
An Approach for Addressing Internally-Disconnected
Communities in Louvain Algorithm

Subhajit Sahu

subhajit.sahu@research.iiit.ac.in

IIIT Hyderabad

Hyderabad, Telangana, India

ABSTRACT
Community detection is the problem of identifying densely con-

nected clusters of nodes within a network. The Louvain algorithm

is a widely used method for this task, but it can produce commu-

nities that are internally disconnected. To address this, the Leiden

algorithm was introduced. In this technical report, we propose

another approach to mitigate this issue. On a system with two

16-core Intel Xeon Gold 6226R processors, our new parallel algo-

rithm GSP-Louvain, based on the Louvain algorithm, addresses

this issue, and outperforms the original Leiden, igraph Leiden, and

NetworKit Leiden by 341×, 83×, and 6.1× respectively - achieving a
processing rate of 328𝑀 edges/s on a 3.8𝐵 edge graph. Furthermore,

GSP-Louvain improves performance at a rate of 1.5× for every

doubling of threads.

KEYWORDS
Community detection, Internally-disconnected communities, Paral-

lel Louvain implementation

1 INTRODUCTION
Community detection is the process of identifying groups of vertices

characterized by dense internal connections and sparse connections

between the groups [12]. These groups, referred to as communities

or clusters [1], offer valuable insights into the organization and

functionality of networks [12]. Community detection finds appli-

cations in various fields, including topic discovery in text mining,

protein annotation in bioinformatics, recommendation systems in

e-commerce, and targeted advertising in digital marketing [15].

Modularity maximization is a frequently employed method for

community detection. Modularity measures the difference between

the fraction of edges within communities and the expected fraction

of edges under random distribution, and ranges from −0.5 to 1

[12, 25]. However, optimizing for modularity is an NP-hard problem

[4]. An additional challenge is the lack of prior knowledge about the

number and size distribution of communities [3]. Heuristic-based

approaches are thus used for community detection [3, 7, 10, 19, 27–

29, 38, 39, 41, 44, 46]. The identified communities are considered

intrinsic when solely based on network topology and disjoint when

each vertex belongs to only one community [8, 15].

The Louvain method [3] is a popular heuristic-based approach

for intrinsic and disjoint community detection, and has been iden-

tified as one of the fastest and top-performing algorithms [21, 45].

It utilizes a two-phase approach involving local-moving and aggre-

gation phases to iteratively optimize the modularity metric [25].

Although widely used, the Louvain method has been noted for

generating internally-disconnected and poorly connected commu-

nities [39]. In response, Traag et al. [39] introduce the Leiden algo-

rithm, which incorporates an extra refinement phase between the

local-moving and aggregation phases. This refinement step enables

vertices to explore and potentially create sub-communities within

the identified communities from the local-moving phase [39]. In this

report, we propose another BFS-based approach for addressing the

same issue. This is different from a number of earlier works, which

tackled internally-disconnected communities as a post-processing

step [15, 16, 24, 27, 43].

Furthermore, the proliferation of data and their graph represen-

tations has reached unprecedented levels in recent years. However,

applying the original Leiden algorithm to massive graphs has posed

computational challenges, primarily due to its inherently sequential

nature, akin to the Louvain method [17]. In contexts prioritizing

scalability, the development of optimized algorithms which address

the issue of internally disconnected communities becomes essential,

especially in the multicore/shared memory setting.

1.1 Our Contributions
In this report, we propose GSP-Louvain

1
, another approach to

mitigate the issue of disconnected communities with the Louvain

algorithm. On a system equipped with two 16-core Intel Xeon Gold

6226R processors, we demonstrate that GSP-Louvain resolves this

issue and achieves a processing rate of 328𝑀 edges/s on a 3.8𝐵 edge

graph. It outperforms the original Leiden, igraph Leiden, and Net-

worKit Leiden by 341×, 83×, and 6.1×, respectively. The identified
communities are of similar quality as the first two implementations

and 25% higher quality than NetworKit. Furthermore, GSP-Louvain

improve performance at a rate of 1.5× for every doubling of threads.

2 RELATEDWORK
Communities in networks represent functional units or meta-nodes

[5]. Identifying these natural divisions in an unsupervised man-

ner is a crucial graph analytics problem in many domains. Various

schemes have been developed for finding communities [3, 7, 10, 19,

27–29, 38, 39, 41, 44, 46]. These schemes can be categorized into

three basic approaches: bottom-up, top-down, and data-structure

based, with further classification possible within the bottom-up

approach [35]. They can also be classified into divisive, agglom-

erative, and multi-level methods [47]. To evaluate the quality of

these methods, fitness scores like modularity are commonly used.

Modularity [25] is a metric that ranges from −0.5 to 1, and measures

the relative density of links within communities compared to those

1
https://github.com/puzzlef/louvain-communities-openmp

1

ar
X

iv
:2

40
2.

11
45

4v
4

 [
cs

.D
C

]
 2

9
M

ar
 2

02
4

https://github.com/puzzlef/louvain-communities-openmp

Subhajit Sahu

outside. Optimizing modularity theoretically results in the best

possible clustering of the nodes [21]. However, as going through

each possible clustering of the nodes is impractical [12], heuristic

algorithms such as the Louvain method [3] are used.

The Louvain method, proposed by Blondel et al. [3] from the Uni-

versity of Louvain, is a greedy, multi-level, modularity-optimization

based algorithm for intrinsic and disjoint community detection

[21, 25]. It utilizes a two-phase approach involving local-moving

and aggregation phases to iteratively optimize the modularity met-

ric [3], and is recognized as one of the fastest and top-performing

algorithms [21, 45]. Various algorithmic improvements [17, 23, 30,

31, 34, 40] and parallelization strategies [6, 11, 17, 23, 42, 48] have

been proposed for the Louvain method. Several open-source im-

plementations and software packages have been developed for

community detection using Parallel Louvain Algorithm, including

Vite [14], Grappolo [17], and NetworKit [36]. Note however that

community detection methods which rely on modularity maximiza-

tion are known to face the resolution limit problem, which hinders

the identification of smaller communities [13].

Although favored for its ability to identify communities with

high modularity, the Louvain method often produces internally

disconnected communities due to vertices acting as bridges moving

to other communities during iterations (see Section 3.4). This is-

sue worsens with further iterations without decreasing the quality

function [39]. To overcome these issues, Traag et al. [39] from the

University of Leiden, propose the Leiden algorithm, which intro-

duces a refinement phase after the local-moving phase of the Lou-

vain method. In this refinement phase, vertices undergo additional

local moves based on delta-modularity, allowing the discovery of

sub-communities within the initial communities. Shi et al. [34] also

introduce a similar refinement phase after the local-moving phase

of the Louvain method to minimize poor clusters.

A few open-source implementations and software packages exist

for community detection using the Leiden algorithm. The origi-

nal implementation, libleidenalg [39], is written in C++ and has

a Python interface called leidenalg. NetworKit [36], a software
package designed for analyzing graph data sets with billions of

connections, features a parallel implementation of the Leiden algo-

rithm by Nguyen [26]. This implementation utilizes global queues

for vertex pruning and vertex and community locking for updating

communities. Another package, igraph [9], is written in C and has

Python, R, and Mathematica frontends — also includes an imple-

mentation of the Leiden algorithm.

Internally disconnected communities are not a new problem.

Internally-disconnected communities can be produced by label

propagation algorithms [15, 27], multi-level algorithms [3], ge-

netic algorithms [18], expectation minimization/maximization al-

gorithms [2, 16], among others. Raghavan et al. [27] note that their

Label Propagation Algorithm (LPA) for community detection may

identify disconnected communities. In such a case, they suggest

applying a Breadth-First Search (BFS) on the subnetworks of each

individual group to separate the disconnected communities, with a

time complexity of 𝑂 (𝑀 + 𝑁). Gregory [15] introduced the Com-

munity Overlap PRopagation Algorithm (COPRA) as an extension

of LPA. In their algorithm, they eliminate communities completely

contained within others and use a similar method as Raghavan

et al. [27] to split any returned disconnected communities into

connected ones. Hafez et al. [16] present a community detection

algorithm leveraging Bayesian Network and Expectation Minimiza-

tion (BNEM). They include a final step to examine the result for

potentially containing disconnected communities within a single

community. If this situation arises, new community labels are as-

signed to the disconnected components. This scenario occurs when

the networkmay havemore communities than the specified number

𝑘 in the algorithm. Hesamipour et al. [18] propose a genetic algo-

rithm for community detection, integrating similarity-based and

modularity-based approaches. Their method uses an MST-based

representation for addressing issues like disconnected communities

and ineffective mutations.

3 PRELIMINARIES
Consider an undirected graph denoted as 𝐺 (𝑉 , 𝐸,𝑤), where 𝑉
stands for the vertex set, 𝐸 represents the edge set, and𝑤𝑖 𝑗 = 𝑤 𝑗𝑖

indicates the weight associated with each edge. In the scenario

of an unweighted graph, we assume a unit weight for every edge

(𝑤𝑖 𝑗 = 1). Moreover, the neighbors of a vertex 𝑖 are referred to

as 𝐽𝑖 = { 𝑗 | (𝑖, 𝑗) ∈ 𝐸}, the weighted degree of each vertex as

𝐾𝑖 =
∑

𝑗∈ 𝐽𝑖 𝑤𝑖 𝑗 , the total number of vertices as 𝑁 = |𝑉 |, the total
number of edges as 𝑀 = |𝐸 |, and the sum of edge weights in the

undirected graph as𝑚 =
∑
𝑖, 𝑗∈𝑉 𝑤𝑖 𝑗/2.

3.1 Community detection
Disjoint community detection entails identifying a community

membership mapping, 𝐶 : 𝑉 → Γ, wherein each vertex 𝑖 ∈ 𝑉
is assigned a community ID 𝑐 from the set of community IDs

Γ. We denote the vertices of a community 𝑐 ∈ Γ as 𝑉𝑐 , and the

community that a vertex 𝑖 belongs to as 𝐶𝑖 . Additionally, we de-

note the neighbors of vertex 𝑖 belonging to a community 𝑐 as

𝐽𝑖→𝑐 = { 𝑗 | 𝑗 ∈ 𝐽𝑖 𝑎𝑛𝑑 𝐶 𝑗 = 𝑐}, the sum of those edge weights as

𝐾𝑖→𝑐 =
∑

𝑗∈ 𝐽𝑖→𝑐
𝑤𝑖 𝑗 , the sum of weights of edges within a commu-

nity 𝑐 as 𝜎𝑐 =
∑
(𝑖, 𝑗) ∈𝐸 𝑎𝑛𝑑 𝐶𝑖=𝐶 𝑗=𝑐 𝑤𝑖 𝑗 , and the total edge weight

of a community 𝑐 as Σ𝑐 =
∑
(𝑖, 𝑗) ∈𝐸 𝑎𝑛𝑑 𝐶𝑖=𝑐 𝑤𝑖 𝑗 [22].

3.2 Modularity
Modularity is a metric used for assessing the quality of communities

identified by heuristic-based community detection algorithms. It is

calculated as the difference between the fraction of edges within

communities and the expected fraction if edges were randomly

distributed, and ranges from −0.5 to 1, where higher values indicate
superior results [4]. The modularity 𝑄 of identified communities

is determined using Equation 1, where 𝛿 represents the Kronecker

delta function (𝛿 (𝑥,𝑦) = 1 if 𝑥 = 𝑦, 0 otherwise). The delta mod-
ularity of moving a vertex 𝑖 from community 𝑑 to community 𝑐 ,

denoted as Δ𝑄𝑖:𝑑→𝑐 , can be determined using Equation 2.

𝑄 =
1

2𝑚

∑︁
(𝑖, 𝑗) ∈𝐸

[
𝑤𝑖 𝑗 −

𝐾𝑖𝐾𝑗

2𝑚

]
𝛿 (𝐶𝑖 ,𝐶 𝑗) =

∑︁
𝑐∈Γ

[
𝜎𝑐

2𝑚
−
(
Σ𝑐
2𝑚

)
2

]
(1)

Δ𝑄𝑖:𝑑→𝑐 =
1

𝑚
(𝐾𝑖→𝑐 − 𝐾𝑖→𝑑) −

𝐾𝑖

2𝑚2
(𝐾𝑖 + Σ𝑐 − Σ𝑑) (2)

2

An Approach for Addressing Internally-Disconnected Communities in Louvain Algorithm

3.3 Louvain algorithm
The Louvain method, introduced by Blondel et al. [3], is a greedy

algorithm that optimizes modularity to identify high quality dis-

joint communities in large networks. It has a time complexity of

𝑂 (𝐿 |𝐸 |), where 𝐿 is the total number of iterations performed, and

a space complexity of 𝑂 (|𝑉 | + |𝐸 |) [21]. This algorithm consists of

two phases: the local-moving phase, wherein each vertex 𝑖 greed-

ily decides to join the community of one of its neighbors 𝑗 ∈ 𝐽𝑖
to maximize the gain in modularity Δ𝑄𝑖:𝐶𝑖→𝐶 𝑗

(using Equation

2), and the aggregation phase, during which all vertices within a

community are combined into a single super-vertex. These phases

constitute one pass, which is repeated until no further improvement

in modularity is achieved [3, 22].

3.4 Possibility of Internally-disconnected
communities with the Louvain algorithm

The Louvain method, though effective, has been noted to poten-

tially identify internally disconnected communities [39]. This is

illustrated with an example in Figure 1. Figure 1(a) shows the initial

community structure after running a few iterations of the Lou-

vain algorithm. It includes four communities labeled 𝐶1, 𝐶2, 𝐶3,

𝐶4, and vertices 1 to 7 are grouped in community 𝐶1. After a few

additional iterations, in Figure 1(b), communities 𝐶2, 𝐶3, and 𝐶4

merge together into 𝐶3, due to strong connections among them-

selves. As vertex 4 is now more strongly connected to community

𝐶3, it shifts from community 𝐶1 to join community 𝐶3 instead, in

Figure 1(c). This results in the internal disconnection of commu-

nity 𝐶1, as vertices 1, 2, 3, 5, 6, and 7 retain their locally optimal

assignments. Additionally, once all nodes are optimally assigned,

the algorithm aggregates the graph. If an internally disconnected

community becomes a node in the aggregated graph, it remains

disconnected unless it combines with another community acting as

a bridge. With subsequent passes, these disconnected communities

are prone to steering the solution towards a lower local optima.

3.5 Leiden algorithm
The Leiden algorithm, proposed by Traag et al. [39], is a multi-level

community detection technique that extends the Louvain method.

It consists of three key phases. In the local-moving phase, each ver-

tex 𝑖 optimizes its community assignment by greedily selecting

to join the community of one of its neighbors 𝑗 ∈ 𝐽𝑖 , aiming to

maximize the modularity gain Δ𝑄𝑖:𝐶𝑖→𝐶 𝑗
, as defined by Equation 2,

akin to the Louvain method. During the refinement phase, vertices
within each community undergo further updates to their commu-

nity memberships, starting from singleton partitions. Unlike the

local-moving phase however, these updates are not strictly greedy.

Instead, vertices may move to any community within their bounds

where the modularity increases, with the probability of joining a

neighboring community proportional to the delta-modularity of

the move. The level of randomness in these moves is governed by a

parameter 𝜃 > 0. This randomized approach facilitates the identifi-

cation of higher quality sub-communities within the communities

established during the local-moving phase. Finally, in the aggrega-
tion phase, all vertices within each refined partition are combined

into super-vertices, with an initial community assignment derived

from the local-moving phase [39]. The time complexity of the Lei-

den algorithm is 𝑂 (𝐿 |𝐸 |), where 𝐿 represents the total number of

iterations performed, and its space complexity is 𝑂 (|𝑉 | + |𝐸 |).

4 APPROACH
In preceding sections, we explored how the Louvain algorithm

can produce internally-disconnected communities. However, this

phenomenon is not exclusive to this algorithms and has been

documented in various other community detection algorithms

[2, 15, 16, 18, 27]. To mitigate this issue, a commonly employed

approach involves splitting disconnected communities as a post-

processing step [15, 16, 24, 27, 43], utilizing Breadth First Search

(BFS) [15, 27]. We refer to this as Split Last (SL) using BFS, or SL-
BFS. However, this strategy may exacerbate the problem of poorly

connected communities for multi-level community detection tech-

niques, such as the Louvain algorithm [39].

4.1 Our Split Pass (SP) approach
To tackle the aforementioned challenges encountered by the Lou-

vain algorithm, we propose to split the disconnected communities

in every pass. Specifically, this occurs after the local-moving phase

in the Louvain algorithm. We refer to this as the Split Pass (SP)
approach. Additionally, we explore the conventional approach of

splitting disconnected communities as a post-processing step, i.e.,

after all iterations of the community detection algorithm have been

completed and the vertex community memberships have converged.

This traditional approach is referred to as Split Last (SL).
In order to partition disconnected communities using either

the SP or the SL approach, we explore three distinct techniques:

minimum-label-based Label Propagation (LP), minimum-label-based

Label Propagation with Pruning (LPP), and Breadth First Search (BFS).
The rationale behind investigating LP and LPP techniques for split-

ting disconnected communities as they are readily parallelizable.

With the LP technique, each vertex in the graph initially receives

a unique label (its vertex ID). Subsequently, in each iteration, every

vertex selects the minimum label among its neighbors within its

assigned community, as determined by the community detection

algorithm. This iterative process continues until labels for all ver-

tices converge. Since each vertex obtains a unique label within its

connected component and its community, communities comprising

multiple connected components get partitioned. In contrast, the

LPP technique incorporates a pruning optimization step where only

unprocessed vertices are handled. Once a vertex is processed, it is

marked as such, and gets reactivated (or marked as unprocessed) if

one of its neighbors changes their label. The pseudocode for the

LP and LPP techniques is presented in Algorithm 1, with detailed

explanations given in Section 4.1.1.

On the other hand, the BFS technique for splitting internally-

disconnected communities involves selecting a randomvertexwithin

each community and identifying all vertices reachable from it as

part of one subcommunity. If any vertices remain unvisited in the

original community, another random vertex is chosen from the

remaining set, and the process iterates until all vertices within each

community are visited. Consequently, the BFS technique facilitates

the partitioning of connected components within each community.

The pseudocode for the BFS technique for splitting disconnected

3

Subhajit Sahu

C1
1

4

3

5

72

6

C2 C3 C4

(a) Initial community structure with 4 communities

C1
1

4

3

5

72

6

C3

(b) After few iterations,𝐶2,𝐶3, and𝐶4 merge

C1 C1

1

4

3

5

72

6

C3

(c) Subsequently, vertex 4 moves to𝐶3

Figure 1: An example demonstrating the possibility of internally disconnected communities with the Louvain algorithm. Here,
𝐶1, 𝐶2, 𝐶3, and 𝐶4 are four communities obtained after running a few iterations of the Louvain algorithm, with vertices 1 to 7

being members of community 𝐶1. Thick lines are used to denote higher edge weights.

communities is outlined in Algorithm 2, with its in-depth explana-

tion provided in Section 4.1.2.

4.1.1 Explanation of LP/LPP algorithm. We now discuss the pseu-

docode for the parallel minimum-label-based Label Propagation

(LP) and Label Propagation with Pruning (LPP) techniques, given in

Algorithm 1, that partition the internally-disconnected communi-

ties. These techniques can be employed either as a post-processing

step (SL) at the end of the community detection algorithm, or af-

ter the refinement/local-moving phase (SP) in each pass. Here, the

function splitDisconnectedLp() that is responsible for this task,

takes as input the graph 𝐺 (𝑉 , 𝐸) and the community memberships

𝐶 of vertices, and returns the updated community memberships 𝐶′

where all disconnected communities have been separated.

In lines 2-5, the algorithm starts by initializing the minimum

labels 𝐶′ of each vertex to their respective vertex IDs, and desig-

nates all vertices as unprocessed. Lines 6-23 represent the iteration

loop of the algorithm. Initially, the number of changed labels Δ𝑁 is

initialized (line 7). This is followed by an iteration of label propaga-

tion (lines 8-21), and finally a convergence check (line 23). During

each iteration (lines 8-21), unprocessed vertices are processed in

parallel. For each unprocessed vertex 𝑖 , it is marked as processed if

the Label Propagation with Pruning (LPP) technique is utilized. The

algorithm proceeds to identify the minimum label 𝑐′
𝑚𝑖𝑛

within the

community of vertex 𝑖 (lines 12-15). This is achieved by iterating

over the outgoing neighbors of 𝑖 in the graph 𝐺 and considering

only those neighbors belonging to the same community as 𝑖 . The

minimum label found among these neighbors, along with the label

of vertex 𝑖 itself, determines the minimum community label 𝑐′
𝑚𝑖𝑛

for 𝑖 . If the obtained minimum label 𝑐′
𝑚𝑖𝑛

differs from the current

minimum label𝐶′ [𝑖] (line 16),𝐶′ [𝑖] is updated, Δ𝑁 is incremented

to reflect the change, and neighboring vertices of 𝑖 belonging to

the same community as 𝑖 are marked as unprocessed to facilitate

their reassessment in subsequent iterations. The label propagation

loop (lines 6-23) continues until there are no further changes in the

minimum labels. Finally, the updated labels𝐶′, representing the up-
dated community membership of each vertex with no disconnected

communities, are returned in line 24.

4.1.2 Explanation of BFS algorithm. Next, we proceed to describe

the pseudocode of the parallel Breadth First Search (BFS) technique,

as presented in Algorithm 2, devised for the partitioning of discon-

nected communities. As with LP/LPP techniques, this technique

can be applied either as a post-processing step (SL) at the end or

after the refinement or local-moving phase (SP) in each pass. Here,

the function splitDisconnectedBfs() accepts the input graph

𝐺 (𝑉 , 𝐸) and the community membership 𝐶 of each vertex, and re-

turns the updated community membership𝐶′ of each vertex where

all the disconnected communities have been split.

Initially, in lines 2-4, the flag vector 𝑣𝑖𝑠 representing visited ver-

tices is initialized, and the labels 𝐶′ for each vertex are set to their

corresponding vertex IDs. Subsequently, each thread concurrently

processes every vertex 𝑖 in the graph 𝐺 (lines 6-11). If the com-

munity 𝑐 of vertex 𝑖 is not present in the work-list 𝑤𝑜𝑟𝑘𝑡 of the

current thread 𝑡 , or if vertex 𝑖 has been visited, the thread pro-

ceeds to the next iteration (line 8). Conversely, if community 𝑐 is

in the work-list𝑤𝑜𝑟𝑘𝑡 of the current thread 𝑡 and vertex 𝑖 has not

been visited, a BFS is performed from vertex 𝑖 to explore vertices

within the same community. This BFS utilizes lambda functions

𝑓𝑖 𝑓 to selectively execute BFS on vertex 𝑗 if it belongs to the same

community, and 𝑓𝑑𝑜 to update the label of visited vertices after

each vertex is explored during BFS (line 11). Upon completion of

processing all vertices, threads synchronize, and the revised la-

bels 𝐶′ — representing the updated community membership of

each vertex with no disconnected communities — are returned

(line 12). It is pertinent to note that the work-list 𝑤𝑜𝑟𝑘𝑡 for each

thread identified by 𝑡 is defined as a set encompassing communities

[𝑡 𝜒, 𝑡 (𝜒 + 1)) ∪ [𝑇 𝜒 + 𝑡 𝜒, 𝑇 𝜒 + 𝑡 (𝜒 + 1)) ∪ . . ., where 𝜒 denotes

the chunk size, and 𝑇 signifies the total number of threads. In our

implementation, a chunk size of 𝜒 = 1024 is employed.

4

An Approach for Addressing Internally-Disconnected Communities in Louvain Algorithm

Algorithm 1 Split disconnected communities using (min) LP.

▷ 𝐺 (𝑉 , 𝐸): Input graph
▷ 𝐶: Initial community membership/label of each vertex

□ 𝐶′: Updated community membership/label of each vertex

□ 𝑐′
𝑚𝑖𝑛

: Minimum connected label within the community

□ Δ𝑁 : Number of changes in labels

1: function splitDisconnectedLp(𝐺,𝐶)

2: 𝐶′ ← {}
3: for all 𝑖 ∈ 𝑉 in parallel do
4: Mark 𝑖 as unprocessed

5: 𝐶′ [𝑖] = 𝑖
6: loop
7: Δ𝑁 ← 0

8: for all unprocessed 𝑖 ∈ 𝑉 in parallel do
9: if is SL-LPP or SP-LPP then
10: Mark 𝑖 as processed

11: ▷ Find minimum community label

12: 𝑐′
𝑚𝑖𝑛
← 𝐶′ [𝑖]

13: for all 𝑗 ∈ 𝐺.𝑜𝑢𝑡 (𝑖) do
14: if 𝐶 [𝑗] = 𝐶 [𝑖] then
15: 𝑐′

𝑚𝑖𝑛
←𝑚𝑖𝑛(𝐶′ [𝑗], 𝑐′

𝑚𝑖𝑛
)

16: if 𝑐′
𝑚𝑖𝑛

= 𝐶′ [𝑖] then continue

17: ▷ Update community label

18: 𝐶′ [𝑖] ← 𝑐′
𝑚𝑖𝑛

; Δ𝑁 ← Δ𝑁 + 1
19: if is SL-LPP or SP-LPP then
20: for all 𝑗 ∈ 𝐺.𝑜𝑢𝑡 (𝑖) do
21: Mark 𝑗 as unprocessed if 𝐶 [𝑗] = 𝐶 [𝑖]
22: ▷ Converged?

23: if Δ𝑁 = 0 then break
24: return 𝐶′

Algorithm 2 Split disconnected communities using BFS.

▷ 𝐺 (𝑉 , 𝐸): Input graph
▷ 𝐶: Initial community membership/label of each vertex

□ 𝐶′: Updated community membership/label of each vertex

□ 𝑓𝑖 𝑓 : Perform BFS to vertex 𝑗 if condition satisfied

□ 𝑓𝑑𝑜 : Perform operation after each vertex is visited

□ 𝑣𝑖𝑠: Visited flag for each vertex

□ 𝑤𝑜𝑟𝑘𝑡 : Work-list of current thread

1: function splitDisconnectedBfs(𝐺,𝐶)

2: 𝐶′ ← {} ; 𝑣𝑖𝑠 ← {}
3: for all 𝑖 ∈ 𝑉 in parallel do
4: 𝐶′ [𝑖] = 𝑖
5: for all threads do
6: for all 𝑖 ∈ 𝑉 do
7: 𝑐′ ← 𝐶′ [𝑖]
8: if 𝑐 ∉ 𝑤𝑜𝑟𝑘𝑡 or 𝑣𝑖𝑠 [𝑖] then continue
9: 𝑓𝑖 𝑓 ← (𝑗) =⇒ 𝐶 [𝑗] = 𝐶 [𝑗]
10: 𝑓𝑑𝑜 ← (𝑗) =⇒ 𝐶′ [𝑗] ← 𝑐′

11: 𝑏𝑓 𝑠𝑉 𝑖𝑠𝑖𝑡𝐹𝑜𝑟𝐸𝑎𝑐ℎ(𝑣𝑖𝑠,𝐺, 𝑖, 𝑓𝑖 𝑓 , 𝑓𝑑𝑜)
12: return 𝐶′

Figure 2 illustrates an example of the BFS technique. Initially,

Figure 2(a) displays two communities, 𝐶1 and 𝐶2, derived after the

local-moving phase. Here, 𝐶1 has become internally disconnected

due to the inclusion of vertex 4 into community 𝐶2 — similar to

the case depicted in Figure 1(c). Subsequently, employing the BFS

technique, a thread selects a random vertex within community 𝐶1,

such as 2, and designates all vertices reachable within 𝐶1 from

2 with the label of 2, and marking them as visited (Figure 2(b)).

Following this, as depicted in Figure 2(c), the same thread picks an

unvisited vertex randomly within community 𝐶1, for example, 7,

and labels all vertices reachable within 𝐶1 from 7 with the label of

7, and marking them as visited. An analogous process is executed

within community𝐶2. Consequently, all vertices are visited, and the

labels assigned to them denote the updated community membership

of each vertex with no disconnected communities. Note that each

thread has a mutually exclusive work-list, ensuring that two threads

do not simultaneously perform BFS within the same community.

4.2 Our GSP-Louvain algorithm
To assess both our Split Pass (SP) approach and the conventional

Split Last (SL) approach, utilizing minimum-label-based Label Prop-

agation (LP), minimum-label-based Label Propagation with Pruning

(LPP), and Breadth First Search (BFS) techniques for splitting dis-

connected communities with the Louvain algorithm, we use GVE-

Louvain [33], our parallel implementation of Louvain algorithm.

4.2.1 Determining suitable technique for splitting disconnected com-
munities. We now determine the optimal technique for partition-

ing internally-disconnected communities using GVE-Louvain. To

achieve this, we investigate both the SL and SP approaches, em-

ploying LP, LPP, and BFS techniques. Figures 3(a), 3(b), and 3(c)

illustrate the mean relative runtime, modularity, and fractions of

disconnected communities for SL-LP, SL-LPP, SL-BFS, SP-LP, SP-

LPP, SP-BFS, and the default (i.e., not splitting disconnected com-

munities) approaches. As depicted in Figure 3(c), both SL and SP

approaches result in non-disconnected communities. Additionally,

Figure 3(b) reveals that the modularity of communities obtained

through the SP approach surpasses that of the SL approach while

maintaining proximity to the default approach. Finally, Figure 3(a)

illustrates that SP-BFS, specifically the SP approach employing the

BFS technique, demonstrates superior performance. Consequently,

employing BFS to split disconnected communities in each pass (SP)

of the Louvain algorithm emerges as the preferred choice.

4.2.2 Explanation of the algorithm. We refer to GVE-Louvain, which

employs the Split Pass (SP) approach with Breadth-First Search

(SP-BFS) technique to handle disconnected communities, as GSP-
Louvain. The core procedure of GSP-Louvain, encapsulated in the

louvain() function, is given in Algorithm 3. It consists of the

following main steps: initialization, local-moving phase, splitting

phase, and the aggregation phase. This function takes as input a

graph 𝐺 (𝑉 , 𝐸) and outputs the community membership 𝐶 for each

vertex in the graph, with none of the returned communities being

internally disconnected.

First, in line 2, the community membership 𝐶 is initialized for

each vertex in 𝐺 , and the algorithm conducts passes of the Lou-

vain algorithm, limited to a maximum number of passes defined by

5

Subhajit Sahu

C1 C1

1

4

3

5

72

6

C2

(a) Community𝐶1 is internally disconnected

C3 C1

1

4

3

5

72

6

C2

(b) After BFS relabeling from vertex 2

C3 C4

1

4

3

5

72

6

C2

(c) After BFS relabeling from vertex 7

Figure 2: An example illustrating the BFS technique for splitting internally-disconnected communities. Initially, two communi-
ties, 𝐶1 and 𝐶2, are shown, with 𝐶1 being internally disconnected due to vertex 4 joining 𝐶2. The BFS technique selects random
vertices within each community and labels reachable vertices with the same label, indicated with a new community ID.

𝑀𝐴𝑋_𝑃𝐴𝑆𝑆𝐸𝑆 . During each pass, various metrics such as the total

edge weight of each vertex 𝐾 ′, the total edge weight of each com-

munity Σ′, and the community membership 𝐶′ of each vertex in

the current graph𝐺 ′ are updated. Subsequently, in line 6, the local-

moving phase is executed by invoking louvainMove() (Algorithm

4), which optimizes the community assignments. Following this, the

algorithm proceeds to the splitting phase, where the internally dis-

connected communities in 𝐶′ are separated. This is done using the

parallel BFS technique, in line 7, with the splitCommunitiesBfs()
function (Algorithm 2). Next, in line 8, global convergence is in-

ferred if the local-moving phase converges in a single iteration. If so,

we terminate the passes. Additionally, if there is minimal reduction

in the number of communities (|Γ |), indicating diminishing returns,

the current pass is halted (line 10).

If convergence is not achieved, the algorithm proceeds with the

following steps: renumbering communities (line 11), updating top-

level community memberships 𝐶 using dendrogram lookup (line

12), executing the aggregation phase via louvainAggregate() (Al-
gorithm 5), and adjusting the convergence threshold for subsequent

passes, known as threshold scaling (line 14). The subsequent pass

initiates at line 3. Upon completion of all passes, a final update of

the top-level community memberships𝐶 using dendrogram lookup

occurs (line 15), followed by the return of the top-level community

membership 𝐶 of each vertex in graph 𝐺 .

5 EVALUATION
5.1 Experimental Setup
5.1.1 System used. We utilize a server comprising two Intel Xeon

Gold 6226R processors, with each processor housing 16 cores op-

erating at 2.90 GHz. Each core is equipped with a 1MB L1 cache,

a 16MB L2 cache, and a shared L3 cache of 22MB. The system is

configured with 376 GB of RAM and is running CentOS Stream 8.

5.1.2 Configuration. We employ 32-bit integers to represent vertex

IDs and 32-bit floats for edge weights, while computations and

hashtable values utilize 64-bit floats. We utilize 64 threads to match

the number of available cores on the system, unless stated otherwise.

Compilation is performed using GCC 8.5 and OpenMP 4.5.

Algorithm 3 GSP-Louvain: Our Parallel Louvain algorithm which

identifies communities that are not internally disconnected.

▷ 𝐺 (𝑉 , 𝐸): Input graph
□ 𝐺 ′ (𝑉 ′, 𝐸′): Input/super-vertex graph
□ 𝐶: Community membership of each vertex

□ 𝐶′: Community membership of each vertex in 𝐺 ′

□ 𝐾 ′: Total edge weight of each vertex

□ Σ′: Total edge weight of each community

□ 𝑙𝑖 : Number of iterations performed (per pass)

□ 𝑙𝑝 : Number of passes performed

□ 𝜏, 𝜏𝑎𝑔𝑔 : Iteration, Aggregation tolerance

1: function louvain(𝐺)

2: Vertex membership: 𝐶 ← [0..|𝑉 |) ; 𝐺 ′ ← 𝐺

3: for all 𝑙𝑝 ∈ [0..MAX_PASSES) do
4: Σ′ ← 𝐾 ′ ← 𝑣𝑒𝑟𝑡𝑒𝑥𝑊𝑒𝑖𝑔ℎ𝑡𝑠 (𝐺 ′) ; 𝐶′ ← [0..|𝑉 ′ |)
5: Mark all vertices in 𝐺 ′ as unprocessed
6: 𝑙𝑖 ← 𝑙𝑜𝑢𝑣𝑎𝑖𝑛𝑀𝑜𝑣𝑒 (𝐺 ′,𝐶′, 𝐾 ′, Σ′, 𝜏) ⊲ Algorithm 4

7: 𝐶′ ← 𝑠𝑝𝑙𝑖𝑡𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐵𝑓 𝑠 (𝐺 ′,𝐶′) ⊲ Algorithm 2

8: if 𝑙𝑖 ≤ 1 then break ⊲ Globally converged?

9: |Γ |, |Γ𝑜𝑙𝑑 | ← Number of communities in 𝐶 , 𝐶′

10: if |Γ |/|Γ𝑜𝑙𝑑 | > 𝜏𝑎𝑔𝑔 then break ⊲ Low shrink?

11: 𝐶′ ← Renumber communities in 𝐶′

12: 𝐶 ← Lookup dendrogram using 𝐶 to 𝐶′

13: 𝐺 ′ ← 𝑙𝑜𝑢𝑣𝑎𝑖𝑛𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝐺 ′,𝐶′) ⊲ Algorithm 5

14: 𝜏 ← 𝜏/TOLERANCE_DROP ⊲ Threshold scaling

15: 𝐶 ← Lookup dendrogram using 𝐶 to 𝐶′

16: return 𝐶

5.1.3 Dataset. The graphs utilized in our experiments are listed

in Table 1, sourced from the SuiteSparse Matrix Collection [20].

These graphs exhibit 3.07 to 214 million vertices, and 25.4 million

to 3.80 billion edges. We ensure that the edges are undirected and

weighted, with a default weight of 1.

6

An Approach for Addressing Internally-Disconnected Communities in Louvain Algorithm
R

el
at

iv
e

ru
nt

im
e

0.0

2.0

4.0

6.0

Default SL-LP SL-LPP SL-BFS SP-LP SP-LPP SP-BFS

(a) Relative runtime using different approaches for splitting disconnected communities

with Parallel Louvain algorithm

M
od

ul
ar

ity

0.9260

0.9263

0.9265

0.9268

0.9270

0.9273

Default Split Last (SL) Split Pass (SP)

(b) Modularity using different approaches for splitting disconnected communities

with Parallel Louvain algorithm

Fr
ac

tio
n

of
 D

is
co

nn
ec

te
d

co
m

m
un

iti
es

1E-4

1E-3

1E-2

1E-1

1E+0

Default Split Last (SL) Split Pass (SP)

(c) Fraction of disconnected communities (logarithmic scale) using different ap-

proaches for splitting disconnected communities with Parallel Louvain algorithm

Figure 3: Mean relative runtime, modularity, and fraction of
disconnected communities (log-scale) using Split Last (SL)
and Split Pass (SP) approaches for splitting disconnected
communities with Parallel Louvain algorithm [32] across
all graphs in the dataset. Both SL and SP approaches employ
Label Propagation (LP), Label Propagation with Pruning (LPP),
or Breadth First Search (BFS) techniques for splitting.

Table 1: List of 13 graphs obtained SuiteSparse Matrix Col-
lection [20] (directed graphs are marked with ∗). Here, |𝑉 |
is the number of vertices, |𝐸 | is the number of edges (after
adding reverse edges), 𝐷𝑎𝑣𝑔 is the average degree, and |Γ | is
the number of communities obtained with GSP-Louvain.

Graph |𝑉 | |𝐸 | 𝐷𝑎𝑣𝑔 |Γ |
Web Graphs (LAW)

indochina-2004
∗

7.41M 341M 41.0 4.28K

uk-2002
∗

18.5M 567M 16.1 42.8K

arabic-2005
∗

22.7M 1.21B 28.2 3.58K

uk-2005
∗

39.5M 1.73B 23.7 20.4K

webbase-2001
∗

118M 1.89B 8.6 2.77M

it-2004
∗

41.3M 2.19B 27.9 5.10K

sk-2005
∗

50.6M 3.80B 38.5 3.86K

Social Networks (SNAP)
com-LiveJournal 4.00M 69.4M 17.4 4.47K

com-Orkut 3.07M 234M 76.2 43

Road Networks (DIMACS10)
asia_osm 12.0M 25.4M 2.1 2.50K

europe_osm 50.9M 108M 2.1 3.36K

Protein k-mer Graphs (GenBank)
kmer_A2a 171M 361M 2.1 19.8K

kmer_V1r 214M 465M 2.2 7.37K

5.2 Performance Comparison
We now compare the performance of GSP-Louvain with the orig-

inal Leiden [39], igraph Leiden [9], and NetworKit Leiden [36].

For the original Leiden, we employ a C++ program to initialize a

ModularityVertexPartition upon the loaded graph and invoke

optimise_partition() to determine the community membership

of each vertex. On graphs with high edge counts, such as webbase-
2001 and sk-2005, utilizing ModularityVertexPartition can re-

sult in disconnected communities due to numerical precision issues

[37]. Despite a positive improvement in separating disconnected

parts, the large total edge weight of the graph can render it effec-

tively near zero. For such graphs, we employ RBConfigurationVer
texPartition, as it uses unscaledmodularity improvements, avoid-

ing the occurrence of disconnected communities. In the case of

igraph Leiden, we utilize igraph_community_leiden()with a res-

olution of 1/2|𝐸 |, a beta value of 0.01, and specify that the algorithm
to run until convergence. For NetworKit Leiden, we create a Python

script to call ParallelLeiden(), while constraining the number

of passes to 10. For each graph, we measure the runtime of each

implementation and the modularity of the resulting communities

five times to obtain an average. Additionally, we store the commu-

nity membership vector (for each vertex in the graph) in a file and

subsequently determine the number of disconnected components

using Algorithm 6. Throughout these evaluations, we optimize for

modularity as the quality function.

Figure 4(a) presents the runtimes of the original Leiden, igraph

Leiden, NetworKit Leiden, and GSP-Louvain on each graph in the

dataset. On the sk-2005 graph, GSP-Louvain identifies communities

in 11.6 seconds, achieving a processing rate of 328 million edges/s.

7

Subhajit Sahu

Figure 4(b) illustrates the speedup of GSP-Louvain relative to the

original Leiden, igraph Leiden, and NetworKit Leiden. On average,

GSP-Louvain exhibit speedups of 341×, 83×, and 6.1×, respectively.
Figure 4(c) displays the modularity of communities obtained using

each implementation. On average, GSP-Louvain achieves modular-

ity values that are 0.3% lower than those obtained by the original

Leiden and igraph Leiden, but 25% higher than those obtained by

NetworKit Leiden (particularly noticeable on road networks and

protein k-mer graphs). Finally, Figure 4(d) illustrates the fraction of

disconnected communities obtained by each implementation. The

absence of bars indicates the absence of disconnected communi-

ties. Communities identified by the original Leiden, igraph Leiden,

and GSP-Louvain exhibit no disconnected communities. However,

on average, NetworKit Leiden exhibits fractions of disconnected

communities amounting to 1.5 × 10−2, particularly noticeable on

web graphs and social networks. This is likely due to an error in

its implementation. Thus, GSP-Louvain effectively tackles the is-

sue of disconnected communities, while being significantly faster

than existing alternatives, and attaining similar modularity scores.

Figure 7 depicts the comparison of GVE-Louvain and GSP-Louvain.

This comparison is explained in detail in Section A.3.

5.3 Performance Analysis
We proceed to analyze the performance of GSP-Louvain. The phase-

wise and pass-wise split of GSP-Louvain is depicted in Figures 5(a)

and 5(b). Figure 5(a) illustrates that GSP-Louvain devotes a con-

siderable portion of its runtime to the local-moving phase on web

graphs, road networks, and protein k-mer graphs, while it predom-

inantly focuses on the aggregation phase on social networks, and

on the splitting phase on road networks. The pass-wise breakdown

for GSP-Louvain, shown in Figure 5(b), indicates that the initial

pass is computationally intensive for high-degree graphs (such as

web graphs and social networks), while subsequent passes take

precedence in terms of execution time on low-degree graphs (such

as road networks and protein k-mer graphs).

On average, GSP-Louvain dedicates 37% of its runtime to the

local-moving phase, 21% to the splitting phase, 29% to the aggrega-

tion phase, and 13% to other steps (including initialization, renum-

bering communities, dendrogram lookup, and resetting communi-

ties). Additionally, the first pass of GSP-Louvain accounts for 71% of

the total runtime. This initial pass in GSP-Louvain is computation-

ally demanding due to the size of the original graph (subsequent

passes operate on super-vertex graphs).

5.4 Strong Scaling
Finally, we evaluate the strong scaling performance of GSP-Louvain

by varying the number of threads from 1 to 64 (in multiples of 2)

for each input graph. We measure the total time taken for GSP-

Louvain to identify communities, with its respective phase splits,

including local-moving, splitting, aggregation, and other associated

steps. The strong scaling of GSP-Louvain is illustrated in Figure 6.

With 32 threads, GSP-Louvain achieve an average speedup of

8.4×, compared to single-threaded execution. This indicates a per-

formance increase of 1.5× for every doubling of threads. The scala-

bility is limited due to the sequential nature of steps/phases in the

algorithm, as well as the lower scalability of splitting and aggre-

gation phases. At 64 threads, GSP-Louvain is impacted by NUMA

effects, resulting in speedups of only 9.4×.

6 CONCLUSION
In this study, we proposed GSP-Louvain, another approach to miti-

gate the issue of disconnected communities with the Louvain al-

gorithm. Utilizing a system featuring two 16-core Intel Xeon Gold

6226R processors, we demonstrated that GSP-Louvain not only

rectifies this issue but also achieves an impressive processing rate

of 328𝑀 edges/s on a 3.8𝐵 edge graph. Comparatively, its surpasses

the original Leiden, igraph Leiden, and NetworKit Leiden by 341×,
83×, and 6.1×, respectively. Moreover, the identified communities

exhibit similar quality to the first two implementations and are 25%

higher in quality than those produced by NetworKit. Additionally,

GSP-Louvain exhibits a performance improvement rate of 1.5× for

every doubling of threads.

In this version of this report, we addressed issues in measuring

disconnected communities for the original Leiden and igraph Lei-

den, which arose due to the number of vertices in a graph varying be-

tween the Matrix Market and the Edgelist formats (which does not

have isolated vertices), and used the RBConfigurationVertexPart
ition with the original Leiden for large graphs (i.e., webbase-2001
and sk-2005). Further, we removed any discussion on GSP-Leiden (it

was similar to GSP-Louvain, but adapted to the Leiden algorithm).

ACKNOWLEDGMENTS
I would like to thank Prof. Kishore Kothapalli, Prof. Dip Sankar

Banerjee, and Vincent Traag for their support.

REFERENCES
[1] Emmanuel Abbe. 2018. Community detection and stochastic block models: recent

developments. Journal of Machine Learning Research 18, 177 (2018), 1–86.

[2] B. Ball, B. Karrer, and M. EJ. Newman. 2011. Efficient and principled method for

detecting communities in networks. Physical Review E 84, 3 (2011), 036103.

[3] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding

of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment 2008, 10 (Oct 2008), P10008.

[4] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D.

Wagner. 2007. On modularity clustering. IEEE transactions on knowledge and
data engineering 20, 2 (2007), 172–188.

[5] B. Chatterjee andH. Saha. 2019. Detection of communities in large scale networks.

In IEEE 10th Annual Information Technology, Electronics and Mobile Communica-
tion Conference (IEMCON). IEEE, 1051–1060.

[6] C. Cheong, H. Huynh, D. Lo, and R. Goh. 2013. Hierarchical Parallel Algorithm for

Modularity-Based Community Detection Using GPUs. In Proceedings of the 19th
International Conference on Parallel Processing (Aachen, Germany) (Euro-Par’13).
Springer-Verlag, Berlin, Heidelberg, 775–787.

[7] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding commu-

nity structure in very large networks. Physical review E 70, 6 (2004), 066111.

[8] Michele Coscia, Fosca Giannotti, and Dino Pedreschi. 2011. A classification for

community discovery methods in complex networks. Statistical Analysis and
Data Mining: The ASA Data Science Journal 4, 5 (2011), 512–546.

[9] G. Csardi, T. Nepusz, et al. 2006. The igraph software package for complex

network research. InterJournal, complex systems 1695, 5 (2006), 1–9.
[10] Jordi Duch and Alex Arenas. 2005. Community detection in complex networks

using extremal optimization. Physical review E 72, 2 (2005), 027104.

[11] M. Fazlali, E. Moradi, and H. Malazi. 2017. Adaptive parallel Louvain community

detection on a multicore platform. Microprocessors and microsystems 54 (Oct

2017), 26–34.

[12] S. Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[13] Santo Fortunato and Marc Barthelemy. 2007. Resolution limit in community

detection. Proceedings of the national academy of sciences 104, 1 (2007), 36–41.

8

An Approach for Addressing Internally-Disconnected Communities in Louvain Algorithm

 0.1

 1

 10

 100

 1000

 10000

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

R
u

n
ti

m
e

(s
)

Original Leiden igraph Leiden NetworKit Leiden GSP-Louvain

37
6 69

4 13
24 20
69 37

39

25
03 43

20

25
6 88

2

17
0

78
0 34

49

48
00

67 11
6 26

1 39
0 77

2

45
9 12

17

73

33
5

39

21
0

12
46

16
62

5 11 16

31

92

43 57

3 4 5

30

13
1

16
9

0.
9 1.
1 2.

4 5.
5

6.
2

4.
0 11

.6

1.
9 3.

4

0.
7

2.
7

17
.2

22
.7

(a) Runtime in seconds (logarithmic scale) with Original Leiden, igraph Leiden, NetworKit Leiden, and GSP-Louvain

 1

 10

 100

 1000

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

S
p
ee
d
u
p

Original Leiden igraph Leiden NetworKit Leiden

43
6 63

2

55
0

37
9 60

5

62
0

37
2

13
4 26

1

24
4

29
0

20
1

21
1

78 10
6

10
9

71

12
5

11
4

10
5

38

99

56

78 73 73

6.
3 9.

8

6.
7

5.
7

14
.9

10
.5

4.
9 7.

2 11
.1

7.
6

7.
4

1.
5

1.
2

(b) Speedup of GSP-Louvain (logarithmic scale) with respect to Original Leiden, igraph Leiden, and NetworKit Leiden.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

M
o
d
u
la
ri
ty

Original Leiden igraph Leiden NetworKit Leiden GSP-Louvain

0.
93

03

0.
99

08

0.
98

99

0.
98

37

0.
98

46

0.
97

81

0.
97

86

0.
75

30

0.
67

62

0.
99

88

0.
99

89

0.
97

42

0.
94

93

0.
93

03

0.
99

08

0.
99

00

0.
98

37

0.
98

46

0.
97

80

0.
97

79

0.
74

46

0.
67

89

0.
99

88

0.
99

89

0.
97

42

0.
94

93

0.
89

58

0.
91

46

0.
91

88

0.
90

36

0.
89

16

0.
90

66

0.
91

31

0.
64

02

0.
59

52

0.
52

35

0.
52

48

0.
53

95

0.
52

06

0.
94

89

0.
99

04

0.
98

97

0.
98

21

0.
98

35

0.
97

75

0.
97

55

0.
71

88

0.
65

77

0.
99

88

0.
99

89

0.
97

43

0.
94

89
(c) Modularity of communities obtained with Original Leiden, igraph Leiden, NetworKit Leiden, and GSP-Louvain.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

Fr
ac

ti
o

n
 o

f
D

is
co

n
n

ec
te

d
 c

o
m

m
u

n
it

ie
s

Original Leiden igraph Leiden NetworKit Leiden GSP-Louvain

2.
1e

-0
4

1.
7e

-0
4

3.
4e

-0
4

9.
3e

-0
5

2.
3e

-0
4

2.
5e

-0
4

4.
1e

-0
4 9.
9e

-0
3 1.
9e

-0
1

1.
4e

-0
8

1.
1e

-0
8

(d) Fraction of disconnected communities (logarithmic scale) with Original Leiden, igraph Leiden, NetworKit Leiden, and GSP-Louvain.

Figure 4: Runtime in seconds (log-scale), speedup (log-scale), modularity, and fraction of disconnected communities (log-scale)
with Original Leiden, igraph Leiden, NetworKit Leiden, and GSP-Louvain for each graph in the dataset.

9

Subhajit Sahu
P

ha
se

 s
pl

it
(%

)

0%

25%

50%

75%

100%

indochina-2004
uk-2002

arabic-2005
uk-2005

webbase-2001
it-2

004
sk-2005

com-LiveJournal

com-Orkut

asia_osm

europe_osm

kmer_A2a

kmer_V1r

Local-moving Splitting Aggregation Others

(a) Phase split of GSP-Louvain

P
as

s
sp

lit
 (%

)

0%

25%

50%

75%

100%

indochina-2004
uk-2002

arabic-2005
uk-2005

webbase-2001
it-2

004
sk-2005

com-LiveJournal

com-Orkut

asia_osm

europe_osm

kmer_A2a

kmer_V1r

First pass Other passes

(b) Pass split of GSP-Louvain

Figure 5: Phase split of GSP-Louvain shown on the left, and pass split shown on the right for each graph in the dataset.

Number of threads

S
pe

ed
up

 w
rt.

 s
eq

ue
nt

ia
l

0

5

10

15

1 2 4 8 16 32 64

Overall Local-moving Splitting Aggregation Others

Figure 6: Overall speedup of GSP-Louvain, and its various
phases (local-moving, splitting, aggregation, and others),
with increasing number of threads (in multiples of 2).

[14] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, and A.H. Gebremedhin.

2018. Scalable distributed memory community detection using vite. In 2018 IEEE
High Performance extreme Computing Conference (HPEC). IEEE, 1–7.

[15] S. Gregory. 2010. Finding overlapping communities in networks by label propa-

gation. New Journal of Physics 12 (10 2010), 103018. Issue 10.
[16] Ahmed Ibrahem Hafez, Aboul Ella Hassanien, and Aly A Fahmy. 2014. BNEM: a

fast community detection algorithm using generative models. Social Network
Analysis and Mining 4 (2014), 1–20.

[17] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo. 2017. Scalable static

and dynamic community detection using Grappolo. In IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, Waltham, MA USA, 1–6.

[18] Sajjad Hesamipour, Mohammad Ali Balafar, Saeed Mousazadeh, et al. 2022. De-

tecting communities in complex networks using an adaptive genetic algorithm

and node similarity-based encoding. Complexity 2023 (2022).

[19] K. Kloster and D. Gleich. 2014. Heat kernel based community detection. In

Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, New York, USA, 1386–1395.

[20] S. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. Davis, M. Henderson, Y. Hu,

and R. Sandstrom. 2019. The SuiteSparse matrix collection website interface.

JOSS 4, 35 (2019), 1244.
[21] A. Lancichinetti and S. Fortunato. 2009. Community detection algorithms: a

comparative analysis. Physical Review. E, Statistical, Nonlinear, and Soft Matter
Physics 80, 5 Pt 2 (Nov 2009), 056117.

[22] J. Leskovec. 2021. CS224W: Machine Learning with Graphs | 2021 | Lecture 13.3 -

Louvain Algorithm. https://www.youtube.com/watch?v=0zuiLBOIcsw

[23] H. Lu, M. Halappanavar, and A. Kalyanaraman. 2015. Parallel heuristics for

scalable community detection. Parallel computing 47 (Aug 2015), 19–37.

[24] Malte Luecken. 2016. Application of multi-resolution partitioning of interaction
networks to the study of complex disease. Ph. D. Dissertation. University of Oxford.

[25] Mark EJ Newman. 2006. Modularity and community structure in networks.

Proceedings of the national academy of sciences 103, 23 (2006), 8577–8582.
[26] Fabian Nguyen. [n. d.]. Leiden-Based Parallel Community Detection. Bachelor’s

Thesis. Karlsruhe Institute of Technology, 2021 (zitiert auf S. 31).

[27] U. Raghavan, R. Albert, and S. Kumara. 2007. Near linear time algorithm to

detect community structures in large-scale networks. Physical Review E 76, 3

(Sep 2007), 036106–1–036106–11.

[28] Jörg Reichardt and Stefan Bornholdt. 2006. Statistical mechanics of community

detection. Physical review E 74, 1 (2006), 016110.

[29] M. Rosvall and C. Bergstrom. 2008. Maps of random walks on complex networks

reveal community structure. Proceedings of the national academy of sciences 105,
4 (2008), 1118–1123.

[30] R. Rotta and A. Noack. 2011. Multilevel local search algorithms for modularity

clustering. Journal of Experimental Algorithmics (JEA) 16 (2011), 2–1.
[31] S. Ryu and D. Kim. 2016. Quick community detection of big graph data using

modified louvain algorithm. In IEEE 18th International Conference on High Perfor-
mance Computing and Communications (HPCC). IEEE, Sydney, NSW, 1442–1445.

[32] Subhajit Sahu. 2023. GVE-Leiden: Fast Leiden Algorithm for Community Detec-

tion in Shared Memory Setting. arXiv preprint arXiv:2312.13936 (2023).
[33] Subhajit Sahu. 2023. GVE-Louvain: Fast Louvain Algorithm for Community

Detection in Shared Memory Setting. arXiv preprint arXiv:2312.04876 (2023).
[34] J. Shi, L. Dhulipala, D. Eisenstat, J. Łącki, and V. Mirrokni. 2021. Scalable com-

munity detection via parallel correlation clustering.

[35] S. Souravlas, A. Sifaleras, M. Tsintogianni, and S. Katsavounis. 2021. A classifica-

tion of community detection methods in social networks: a survey. International
journal of general systems 50, 1 (Jan 2021), 63–91.

[36] C.L. Staudt, A. Sazonovs, and H. Meyerhenke. 2016. NetworKit: A tool suite for

large-scale complex network analysis. Network Science 4, 4 (2016), 508–530.
[37] V. Traag. 2024. Personal communication. (2024).

[38] V.A. Traag and L. Šubelj. 2023. Large network community detection by fast label

propagation. Scientific Reports 13, 1 (2023), 2701.
[39] V. Traag, L. Waltman, and N. Eck. 2019. From Louvain to Leiden: guaranteeing

well-connected communities. Scientific Reports 9, 1 (Mar 2019), 5233.

[40] L. Waltman and N. Eck. 2013. A smart local moving algorithm for large-scale

modularity-based community detection. The European physical journal B 86, 11

(2013), 1–14.

[41] J. Whang, D. Gleich, and I. Dhillon. 2013. Overlapping community detection

using seed set expansion. In Proceedings of the 22nd ACM international conference
on Information & Knowledge Management. 2099–2108.

[42] C. Wickramaarachchi, M. Frincu, P. Small, and V. Prasanna. 2014. Fast parallel

algorithm for unfolding of communities in large graphs. In IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, IEEE, Waltham, MA USA, 1–6.

[43] F Alexander Wolf, Fiona K Hamey, Mireya Plass, Jordi Solana, Joakim S Dahlin,

Berthold Göttgens, Nikolaus Rajewsky, Lukas Simon, and Fabian J Theis. 2019.

PAGA: graph abstraction reconciles clustering with trajectory inference through

a topology preserving map of single cells. Genome biology 20 (2019), 1–9.

[44] J. Xie, B. Szymanski, and X. Liu. 2011. SLPA: Uncovering overlapping communi-

ties in social networks via a speaker-listener interaction dynamic process. In IEEE
11th International Conference on Data Mining Workshops. IEEE, IEEE, Vancouver,
Canada, 344–349.

10

https://www.youtube.com/watch?v=0zuiLBOIcsw

An Approach for Addressing Internally-Disconnected Communities in Louvain Algorithm

[45] Zhao Yang, René Algesheimer, and Claudio J Tessone. 2016. A comparative

analysis of community detection algorithms on artificial networks. Scientific
reports 6, 1 (2016), 30750.

[46] X. You, Y. Ma, and Z. Liu. 2020. A three-stage algorithm on community detection

in social networks. Knowledge-Based Systems 187 (2020), 104822.
[47] N. Zarayeneh and A. Kalyanaraman. 2021. Delta-Screening: A Fast and Efficient

Technique to Update Communities in Dynamic Graphs. IEEE transactions on
network science and engineering 8, 2 (Apr 2021), 1614–1629.

[48] J. Zeng and H. Yu. 2015. Parallel Modularity-Based Community Detection on

Large-Scale Graphs. In IEEE International Conference on Cluster Computing. 1–10.

11

Subhajit Sahu

A APPENDIX
A.1 Phases of GSP-Louvain
Here, we explain the local-moving, and aggregation phases of GSP-

Louvain. For details on the splitting phase, please consult Section

4.1.2.

A.1.1 Local-moving phase of GSP-Louvain. The pseudocode for

the local-moving phase of GSP-Louvain is outlined in Algorithm

4. Within this algorithm, vertices are iteratively moved between

communities to maximize modularity. The louvainMove() func-

tion takes as input the current graph 𝐺 ′, community membership

𝐶′, total edge weight of each vertex 𝐾 ′ and each community Σ′,
and the iteration tolerance 𝜏 . It returns the number of iterations

performed 𝑙𝑖 .

Lines 3-15 encapsulate the primary loop of the local-moving

phase. Initially, all vertices are designated as unprocessed (line 2).

Subsequently, in line 4, the total delta-modularity per iteration Δ𝑄
is initialized. Next, parallel iteration over unprocessed vertices is

conducted (lines 5-14). For each unprocessed vertex 𝑖 , 𝑖 is flagged

as processed, i.e., vertex pruning (line 6), followed by scanning

communities connected to 𝑖 , excluding itself (line 7). Further, the

best community 𝑐∗ for moving 𝑖 to is determined (line 9), and the

delta-modularity 𝛿𝑄∗ of moving 𝑖 to 𝑐∗ is computed (line 10). If a

superior community is identified (with 𝛿𝑄∗ > 0), the community

membership of 𝑖 is updated (lines 12-13), and its neighbors are

marked as unprocessed (line 14). If not, 𝑖 stays in its original com-

munity. Line 15 verifies if the local-moving phase has converged,

terminating the loop if so (or if 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁𝑆 is reached).

Finally, in line 16, the number of iterations performed 𝑙𝑖 is returned.

A.1.2 Aggregation phase of GSP-Louvain. Finally, we provide the
pseudocode for the aggregation phase in Algorithm 5, which ag-

gregates communities into super-vertices in preparation for the

subsequent pass of the Louvain algorithm, operating on the super-

vertex graph. The louvainAggregate() function accepts the cur-

rent graph 𝐺 ′ and the community membership 𝐶′ as input and
returns the super-vertex graph 𝐺 ′′.

In lines 3-4, the offsets array for the community vertices Com-

pressed Sparse Row (CSR) 𝐺 ′𝐶′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 is computed. Initially, this

involves determining the number of vertices in each community

using countCommunityVertices() and subsequently performing

an exclusive scan on the array. Then, in lines 5-6, a parallel itera-

tion over all vertices is conducted to atomically populate vertices

belonging to each community into the community graph CSR𝐺 ′𝐶′.
Following this, the offsets array for the super-vertex graph CSR

is determined by estimating the degree of each super-vertex. This

process includes calculating the total degree of each community

with communityTotalDegree() and performing an exclusive scan

on the array (lines 8-9). As a result, the super-vertex graph CSR

exhibits sparsity, with gaps between the edges and weights arrays

of each super-vertex in the CSR.

Following that, in lines 11-17, a parallel iteration over all com-

munities 𝑐 ∈ [0, |Γ |) is executed. For each vertex 𝑖 belonging to

community 𝑐 , all communities 𝑑 (along with associated edge weight

𝑤) linked to 𝑖 , as defined by scanCommunities() in Algorithm 4,

are included in the per-thread hashtable 𝐻𝑡 . Once 𝐻𝑡 is populated

Algorithm 4 Local-moving phase of GSP-Louvain [33].

▷ 𝐺 ′ (𝑉 ′, 𝐸′): Input/super-vertex graph
▷ 𝐶′: Community membership of each vertex

▷ 𝐾 ′: Total edge weight of each vertex

▷ Σ′: Total edge weight of each community

▷ 𝜏 : Iteration tolerance

□ 𝐻𝑡 : Collision-free per-thread hashtable

□ 𝑙𝑖 : Number of iterations performed

1: function louvainMove(𝐺 ′,𝐶′, 𝐾 ′, Σ′, 𝜏)
2: Mark all vertices in 𝐺 ′ as unprocessed
3: for all 𝑙𝑖 ∈ [0..MAX_ITERATIONS) do
4: Total delta-modularity per iteration: Δ𝑄 ← 0

5: for all unprocessed 𝑖 ∈ 𝑉 ′ in parallel do
6: Mark 𝑖 as processed (prune)

7: 𝐻𝑡 ← 𝑠𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 ({},𝐺 ′,𝐶′, 𝑖, 𝑓 𝑎𝑙𝑠𝑒)
8: ▷ Use 𝐻𝑡 , 𝐾

′, Σ′ to choose best community

9: 𝑐∗ ← Best community linked to 𝑖 in 𝐺 ′

10: 𝛿𝑄∗ ← Delta-modularity of moving 𝑖 to 𝑐∗

11: if 𝑐∗ = 𝐶′ [𝑖] then continue
12: Σ′ [𝐶′ [𝑖]]− = 𝐾 ′ [𝑖] ; Σ′ [𝑐∗]+ = 𝐾 ′ [𝑖] atomic
13: 𝐶′ [𝑖] ← 𝑐∗ ; Δ𝑄 ← Δ𝑄 + 𝛿𝑄∗
14: Mark neighbors of 𝑖 as unprocessed

15: if Δ𝑄 ≤ 𝜏 then break ⊲ Locally converged?

16: return 𝑙𝑖

17: function scanCommunities(𝐻𝑡 ,𝐺
′,𝐶′, 𝑖, 𝑠𝑒𝑙 𝑓)

18: for all (𝑗,𝑤) ∈ 𝐺 ′ .𝑒𝑑𝑔𝑒𝑠 (𝑖) do
19: if not 𝑠𝑒𝑙 𝑓 and 𝑖 = 𝑗 then continue
20: 𝐻𝑡 [𝐶′ [𝑗]] ← 𝐻𝑡 [𝐶′ [𝑗]] +𝑤
21: return 𝐻𝑡

with all communities (and their associated weights) linked to com-

munity 𝑐 , these are atomically added as edges to super-vertex 𝑐

in the super-vertex graph 𝐺 ′′. Finally, in line 18, the super-vertex

graph 𝐺 ′′ is returned.

A.2 Finding disconnected communities
We introduce our parallel algorithm designed to identify discon-

nected communities, given the original graph and the community

membership of each vertex. The core principle involves assessing

the size of each community, selecting a representative vertex from

each community, navigating within the community from that ver-

tex while avoiding neighboring communities, and designating a

community as disconnected if all its vertices are unreachable. We

investigate four distinct approaches, distinguished by their utiliza-

tion of parallel Depth-First Search (DFS) or Breadth-First Search

(BFS), and whether per-thread or shared visited flags are employed.

When shared visited flags are utilized, each thread scans all vertices

but exclusively processes its designated community based on the

community ID. Our findings reveal that employing parallel BFS

traversal with a shared flag vector yields the most efficient results.

Given the deterministic nature of this algorithm, all approaches

yield identical outcomes. Algorithm 6 outlines the pseudocode for

12

An Approach for Addressing Internally-Disconnected Communities in Louvain Algorithm

Algorithm 5 Aggregation phase of GSP-Louvain [33].

▷ 𝐺 ′ (𝑉 ′, 𝐸′): Input/super-vertex graph
▷ 𝐶′: Community membership of each vertex

□ 𝐺 ′
𝐶′ (𝑉

′
𝐶′ , 𝐸

′
𝐶′): Community vertices (CSR)

□ 𝐺 ′′ (𝑉 ′′, 𝐸′′): Super-vertex graph (weighted CSR)

□ ∗.𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠: Offsets array of a CSR graph

□ 𝐻𝑡 : Collision-free per-thread hashtable

1: function louvainAggregate(𝐺 ′,𝐶′)
2: ▷ Obtain vertices belonging to each community

3: 𝐺 ′
𝐶′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑐𝑜𝑢𝑛𝑡𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝐺 ′,𝐶′)

4: 𝐺 ′
𝐶′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑆𝑐𝑎𝑛(𝐺 ′

𝐶′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠)
5: for all 𝑖 ∈ 𝑉 ′ in parallel do
6: Add edge (𝐶′ [𝑖], 𝑖) to CSR 𝐺 ′

𝐶′ atomically

7: ▷ Obtain super-vertex graph

8: 𝐺 ′′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒 (𝐺 ′,𝐶′)
9: 𝐺 ′′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑆𝑐𝑎𝑛(𝐺 ′′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠)
10: |Γ | ← Number of communities in 𝐶′

11: for all 𝑐 ∈ [0, |Γ |) in parallel do
12: if degree of 𝑐 in 𝐺 ′

𝐶′ = 0 then continue

13: 𝐻𝑡 ← {}
14: for all 𝑖 ∈ 𝐺 ′

𝐶′ .𝑒𝑑𝑔𝑒𝑠 (𝑐) do
15: 𝐻𝑡 ← 𝑠𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 (𝐻,𝐺 ′,𝐶′, 𝑖, 𝑡𝑟𝑢𝑒)
16: for all (𝑑,𝑤) ∈ 𝐻𝑡 do
17: Add edge (𝑐, 𝑑,𝑤) to CSR 𝐺 ′′ atomically

18: return 𝐺 ′′

this approach. Here, the disconnectedCommunities() function

takes the input graph𝐺 and the community membership𝐶 as input

and returns the disconnected flag 𝐷 for each community.

Let us now delve into Algorithm 6. Initially, in line 2, we ini-

tialize the disconnected community flag 𝐷 and the visited vertices

flags 𝑣𝑖𝑠 . Line 3 computes the size of each community 𝑆 in par-

allel using the communitySizes() function. Subsequently, each

thread processes each vertex 𝑖 in the graph𝐺 in parallel (lines 5-14).

In line 6, we determine the community membership of 𝑖 (𝑐), and

set the count of vertices reached from 𝑖 to 0. If community 𝑐 is

either empty or not in the work-list of the current thread 𝑤𝑜𝑟𝑘𝑡 ,

the thread proceeds to the next iteration (line 9). However, if com-

munity 𝑐 is non-empty and in the work-list of the current thread

𝑤𝑜𝑟𝑘𝑡 , we perform BFS from vertex 𝑖 to explore vertices in the

same community. This utilizes lambda functions 𝑓𝑖 𝑓 to condition-

ally execute BFS to vertex 𝑗 if it belongs to the same community,

and 𝑓𝑑𝑜 to update the count of reached vertices after each vertex

is visited during BFS (line 12). If the number of vertices 𝑟𝑒𝑎𝑐ℎ𝑒𝑑

during BFS is less than the community size 𝑆 [𝑐], we mark com-

munity 𝑐 as disconnected (line 13). Finally, we update the size of

the community 𝑆 [𝑐] to 0, indicating that the community has been

processed (line 14). It’s important to note that the work-list𝑤𝑜𝑟𝑘𝑡
for each thread with ID 𝑡 is defined as a set containing communities

[𝑡 𝜒, 𝑡 (𝜒 + 1)) ∪ [𝑇 𝜒 + 𝑡 𝜒, 𝑇 𝜒 + 𝑡 (𝜒 + 1)) ∪ . . ., where 𝜒 is the

chunk size, and 𝑇 is the number of threads. In our implementation,

we utilize a chunk size of 𝜒 = 1024.

Algorithm 6 Finding disconnected communities in parallel [32].

▷ 𝐺 (𝑉 , 𝐸): Input graph
▷ 𝐶: Community membership of each vertex

□ 𝐷 : Disconnected flag for each community

□ 𝑆 : Size of each community

□ 𝑓𝑖 𝑓 : Perform BFS to vertex 𝑗 if condition satisfied

□ 𝑓𝑑𝑜 : Perform operation after each vertex is visited

□ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 : Number of vertices reachable from 𝑖 to 𝑖’s community

□ 𝑣𝑖𝑠: Visited flag for each vertex

□ 𝑤𝑜𝑟𝑘𝑡 : Work-list of current thread

1: function disconnectedCommunities(𝐺,𝐶)

2: 𝐷 ← {} ; 𝑣𝑖𝑠 ← {}
3: 𝑆 ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑆𝑖𝑧𝑒𝑠 (𝐺,𝐶)
4: for all threads in parallel do
5: for all 𝑖 ∈ 𝑉 do
6: 𝑐 ← 𝐶 [𝑖] ; 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 0

7: ▷ Skip if community 𝑐 is empty, or

8: ▷ does not belong to work-list of current thread.

9: if 𝑆 [𝑐] = 0 or 𝑐 ∉ 𝑤𝑜𝑟𝑘𝑡 then continue
10: 𝑓𝑖 𝑓 ← (𝑗) =⇒ 𝐶 [𝑗] = 𝑐
11: 𝑓𝑑𝑜 ← (𝑗) =⇒ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 + 1
12: 𝑏𝑓 𝑠𝑉 𝑖𝑠𝑖𝑡𝐹𝑜𝑟𝐸𝑎𝑐ℎ(𝑣𝑖𝑠,𝐺, 𝑖, 𝑓𝑖 𝑓 , 𝑓𝑑𝑜)
13: if 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 < 𝑆 [𝑐] then 𝐷 [𝑐] ← 1

14: 𝑆 [𝑐] ← 0

15: return 𝐷

A.3 Additional Performance comparison
We proceed to compare the performance of GSP-Louvain with

GVE-Louvain [33]. Similar to our previous approach, we execute

each algorithm five times for every graph in the dataset to mitigate

measurement noise and report the averages in Figures 7(a), 7(b),

7(c), and 7(d).

Figure 7(a) illustrates the runtimes of GSP-Louvain and GVE-

Louvain on each graph in the dataset. On average, GSP-Louvain

exhibits about a 33% increase in runtime compared to GVE-Louvain.

This additional computational time is a compromise made to ensure

the absence of internally disconnected communities. Figure 7(c)

presents the modularity of communities obtained by each imple-

mentation. On average, the modularity of communities obtained

using GSP-Louvain and GVE-Louvain remains roughly identical.

Lastly, Figure 7(d) displays the fraction of internally disconnected

communities identified by each implementation. Communities ob-

tained with GSP-Louvain exhibit no disconnected communities,

whereas communities identified with GVE-Louvain feature on av-

erage 3.9% disconnected communities.

13

Subhajit Sahu

 0.1

 1

 10

 100

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

R
u

n
ti

m
e

(s
)

GVE-Louvain GSP-Louvain

0.
7

0.
8 1.

5

4.
2

4.
1

2.
9

6.
9

1.
3

3.
1

1.
3 1.
8

11
.3

14
.1

0.
9 1.
1

2.
4

5.
5 6.
2

4.
0

11
.6

1.
9 3.

4

0.
7

2.
7

17
.2 22

.7

(a) Runtime in seconds (logarithmic scale) with GVE-Louvain and GSP-Louvain

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

S
p
ee
d
u
p

GVE-Louvain

0.
83

0.
71

0.
63 0.

77

0.
66 0.
72

0.
60 0.
67

0.
92

0.
65

0.
66

0.
62

1.
93

(b) Speedup of GSP-Louvain with respect to GVE-Louvain.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

M
o
d
u
la
ri
ty

GVE-Louvain GSP-Louvain

0.
94

89

0.
99

04

0.
98

97

0.
98

21

0.
98

34

0.
97

75

0.
97

60

0.
71

96

0.
65

94

0.
99

88

0.
99

89

0.
97

26

0.
94

64

0.
94

89

0.
99

04

0.
98

97

0.
98

21

0.
98

35

0.
97

75

0.
97

55

0.
71

88

0.
65

77

0.
99

88

0.
99

89

0.
97

43

0.
94

89
(c) Modularity of communities obtained with GVE-Louvain and GSP-Louvain.

10-5

10-4

10-3

10-2

10-1

100

ind
och
ina
-20
04

uk-
200
2

ara
bic
-20
05

uk-
200
5

we
bba
se-
200
1

it-2
004

sk-
200
5

com
-Liv
eJo
urn
al

com
-Or
kut

asia
_os
m

eur
ope
_os
m

km
er_
A2a

km
er_
V1r

Fr
ac

ti
o

n
 o

f
D

is
co

n
n

ec
te

d
 c

o
m

m
u

n
it

ie
s

GVE-Louvain GSP-Louvain

2.
0e
-0
2

4.
3e
-0
3 3.
2e
-0
2

2.
9e
-0
2

6.
0e
-0
4

5.
3e
-0
2

2.
5e
-0
2

1.
3e
-0
2

3.
0e
-0
1

3.
7e
-0
3 2.
6e
-0
2

4.
4e
-0
5

3.
3e
-0
5

(d) Fraction of disconnected communities (logarithmic scale) with GVE-Louvain and GSP-Louvain.

Figure 7: Runtime in seconds (log-scale), speedup, modularity, and fraction of disconnected communities (log-scale) with
GVE-Louvain and GSP-Louvain for each graph in the dataset.

14

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related work
	3 Preliminaries
	3.1 Community detection
	3.2 Modularity
	3.3 Louvain algorithm
	3.4 Possibility of Internally-disconnected communities with the Louvain algorithm
	3.5 Leiden algorithm

	4 Approach
	4.1 Our Split Pass (SP) approach
	4.2 Our GSP-Louvain algorithm

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Comparison
	5.3 Performance Analysis
	5.4 Strong Scaling

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Phases of GSP-Louvain
	A.2 Finding disconnected communities
	A.3 Additional Performance comparison

