂a(t)za(x)+
∑

n

γ̂n(t)zn(x)+ γ̂†
n(t)z̄n(x), (66)

where γ̂a, γ̂n are the quantum amplitudes of each BdGG
mode. In the case of regular Bogoliubov modes, their
amplitude is obtained from

γ̂n(t) ≡ (zn|Φ̂(t)). (67)

By invoking the canonical commutation rules for the field
operator, first line in Eq. (60), it is shown that these
amplitudes behave as bosonic annhihilation operators,

[γ̂n, γ̂
†
m] = [(zn|Φ̂), (Φ̂|zm)] = (zn|zm) = δnm. (68)

The corresponding equation of motion is simply

i∂tγ̂n(t) = (zn|M0Φ̂) = ωnγ̂n(t) =⇒ γ̂n(t) = γ̂ne
−iωnt.

(69)
Regarding the amplitudes of the Goldstone-Gibbs modes,
quantization is more tricky because of their zero norm.
In this case, we have that

(za|Φ̂) = iΩabγ̂
b = −iγ̂a =⇒ γ̂a = i(za|Φ̂). (70)

Since both za, Φ̂ are self-conjugates, γ̂a is a Hermitian
operator, γ̂a = γ̂†

a, and so is γ̂a = γ̂bΩ
ba. Their commu-

tation relations are readily found to be

[γ̂a, γ̂b] = −iΩab. (71)

This implies that the components of the vector γ̂ =
(γ̂α, γ̂A) ≡ (X̂α, P̂A) can be seen as generalized coor-
dinate and momenta operators, as those also satisfy the
same symplectic algebra. Indeed, we can take this anal-
ogy further by analyzing their equations of motion,

i∂tγ̂a(t) = i(za|M0Φ̂) = i(M0za|Φ̂) (72)

Specifically,

X̂α ≡ γ̂α = i(zA|Φ̂), (73)

P̂A ≡ γ̂A = −i(zα|Φ̂),

and thus, from Eqs. (37), (39), we get

i∂tP̂
A = 0 =⇒ P̂A(t) = P̂A, (74)

i∂tX̂
α = ∂Aλ

β(zβ |Φ̂) = i∂AλBP̂
B =⇒

X̂α(t) = X̂A(t) = X̂A + (∂AλB)P̂Bt.
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In this way, the conserved momenta P̂B yield the ve-
locities of the coordinates X̂A. Moreover, since in turn
λA = ∂AE, then ∂AλB = ∂BλA = ∂2

ABE, and we obtain
the meaningful relation

X̂A(t) = X̂A + (∂AλB)P̂Bt = X̂A + (∂BλA)P̂Bt. (75)

The physics behind this equation is very simple. After
quantization, each conserved charge is expanded up to
linear order in the field fluctuations in the same fashion
as Eq. (48),

Q̂α ≃ Qα − i(zα|Φ̂) = Qα + P̂A, (76)

where Qα is the mean-field value of the charge. Thus, the
momentum P̂A describes the quantum fluctuations of the
associated charge, δQ̂α ≃ P̂A, from where it inherits its
time-independent character. These quantum fluctuations
precisely stem from the fact that the spontaneous break-
ing of a given symmetry implies that the system cannot
be in an eigenstate of the associated charge. On the other
hand, the GPG wavefunction displaces with constant ve-
locity along the orbits generated by the broken-symmetry
transformations, Eq. (24), whose tangent space is pre-
cisely spanned by the NG modes. In particular, the ve-
locity component along zα is the Lagrange multiplier λA,
which depends on the conserved charges λA = λA(Q).
In the quantum theory, these velocities also fluctuate
around their mean-field values as the conserved charges
do:

λ̂A = λA(Q̂) ≃ λA(Q) + ∂BλAP̂
B. (77)

The quantum fluctuations of the velocities are then trans-
lated into a ballistic motion for the quantum amplitude
of the NG modes, arriving at Eq. (75). Another way to
put it is that the modes zA are not eigenmodes of the
BdGG equations. Instead, from Eq. (24), we have that

∂AΨ(x, t) = e−iλ·Tt
[

∂A − i(∂Aλ
β)Tβ t

]

Ψ0, (78)

which yields zA(x, t) = zA(x) + (∂Aλ
β)zβt in the time-

dependent BdGG equation (42). As a result, we recover
the same intuitive picture of the classical mechanical ex-
ample in Sec. II: the dynamics of the fluctuations along
the orbits generated by the symmetry transformations
lead to unbounded motion as there is no restoring force.

After gathering Eqs. (69), (74), we find that the quan-
tum field fluctuations evolve as

Φ̂(x, t) = [X̂α + ∂AλBP̂
Bt]zα(x) + P̂AzA(x) (79)

+
∑

n

γ̂nzn(x)e−iωnt + γ̂†
n(t)z̄n(x)eiωnt.

The same dynamics could have been derived from the
generalized Gibbs Hamiltonian by inserting Eq. (66) in

K̂ = Ĥ − λαQ̂α and expanding up to quadratic order
in the field fluctuations, in the spirit of the Bogoliubov

approximation. After dropping out all mean-field and
zero-point c-number contributions, we arrive at

K̂ =
1

2
(Φ̂|M0Φ̂) =

∂2
ABE

2
P̂AP̂B +

∑

n

ωnγ̂
†
nγ̂n. (80)

The second term is the usual Bogoliubov contribution
while the first one is the Goldstone-Gibbs contribution.
The latter is quadratic in the fluctuations of the con-
served charges, then behaving as effective momenta, and
does not depend on the NG amplitudes, since the Hamil-
tonian is invariant under the symmetry transformations.
In particular, if the solution is energetically stable, then
∂2
ABE is a positive definite form. In fact, one can always

diagonalize ∂2
ABE by performing an appropriate rotation

in the Goldstone-Gibbs sector, ∂2
ABE = M−1

A δAB, where
MA plays the role of an effective mass. This rotation
yields a new set of independent Goldstone-Gibbs modes
{z′α, z′A}, whose amplitudes {X̂ ′α, P̂ ′A} satisfy

K̂ =
(P̂ ′A)2

2MA
+
∑

n

ωnγ̂
†
nγ̂n, X̂ ′α(t) = X̂ ′α +

P̂ ′A

MA
t. (81)

Thus, the matrix ∂2
ABE, computed from thermodynam-

ical considerations, determines how the different NG
modes hybridize in a dynamical context. Moreover,
as the NG modes are the zero-frequency limit of some
branches from the regular Bogoliubov sector, the struc-
ture of the hybrid Goldstone-Gibbs modes {z′α, z′A} also
describes their low-frequency regime.

The quantization of the Goldstone-Gibbs modes in the
usual GP context is simply retrieved by first setting all
Lagrange multipliers to zero except for the chemical po-
tential λθ = µ, so the only independent conserved charge
is the particle number N . With the resulting GP solu-
tion, one computes the remaining charges Qα to assemble
the vector Q = Q0. Once known, the full GPG equation
is solved as a function of Q, from where the Berry-Gibbs
curvature FAB and the matrix ∂2

ABE can be evaluated
at the point Q0 characterizing the GP solution.

To conclude this section, we stress that the thermo-
dynamical description is essential to ensure the conser-
vation of the commutation rules for the NG amplitudes
because it implies that the flow of the GPG wavefunction
is potential, i.e., α̇ = λA = ∂AE, and hence

[X̂A(t), X̂B(t)] = i(∂BλA − ∂AλB)t = 0. (82)

IV. CNOIDAL WAVE IN A SUPERFLUID

As a particular application of the formalism devel-
oped in the previous section, we consider a 1D quasi-
condensate [73] in a ring of length L with no external
potential, V (x) = 0, so there is invariance under spa-
tial translations. This type of model has been recently
used to understand certain aspects of supersolidity due
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to its appealing simplicity [50]. We now look for solu-
tions which simultaneously break both U(1) and space-
translational symmetry. In our notation, this is trans-
lated into α = (θ, x), T = (1,−i∂x) and Q = (N,P ),
respectively. The Lagrange multipliers associated to the
particle number N and momentum P are λθ = µ and
λx = v. The resulting GPG equation (23) then reads

HGPΨ0 =

[

−∂2
x

2
+ |Ψ0|2

]

Ψ0 = µΨ0 − iv∂xΨ0. (83)

We can get rid of v by the transformation Ψ0(x) =

eivxΨ̃0(x), which yields the standard homogeneous GP
equation with a chemical potential µv,

HGP Ψ̃0 =

[

µ +
v2

2

]

Ψ̃0 ≡ µvΨ̃0. (84)

The solutions to this equation are the celebrated cnoidal
waves, Ψ̃0(x) = Ψn(x), which are determined by a vector
n = [n1, n2, n3], 0 ≤ n1 ≤ n2 ≤ n3:

Ψn(x) =
√

n(x)eiθ(x), (85)

n(x) = n1 + (n2 − n1)sn2(
√
n3 − n1x, ν),

θ(x) =

ˆ x

0

J

n(x′)
dx′

=
J

n1
√
n3 − n1

Π
(

am(
√
n3 − n1x, ν),m, ν

)

,

where the elliptic parameters 0 ≤ ν ≤ 1, m ≤ 0 are

ν =
n2 − n1

n3 − n1
, m = 1 − n2

n1
, (86)

while the chemical potential µv and cnoidal current J
read

µv =
n1 + n2 + n3

2
, J =

√
n1n2n3. (87)

Technical details behind the calculations of this section as
well as basic properties of elliptic functions are presented
in the Appendix.

The density n(x) of a cnoidal wave is a periodic func-
tion, with period

a =
2K(ν)√
n3 − n1

. (88)

Regarding the phase θ(x), since n(x) is periodic, J/n(x)
is periodic. The integral of a periodic function is a peri-
odic function modulo a constant slope wnx, given by its
zero Fourier component. In this case,

wn =
θ(a)

a
=

J

n1

Π(m, ν)

K(ν)
. (89)

Hence, we separate the phase as

θ(x) = wnx+

ˆ x

0

[

J

n(x′)
− wn

]

dx′ ≡ wnx+Θ(x), (90)

with Θ(x + a) = Θ(x) and Θ(0) = 0. As a result, the
total GPG wavefunction takes the form of a Bloch wave,

Ψ0(x) = eivxΨn(x) ≡ ei(v+wn)xun(x), (91)

where un(x) is a periodic function, un(x + a) = un(x),
and v + wn is the crystal momentum modulo 2π/a.

We now impose the physical constraints that determine
the 5 independent parameters of the problem: n, v, µ.
The periodic boundary conditions of the ring Ψ0(x+L) =
Ψ0(x) yield two equations, one for the density and one
for the phase. When joined by the particle number and
momentum conservation as well as the relation between
n and µv, we arrive at a system of 5 coupled equations:

L = ℓa =
2K(ν)ℓ√
n3 − n1

, ℓ ∈ N, (92)

2πq

L
= v + wn, q ∈ Z,

N =

ˆ L

0

dx |Ψ0(x)|2,

P =

ˆ L

0

dx Ψ∗
0(−i∂x)Ψ0,

µv =
n1 + n2 + n3

2
,

with ℓ ∈ N the number of cnoidal periods inside the ring
and q ∈ Z the winding number. For given N,P, L, only a
finite number of values (ℓ, q) is possible, each one charac-
terizing a different GPG solution. By noticing that the
equation for µv is trivial and combining the momentum
conservation plus the equation for the winding number,
a closed system of 3 equations is obtained for the vector
n [see Eq. (A16) and related calculations],

L =
2K(ν)ℓ√
n3 − n1

, (93)

n̄ = n1 + (n3 − n1)

[

1 − E(ν)

K(ν)

]

,

2πq

L
=

p̄

n̄
+
√
n1n2n3

[

Π(m, ν)

n1K(ν)
− 1

n̄

]

,

Remarkably, these expressions only involve intensive
thermodynamic magnitudes:

n̄ ≡ N

L
, p̄ ≡ P

L
. (94)

The procedure to numerically solve these equations is
explained after Eq. (A16). Once done, we can evaluate
the energy density by

e ≡ E

L
= µn̄ + vp̄ +

n2
1

2
− n1n̄ (95)

− (n3 − n1)2

6

[

(ν + 2) − 2(ν + 1)
E(ν)

K(ν)

]

,

and numerically compute the derivatives ∂NE = ∂n̄e,
∂PE = ∂p̄e, checking that indeed we recover ∂NE =
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µ, ∂PE = v. We note that the above formalism can be
straightforwardly adapted to account for the presence of
a flux within the ring.

Due to the symmetry of the problem, if Ψ0(x) is a
solution of the GPG equation, then e−iθΨ0(x − x0) is
also a solution of the GPG equation. This results in the
Goldstone-Gibbs modes

zθ =

[

−iΨ0

iΨ∗
0

]

, zx = −
[

∂xΨ0

∂xΨ∗
0

]

, (96)

zN =

[

∂NΨ0

∂NΨ∗
0

]

, zP =

[

∂PΨ0

∂PΨ∗
0

]

.

We have explicitly evaluated the extended Berry-Gibbs
curvature Fab = i(za|zb), recovering the predicted sym-
plectic form, Fab = −Ωab. Specifically, in our gauge
choice, the Berry-Gibbs curvature automatically vanishes
without the need of further generalized gauge transfor-
mations, FNP = FPN = 0 [see Eq. (A17) and ensu-
ing discussion]. In this example, a generalized gauge
transformation amounts to add global phase and spa-
tial shifts that depend on the particle number and mo-
mentum, θ = θ(N,P ), x0 = x0(N,P ). The quantum
amplitudes of the NG modes can be then understood as
the quantum fluctuations of the global phase and posi-

tion of the cnoidal wave, X̂θ = δθ̂, X̂x = δx̂0, while their
momenta describe total particle number and momentum
fluctuations, P̂N = δN̂ , P̂P = δP̂ .

Regarding thermodynamics, in all numerical cases we
have found that the matrix ∂2

ABE is both non-diagonal
and not positive definite. This reflects, respectively, that
both phase and crystalline modes hybridize in the low-
frequency limit, and the presence of a negative-energy
branch in the regular Bogoliubov sector as the true en-
ergy minimum is always an homogeneous GP solution
[50]. In fact, the results of Ref. [50], derived within the
standard mean-field GP approach, correspond to setting
v = 0 instead of fixing the total momentum P , and tak-
ing the limit L → ∞. However, even for v = 0, the
full GPG equation is still needed for the computation
of ∂2

ABE and the subsequent characterization of the NG
modes [see discussion after Eq. (81)].

When inserting the stationary GPG wavefunction into
the time-dependent GP equation, Ψ(x, 0) = Ψ0(x), we
obtain a traveling cnoidal wave,

i∂tΨ = HGPΨ =⇒ Ψ(x, t) = Ψ0(x− vt)e−iµt, (97)

which is equivalent to perform a Galilean transforma-
tion with velocity v to the cnoidal wave solution of the
time-independent homogeneous GP equation with chemi-
cal potential µv. This explicitly shows that the Lagrange
multiplier associated to the momentum P is the veloc-
ity of the spatial translation of the condensate, ẋ0 = v,
motivating the choice of the label v.

Naively, one could claim that the GPG wavefunction
also behaves dynamically as a continuous time crystal
since it is time periodic,

Ψ(x, t) = ei(v+wn)xun(x− vt)e−iµ̃t, (98)

with a period T = a/v and a quasi-chemical potential
µ̃ = µ + vwn + v2, defined modulo ω = 2π/T . However,
this time-periodic behavior does not stem from a genuine
spontaneous symmetry breaking of time-translational in-
variance but rather from that of spatial-translational in-
variance plus a constant motion along that closed broken-
symmetry orbit, as given by a non-vanishing v, in the
same fashion of Eq. (24). Indeed, the NG mode aris-
ing from the alleged time-translation symmetry break-
ing is not independent from those of phase and spatial
translations since ∂tΨ = −iµΨ − v∂xΨ, which implies
zt = µzθ + vzx. This is also reflected by the energy de-
pendence on the other conserved charges, E = E(N,P ).
In general, for stationary GPG solutions, time transla-
tion symmetry is not spontaneously broken by itself but
rather in terms of other symmetries as ∂tΨ = −i(λ ·T)Ψ
and E = E(Q).

This analysis suggests that certain time-periodic sys-
tems that do not genuinely break time-translational sym-
metry can be misidentified as continuous time crystals,
with the time periodicity simply arising from constant
motion along a closed orbit spawned by other broken
generators.

V. VARIATIONAL FLOQUET-GOLDSTONE
THEOREM: FLOQUET-NAMBU-GOLDSTONE

MODES

In order to study spontaneous symmetry breaking of
time-translation symmetry, we first analyze Floquet sys-
tems, which are described by periodic Hamiltonians ex-
plicitly breaking this symmetry, Ĥ(t + T ) = Ĥ(t). The
periodic driving may not only be applied in the external
potential [74, 75], but also in the interacting [76, 77] and
even in the kinetic term [78]. In a many-body system
whose dynamics can be described by a variational ansatz
of the form (4), a periodic Hamiltonian is translated into

i
dX i

dt
= Hi

j(X, t)Xj, (99)

where the matrix Hi
j(X, t) satisfies Hi

j(X, t + T ) =

Hi
j(X, t). We assume that the problem admits Floquet

solutions of the form

X i(t) = X̄ i(t)e−iǫit, X̄ i(t + T ) = X̄ i(t), (100)

satisfying the self-consistent Floquet equation

ǫiX̄ i(t) =

[

Hi
j(X̄(t), t) − i

d

dt
δij

]

X̄j(t), (101)

where Hi
j(X̄(t), t) is now a fully periodic operator as the

vector X̄(t) is also periodic. The dynamics of the collec-
tive modes is described by a linear equation analogous to
Eq. (6),

i
dδX̄ i

dt
= M i

j(t)δX̄
j , (102)
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with M i
j(t+T ) = M i

j(t). As a linear periodic equation, it

admits Floquet solutions of the form δX̄ i(t) = ui
ε(t)e

−iεt,
with ui

ε(t + T ) = ui
ε(t) and ε the quasi-energy. The cor-

responding eigenvalue equation reads

εui
ε(t) =

[

M i
j(t) − i

d

dt
δij

]

uj
ε(t). (103)

Following the reasoning of the stationary case, if the Flo-
quet state (100) spontaneously breaks a continuous sym-
metry of the problem, we now have that

0 =

[

M i
j(t) − i

d

dt
δij

]

(LX̄)j , (104)

so LX̄ is a Floquet mode with zero quasi-energy. We can
identify it as the NG mode associated to the spontaneous-
symmetry breaking, and consequently we will denote it
as Floquet-Nambu-Goldstone mode.

It was recently shown [42] that, due to many-body
interactions, Floquet states can spontaneously emerge
even in the absence of external periodic driving as self-
consistent Floquet solutions (100) to the original time-
independent problem (4),

ǫiX̄ i(t) =

[

Hi
j(X̄(t)) − i

d

dt
δij

]

X̄j(t). (105)

It is important to remark that here the periodicity of
Hi

j(X̄(t)) stems solely from that of X̄(t), and is sponta-
neously determined by the solution itself and not exter-
nally imposed, in contrast to Eq. (101). The linear prob-
lem is also described by Floquet modes, as in Eq. (103),
but once more the periodicity of the matrix M i

j(t) stems

just from that of X̄(t). Similarly, spontaneous symmetry
breaking is translated into the emergence of FNG modes.
However, a spontaneous Floquet state also breaks time-
translation symmetry as X̄(t+ t0) is as well a solution of
Eq. (105). This implies that ∂tX̄(t) is a FNG mode,

0 =

[

M i
j(t) − i

d

dt
δij

]

∂tX̄
j(t), (106)

a direct consequence of the time-independence of the
original Hamiltonian. The presence of a genuine tem-
poral FNG mode is therefore the hallmark of a sponta-
neous Floquet state, absent in driven Floquet systems or
accidental time-periodic states such as that of Eq. (98).

VI. SIMULTANEOUS SYMMETRY BREAKING
IN SPONTANEOUS FLOQUET STATES

We directly adapt the formalism developed in Sec. III
to study simultaneous symmetry breaking in a sponta-
neous Floquet state, focusing once more on the case of a
condensate for simplicity. Within this framework, spon-
taneous Floquet states are periodic solutions

Ψ0(x, t + T ) = Ψ0(x, t) (107)

of the constrained Lagrangian (20), where we recall that
{K,Q} are still a set of conserved charges. The resulting
equation of motion is

KGPΨ0 = i∂tΨ0. (108)

When inserted in the usual time-dependent GP equation
(22), taking Ψ(x, 0) = Ψ0(x, 0) yields

Ψ(x, t) = e−iλ·TtΨ0(x, t). (109)

Due to time-translation symmetry, if Ψ0(x, t) is a solu-
tion of this equation, then Ψ0(x, t+ t0) is also a solution.
The structure of these equations suggests to gather here-
after the symmetries T (which we recall do not involve
time by assumption) with the time-translation symmetry
as

λαTα ≡ λ ·T + i∂t. (110)

This addition also reflects the emergence of an extra NG
mode, zt, associated to the time-translation symmetry
breaking, whose conserved charge is in turn Qt = K.
In particular, the Goldstone-Gibbs modes za(t) are now
periodic, za(t + T ) = za(t), satisfying

[M0(t)−i∂t]zα = 0, [M0(t)−i∂t]zA = i(∂Aλ
β)zβ, (111)

where M0(t) is the periodic operator resulting from the
substitution Ψ0(x) → Ψ0(x, t) in Eq. (38). Thus, the
modes zα(t) are zero quasi-energy modes, which we can
identify as the FNG modes associated to the spontaneous
symmetry breaking by virtue of Eq. (104). The Floquet
spectrum is completed by the regular Bogoliubov sector

[M0(t) − i∂t]zε,ν = εzε,ν , (112)

with zε,ν(x, t+T ) = zε,ν(x, t), ε the quasi-energy (defined
modulo ω = 2π/T ), and ν a discrete index labeling the
solution. With the help from the conventional Floquet
theory and from the results of Sec. III B, it is shown that
the orthogonality relations (57) still hold:

(zε,ν |zε′,ν′) = δεε′δνν′ , (za|zε,ν) = 0, (za|zb) = iΩab.
(113)

The quantum dynamics of the field operator is again
described by the time-independent Heisenberg equa-
tion of motion (62). However, when working in the
Gibbs picture (63), we now expand the field operator
around the wavefunction of the spontaneous Floquet
state, Ψ̂′(x, t) = Ψ0(x, t) + ϕ̂(x, t), arriving at the time-

dependent BdGG equations i∂tΦ̂ = M0(t)Φ̂. Using the
complete Floquet spectrum, we can expand the quantum
fluctuations of the field operator as

Φ̂(x, t) = X̂α(t)zα(x, t) + P̂A(t)zA(x, t) (114)

+
∑

ε,ν

γ̂ε,ν(t)zε,ν(x, t) + γ̂†
ε,ν(t)z̄ε,ν(x, t).

In general, if zn(x, t) is a generic time-dependent
spinor, its related amplitude operator γ̂n(t) ≡
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FIG. 1. Schematic representation of the (t, φ) formalism,
where t parametrizes the longitudinal axis of the cylinder and
φ its polar angle. The dynamics for the field Ψ(x, φ, t) is
solved over the whole cylinder surface while the physical field
Ψ(x, t) = Ψ(x, φ0 +ωt, t) is restricted to the spiral trajectory
given by the solid black line. The red circles correspond to
the constant sections t = 0 and t = T .

(zn(t)|Φ̂(t)) still satisfies [γ̂n, γ̂
†
m] = (zn(t)|zm(t)). Af-

ter taking into account the time dependence of zn(x, t),
the equation of motion for γ̂n(t) is simply

i∂tγ̂n(t) = ([M0(t) − i∂t]zn|Φ̂) (115)

This results in the same time dependence for the quan-
tum amplitudes as in the stationary case, Eq. (79),
namely:

γ̂ε,ν(t) = γ̂ε,νe
−iεt, P̂A(t) = P̂A, X̂α(t) = X̂α+∂AλBP̂

Bt.
(116)

The only problem with this formalism is that the role
of the Lagrange multiplier associated with time is not
clear since λt = 1 is fixed by the Schrödinger equation.
This is also seen from the fact that the associated charge
is the generalized Gibbs Hamiltonian K, which should
naively satisfy ∂KE = 1. The corresponding momentum
P̂K = −i(zt|Φ̂) describes the quantum fluctuations of K,

K̂ = Ĥ − λαQ̂α ≃ K + P̂K . (117)

However, since the preservation of the commutation re-
lations implies ∂Aλ

t = 0 = ∂Kλα, Eq. (82), the momen-

tum P̂K does not lead to any dynamics, which is con-
tradictory as fluctuations in K should indeed affect it.
Moreover, we lack a satisfying thermodynamical descrip-
tion since now the energy is also an independent variable.
All of this suggests that we need to extend our formalism
to attain the complete picture.

A. (t, φ) formalism

In order to correctly derive the dynamics of the tempo-
ral FNG mode, we develop the (t, φ) formalism, denoted
in this way due to its analogy with the more usual (t, t′)
formalism [51, 52]. Here, φ ∈ [0, 2π) is the angular vari-
able associated to the periodic motion of the spontaneous
Floquet state, φ = ωt′, and t is a proper time that ac-
counts for the nonperiodic dynamics. As we will see, the
use of φ instead of t′ is critical.

In the (t, φ) formalism, we add an extra dimension to
the field, Ψ = Ψ(x, φ, t), whose dynamics is described by
the Lagrangian

L =
1

2π

ˆ 2π

0

dφ

(
ˆ

dx [iΨ∗∂tΨ + iΨ∗ω∂φΨ] −H

)

,

(118)
where H does not explicitly depend on φ as the Hamil-
tonian is time-independent. The case of a conven-
tional, driven Floquet system is simply accounted by a
φ-dependent periodic Hamiltonian, H(φ + 2π) = H(φ).

The resulting equation of motion for Ψ(x, φ, t) is the
classical version of Eq. (9) with the substitution

i∂tΨ(x, t) → iω∂φΨ(x, φ, t) + i∂tΨ(x, φ, t). (119)

The dynamics of the field, accounted by the term
i∂tΨ(x, t), is then split into the periodic contribution (ei-
ther determined by the periodicity of the spontaneous
Floquet state or by the external driving), parametrized
by the phase φ and encoded in the term iω∂φΨ(x, φ, t),
and the nonperiodic contribution, parametrized by the
time t and encoded in the term i∂tΨ(x, φ, t). Once the
dynamics is solved for Ψ(x, φ, t), the physical field is ob-
tained as Ψ(x, t) = Ψ(x, φ0 + ωt, t), with φ0 some ini-
tial phase. When the system is driven, this phase is
locked by the actual time-dependence of the Hamilto-
nian, H(t) = H(φ0 + ωt), which we can conventionally
set to φ0 = 0. However, for spontaneous Floquet states,
φ0 is a free parameter, reflecting the time-independence
of the original Hamiltonian.

Intuitively, we can visualize the (t, φ) space as a cylin-
der where t parametrizes its longitudinal axis and φ its
polar angle, Fig. 1. The field Ψ(x, φ, t) is defined over the
whole surface of the cylinder, while the actual physical
field Ψ(x, t) is evaluated solely along the spiral trajectory
(t, φ0 + ωt) (solid black line).

Regarding the conserved charges, the action is the
time integral of the Lagrangian (118), to which we ap-
ply Noether Theorem. The extra variable φ simply adds
an angular average to Eq. (12). In particular, the usual
charges Q arising from the continuous symmetries of the
Hamiltonian are readily retrieved as

Q =
1

2π

ˆ 2π

0

dφ Q(φ) = 〈Ψ||T||Ψ〉 , (120)
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with

〈χ||Ψ〉 ≡ 1

2π

ˆ 2π

0

dφ

ˆ

dx χ∗(x, φ)Ψ(x, φ) (121)

=
1

2π

ˆ 2π

0

dφ 〈χ(φ)|Ψ(φ)〉

the scalar product in the extended Hilbert space.
In addition, we now have an extra conserved charge

Qφ = F , which we will denote as the Floquet charge,
resulting from the invariance under phase translations
φ → φ + φ0,

F =
1

2π

ˆ 2π

0

dφ

ˆ

dx iΨ∗∂φΨ = 〈Ψ||Tφ||Ψ〉 , (122)

with Tφ = i∂φ the generator of phase translations. The
operator Tφ is Hermitian under the extended scalar prod-
uct (121), and commutes with the rest of generators,
[Tφ,T] = 0. Finally, invariance under time translations
t → t + t0 results in the conservation of the Floquet en-
ergy

I ≡ E − ωF. (123)

Nevertheless, while I is conserved for both driven and
spontaneous Floquet states, the conservation of the Flo-
quet charge F is a genuine feature of a spontaneous
Floquet state since the Hamiltonian is φ-dependent for
driven Floquet systems.

We note that the (t, φ) formalism can be applied not
only to both spontaneous and conventional Floquet sys-
tems, but to any many-body system governed by a
second-quantization Hamiltonian of the general form (8),
including both bosons and fermions, since the dynamics
of the field operator then admits a Lagrangian descrip-
tion, as discussed at the beginning of Sec. III.

B. Spontaneous Floquet states in the generalized
Gibbs ensemble: Floquet thermodynamics

We invoke again the generalized Gibbs ensemble to de-
scribe spontaneous symmetry breaking within the (t, φ)
formalism, replacing the Hamiltonian H by the gener-
alized Gibbs Hamiltonian K in Eq. (118), in analogy
with the constrained Lagrangian (20). As a result, the
Floquet energy I is replaced by the generalized Floquet-
Gibbs energy

Λ ≡ K − ωF = I − λ ·Q = H − λαQα, (124)

which is the analogue of the generalized Gibbs energy K
for Floquet systems. Its expression allows us to identify
λφ = ω as the Lagrange multiplier of the Floquet charge.

In the case of a condensate, the generalized Floquet-
Gibbs energy Λ is the thermodynamic potential that is
extremized by stationary solutions Ψ0(x, φ), satisfying
the Floquet-GPG (FGPG) equation

0 =
δΛ

δΨ∗
=⇒ ΛGPΨ0 ≡ [KGP − iω∂φ]Ψ0 = 0. (125)

When we insert the FGPG wavefunction in the actual
time-dependent GP equation (22) by taking Ψ(x, t =
0) = Ψ0(x, φ0), we find

Ψ(x, t) = e−iλαTαtΨ0(x, φ0) = e−iλ·TtΨ0(x, φ0 + ωt).
(126)

Thus, Floquet states are described by stationary FGPG
solutions with the phase fixed to φ = φ0, which behaves
as a global time origin t0 = φ0/ω. In a spontaneous Flo-
quet state, this time origin can be chosen freely due to
the time-independence of the Hamiltonian. In a conven-
tional Floquet state, t0 is fixed by the external driving,
as discussed after Eq. (119). On the other hand, as ex-
pected from thermodynamic considerations, ω plays the
predicted role for the Lagrange multiplier associated to
the Floquet charge, acting as the velocity of phase trans-
lations. In fact, the definition modulo ω of the chemi-
cal potential µ for Floquet states can be also explained
from Thermodynamics as follows. The transformation
Ψ0(x, φ) → Ψ0(x, φ)e−inφ, n ∈ Z, also yields a solution
of the FGPG equation. This leads to F → F + nN , so
Λ → Λ−nωN , and hence λθ = µ changes as µ → µ+nω.

Another hallmark of spontaneous Floquet states is that
they conserve energy, E = H = Λ+λαQα, since {Λ, Qα}
are conserved charges; the argument fails for driven Flo-
quet systems because there F is not conserved. Following
Eqs. (25)-(32), it can be shown that each Lagrange mul-
tiplier can be obtained from the energy as ∂AE = λA,
including ∂FE = λF = ω. Moreover, if we now define
the local pressure p(x) as the angular average

p(x) ≡ 1

2π

ˆ 2π

0

dφ
|Ψ0(x, φ)|4

2
, (127)

we retrieve the generalization of the first principle of
Thermodynamics

dE = λαdQα − pdV = λ · dQ + ωdF − pdV, (128)

and the Gibbs-Duhem relation (32) for spontaneous Flo-
quet states.

The upshot of the above discussion is that Floquet
states allow for a thermodynamical description com-
pletely analogous to that of stationary states, which we
will denote as Floquet thermodynamics. Indeed, the first
principle of Thermodynamics for spontaneous Floquet
states (128) suggests a fundamental distinction between
spontaneous and driven Floquet systems: spontaneous
systems conserve the charge F and the frequency ω is
determined by the equation of state, while driven sys-
tems externally impose the frequency ω so then F is
not conserved. Thus, we can regard spontaneous Flo-
quet systems as “isofloquetic”, where the macroscopic
Floquet charge is conserved, in analogy with isentropic
or isochoric systems, where the entropy or the volume
is conserved. Conversely, conventional Floquet systems
are “isoperiodic”, where the external driving fixes the
oscillation period, in analogy with isothermal or isobaric
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systems, where the external environment fixes the tem-
perature or the pressure. Based on this analogy, the Flo-
quet energy I = E−ωF can be identified as the Floquet
enthalpy, the natural thermodynamic potential for isope-
riodic systems, where it is conserved and satisfies

dI = λ · dQ− Fdω − pdV. (129)

Thus, we can also provide a thermodynamical descrip-
tion for conventional Floquet states by using the Floquet
enthalpy, from where the Lagrange multipliers are simply
derived as λA = ∂AI.

Physically, the Floquet charge accounts for the inde-
pendence of the energy, allowing for the emergence of
the temporal FNG mode. This is because the station-
arity condition for solutions of the Lagrangian (20) im-
poses a constraint from where the energy becomes a func-
tion of the remaining charges, E = E(Q). As argued at
the end of Sec. IV, this dependence implies that time-
translation symmetry is not spontaneously broken by it-
self but rather in terms of other symmetries. However, for
spontaneous Floquet states, energy becomes an indepen-
dent charge, and the thermodynamic magnitude whose

natural variables are the energy and the other conserved
charges is precisely the Floquet charge, F = F (E,Q).
This is translated into the emergence of a genuine, inde-
pendent temporal FNG mode. Remarkably, energy con-
servation implies that spontaneous Floquet states do not
experience heating, in contrast to conventional Floquet
systems.

C. Quantization

The (t, φ) formalism emerges in the quantum the-
ory when considering once more the time-independent
Heisenberg equation (62). We now perform a unitary
transformation to the field operator along the lines of
Eq. (126),

Ψ̂(x, t) = e−iλ·TtΨ̂(x, φ + ωt) = e−iλαTαtΨ̂(x, φ, t).
(130)

The resulting equation of motion for the (t, φ) field op-
erator reads

i~∂tΨ̂(x, φ, t) =

[

−∇2

2
+ V (x) + Ψ̂†(x, φ, t)Ψ̂(x, φ, t) − λαTα

]

Ψ̂(x, φ, t), (131)

which is the quantum version of the equation of motion
that results from the Lagrangian (118). A similar equa-
tion can be derived for a conventional Floquet system,
where the frequency is fixed by the external driving pro-
vided by the periodic Hamiltonian Ĥ(φ). Once the dy-
namics in the (t, φ) formalism is derived, the actual field

operator is retrieved as Ψ̂(x, t) = e−iλ·TtΨ̂(x, φ0 +ωt, t).
We stress that this equation of motion is exact because
it is just a reparametrization of the standard Heisenberg
equation of motion. Consequently, the (t, φ) formalism
can be applied along with the Floquet thermodynamics
to an arbitrary many-body system.

In the specific case of a condensate, after expanding
the field operator around the spontaneous Floquet state,
Ψ̂(x, φ, t) = Ψ0(x, φ) + ϕ̂(x, φ, t), we obtain at linear or-
der from Eq. (131) that

i∂tΦ̂ = [M0(φ) − iω∂φ]Φ̂, Φ̂(x, φ, t) =

[

ϕ̂(x, φ, t)
ϕ̂†(x, φ, t)

]

.

(132)
The Bogoliubov modes are derived in the same fashion of
Eqs. (111), (112), replacing M0(t)− i∂t by M0(φ)− iω∂φ

and using the extended inner product

(zn||zm) ≡ 〈zn||σzzm〉 =
1

2π

ˆ 2π

0

dφ (zn(φ)|zm(φ)).

(133)
The Goldstone-Gibbs modes za(x, φ) are given here in
terms of ∂aΨ0(x, φ), while the Bogoliubov sector is ob-
tained by the adaptation of the Floquet modes of Eq.
(112), zε,ν(x, φ) ≡ zε,ν(x, ωt). In order to have a com-
plete orthonormal basis in the extended Hilbert space,
we promote each mode zn(x, φ) to a whole set

zn,m(x, φ) ≡ zn(x, φ)eimφ, m ∈ Z. (134)

Following the prescriptions of Sec. III B, it is immedi-
ate to show that these modes satisfy

[M0(φ) − iω∂φ]zα,m = mωzα,m,

[M0(φ) − iω∂φ]zA,m = mωzA,m + i∂Aλ
βzβ,m, (135)

[M0(φ) − iω∂φ]zε,ν,m = [ε + mω]zε,ν,m,

and do form a complete orthonormal basis, obeying the
correct orthogonality relations

(zε,ν,m||zε′,ν′,m′) = δεε′δνν′δmm′ ,

(za,m||zε,ν,m′) = 0, (136)

(za,m||zb,m′) = iΩabδmm′ .
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Their quantum amplitude is obtained by γ̂n,m(t) = (zn,m||Φ̂(t)). From the Fourier relations

γ̂n,m(t) =
1

2π

ˆ 2π

0

dφ e−imφγ̂n(φ, t), (137)

γ̂n(φ, t) ≡ (zn(φ)|Φ̂(φ, t)) =
∞
∑

m=−∞

γ̂n,m(t)eimφ,

we can expand the quantum fluctuations of the field operator as

Φ̂(x, φ, t) =

∞
∑

m=−∞

X̂α
m(t)zα,m(x, φ) + P̂A

m(t)zA,m(x, φ) +

∞
∑

m=−∞

∑

ε,ν

γ̂ε,ν,m(t)zε,ν,m(x, φ) + γ̂†
ε,ν.m(t)z̄ε,ν,m(x, φ)

= X̂α(φ, t)zα(x, φ) + P̂A(φ, t)zA(x, φ) +
∑

ε,ν

γ̂ε,ν(φ, t)zε,ν(x, φ) + γ̂†
ε,ν(φ, t)z̄ε,ν(x, φ). (138)

The dynamics for Φ̂(x, φ, t) is readily obtained by the relation i∂tγ̂n,m(t) = ([M0(φ) − iω∂φ]zn,m||Φ̂(t)), finding:

γ̂ε,ν,m(t) = γ̂ε,ν,me−i[ε+mω]t, P̂A
m(t) = P̂A

me−imωt, X̂α
m(t) = [X̂α

m + ∂AλBP̂
B
m t]e−imωt. (139)

When setting φ = φ0 + ωt, after noticing that the standard time-dependent modes and amplitudes are zn(x, t) =
zn(x, φ0 + ωt) and γ̂n(t) = γ̂n(φ0 + ωt, t), we recover the expected time evolution for the field fluctuations:

Φ̂(x, t) = Φ̂(x, φ0 + ωt, t) = [X̂α + ∂AλBP̂
Bt]zα(x, t) + P̂AzA(x, t) +

∑

ε,ν

γ̂ε,νzε,ν(x, t)e−iεt + γ̂†
ε,ν z̄ε,ν(x, t)eiεt. (140)

The crucial difference with respect to Eq. (114) is that
the Gibbs modes there encode a non-trivial trivial depen-
dence in zφ since

∂AΨ0(x, t) = ∂AΨ0(x, φ0 + ωt) + ∂φΨ0(x, φ0 + ωt)∂Aωt.
(141)

When this dependence is taken into account, as well
as the thermodynamic relation between K and F , after
some tedious algebra one arrives at the correct expansion
(140) from the original Floquet modes of Eqs. (111),
(112). We note that the above expansion is also valid
for driven Floquet systems by excluding the Goldstone-
Gibbs pair {zφ, zF } and using λA = ∂AI instead of
λA = ∂AE.

D. Time operator

The previous results demonstrate that the (t, φ) for-
malism is not a mere reparametrization of the periodic
time t′ from the (t, t′) formalism, but that it is instead
essential to correctly identify the thermodynamical role
of the Floquet charge F = Qφ and to compute the dy-
namics of the temporal FNG mode zφ. In particular, we
can explicitly write the time evolution of its quantum
amplitude,

X̂φ(t) = X̂φ + ∂FλAP̂
At = X̂φ + ∂AωP̂

At. (142)

The linear dependence arises due to the quantum fluc-
tuations of the frequency since this depends on the con-
served charges, in analogy to the stationary case [see Eq.

(77) and ensuing discussion]. The actual temporal FNG
mode, corresponding to proper time translations, is sim-
ply obtained as zt = ωzφ, with an amplitude X̂t = X̂φ/ω.

On the other hand, the quantum fluctuations δF̂ of the
Floquet charge are those of the more physical generalized
Gibbs energy,

δK̂ = P̂K = ωδF̂ = ωP̂F . (143)

This relation stems from the fact that spontaneous Flo-
quet states extremize the Floquet-Gibbs energy Λ, so
0 = δΛ = δK − ωδF . As a result, we have the com-
mutation relation

[X̂φ, P̂F ] = [X̂t, δK̂] = i, (144)

which shows that δt̂ ≡ −X̂t behaves as an effective time
operator in the Gibbs picture, describing the quantum
fluctuations of the global time shift t0 of the spontaneous
Floquet state.

In general, no time operator T̂ is allowed in Quantum
Mechanics since the generator of time translations is the
Hamiltonian itself, [T̂ , Ĥ ] = −i, so

eiT̂E0Ĥe−iT̂E0 = Ĥ + E0. (145)

for arbitrary value of E0. This implies that, if E is an
eigenenergy of the Hamiltonian, then E + E0 is also an
eigenergy. However, Hamiltonians are bounded from be-
low by the ground state energy, leading to a contradic-
tion.
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This relation is very similar to that between the parti-
cle number and phase operators, which we review follow-
ing the enlightening discussion of Ref. [79]. If a phase

operator θ̂ exists, then it satisfies [N̂ , θ̂] = i. But

eiθ̂N0N̂e−iθ̂N0 = N̂ −N0 (146)

implies that, if N is an eigenvalue of N̂ , then N − N0

is also. This violates two fundamental properties of the
spectrum of the particle number operator: its positive
definiteness and its discreteness. Nevertheless, one can
define phase fluctuations in situations involving large par-
ticle numbers, where one can neglect the discreteness of
the spectrum and states with low occupation number, as
in the case of a condensate. Analogously, by identifying
energy with particle number and time with phase, one
can define time fluctuations for large energies, well above
the ground state. Actually, within the (t, φ) formalism,
the time operator is a sort of phase operator. This anal-
ogy suggests that spontaneous Floquet states should be
highly excited states, shifted by a macroscopic energy
from the ground state.

VII. TIME SUPERSOLIDS: CES STATE

We study in this section a specific realization of a spon-
taneous Floquet state, the so-called CES state [42], which
is a solution of a 1D time-dependent GPG equation (108)
of the form:

HGPΨ0 =

[

−∂2
x

2
+ V (x) + |Ψ0|2

]

Ψ0 = µΨ0 + i∂tΨ0.

(147)
The presence of an inhomogeneous external potential
V (x) 6= 0 explicitly breaks invariance under spatial trans-
lations. This guarantees the genuine character of the
spontaneous symmetry-breaking of time translation sym-
metry, avoiding any misidentification of time crystalline
behavior as that discussed after Eq. (98). Although the
CES state was originally identified in an analogue gravity
context [43, 44], similar scenarios involving soliton emis-
sion and periodic self-oscillations are well-known in the
literature [80–85].

In analogy to the case of Sec. IV, the CES state spon-
taneously breaks U(1) and time-translation symmetries,
combining superfluidity with time crystalline behavior.
This represents the temporal analogue of a supersolid,
which has been denoted as a time supersolid and was
recently observed in a magnonic BEC [27]. We remark
that, while strictly speaking the cnoidal wave is not a su-
persolid because it is not at equilibrium [50], time crystals
are necessarily out-of-equilibrium states as a consequence
of the celebrated no-go theorem [18]. In the presence
of external periodic driving, self-interacting condensates
governed by the GP equation can also give rise to discrete
time crystals [31].

Due to the phase and time-translational invariance, if
Ψ0(x, t) is a solution of Eq. (147), then e−iθΨ0(x, t+ t0)

is also a solution. In the (t, φ) formalism, where Ψ0(x, t+
t0) = Ψ0(x, ωt + φ0), the CES state is characterized by
the vectors α = (θ, φ), Tα = (1, i∂φ), Qα = (N,F ), and
λα = (µ, ω). The Floquet-Goldstone-Gibbs modes are
then

zθ(x, φ) =

[

−iΨ0(x, φ)
iΨ∗

0(x, φ)

]

, zφ(x, φ) =

[

∂φΨ0(x, φ)
∂φΨ∗

0(x, φ)

]

,

zN(x, φ) =

[

∂NΨ0(x, φ)
∂NΨ∗

0(x, φ)

]

, zF (x, φ) =

[

∂FΨ0(x, φ)
∂FΨ∗

0(x, φ)

]

,

(148)

which are translated into time-dependent modes by
za(x, t) = za(x, φ0 + ωt).

The CES state satisfies typical time-crystal criteria of
robustness, independence from the initial condition, and
universality [42]. In this work, we focus on a specific
realization in which a localized attractive delta barrier
V (x) = −Zδ(x) is quenched at t = 0 within a sub-
sonic homogeneous condensate flowing with velocity v,
described by a GP wavefunction Ψ(x, 0) = eivx (in our
choice of units, the initial condensate density is then n0).
A schematic depiction of the initial setup is displayed
in Fig. 2a. The quench in the external potential in-
duces a deterministic dynamics in the condensate, nu-
merically computed by integrating the time-dependent
GP equation (22). The asymptotic behavior of the sys-
tem is described by a dynamical phase diagram which is
solely function of v, Z, Fig. 2b, exhibiting only two pos-
sible final states: the nonlinear ground state (GS) [86] or
the CES state. Specifically, for initial velocities larger
than the critical velocity v > vc(Z), or, equivalently,
for barrier amplitudes larger than the critical amplitude
Z > Zc(v), the GP condensate wavefunction asymptot-
ically approaches the CES state along the lines of Eq.
(109),

Ψ(x, t) −−−→
t→∞

e−iµtΨ0(x, t), (149)

where it oscillates periodically. This periodic behavior
is globally displayed both upstream and downstream, as
seen in Fig. 2c, and not just in the traveling cnoidal wave
downstream (whose time periodicity is rather trivial, as
previously argued). We note that the CES state is a
macroscopically excited state, something expected from
the discussion at the end of Sec. VI D, since the initial
state is shifted by an energy ∆E = Nv2/2 with respect
to a condensate at rest.

The GS/CES phase diagram is an example of dy-
namical phase transition [87–89], where the GS is the
symmetry-unbroken phase, with continuous time trans-
lation symmetry, while the CES state is the time-
crystalline phase, with discrete time translation symme-
try. The oscillation frequency ω exhibits a critical behav-
ior close to the phase boundary, where the critical expo-
nents for v, Z (obtained from a fit in Fig. 2d) are both
approximately γ ≃ δ ≃ 0.50, in agreement with those
for a square well [42], potentially suggesting a possible
analytical derivation.
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FIG. 2. (a) Schematic profile of the sound (solid blue) and flow (dashed red) velocities of the initial homogeneous flowing
condensate, Ψ(x, 0) = eivx. The arrow represents the attractive delta potential V (x) = −Zδ(x), suddenly introduced at t = 0.
(b) Dynamical phase diagram for the final state of the system as a function of (v, Z). (c) 2D plot of |Ψ(x, t)|2 resulting from
the evolution of (a) for v = 0.8 and Z = 1. (d) Critical behavior of the CES frequency ω close to the phase transition along
the green lines in (b). The red line represents a fit to a power law. Main panel: Velocity dependence. Inset: Delta-strength
dependence.

We now go beyond mean-field and explicitly compute
the dynamics of the quantum fluctuations by using the
Truncated Wigner method [53, 54]; all technical details
behind the numerical simulations and the specific imple-
mentation of the Truncated Wigner method can be found
in Refs. [42, 43, 90]. As initial quantum state, we take
the T = 0 ground state in the comoving frame of the con-
densate. Regarding the observables of interest, we focus
on computing the normalized density-density correlation
function

G(x, x′, t) ≡ 〈δn̂(x, t)δn̂(x′, t)〉
n0ξ

−1
0

, (150)

with δn̂(x, t) ≡ n̂(x, t) − 〈n̂(x, t)〉 the density fluctua-
tions and ξ0 the healing length associated to the initial

density n0; we have momentarily restored dimensions in
this expression for the sake of clarity. In the laboratory,
density-density correlations can be measured through in

situ imaging after averaging over ensembles of repetitions
of the experiment [91–93].

After some transient, and once in the CES state, the
correlations exhibit a seemingly periodic behavior, as
shown in Fig. 3, where sharp features arise due to
the synchronized emission of shock waves/solitons into
the upstream/downstream region. Further insight is ob-
tained in upper row of Fig. 4, where we plot the time de-
pendence of the correlation function G(x,−x, t) between
symmetric upstream and downstream points for different
values of x. We observe that the correlations are indeed



19

-20 -10 0 10 20

-20

-10

0

10

20

-100

-80

-60

-40

-20

0

20

40

60

80

100

-20 -10 0 10 20

-20

-10

0

10

20

-100

-80

-60

-40

-20

0

20

40

60

80

100

-20 -10 0 10 20

-20

-10

0

10

20

-100

-80

-60

-40

-20

0

20

40

60

80

100

-20 -10 0 10 20

-20

-10

0

10

20

-100

-80

-60

-40

-20

0

20

40

60

80

100

-20 -10 0 10 20

-20

-10

0

10

20

-100

-80

-60

-40

-20

0

20

40

60

80

100

-20 -10 0 10 20

-20

-10

0

10

20

-100

-80

-60

-40

-20

0

20

40

60

80

100

FIG. 3. Snapshots of the normalized density-density correlation function G(x, x′, t), computed within the Truncated Wigner
approximation for a CES state with the same mean-field parameters of Fig. 2c, whose period is T ≈ 12.0.

quasi-periodic, displaying periodic oscillations whose am-
plitude grows in time.

This behavior can be understood using the sponta-
neous Floquet theory developed in Sec. VI. After ex-
panding the field operator around the CES wavefunction,
we find that the density fluctuations read at linear order
in the field fluctuations ϕ̂(x, t) as

δn̂(x, t) ≃ Ψ∗
0(x, t)ϕ̂(x, t) + Ψ0(x, t)ϕ̂†(x, t) = −iz†θσzΦ̂.

(151)
Plugging the expansion of Eq. (140) into this expression
yields

δn̂(x, t) = X̂t(t)rt(x, t) + P̂NrN (x, t) + P̂F rF (x, t)

+
∑

ε,ν

γ̂ε,νrε,ν(x, t)e−iεt + γ̂†
ε,νr

∗
ε,ν(x, t)eiεt,

(152)

rn(x, t) = −iz†θ(x, t)σzzn(x, t) being the density ampli-
tude associated to the spinor zn. In the case of the
Goldstone-Gibbs modes, the density amplitude is just

ra(x, t) = ∂a|Ψ0(x, t)|2 = ∂an(x, t), (153)

where n(x, t) is the mean-field density, which is approxi-
mately equal to the ensemble-averaged density after ne-
glecting higher-order corrections in the field fluctuations,
〈n̂(x, t)〉 ≃ n(x, t).

As physically expected, the FNG mode associated to
the phase does not couple to the density, rθ = 0. Thus,
only the temporal FNG mode zt(x, t) contributes to the

correlation function G(x, x′, t). Moreover, its amplitude

X̂t(t) = X̂φ(t)/ω grows linearly in time according to Eq.
(142), so it eventually dominates the correlations,

G(x, x′, t) ≃ rt(x, t)rt(x
′, t)A(t), A(t) ≡ 〈(X̂t(t))2〉

n0ξ
−1
0

.

(154)

Due to the ballistic evolution of X̂t(t), we expect a
quadratic polynomial dependence for A(t), A(t) = at2 +
bt + c. This fits well the observed growth, black lines in
upper row of Fig. 4. A more detailed comparison is pre-
sented in Fig. 5, where we depict together the numerical
results for G(x, x′, t) from the Truncated Wigner method
(solid blue), and the theoretical prediction of Eq. (154),
combining the previous quadratic fit of A(t) with a com-
putation of rt(x, t) = ∂tn(x, t) from the time derivative
of the mean-field density (dashed red). A remarkable
agreement is observed, confirming the ballistic motion of
the quantum amplitude of the temporal FNG mode as
the mechanism responsible for the quasi-periodic corre-
lations.

We note that the coefficients a, b, c determining the
amplitude A(t) are given in terms of expectation values

which are quadratic in the amplitudes X̂t, P̂N , P̂F , eval-
uated in the initial quantum state. Thus, our specific
time-dependent scheme eliminates any possible ambigu-
ity in the definition of the quantum state of the system
[94]. Nevertheless, fluctuations of the temporal FNG can
be also induced by run-to-run experimental variations
such as shot noise in the initial particle number. This is
shown in lower row of Fig. 4, where we display the results
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FIG. 4. (a) Normalized density-density correlation function G(x,−x, t) for x = 10 (blue), x = 20 (red), and x = 30 (green) for
the simulation in Fig. 3. Black line is a quadratic polynomial fit to the amplitude of the oscillations, A(t) = at2 + bt + c. (b)
Zoom of (a). (c)-(d) Same as upper row but now replacing quantum fluctuations by particle-number fluctuations. Specifically,
we take as initial condition in the Truncated Wigner method Ψ(x, 0) =

√
1 + δn eivx, with δn a Gaussian random variable with

zero mean and
√

〈δn2〉 = 0.001.

of solely including fluctuations in the particle number of
the initial condition. The observed correlation patterns
are the same as in the purely quantum case (upper row),
further revealing their monomode origin since particle-
number fluctuations are structureless [90].

Based on these results, we propose an experimental
protocol to observe the temporal FNG mode using stan-
dard techniques in analogue gravity setups [91–93]. We
consider an elongated quasi-1D condensate that is essen-
tially homogeneous far from the edges, along which a
localized obstacle is swept with velocity v. By Galilean
invariance, this is equivalent to launching the condensate
against the obstacle with the same velocity. For values of
v above the critical velocity, a CES state will be reached.
Another possibility is to confine the condensate in a long
ring [95] and rotate a localized potential. In both cases,

at long times once in the CES regime, when the temporal
FNG mode dominates the Bogoliubov dynamics, high-
resolution imaging can be then used to measure the time
evolution of the density profile and the density-density
correlations, from where the FNG mode can be extracted
as in Fig. 5.

We note that the protocol used here to reach the CES
state is fully deterministic at the mean-field level, which
imposes the value of the global time origin t0 of the spon-
taneous Floquet state. Thus, even though there is a
temporal FNG mode, technically speaking the symme-
try breaking of time translation invariance is not spon-
taneous. The reason is that our scheme fixes a t = 0
origin in the GP equation. Regardless, at late times, due
to interactions, the system enters the CES self-oscillating
regime where it forgets about the initial condition and ex-
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FIG. 5. Normalized density-density correlation function G(x,−x, t) for x = 10 (left column), x = 20 (center column), and x = 30
(right column). Solid blue is the numerical result from a Truncated Wigner simulation and dashed red is the contribution from
the temporal FNG mode, G(x, x′, t) = rt(x, t)rt(x

′, t)A(t), where A(t) is numerically fitted as in Fig. 4 and rt(x, t) = ∂tn(x, t)
is computed from the time derivative of the mean-field density. Upper row: Z = 1 and v = 0.8. Lower row: Z = 1 and v = 0.7.

hibits all the features of a spontaneous Floquet state. We
can qualitatively understand this behavior by drawing
an analogy with a conventional spatial crystal growing
in the z-direction on top of a rigid substrate, which fixes
a z = 0 plane that breaks continuous spatial translation
symmetry. In the bulk of the grown crystal, however, the
system becomes insensitive to the boundary and recovers
the usual properties of a crystalline structure.

Nevertheless, the phase locking of φ0 actually helps
to measure the FNG mode since, if φ0 were sponta-
neously chosen in each realization of the experiment,
then G(x, x′, t) would represent an angular average over
φ0 ∈ [0, 2π), therefore suppressing its time dependence.
In that case, one would need to resort to the complete
two-time correlation function

G(x, x′, t, t′) ≡ 〈δn̂(x, t)δn̂(x′, t′)〉
n0ξ

−1
0

, (155)

which requires the use of non-destructive imaging in or-
der to measure the density at two consecutive times
t > t′, as in Ref. [21]. This caveat is not needed for the
measurement of correlations under the usual U(1) sym-
metry breaking, where each realization of the experiment
is insensitive to the global condensate phase because ob-
servables always commute with the total particle number,
the generator of global phase transformations.

VIII. DISCUSSION AND PERSPECTIVES

We proceed to critically discuss the results of this work
and how they inscribe within the literature, outlining in
the process future avenues. We have examined in Sec. III
how the general results from Goldstone theorem applied
to variational descriptions, Sec. II, can be translated
to many-body systems when several symmetries are si-
multaneously broken by the quantum state, focusing on
the specific case of a BEC close to zero temperature for
illustrative purposes. We have found that a rather com-
plete description of the problem is provided in terms of
the generalized Gibbs ensemble, which treats all broken
symmetries on equal grounds. The Lagrange multipliers
associated to each conserved charge behave as generalized
velocities along the orbits of the symmetry transforma-
tions, extending the well-known result that the chemi-
cal potential is the velocity of the phase. We have also
proven fundamental results in Thermodynamics for the
symmetry-broken state, such as the first principle or the
Gibbs-Duhem relation.

The Nambu-Goldstone modes associated to each spon-
taneously broken symmetry emerge as zero-energy modes
of the excitation spectrum. Each NG mode is paired with
a Gibbs mode, describing the fluctuations of the quantum
state with respect to the associated conserved charge.
These fluctuations arise because a symmetry-broken
state cannot be an eigenstate of the charge operator that
generates the corresponding broken-symmetry transfor-



22

mation. The orthogonalization of the Goldstone-Gibbs
sector involves the Berry-Gibbs connection, a Berry con-
nection whose variables are the conserved charges, which
are not intrinsic parameters of the Hamiltonian. In con-
trast to the standard case, the resulting Berry-Gibbs cur-
vature is not invariant under generalized gauge transfor-
mations, which expands the usual notion of phase trans-
formations to include more general symmetry transfor-
mations. When extended to the complete manifold that
includes the continuous parameters of the spontaneously
broken symmetries, the Berry-Gibbs curvature gives rise
to a symplectic structure that allows to quantize the am-
plitudes of the Nambu-Goldstone/Gibbs modes as con-
jugate coordinate/momentum operators. This analogy
is translated to the dynamics, where the momenta are
time-independent as they represent the quantum fluc-
tuations of the corresponding conserved charges, while
the coordinates display a ballistic motion with veloci-
ties proportional to the momenta. The physical intu-
ition behind this dynamics is very simple: since there
is no restoring force along the orbits generated by the
broken-symmetry transformations, fluctuations in those
directions, spanned by the NG modes, lead to unbounded
motion with constant velocity. Finally, we show that the
Goldstone-Gibbs sector can be diagonalized, leading to
a new set of independent NG modes. Remarkably, this
diagonalization only involves thermodynamic considera-
tions, and describes how the original NG modes hybridize
within the different branches of the spectrum in the low-
frequency limit.

The coordinate-momentum analogy between the
Nambu-Goldstone and Gibbs amplitudes was originally
established in Ref. [48] in the context of the U(1)-
symmetry breaking and the phase diffusion of a conden-
sate. This approach was followed in Ref. [49] to also
quantize the position of a soliton and study its quantum
diffusion, inspiring a whole line of research in quantum
solitons [96–100]. A study of the quantization of arbi-
trary NG modes in condensates, including internal sym-
metries such as spin, was provided in Ref. [101]. The
present work further extends those results by providing
a general and systematic framework with the help of the
generalized Gibbs ensemble and the Berry-Gibbs connec-
tion, which in addition allows to understand the physics
of the Nambu-Goldstone and Gibbs modes at a more fun-
damental level. On the other hand, the emergence of
a geometrical description and a symplectic structure in
variational formulations is well-known in the literature
and can be traced back to Ref. [102] (see Ref. [103] for
a more recent review), where the manifold is generated
there by the variational parameters of the ansatz and
their velocities, leading to a dequantization of the prob-
lem. In contrast, the manifold variables in our descrip-
tion are the continuous parameters of the spontaneously
broken symmetries and their associated charges, instead
of variational parameters, and the symplectic structure
conversely leads to a quantization of the Goldstone-Gibbs
amplitudes. To the best of our knowledge, the thermo-

dynamical and geometrical framework developed in Sec.
III for the description of spontaneous symmetry break-
ing and the quantization of the Goldstone-Gibbs modes
is original from this work and is not present in the liter-
ature.

As a particular application of this formalism, we have
studied in Sec. IV the case of a cnoidal wave in a super-
fluid, which spontaneously breaks U(1) and spatial trans-
lation symmetry, extending the work of Refs. [49, 50]
into the generalized Gibbs ensemble. We have explicitly
checked the consistency and validity of the theoretical
predictions of Sec. III.

The results of Secs. III, IV are thus of interest for the
study of states which simultaneously break several sym-
metries, such as supersolids, quantum droplets, spinor
and rotating condensates, or quantum solitons. They
can also be easily translated to magnonic condensates
[104], nonlinear optical fibers [105], and quantum fluids
of light [106], as they obey nonlinear equations of mo-
tion similar to the Gross-Pitaevskii equation. Indeed,
the generality of the formalism, based on a Lagrangian
description, allows for a straightforward adaptation to
arbitrary many-body systems, including fermions. For
instance, within the ν = 0 quantum Hall phase dia-
gram in graphene, states with two spontaneously bro-
ken symmetries were predicted within a Hartree-Fock
description [107], of which some experimental evidence
was recently reported [7]. Indeed, Ref. [107] established
the correspondence between the BdG and TDHFA equa-
tions, and translated Goldstone theorem into the spe-
cific context of the Hartree-Fock equations. Therefore,
the BdG/TDHFA correspondence provides a direct link
through which our results can be exported.

Another interesting perspective is provided by the ge-
ometry of the extended Berry-Gibbs connection. In
this work, we have assumed that all the generators of
the spontaneously broken symmetries commute between
themselves. This leads, after a generalized gauge trans-
formation, to a “flat” symplectic curvature Fab = −Ωab.
Actually, a generalized gauge transformation is nothing
else than a change of coordinates in the extended Berry-
Gibbs manifold. However, if the generators of the spon-
taneously broken symmetries form a non-abelian Lie al-
gebra, this no longer holds, opening the door for deeper
geometrical implications, including nontrivial topological
aspects. The exploration of this promising avenue is left
for future work.

The formalism developed for stationary states in Secs.
II-III is adapted to Floquet states in Secs. V, VI. Specifi-
cally, from the general results of Sec. II, we prove that the
usual Nambu-Goldstone modes with zero energy are now
translated into Floquet-Nambu-Goldstone modes with
zero quasi-energy. Moreover, since spontaneous Floquet
states break continuous time-translational symmetry, a
genuine temporal FNG mode emerges. This is a distinc-
tive signature of a spontaneous Floquet state, completely
absent in conventional Floquet systems.

In order to correctly describe the dynamics of the FNG
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modes, we develop the (t, φ) formalism, which goes be-
yond the usual (t, t′) formalism. In combination with
the generalized Gibbs ensemble, we provide a thermody-
namical description of Floquet states analogous to that
of stationary states, which we refer to as Floquet ther-
modynamics. This is possible because spontaneous Flo-
quet states also have a well-defined energy, which enables
the existence of a conserved Floquet charge. The Flo-
quet charge is another hallmark of a spontaneous Floquet
state, which adds to the presence of a temporal Floquet-
Nambu-Goldstone mode. In fact, both features are the
sides of the same coin, since they arise, via Goldstone and
Noether theorems, from the continuous time-translation
symmetry of the underlying time-independent Hamilto-
nian.

Conventional Floquet states can also be described
within the framework of Floquet thermodynamics by
means of the Floquet enthalpy, i.e., the Legendre trans-
form of the energy with respect to the Floquet charge,
whose conjugated variable is in turn the frequency, fixed
here by the external driving. By drawing an analogy with
standard Thermodynamics, spontaneous Floquet states
are “isofloquetic”, and driven Floquet states are “isope-
riodic”.

The quantization procedure of the Goldstone-Gibbs
sector goes along the same lines as in the stationary
case, involving a Berry-Gibbs connection and a sym-
plectic form. Their dynamics also follow the coordi-
nate/momentum picture. Nevertheless, we now have a
novel temporal FNG mode, whose amplitude can be re-
garded as an effective time coordinate, with a conjugate
momentum given by the energy fluctuations. Therefore,
we can identify the quantum amplitude of the temporal
FNG mode as a unique realization of a time operator in
Quantum Mechanics.

We stress that the use of the generalized Gibbs ensem-
ble in combination with the (t, φ) formalism is essential
for a correct and complete description of the problem.
Interestingly, within this framework, a remarkable cor-
respondence between stationary states and spontaneous
Floquet states can be established, consisting of replac-
ing stationary states by periodic states, frequencies by
quasi-frequencies, and conserved charges by their angu-
lar average.

Finally, we apply our formalism to a specific realization
of spontaneous Floquet state, the CES state, which spon-
taneously breaks U(1) and continuous time-translation
symmetry, representing a time supersolid. We propose
an experimental scheme, based on standard analogue
gravity techniques [91–93], to observe the temporal FNG
mode, which does couple to the density in contrast to
the FNG mode of the phase. In particular, we prove
that the density-density correlations are dominated at
long times by the ballistic growth of the temporal FNG
mode, from where it can be extracted. Numerical results
from a Truncated Wigner simulation show a remarkable
agreement with our theory.

The results of Secs. V-VI can be used to describe si-

multaneous symmetry breaking in both spontaneous and
conventional Floquet states. Furthermore, the (t, φ) for-
malism and the Floquet thermodynamics can be applied
to an arbitrary many-body system, where they estab-
lish a fundamental distinction between both states at
the thermodynamical level, leading to an important con-
clusion: spontaneous Floquet states do not experience
heating as they conserve energy, in contrast to conven-
tional Floquet systems [108, 109]. In the specific case of
the CES state, this survives for thermodynamically long
times which scale linearly with the system size [42]. This
can be compared with the prethermal regime of a driven
Floquet system, whose lifetime scales exponentially with
the applied frequency [23, 110, 111].

The quest for a time operator is a fundamental ques-
tion in Quantum Mechanics [112–114], which is still open
[115]. In our case, the time operator emerges from the
quantum fluctuations of the global time origin, in close
analogy with the fluctuations of the global phase of a
condensate. Indeed, in the (t, φ) formalism, the time op-
erator emerges from the fluctuations of the global phase
shift φ0 in the periodic motion of the spontaneous Flo-
quet state. The connection between time and phase has
been pointed out since early approaches to the problem
[113] because any realization of a time operator is ex-
pected to be based on the oscillation of a clock. The time-
phase analogy suggests that spontaneous Floquet states
should be then macroscopically excited states, with an
energy well above the ground state. As a result, the CES
state provides a condensed-matter setup where a tangible
realization of a time operator can be studied.

Our work also finds a major application in the field
of time crystals, since a spontaneous Floquet state rep-
resents a specific realization of a continuous time crystal
[42]. Indeed, some results of our work are connected with
the time-crystal literature. For instance, the role of the
generalized Gibbs ensemble in dissipative time crystals
was thoroughly discussed in Ref. [116]. The emergence
of continuous time crystals from excited eigenstates, in
the same fashion as spontaneous Floquet states, was pre-
dicted in Ref. [117]. Time supersolids, like the CES
state, were originally observed in Ref. [27], to which
the formalism of this work is directly applicable. On the
other hand, Floquet thermodynamics can provide a novel
tool for the characterization of both continuous and dis-
crete time crystals. Moreover, the analysis presented in
Sec. IV suggests that certain periodic systems identi-
fied as time crystals may not genuinely break continu-
ous time-translation symmetry since they can arise from
constant motion along a closed orbit generated by the
broken-symmetry transformations. Thus, the presence
of a genuine temporal FNG mode should be regarded as
the characteristic signature of any bona fide continuous
time crystal.

Although we have used atomic condensates to illus-
trate our Floquet formalism, it can be straightforwardly
extrapolated to magnonic condensates, nonlinear optical
fibers or quantum fluids of light. In general, spontaneous
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Floquet states extend the field of nonlinear Floquet waves
[118, 119] to scenarios without external driving. Sponta-
neous Floquet states in fermionic systems described by
HF approaches, such as quantum Hall states, are also
plausible [42]. In addition, self-consistent BCS-type the-
ories are known to display periodic oscillations in mo-
mentum space [120–122].

Future extensions of the present work should include
finite temperature effects and quantum corrections be-
yond linearity, both for stationary and Floquet states
exhibiting simultaneous symmetry breaking. Of partic-
ular interest is the general study of the nonperturbative
quantum diffusion of the spontaneously broken symme-
tries, generalizing the works of Refs. [48, 49]. In the
case of the temporal Floquet-Nambu-Goldstone mode,
this could lead to suggestive concepts such as time dif-
fusion or time eigenstates, in analogy with the phase of
a condensate [123, 124]. A subject of ongoing research
[125] is the achievement of a fully quantum time crys-
tal from the CES state that spontaneously breaks time-
translation symmetry, without phase locking its time ori-
gin as in the present work. This can be done by either
approaching the GS-CES phase transition, where quan-
tum fluctuations become critical, or by starting from a
quantum black-hole laser [90].
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Appendix A: Cnoidal waves in the GPG equation

1. Elliptic functions

We briefly review here some basic notions of elliptic
functions. We begin by defining the Jacobi elliptic func-
tions

sn(u, ν) ≡ sin (am(u, ν)) , cn(u, ν) ≡ cos (am(u, ν)) ,
(A1)

where am(u, ν) is the inverse function of the incomplete
elliptic integral of the first kind F (φ, ν) for fixed ν,

u = F (am(u, ν), ν). (A2)

In turn, the incomplete and complete elliptic integrals of
the first kind are

F (φ, ν) ≡
ˆ φ

0

dϕ
√

1 − ν sin2 ϕ
, K(ν) ≡ F

(π

2
, ν
)

. (A3)

As a consequence of these relations, sn(u + 2K(ν), ν) =
−sn(u, ν), cn(u + 2K(ν), ν) = −cn(u, ν), and thus
sn(u, ν), cn(u, ν) are periodic functions with period
4K(ν). The incomplete and complete elliptic integrals
of the second kind are

E(φ, ν) ≡
ˆ φ

0

dϕ

√

1 − ν sin2 ϕ, E(ν) ≡ E
(π

2
, ν
)

,

(A4)
while those of the third kind are

Π(φ,m, ν) ≡
ˆ φ

0

dϕ

(1 −m sin2 ϕ)
√

1 − ν sin2 ϕ
,

Π(m, ν) ≡ Π
(π

2
,m, ν

)

. (A5)

Of interest are also the integrals

F2n(ν) ≡
ˆ

π

2

0

sin2n φ
√

1 − ν sin2 φ
dφ, (A6)

G2n(ν) ≡
ˆ

π

2

0

sin2n φ

√

1 − ν sin2 φ dφ,

which appear when evaluating the particle number or the
energy of a cnoidal wave. They can be shown to obey the
inter-recursive relations

F2n(ν) =
F2n−2(ν) −G2n−2(ν)

ν
, (A7)

G2n(ν) = (2n− 1)[G2n−2(ν) −G2n(ν)]

+ ν[F2n+2(ν) − F2n(ν)],

yielding

G2n(ν) =
(2n− 1)G2n−2(ν) + (1 − ν)F2n(ν)

2n + 1
, (A8)

with F0(ν) = K(ν), G0(ν) = E(ν).

2. GPG solutions in a ring

Since the GPG equation can be rewritten as Eq. (84),
we first study in detail the solutions to the stationary
homogeneous GP equation

HGPΨ0 = µΨ0. (A9)

This equation is solved by decomposing the wavefunction
in amplitude and phase as Ψ0(x) = A(x)eiθ(x), finding

−A′′

2
+

v2

2
A + A3 = µA, (A10)

dn(x)v(x)

dx
= 0.

The second equation simply yields the conservation of
the current, J = n(x)v(x), with n(x) = A2(x) the den-
sity and v(x) = ∂xθ the flow velocity. When plugged
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into the first equation, we obtain something of the form
A′′ = −W ′(A), which can be thought as the equation of
motion of a fictitious particle in a potential W (A), where
x plays here the role of time. “Energy” conservation then
implies:

1

2
A′2 + W (A) = EA, (A11)

W (A) =
J2

2A2
+ µA2 − A4

2
.

By using instead the density, we find that the wavefunc-
tion is determined by the set of differential equations

n′2 = 4(n− n1)(n− n2)(n− n3), θ′(x) = v(x) =
J

n(x)
,

(A12)
where the three densities ni, i = 1, 2, 3, are the roots of
the polynomial

n3−2µn2+2EAn−J2 = (n−n1)(n−n2)(n−n3). (A13)

These densities are related to the more physical chemical
potential µ, particle current J , and amplitude energy EA

as

3
∑

i=1

ni = n1 + n2 + n3 = 2µ (A14)

3
∏

i=1

ni = n1n2n3 = J2

n1n2 + n1n3 + n2n3 = 2EA.

After integrating the equation for n(x) in Eq. (A12)
and then that of θ(x), we arrive at the cnoidal wave of
Eq. (85). From its expression, we can compute the pure
cnoidal contribution to the momentum

Pn =

ˆ L

0

−iΨ∗
n(x)∂xΨn(x)dx = JL =

√
n1n2n3L.

(A15)

Since the actual GPG wavefunction is Ψ0(x) =
eivxΨn(x), it is immediately found that the total mo-
mentum is

P = Nv + Pn =⇒ v =
p̄

n̄
−

√
n1n2n3

n̄
. (A16)

Moreover, |Ψ0(x)|2 = |Ψn(x)|2, and thus the total parti-
cle number is directly obtained from the integral of the
cnoidal density. With the help of these results, one ar-
rives at Eq. (93). The trick to solve that system of equa-
tions is to express all roots ni in terms of ν, ni = ni(ν).
For that purpose, one combines the first two lines of Eq.
(93) to express n1, n3 in terms of ν, and invokes the def-
inition of ν itself, Eq. (86), to obtain n2(ν). Inserting
these results into the third line of Eq. (93) yields a single
equation for ν, which can be easily numerically solved as
0 ≤ ν ≤ 1. Once ν is obtained, the densities ni = ni(ν)
are computed, and the complete GPG wavefunction and
the total energy are determined.

Finally, we show that the Berry-Gibbs curvature (53)
automatically vanishes in our gauge choice. By decom-
posing the GPG wavefunction in phase and amplitude,
Ψ0(x) =

√

n(x)eiη(x), it is easily seen that in general

FAB =

ˆ

dx [∂Aη ∂Bn− ∂An ∂Bη]. (A17)

In the specific case of the 1D GPG cnoidal wave, Eq.
(91), η(x) = (v + wn)x + Θ(x). Moreover, the second
line of Eq. (92) imposes that the crystal momentum is
fixed by the winding number and does not depend on
the charges, so ∂Aη = ∂AΘ. As in our particular gauge
n(x) is an even periodic function, then Θ(x) is an odd
periodic function, and thus FAB identically vanishes by
parity symmetry.
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Krawczyk, and Joachim Gräfe, “Real-space observation
of magnon interaction with driven space-time crystals,”
Phys. Rev. Lett. 126, 057201 (2021).

[120] R. A. Barankov, L. S. Levitov, and B. Z. Spi-
vak, “Collective Rabi Oscillations and Solitons
in a Time-Dependent BCS Pairing Problem,”
Phys. Rev. Lett. 93, 160401 (2004).

[121] Matthew S. Foster, Victor Gurarie, Maxim
Dzero, and Emil A. Yuzbashyan, “Quench-
Induced Floquet Topological p-Wave Superfluids,”
Phys. Rev. Lett. 113, 076403 (2014).

[122] E. Perfetto and G. Stefanucci, “Floquet Topological
Phase of Nondriven p-Wave Nonequilibrium Excitonic
Insulators,” Phys. Rev. Lett. 125, 106401 (2020).

[123] Anthony J. Leggett and Fernando Sols, “On
the concept of spontaneously broken gauge
symmetry in condensed matter physics,”
Foundations of Physics 21, 353–364 (1991).

[124] F. Sols, “Randomization of the phase af-
ter suppression of the Josephson coupling,”
Physica B: Condensed Matter 194, 1389–1390 (1994).

[125] J. R. M de Nova et al., to be published.

http://dx.doi.org/10.1088/1367-2630/ababc4
http://dx.doi.org/ 10.1103/PhysRevLett.119.250602
http://dx.doi.org/10.1103/PhysRevB.100.020406
http://dx.doi.org/10.1103/PhysRevLett.126.057201
http://dx.doi.org/10.1103/PhysRevLett.93.160401
http://dx.doi.org/10.1103/PhysRevLett.113.076403
http://dx.doi.org/10.1103/PhysRevLett.125.106401
https://link.springer.com/article/10.1007/BF01883640
https://www.sciencedirect.com/science/article/abs/pii/0921452694911940

