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We construct a model which exhibits resistivity going as a power law in temperature T , as Tα

down to the lowest temperature. There is no residual resistivity because we assume the absence of
disorder and momentum relaxation is due to umklapp scattering. Our model consists of a quantum
spin liquid state with spinon Fermi surface and a hole Fermi surface made out of doped holes. The
key ingredient is a set of singular 2kF modes living on a ring in momentum space. Depending on
parameters, α may be unity (strange metal) or even smaller. The model may be applicable to a
doped organic compound, which has been found to exhibit linear T resistivity. We conclude that it
is possible to obtain strange metal behavior starting with a model which is not so strange.

I. INTRODUCTION

The notion of strange metals emerged out of transport
measurements from the early days of cuprate supercon-
ductivity and has been applied broadly over the years to
instances where linear in temperature resistivity is ob-
served, whether it is low temperature, high temperature
and with or without a finite residual resistivity due to
disorder. In this broad sense, strange metal behavior has
been seen in many materials and has attracted a great
deal of attention from the community, as summarized
nicely in recent reviews [1, 2]. The strange metal is usu-
ally associated with the violation of Landau’s theory of
Fermi liquid, and believed to be driven by strong correla-
tion physics. In this paper we will restrict the use of the
term strange metal to low temperatures and in the ab-
sence of disorder. The high temperature linear resistivity
anomaly is associated with violations of the Mott-Ioffe-
Regel limit and clearly requires a separate set of physical
input. [2] On the opposite end, while there are examples
where linear T resistivity survives to low temperatures,
in many cases the linear regime does not extend above
the residual resistivity beyond a value comparable to the
residual resistivity itself. Examples of this behavior in-
clude the overdoped [3] and electron doped cuprates [4].
While this phenomenon is not understood and is of great
interest, the effect of disorder is likely to be strongly rele-
vant and a different set of explanations may be required.
Furthermore, as a matter of principle, Landau’s Fermi
liquid theory refers to the clean case. In this paper we
will not discuss models with disorder [5–8]. We will focus
on the situation where a power law resistivity extrapo-
lates to a small residual value, so that the power extends
over a range much larger than the residual resistivity and
disorder may be considered unimportant. Our goal is to
produce a model which produces a power law resistivity
Tα with α < 2 which is valid down to zero temperature
and which include the linear resistivity as a special case
α = 1. As explained below (see also [6]) there are bar-
riers towards accomplishing this goal which may explain
the paucity of such models. While our model is unlikely
to be applicable to cuprate superconductors, it may find
application in a doped organic compound. [9].

Why is it difficult to construct such a model? In the ab-
sence of disorder, the total momentum is conserved under
scattering unless umklapp scattering is allowed. There-
fore in the absence of both disorder and umklapp scatter-
ing the conductivity σ(ω) is proportional to δ(ω) which
is incompatible with any power law function ω−α. Hence
the coefficient of δ(ω) must be zero. This case was consid-
ered by Else and Senthil [10] who show that a power law
resistivity requires the divergence of a certain kind of fluc-
tuations in order to kill the delta function. We shall not
pursue this route here and instead consider models where
umklapp scattering is allowed down to T = 0. Such mod-
els immediately rule out scattering from critical modes at
q = 0 such as those from ferromagnetic or nematic order
or from emergent gauge fields. [6, 11] This leaves soft
modes which are associated with critical point involving
ordering at a finite momentum such as anti-ferromagnets
or charge density waves. Such scatterings are limited to
”hot spots” on the Fermi surface. Without scatterings
which rapidly equilibrate the other momentum states on
the Fermi surface, the resistivity is dominated by scatter-
ing rates away from the hot spots. [5, 12] This problem
can be brought under control with the introduction of
disorder scattering. [5, 6, 11] This indeed gives rise to a
linear T regime with a coefficient which is independent
of the disorder. However, the price one pays is that this
regime is limited to an increase of resistivity which is
equal or less than the residual resistivity. Hence the zero
disorder limit cannot be taken without losing the linear
T regime. [5, 11]

It turns out that these difficulties can be circumvented
in a model of doping holes into a quantum spin liquid
with a spinon Fermi surface. The spinon Fermi surface
has a singular self energy and violates the Landau crite-
rion for quasi-particles. On a triangular lattice umklapp
scattering is possible if the density of doped holes is large
enough. We shall show that in this case the hot spot be-
comes a hot region on the Fermi surface, which may even
cover the entire Fermi surface. So the bottleneck prob-
lem mentioned earlier does not arise and the power law
resistivity survives to low temperature. We also empha-
size that if the power law α is equal to or less than unity,
the Landau criterion is violated and quasi-particles as de-
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fined by Landau do not exist. Nevertheless, it was shown
long ago by Prange and Kadanoff [13] that even with-
out Landau’s quasi-particles, a Boltzmann equation that
describes transport properties can be derived. Taking ad-
vantage of their insight, the resistivity can be calculated
in a simple way even in the ”non-Fermi liquid” case. A
quantum spin liquid with a spinon Fermi surface is an
exotic state of matter, but it is no longer considered very
strange. In fact, these state may be realized in certain
organic compounds [14] and in monolayer 1T-TaSe2 [15].
In any case, it is useful to have an example which can
exhibit strange metal behavior based on a model that is
not so strange.

FIG. 1. (a) Dashed circle shows the spinon Fermi surface
in the hexagonal Brillouin zone for a triangular lattice. Solid
blue circle shows the hole Fermi surface holding p doped holes.
The two Fermi surfaces can exchange momentum P via an
umklapp process where P is the sum of a 2kF vector (dashed
orange line) and a reciprocal lattice vector G (green line) (b)
An expanded view of the region between the two spinon Fermi
surfaces shown in (a). P 0 is the shortest umklapp vector
connecting the two spinon Fermi surfaces. The hole Fermi
surface is positioned so that its Fermi surface is spanned by
P 0. An initial hole state (green dot) at angle −ϕ0 is scattered
to a final hole state (orange dot) at angle ϕ0+ϕ in an umklapp
process. The short red arrow denote the vector ∆q (defined
above Eq. 2) which measures the deviation of the collective
mode momentum Q from 2kF

II. THE MODEL

We consider a Hubbard model on the triangular lat-
tice with nearest neighbor hopping t and onsite U . We
assume U/t is such that we are on the insulator side of
the Mott transition, but not deep inside, so the charge
gap is finite but relatively small. S = 1/2 local mo-
ments are formed on the sites and we assume that they
do not order but form a spin liquid state. We further as-
sume that the electrons have fractionalized into fermionic
spinons carrying S = 1/2 but no charge, and relativis-
tic bosonic chargons. Both are coupled to emergent U(1)
gauge fields. [16] This state was proposed to characterized
the organic spin liquids compounds, the ET and dmit
salts. [14] Recently the ET salt is found to have a spin
gap below a phase transition at 6K, so if there is a Fermi

surface, at leasst part of it is gapped out at low tempera-
tures. [17] On the other hand the dmit salt does not show
this transition or gap and continues to be a good candi-
date. For ET salts, we assume the spinon Fermi surface
is a close-by competing state. More recently the spinon
Fermi surface state was also proposed to be realized in
monolayer 1T-TaSe2 and 1T-TaS2, and there is evidence
of such as state from the appearance of incommensurate
modulations at wave-vectors given by 2kF expected in
a Fermi liquid. [15] Further evidence comes from Kondo
screening of adsorbed magnetic impurities [18] We note
that recent DMRG calculations find a chiral spin liquid
in the vicinity of the Mott transition and not a spinon
Fermi surface. [19, 20] On the other hand, there is no
experimental evidence for time reversal breaking in the
two systems mentioned above. So we continue to assume
that the Fermi surface state is either realized with addi-
tional coupling or is a competing state which may arise
with carrier doping.

Now we consider doping this spin liquid with carriers
which can be electrons or holes. For concreteness we shall
use the hole notation. So far the 1T-TaSe2 and 1T-TaS2
cannot be doped. However in the case of the ET salt,
it has been possible to introduce Hg chains between the
layers, resulting in a doped hole concentration p of 11
%. [9] At the mean-field level, the doped hole will oc-
cupy the gapped holon band. On the triangular lattice,
the band minimum may occur at the Γ point or the K
points depending on the sign of t. Here we make a further
assumption. We consider a strong attraction between the
holon and the spinon so they recombine to form physical
holes that carry both charge and spin. These holes form
a Fermi surface containing p holes if the band bottom is
located at Γ, or they form two Fermi surfaces contain-
ing p/2 holes each, if the band bottoms are at the zone
corner K points. We shall refer to such bands as hole
bands. Alternatively, there may be an additional band
which happens to be located below the chargon gap, and
the doped holes enter that band to form conventional
hole pockets. There is in fact evidence for such a band in
1T-TaSe2 [21]. The situation is illustrated in Fig.1. The
spinon band is half filled and is almost circular. For con-
creteness the hole band is assumed to be at the Γ point
and has area corresponding to p spinful holes.

Note that the hole band containing p holes violates
Luttinger theorem which states that the Fermi surfaces
should enclose a total of 1 − p fermions. This situa-
tion has been dubbed FL∗ by Senthil, Sachdev and Vo-
jta. [22] They explained that one can get around the non-
perturbative proof of Luttinger theorem [23] if the spinon
sector is in a gapped topological state with degenerate
ground states upon flux insertion in a torus geometry.
In our case, the spinon sector is gapless and has mas-
sive degeneracy. As a result the non-perturbative proof
which relies on returning to the same ground state after
a flux insertion in a torus also fails. [24]. While topol-
ogy does not play a role, we follow them and denote this
as an FL∗ state. The properties of the hole pocket can
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FIG. 2. A plot of the exponent α which characterizes the
resistivity going as Tα vs the exponent σ. Dashed line indi-
cates the breakdown of the linear relation given by Eq.5 for
σ > 5/6. The Fermi liquid behave α = 2 is recovered for
σ < 1/6 and linear T resistivity obtains for σ = 2/3, as indi-
cated by the short-dashed line. σ is defined as the divergent
exponent of the vertex function γ(ω) ∝ ω−σ. As shown in
the inset this divergence is due to repeated exchange of the
gauge field (dotted line). Also shown is the diagram for the
spinon polarization function Π2kF . The intermediate spinon
lines denote excitations of spinon particle-hole pairs which are
restricted to low energy, hence two factors of the vertex func-
tions appear and contribute the factor ω̃−2σ in Eq. 1. For
details see ref. [25]

be quite conventional, apart from its small Fermi surface
area. In contrast, the spinon Fermi surface is strongly
coupled to a U(1) gauge field which the holes do not see.
This problem has been well studied and one key result is
that the self energy goes as ω2/3. [26] The spinon decay
rate exceed ω which violates Landau’s criterion for the
existence of quasi-particles. The origin of the strong de-
cay rate is that the gauge field is strongly overdamped,
with a propagator that goes as (|ω|/q + q2)−1. The ex-
citation ω scales as q3 resulting in a copious amount of
low energy excitations. For a number of years it was be-
lieved that this strong coupled problem can be controlled
with a 1/N expansion, where N is the number of fermion
species. The low energy physics is found to be described
by a nontrivial fixed point which is exactly marginal and
described by scaling functions. [25, 27] Of particular in-
terest to us is that the polarizibility function for the sys-
tem comprising spinons coupled to gauge fields, Π(ω,Q),
is singular for |Q| near 2kF . [25] Importantly, note that
this results in a ring of low energy excitations in momen-
tum space with radius 2kF . Unfortunately, upon further
scrutiny it was shown by Sung-Sik Lee that the 1/N is
not controlled even in the large N limit [28]. So the na-
ture of the low energy physics is not known even for large
N , let alone the physical case of N = 2. Nevertheless,
it is still possible that the low energy physics remains to
be described by a nontrivial and marginal fixed point.

There is support for this possibility by studies involving
more expansion parameters. [29] We will adopt this point
of view and assume a scaling form for Π(ω,Q) which is
the same for the large N expansion as given by Altshuler,
Ioffe and Millis [25], except that we will treat the scaling
exponent σ as an unknown parameter. (σ is the expo-
nent which characterize the divergence of the 2kF vertex
function γ due to coupling to the gauge fluctuations as
shown in Fig 2, namely, γ(ω) ∝ |ω|−σ.) Since Π(ω,Q) is
independent of the direction of Q, we introduce the vari-
able ∆q = Q − 2kF Q̂ to denote the distance of Q from
the Fermi surface. We write Π(ω,Q) as Π2kF

(ω,∆q) and

denote the imaginary part as Π
′′
. We define the scaled

variable q̃ as q̃Q̂ = ∆q/kF , together with ω̃ = ω/EF .
We have,

Π
′′

2kF
(ω,∆q) ∝ 1

EF
ω̃2/3−2σ, ω̃2/3 > |q̃| (1)

Π
′′

2kF
(ω,∆q) ∝

{
1

EF
ω̃|q̃|−1/2−3σ, ω̃2/3 < |q̃|, q̃ < 0.

1
EF

ω̃5/3|q̃|−3/2−3σ, ω̃2/3 < |q̃|, q̃ > 0.

(2)
In these equations, the σ dependent part comes from the
vertex function γ and the rest comes from particle-hole
excitations including the self-energy correction. Eq.1
gives the limit ω̃2/3 > |q̃| and is given in ref. [25]. The
limit ω̃2/3 < |q̃| is given in Eq.2. The first line is ap-
plicable for q̃ < 0 or |Q| < 2kF and apart from the σ
dependent factor, it is the same as the familiar form for
free fermions. [30] The only difference is that the condi-
tion of validity is changed from ω̃ < |q̃| to ω̃2/3 < |q̃|. The
second line in Eq.2 gives the case |Q| > 2kF which is zero
for free fermions because we are outside of the particle-
hole continuum. In our case there is a finite contribution
due to a self energy which goes as ω2/3. Note that Eqs.1
and 2 satisfy the scaling form Π

′′

2kF
∝ ω̃2/3−2σF (ω̃/q̃3/2)

where F (x) goes to 1 for x small so that ω̃ scales as q̃3/2.
We note that while Eqs.1 and 2 are often derived as-

suming a circular Fermi surface, it is generally applicable
to any Fermi surface shape as long as opposite k points
on the Fermi surface have parallel tangents. In this case
kF is a function of angle θ and Eqs.1 and 2 remain valid.

III. RESISTIVITY

Now we are ready to compute the resistivity of the
hole band due to scattering by the soft 2kF mode of the
spinon Fermi surface. We note that after shifting by a
reciprocal lattice vector G, the 2kF vectors are equiva-
lent to a set of vectors P centered at the M point that
connect the Fermi surfaces on neigboring extended Bril-
louin zones, as shown in fig 1a. If the hole Fermi surface
is large enough, these vector can connect points on the
hole Fermi surface and give rise to umklapp scattering
which relaxes the momentum and current. The condi-
tion on the size of the hole Fermi surface is the following.
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With nearest neighbor hopping the spinon Fermi surface
is nearly a circle with radius kF ≈ 0.375|b1| where b1
is the reciprocal lattice vector along x̂. [15] The length
of the shortest vector that connects that two Fermi sur-
faces is 0.25|b1|. Let us denote the Fermi momentum of
the hole pocket by pF . The condition for umklapp is that
pF > 0.125|b1| which is 1/3 of kF for 1 spinon per unit
cell. Hence we conclude that umklapp scattering begins
for p > 1/9 in the case of a single circular hole pocket
centered at Γ. This condition can be relaxed if the Fermi
surface deviates from a circle, which is likely the case if
the doped holes occupy a separate trivial band. Below
we will assume that this condition is satisfied and calcu-
late the hole lifetime due to umklapp scattering. Since
the momentum transfer is large and umklapp, the same
lifetime will enter the resistivity and all transport phe-
nomena.

Unlike the spinon Fermi surface, the hole Fermi sur-
face is not coupled to the gauge field and does not have
the anomalous large self energy and damping rate. The
major source of damping at low temperatures come from
the umklapp scattering channel under consideration. If
this rate is smaller than linear in T or its frequency Ω,
the quasi-particle is well defined and a Fermi liquid de-
scription is valid in the Landau sense, even if Luttinger
theorem is not obeyed. Here I remark that even if the de-
cay rate ends up with a power law smaller than unity and
Landau quasi-particles do not exist, it is still possible to
treat the transport problem using Boltzmann equation,
as long as the self energy has only frequency dependence
and no singular momentum dependence, which is the case
here. This was shown by Prange and Kadanoff [13] and
their idea have been applied to the fermion coupled to
gauge field problem. [11, 31] The idea is that at low fre-
quency, the electron spectral function is a sharp peak in
momentum space, and a Fermi surface can be defined
by the crossing of this sharp peak across pF . This is fa-
miliar in the angle resolved photo-emission spectroscopy
(ARPES) literature in that the momentum distribution
curve (MDC) can be sharp while the energy distribution
curve (EDC) is broad. This allows us to use the Boltz-
mann equation approach to calculate the resistivity and
the result will remain valid even if the exponent α ends
up being less than unity, which will happen in certain
parameter range.

In its simplest form, the solution of the Boltzmann
equation is just the computation of the scattering rate
1/τ using Fermi’s golden rule. As shown in Fig.1b, we la-
bel the state on the hole Fermi surface by an angle ϕ. For
simplicity of exposition, we consider the scattering from
an initial state at −ϕ0 to a final state at the Fermi sur-
face near ϕ0 such that they are connected by the shortest
umklapp vector which lies along x̂. 2kF scattering using
longer spanning wave-vector will have similar scattering
rate with the same power law. The important point is to
note that in general a finite region of ϕ0 values will sat-
isfy this umklapp condition and will have similar umk-
lapp scattering rates. Furthermore there are 6 minimal

spanning vectors in total which replicate the one shown
in fig 1b. Therefore it is quite likely that these regions
of initial states will cover the entire Fermi surface. This
situation is totally different from the scattering from a
critical mode at a finite momentum, such as that due to
antiferromagnetic instability. This results in the so called
”hot spots” and the problem is that the rapid relaxation
is limited to these hot spots and there is a bottleneck to
relax momenta from the rest of the Fermi surface. [5, 12]
In order to overcome the bottleneck constraint, one need
to introduce disorder scattering which gives a finite re-
sistivity at zero temperature, leading to the difficulties
described earlier. An important feature of the current
model is that the entire Fermi surface or large fragments
of it is hot, which allows us to reach the clean limit.
The umklapp scattering rate is given by [11]

1/τ = V 2
0

∫ Ω

0

dω

∫
dϕ Π”

2kF
(ω,∆q(ϕ)) (3)

where V0 is a short range interaction constant between
the holes and the spinons. Since the imaginary part of
Π2kF

represents the excitation of a particle-hole pair of
spinons, this equation captures the scattering of holes by
spinons described in Fig.1. The integral is over a final
state located at ϕ0 + ϕ on the Fermi surface and Q(ϕ)
denotes a vector in the direction connecting this point
and the center of the spinon Fermi surface circle which
is close to x̂ for small ϕ. We are interested in Q(ϕ) near
2kF , so the integration over ϕ can be converted to a one
dimensional integral over the length of ∆q where ∆q is
the deviation of Q from the 2kF vector as defined earlier.
It is easy to see that |∆q| ≈ kFϕcos(ϕ0). Hence the
integral over ϕ is converted to an integral over q̃/cos(ϕ0).
We have

1/τ =
V 2
0

cos(ϕ0)

∫ Ω

0

dω

∫ Λ

−Λ

dq̃ Π”
2kF

(ω,∆q(ϕ)) (4)

where Λ ≈ 1 is an ultra-violet (UV) cut-off in the q̃ in-
tegration. We can divide the q̃ integral into two regions.
Region (1) is for ω̃2/3 > |q̃| as given by Eq.1. The q̃
integral gives a factor ω̃2/3 and we find 1/τ ∝ Ω7/3−2σ

Region (2) is for ω̃2/3 < |q̃| as given by Eq.2. We consider
separately the contributions for |Q| less than or greater
than 2kF . In the latter case the integral is UV con-
vergent since σ is positive, so its value is given by the
infra-red cut-off and we find a contribution equal to that
of region 1. On the other hand, for |Q| < 2kF the in-
tegrand is given by the first line in Eq.2 we see that the
integral is UV convergent only for σ > 1/6. Hence we
find the exponent for the scattering rate 1/τ ∝ Ωα or
Tα, where

α = 7/3− 2σ, σ > 1/6 (5)

Note that this result is a consequence of the scaling prop-
erty for Π2kF

described earlier following Eq.2 and does
not depend on the values of the exponents which only
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serve to control the regime of validity as we next dis-
cuss. From the first line in Eq.2, for σ < 1/6, the q̃
integral is infra-red convergent, so its value is given by
the UV cutoff Λ and is independent of ω̃. As a result,
we find that α = 2 which dominates over contributions
from other regions of the integratioan and we recover the
standard Landau Fermi liquid result. On the other hand
the spinon self energy is given by ωα due to scattering
by the holes. When α < 2/3 the exponent will need to
be determined self-consistently. Hence the the validity of
Eq.5 is limited to the range 2/3 < α < 7/3. This final
result is summarized in Fig 2.

We do not know what the value of σ is, but as a matter
of principle, this model gives a power law behavior of
the resistivity down to the lowest temperature which can
include the linear T resistivity. In fact, the linear T case
α = 1 does not play any special role and there is no
obvious restriction that α cannot be smaller than unity.

IV. DISCUSSION

We have constructed a model based on doping of a spin
liquid with a spinon Fermi surface, forming a hole Fermi
surface with an area that corresponds to the doped hole
concentration p. As such it violates Luttinger theorem
and belongs to the classification FL∗. [22] We show that
for p large enough, umklapp scattering between the hole
Fermi surface and the spinon Fermi surface becomes pos-
sible, resulting in a resistivity which goes as Tα where α
is given by Eq.5 and can vary over a wide range, depend-
ing on the strength of the 2kF singularity of the spinon.
In principle α equal to unity or even smaller in possible.
In these cases, the Landau criterion for the existence of
his quasi-particle is violated and this state can be called a
non-Fermi liquid. Our calculation relies on the formula-
tion of Prange and Kadanoff [13] who showed that quasi-
particles in the Landau sense is not necessary to derive
a Boltzmann equation to describe transport. Therefore
our result should remain valid for α equal to or less than
unity. On the other hand, since the transport proper-
ties are based on the Boltzmann equation, other prop-
erties such as the Hall constant and magnetoresistance

should be conventional. In particular, the magnetore-
sistance should obey Koehler’s rule, which states that
the correction to resistivity goes as (Bτ)2. In cuprates
a linear in B magnetoresistance is often associated with
a linear in T resistivity. It is unlikely that our model or
something similar is relevant to the cuprates. The most
promising material candidate is the doped organic system
where 11% doping has been achieved and linear or close
to linear in T resistivity which extends over several times
of the residual resistivity have been observed over some
range of pressure. [9] The Hall constant is given by the
hole doping in this pressure range, consistent with small
Fermi pockets of total area p. Interestingly, 11% is on
the border of applicability of our model, which requires
p > 1/9.
We note that the key ingredient of our model is a crit-

ical mode which is soft along a line in momentum space.
This gives rise to low energy scattering in finite regions on
the Fermi surface which allows us to circumvent the hot
spot problem associated with scattering by a mode which
is critical at one momentum. We employ a model with
a spinon Fermi surface because that represents a criti-
cal state which exists over a range in parameter space.
Therefore the power law resistivity exists over a range of
parameters such as doping or pressure. Furthermore a
circular spinon or hole Fermi surface is not needed, be-
cause the singularity of Π2kF

is a consequence of a two
patch model, which rely on the fact that opposite k points
in the spinon Fermi surface have parallel tangents.
There has been a lot of discussions concerning the so-

called Planckian bound, ℏ/τ < kBT . [32] At present there
appears to be no clear connection between transport life-
time and the Planckian bound. [2] Our model is rela-
tively simple and can serve as a counter-example to the
Plankian bound which, unlike phonon scattering, is valid
down to zero temperature.
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