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A B S T R A C T
Underwater acoustic target recognition is a difficult task owing to the intricate nature of underwater
acoustic signals. The complex underwater environments, unpredictable transmission channels, and
dynamic motion states greatly impact the real-world underwater acoustic signals, and may even
obscure the intrinsic characteristics related to targets. Consequently, the data distribution of under-
water acoustic signals exhibits high intra-class diversity, thereby compromising the accuracy and
robustness of recognition systems. To address these issues, this work proposes a convolution-based
mixture of experts (CMoE) that recognizes underwater targets in a fine-grained manner. The proposed
technique introduces multiple expert layers as independent learners, along with a routing layer that
determines the assignment of experts according to the characteristics of inputs. This design allows
the model to utilize independent parameter spaces, facilitating the learning of complex underwater
signals with high intra-class diversity. Furthermore, this work optimizes the CMoE structure by
balancing regularization and an optional residual module. To validate the efficacy of our proposed
techniques, we conducted detailed experiments and visualization analyses on three underwater
acoustic databases across several acoustic features. The experimental results demonstrate that our
CMoE consistently achieves significant performance improvements, delivering superior recognition
accuracy when compared to existing advanced methods.

1. Introduction
1.1. Background

Underwater acoustic target recognition plays a crucial
role in the field of marine acoustics. The goal of this task is
to automatically analyze the sound radiated by underwater
targets and predict the type of underwater targets. The long
detection range, reassuring concealment, and low deploy-
ment cost make it indispensable in practical applications.
This technology finds extensive use in underwater surveil-
lance, marine resources development and protection, as well
as security defense (Irfan, Jiangbin, Ali, Iqbal, Masood and
Hamid, 2021; Jia, Khishe, Mohammadi and Rashidi, 2022;
Sutin, Bunin, Sedunov, Sedunov, Fillinger, Tsionskiy and
Bruno, 2010).

In response to the growing need for robust underwa-
ter acoustic recognition systems, numerous research efforts
have been dedicated to this area in recent years (Li, Li, Chen
and Yu, 2017; Ke, Yuan and Cheng, 2020; Simonović, Ko-
vandžić, Ćirić and Nikolić, 2021; Xie, Ren and Xu, 2022c).
The underwater acoustic recognition systems typically con-
sist of two main components: acoustic feature extraction
and recognition models. To extract discriminative acoustic
features from raw underwater acoustic signals, researchers
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have proposed various acoustic analysis strategies, includ-
ing Fourier transform (Xie et al., 2022c; Liu, Shen, Luo,
Zhao and Guo, 2021), Hilbert–Huang transform (Wang and
Zeng, 2014), wavelet transform (Jia et al., 2022; Xie, Ren
and Xu, 2022b), Mel filtering (Liu et al., 2021; Zhang,
Wu, Han and Zhu, 2016), LOFAR (low-frequency analysis
recording) (Chen, Han, Ma and Zhang, 2021), cepstrum
extraction (Zhang et al., 2016; Das, Kumar and Bahl, 2013),
and more. These techniques leverage the acoustic properties
of targets to extract low-dimensional acoustic features. Once
the features are extracted, recognition systems employ vari-
ous models, such as classic machine learning models (Wang
and Zeng, 2014; Das et al., 2013; Erkmen and Yıldırım,
2008) or deep neural networks (Xie et al., 2022c; Liu et al.,
2021; Xie et al., 2022b; Zhang, Da, Zhang and Hu, 2021;
Ren, Xie, Zhang and Xu, 2022; Khishe and Mohammadi,
2019), to exploit the discriminative patterns in acoustic
features and make predictions about the target categories.

Besides, underwater acoustic target recognition systems
also heavily rely on underwater acoustic signal databases.
The performance of recognition systems is greatly influ-
enced by factors such as the scale, authenticity, and diversity
of the utilized data. (Irfan et al., 2021). Given the high cost
and equipment dependency associated with collecting real-
world underwater acoustic data (Hovem, 2012), previous
research has predominantly utilized synthetic data (Das
et al., 2013), simulated data (Zhang et al., 2016), or pri-
vately recorded data (Wang and Zeng, 2014). With the
increasing practical demand in recent years, open-source
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Motorboat_33 Motorboat_39 Motorboat_79

Passenger ship_59 Fish boat_76Sailboat_56

Figure 1: Spectrograms of several samples in the Shipsear dataset. Motorboat_33 records the start and stop of the motorboat
“Dud”; Motorboat_39 records the arrival of the motorboat “Dud”; Motorboat_79 records the passing of the motorboat “Zodiac”;
Passenger ship_59 records “Marde Mouro” sailing towards the port with considerable speed; Sailboat_56 records a sailboat
passing in a very close distance; Fishboat_76 records the fish boat passing.

underwater databases have begun to be released, such as
Shipsear (Santos-Domínguez, Torres-Guijarro, Cardenal-
López and Pena-Gimenez, 2016) and DeepShip (Irfan et al.,
2021). Large-scale databases offer researchers access to
abundant and diverse real-world signals, which can con-
tribute to enhancing the generalization capability of recog-
nition systems in real-world scenarios.

The rapid advancements in deep learning algorithms (Le-
Cun, Bengio and Hinton, 2015) and the availability of open-
source underwater acoustic databases have propelled deep
neural networks to the forefront of recognition systems in
recent years (Xie et al., 2022c; Saffari, Zahiri and Khishe,
2023; Khishe, 2022). Deep neural networks leverage their
complex topological structures and numerous nonlinear
operators to support highly intricate modeling, while open-
source databases provide an ample amount of training data
for these networks. In comparison to classical methods,
which exhibit limitations when dealing with large-scale data
characterized by diverse feature spaces (Irfan et al., 2021),
recognition systems based on deep learning showcase a
significant performance advantage (Xie et al., 2022b,c) on
existing databases.
1.2. Motivation

Despite notable advancements on open-source datasets,
the performance of recognition models in practical underwa-
ter scenarios remains unsatisfactory (Xie et al., 2022c). This
can be attributed to the complexity of underwater acoustic
signals, which are influenced by various interference fac-
tors, including intricate underwater environments, unpre-
dictable transmission channels, and volatile vessel motion
states (Erbe, Marley, Schoeman, Smith, Trigg and Embling,
2019). Besides, variations in propeller and engine technol-
ogy further impact the acoustic characteristics of radiated
noise (Khishe and Mosavi, 2020). These interference fac-
tors contribute to the complexity and indistinguishability
of collected signals, leading to a high intra-class diversity

within the overall data distribution. Figure 1 visually illus-
trates the spectrogram comparisons of several samples from
the Shipsear dataset, clearly demonstrating significant intra-
class diversity in spectrograms among motorboats with dif-
ferent motion states (e.g., No.33 indicating start and stop and
No.39 indicating arrival) and types (e.g., No.33 representing
the motorboat “Dud” and No.79 representing the motorboat
“Zodiac”). According to related studies (Schutz, Bombrun
and Berthoumieu, 2013), intra-class diversity can result in
potential misrecognition, particularly when data is limited.

Moreover, underwater targets (e.g., vessels) often share
similar vibrational modes, such as propeller cavitation noise,
and rhythm modulation noise caused by diesel piston move-
ment. This similarity can lead to commonalities among
different target categories. As observed in the spectrograms
presented in Figure 1, passenger ships, sailboats, and fish
boats exhibit a certain degree of similarity with motorboats.
Addressing this inter-class similarity requires models to
delve into high-level semantic concepts with discernible
characteristics, which introduces the risk of overfitting and
further complicates the recognition task.

Currently, existing literature rarely focuses on the dis-
tribution characteristics of intra-class diversity and inter-
class similarity in underwater acoustic signals. For such
complex signals, a natural idea is to increase the number
of parameters of the model to support complex modeling.
However, the scarcity of underwater data imposes significant
limitations as complex models can exacerbate the overfitting
phenomenon.
1.3. Our Work

In this work, we present innovative techniques to ad-
dress the aforementioned challenges in underwater acoustic
recognition. To mitigate the impact of intra-class diversity,
it is necessary to develop an adaptive model capable of ef-
fectively processing diverse data. Drawing inspiration from
successful applications of the mixture of experts (MoE)
paradigm in computer vision (Ahmed, Baig and Torresani,
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2016; Riquelme, Puigcerver, Mustafa, Neumann, Jenatton,
Susano Pinto, Keysers and Houlsby, 2021) and natural lan-
guage processing (Fedus, Zoph and Shazeer, 2021; Xie,
Huang, Chen and Wei, 2022a), we propose the convolution-
based mixture of experts (referred to as CMoE) for un-
derwater acoustic target recognition. CMoE incorporates
multiple expert layers and a routing layer, where the routing
layer dispatches inputs to the most suitable expert layer
based on high-level representations. This approach enables
adaptive disassembly of diverse data, allowing the model to
learn underwater acoustic signals with multiple independent
parameter spaces. Furthermore, to address the issue of inter-
class similarity, we position the expert layers in the final
layer of the model. It allows expert layers to learn from
high-level semantic concepts and focus on discriminative
characteristics within data that exhibit inter-class similarity.

Additionally, we introduce balancing regularization to
handle the load balance problem and optimize our CMoE
structure by incorporating an optional residual module.
Experiments demonstrate that our CMoE can consistently
achieve superior performance across various underwater
acoustic databases. The contributions of our work can be
summarized as follows:

• we reveal the unique characteristics of underwater
acoustic signals, including intra-class diversity and
inter-class similarity, along with the limitations of
existing approaches;

• we propose the convolution-based mixture of experts
to unravel complex data diversity, which captures
latent characteristics from high-level representations
and adaptively learns diverse data with multiple inde-
pendent parameter spaces;

• we optimize our CMoE structure through balancing
regularization and the incorporation of an optional
residual module;

• we provide detailed visualizations and corresponding
analyses of the recognition results and the routing
assignment of expert layers.

2. Related Works
2.1. Underwater Acoustic Target Recognition

The research on underwater acoustic target recognition
primarily revolves around acoustic feature extraction and ap-
plications of recognition algorithms. Early studies employed
classic machine learning techniques to process manually
designed low-dimensional acoustic features. For instance,
Das et al. (Das et al., 2013) utilized cepstral features with
cepstral liftering and Gaussian mixture models (GMMs) for
marine vessel classification; Wang and Zeng (Wang and
Zeng, 2014) employed bark-wavelet analysis in combination
with the Hilbert-Huang transform to analyze signals, and
employed support vector machines (SVMs) as the classifier.
Moreover, cepstrum-based acoustic features from the audio

and speech domains, such as Mel frequency cepstrum co-
efficients (MFCCs), have also yielded promising results in
ship-radiated noise recognition tasks (Zhang et al., 2016;
Khishe and Mohammadi, 2019). However, recent studies
have revealed limitations in the general applicability of
recognition systems in complex underwater scenarios when
relying solely on manually designed low-dimensional acous-
tic features (Irfan et al., 2021; Xie et al., 2022c). Moreover,
classical machine learning models may struggle to achieve
satisfactory performance when confronted with large-scale
data with diverse feature spaces (Irfan et al., 2021). As a
result, recognition systems based on these classic paradigms
face challenges in accurately recognizing unseen data in
practical ocean scenarios.

With the development of deep learning (LeCun et al.,
2015) and the accumulation of open-source underwater
acoustic databases (Irfan et al., 2021; Santos-Domínguez
et al., 2016), recognition algorithms based on deep neu-
ral networks have gained prominence. As reported in the
literature, Zhang et al. (Zhang et al., 2021) utilized the
short-time Fourier transform (STFT) amplitude spectrum,
STFT phase spectrum, and bispectrum features as inputs for
convolutional neural networks; Liu et al. (Liu et al., 2021)
employed convolutional recurrent neural networks with 3-
D Mel-spectrograms and data augmentation for underwater
target recognition; Xie et al. (Xie et al., 2022b) utilized
learnable fine-grained wavelet spectrograms with the deep
residual network (ResNet) (He, Zhang, Ren and Sun, 2016)
to adaptively recognize ship-radiated noise; Ren et al. (Ren
et al., 2022) employed learnable Gabor filters and ResNet
for constructing an intelligent underwater acoustic classi-
fication system. In contrast to classical machine learning
paradigms, deep learning methods often favor acoustic
features that encapsulate comprehensive information, such
as time-frequency spectrograms (Liu et al., 2021; Xie, Ren
and Xu, 2023; Xu, Xie and Wang, 2023). The large number
of parameters and complex nonlinearities in neural networks
enable the model to effectively exploit information contained
within comprehensive features. The superior performance
on available datasets has propelled these methods to become
the mainstream approach for underwater acoustic target
recognition. However, deep learning-based systems exhibit
limited robustness in practical application scenarios char-
acterized by scarce and complex data. In this regard, many
studies have employed techniques like denoising (Li et al.,
2017; Ghavidel, Azhdari, Khishe and Kazemirad, 2022) and
data augmentation(Liu et al., 2021; Chen, Liu, Li, Shen and
Zhao, 2022; Xu et al., 2023) to enhance the robustness of
recognition systems by improving data quality or quantity.
According to our research, we are the first to address the
intra-class diversity and inter-class similarity of underwater
signals, and take it as the starting point for building a robust
recognition system.
2.2. Mixture of Experts

To efficiently and effectively recognize complexly dis-
tributed underwater signals, this work draws inspiration
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from the Mixture of Experts (MoE) approach. MoE enables
discriminative processing of diverse-distributed data while
minimizing the introduction of excessive parameters that
could lead to overfitting. The original formulation of MoE
models was introduced by Jacobs et al. (Jacobs, Jordan,
Nowlan and Hinton, 1991), including a variable number of
expert models and a single gate to combine their outputs.
Subsequent work by Collobert et al. (Collobert, Bengio and
Bengio, 2002, 2003) applied the MoE concept to classic
machine learning algorithms like support vector machines.
In recent years, Shazeer et al. (Shazeer, Mirhoseini, Maziarz,
Davis, Le, Hinton and Dean, 2017) explored the transi-
tion to conditional computing through sparse expert activa-
tions, wherein a fixed number of experts were activated in
LSTMs. Fedus et al. (Fedus et al., 2021) extended the MoE
structure to large-scale Transformers (Vaswani, Shazeer,
Parmar, Uszkoreit, Jones, Gomez, Kaiser and Polosukhin,
2017), revealing its potential to construct scalable models
with reasonable overhead. As research on MoE deepened,
various studies applied it to scale up Transformers (Fedus
et al., 2021; Xie et al., 2022a; Rajbhandari, Li, Yao, Zhang,
Aminabadi, Awan, Rasley and He, 2022; Riquelme et al.,
2021) and convolutional neural networks (Gross, Ranzato
and Szlam, 2017; Ahmed et al., 2016; Wang, Yu, Dunlap,
Ma, Wang, Mirhoseini, Darrell and Gonzalez, 2020). The
sparse-gated MoE significantly increases model capacity
while incurring minimal compute overhead, leading to re-
markable achievements in natural language processing and
computer vision. In this work, we propose a specialized
convolutional MoE with sparsely-activated experts for un-
derwater acoustic target recognition, making us the first, to
the best of our knowledge, to apply the mixture of experts in
this domain.

3. Methodology
This section begins by presenting the acoustic feature

extraction methods employed in this work. Following that,
we introduce the front-end backbone network, the expert
layers, the routing layer, and the optional residual module of
CMoE, respectively. Finally, we introduce the balanced reg-
ularization strategy adopted to address the load imbalance
problem inherent in the MoE structure.
3.1. Acoustic Feature Extraction

In order to validate the generalizability of our proposed
strategies, we employ four feature extraction techniques in
this study. For raw signals, we begin by computing the spec-
trums through framing, windowing, and short-time Fourier
transform (STFT). Subsequently, the real component is ex-
tracted and integrated across the time dimension to derive
the STFT spectrogram. Following this, we employ Mel
(Bark) filter banks to perform the filtering on the framed
spectrums. Equation (1) illustrates that the Mel (Bark) filter
bank comprises a set of bandpass filters, distributed based
on the non-linear Mel (Bark) scale. Notably, the Mel (Bark)
filter banks exhibit higher density at low frequencies to
achieve enhanced frequency resolution. Finally, the filtered

Table 1
Specific network structure for our CMoE, including the front-
end backbone, the expert layer and the routing layer. “num
class” represents the number of classes to be predicted and
“num experts” represents the number of expert layers.
Module Specific network layer
Front-end backbone Conv2d(1, 64, kernel size=7, stride=2, padding=3)

Batch Normalization 2d(num features=64)
ReLU()
Max pooling(kernel size=3, stride=2, padding=1)
Basic block(64,64),Basic block(64,64)
Basic block(64,128),Basic block(128,128)
Basic block(128,256), Basic block(256,256)
Basic block(256,512), Basic block(512,512)
Attention pooling(output size=(1, 1))

Basic block(in dim, out dim) Conv2d(in dim, out dim, kernel size=3, padding=1)
Batch Normalization 2d(num features=out dim)
ReLU()
Conv2d(out dim, out dim, kernel size=3, padding=1)
Batch Normalization 2d(num features=out dim)

Expert layer Linear(in features=512, out features=128)
Batch Normalization 1d(num features=128)
ReLU()
Linear(in features=128, out features=num class)

Routing layer Linear(in features=512, out features=num experts)

spectrums undergo conversion to Mel (Bark) spectrograms
through a logarithmic scale and the integration across the
time dimension.

𝑀𝑒𝑙(𝑓 ) = 2595 × 𝑙𝑜𝑔(1 +
𝑓
700

),

𝐵𝑎𝑟𝑘(𝑓 ) = 6 × 𝑎𝑟𝑠𝑖𝑛ℎ(
𝑓
600

).
(1)

Furthermore, we acquire the CQT spectrogram by con-
ducting the Constant Q Transform. This involves convolving
the spectrum of each frame, obtained from STFT, with the
CQT kernel. The CQT kernel consists of a bank of bandpass
filters that are logarithmically spaced in frequency. The 𝑘−th
frequency component 𝑓𝑘 can be formalized as depicted in
Equation (2), where 𝑏 represents the octave resolution, and
𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 denote the maximum and minimum frequen-
cies to be processed, respectively.

𝐶𝑄𝑇 (𝑓𝑘) = 2𝑘∕𝑏𝑓𝑚𝑖𝑛. 𝑓𝑚𝑖𝑛 ≤ 𝑓𝑘 ≤ 𝑓𝑚𝑎𝑥. (2)
Then, we integrate the magnitude of the filtered spec-

trum across the time dimension to yield the CQT spectro-
gram. Notably, the CQT spectrogram exhibits higher tem-
poral resolution at high frequencies.
3.2. Front-end Backbone Network

Following the feature extraction stage, we present the
overall process and structure of our proposed CMoE model.
Our CMoE comprises two main components. The first
component is the front-end backbone network, responsible
for transforming the input acoustic features into fixed-
dimensional representations.

In this study, we adopt the optimized deep residual net-
work, ResNet with attention pooling (He et al., 2016; Wang,
Girshick, Gupta and He, 2018), as our front-end backbone.
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Figure 2: The model structure of the front-end backbone model - ResNet with attention pooling. “Conv” represents the
convolutional layer, and “BN” represents the batch normalization layer.

This choice is based on its superior recognition performance,
as demonstrated in our preliminary experiments (see Sec-
tion 5.1). The detailed structure of the front-end backbone
network is illustrated in Table 1 and Figure 2. It consists
of a convolution layer stacked with a batch normalization
(BN) layer, a ReLU layer, a max-pooling layer, followed
by four residual layers and an attention pooling layer. Each
residual layer comprises two basic blocks stacked together.
The structure of the basic block, enclosed in a dotted box
in Figure 2, includes convolution layers, BN layers, ReLU
layers, and a skip connection. Mathematically, the basic
block can be defined as:

𝑦 = 𝐹 (𝑥, {𝑊𝑖}) + 𝑥, (3)
where 𝑥 and 𝑦 represent the input and output vectors of

the basic blocks, respectively. The function𝐹 = 𝑊2𝜎(𝑊1𝑥),with 𝜎 denoting the ReLU layer and 𝑊1,𝑊2 representing
the learnable mappings for the two convolutional layers.
Following the residual layers, we incorporate an attention
pooling layer and a flattening operation to obtain the out-
put representations ∼ ℝ𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒×512. The attention pooling
layer incorporates global average pooling and multi-head
self-attention operations, allowing for the assignment of
dynamic weights to different regions of the feature map.
This approach helps in focusing on useful information and
improving the quality of the representations. The output
representations from the front-end backbone network are
then passed to subsequent layers in the network.
3.3. Expert Layer, Routing Layer, and Residual

Module
The structure and training pipeline of the expert layers

and the routing layer are presented in Table 1 and Figure 3
respectively. Both the expert layers and the routing layer
take the output representations of the front-end backbone
network as input. The expert layer consists of a multi-layer
perceptron with two linear layers (see Table 1). Each expert
has a consistent structure, but its parameters are independent.
Activation of each expert occurs only when suitable input
is encountered, facilitating fine-grained and differentiated
learning of diverse underwater data. The routing layer con-
sists of a simple linear layer that adaptively guides the
assignment of inputs by calculating the routing probability.
This design enables the model to disassemble diverse un-
derwater acoustic data using multiple independent parameter

spaces, thereby reducing the impact of intra-class diversity.
The following paragraph provides a formulaic description of
the detailed process.

Let’s denote the batch size as 𝑛, input spectrograms as
{𝑥𝑖}, the corresponding label as {𝑦𝑖} (i=1,2...𝑛), the number
of expert layers as 𝑚, and the expert layers as 𝐸1(⋅), ...𝐸𝑚(⋅).The front-end backbone model first takes 𝑥𝑖 as input and
produces high-level representations 𝑟𝑖 ∼ ℝ𝑛×512. These
representations 𝑟𝑖 are then fed into the linear routing layer
𝐺(⋅), sequentially obtaining the routing score 𝑠𝑖 = 𝐺(𝑟𝑖) ∼
ℝ1×𝑚. Then, we apply the softmax function2 to normalize
the routing score 𝑠𝑖 into the routing probability 𝑝𝑖 ∼ ℝ1×𝑚,
which indicates the probability of dispatching the sample 𝑥𝑖to each expert.

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺(𝑟𝑖)), 𝑖𝜖[1, 𝑛]
𝑙𝑜𝑔𝑖𝑡𝑠𝑒𝑥𝑝 = 𝐸𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑖)(𝑟𝑖).

(4)

Then, the model sends the representation 𝑟𝑖 to the expert
layer with the highest corresponding probability value. The
overall routing assignment process is described in Equation
(4). Take the CMoE composed of 4 experts as an example,
when 𝑝𝑖=(0.1, 0.2, 0.4, 0.3), the corresponding representa-
tion 𝑟𝑖 should be sent to𝐸3(⋅)with the maximum probability.

Furthermore, to prevent overfitting from affecting rout-
ing assignment and model performance, we adopt the con-
cept of residual connection and propose Residual CMoE
(RCMoE). As depicted in Figure 3 (the dashed box at the bot-
tom), RCMoE retains the structure of CMoE while adding an
additional fixed expert layer 𝐸𝑅(⋅). The representation 𝑟𝑖 is
directly fed into the fixed expert layer without performing
routing calculations, generating 𝑙𝑜𝑔𝑖𝑡𝑠𝑟𝑒𝑠 = 𝐸𝑅(𝑟𝑖). Finally,
𝑙𝑜𝑔𝑖𝑡𝑠𝑟𝑒𝑠 is added to the output of the expert layers 𝑙𝑜𝑔𝑖𝑡𝑠𝑒𝑥𝑝to obtain the overall logits. The optimization goal is to min-
imize the cross-entropy loss between the overall logits and
labels {𝑦𝑖}. We provide additional pseudocode in Algorithm
1 to help better understand the training flow of CMoE and
RCMoE.
3.4. Balancing Regularization

During training, a significant issue of load imbalance
arises among experts, as noted by Shazeer et al. (Shazeer

2As for the choice of normalized function, we have carried out relevant
comparative experiments in Section 5.5. The introduction here uses the
softmax function by default.
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Figure 3: The overall process of our proposed CMoE, including routing probability calculation, expert assignment, and optional
residual module.

Data: input spectrograms  = {𝑥𝑖}; label  = {𝑦𝑖}.
Input: number of experts 𝑚; batch size 𝑛; front-end

model 𝐹 ; routing layer 𝐺; experts
𝐸1(⋅), ...𝐸𝑚(⋅); fixed expert 𝐸𝑅(⋅).

1 while not done do
2 Sample batches (𝑥𝑖, 𝑦𝑖) ∼ ( ,). 𝑖 = 1, 2, ..., 𝑛
3 for (𝑥𝑖, 𝑦𝑖) do
4 # compute representations
5 𝑟𝑖 = 𝐹 (𝑥𝑖)
6 # compute routing probabilities
7 𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺(𝑟𝑖), 𝑑𝑖𝑚 = −1)
8 # dispatch 𝑟𝑖 to experts
9 for 1 ≤ 𝑖 ≤ 𝑛 do

10 𝑙𝑜𝑔𝑖𝑡𝑠 𝑒𝑥𝑝[𝑖, ∶] = 𝐸𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑖)(𝑟[𝑖, ∶])
11 𝑙𝑜𝑔𝑖𝑡𝑠 𝑟𝑒𝑠[𝑖, ∶] = 𝐸𝑅(𝑟[𝑖, ∶])
12 end
13 # compute final logits
14 𝑙𝑜𝑔𝑖𝑡𝑠 = 𝑙𝑜𝑔𝑖𝑡𝑠 𝑒𝑥𝑝 for CMoE
15 𝑙𝑜𝑔𝑖𝑡𝑠 = (𝑙𝑜𝑔𝑖𝑡𝑠 𝑒𝑥𝑝+ 𝑙𝑜𝑔𝑖𝑡𝑠 𝑟𝑒𝑠) for RCMoE
16 end
17 Update weights with loss 𝐶𝐸 = Cross

Entropy(𝑙𝑜𝑔𝑖𝑡𝑠, {𝑦𝑖}).
18 end

Algorithm 1: Training flow of our (R)CMoE.

et al., 2017). This imbalance manifests when a small num-
ber of experts receive the majority of inputs, while many
other experts remain inadequately trained. To address this
concern, we adopt the balancing regularization approach
proposed by Fedus et al. (Fedus et al., 2021), aiming to
promote a more equitable distribution of the workload across
all experts. We inherit the notation used in the previous
subsection, the balance loss is computed as follows:

L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛼𝑚 ⋅
𝑚
∑

𝑗=1
𝑒𝑓𝑗 ⋅ 𝑒𝑝𝑗 , (5)

where 𝑒𝑓𝑗 is represents the fraction of inputs dispatched
to the 𝑗-th expert. We denote the number of inputs dispatched
to the 𝑗-th expert as 𝐶𝑜𝑢𝑛𝑡𝑗 , thus 𝑒𝑓𝑗 can be calculated as
𝑒𝑓𝑗 = 𝐶𝑜𝑢𝑛𝑡𝑗

𝑛 . Additionally, 𝑒𝑝𝑗 corresponds to the average
routing probability dispatched to the 𝑗-th expert within the
batch. It is determined by averaging the routing probabilities
across the batch:

𝑒𝑝𝑗 =
1
𝑛

𝑛
∑

𝑖=1
𝑝𝑖[𝑗], (6)

where 𝑝𝑖[𝑗] denotes the routing probability of dispatch-
ing token 𝑥𝑖 to the 𝑗-th expert. The balancing regulariza-
tion term in Equation (5) encourages uniform routing, as
minimizing it favors a uniform distribution. To control the
impact of the balancing regularization during training, we
introduce a hyper-parameter 𝛼 as a coefficient for the regu-
larization term. In this work, we set 𝛼 = 10−2 as the default
value, striking a balance between ensuring load balancing
and avoiding excessive interference with the primary cross-
entropy objective. Thus, the overall training objective can be
presented as follows:

 = 𝐶𝐸 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒

= 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑙𝑜𝑔𝑖𝑡𝑠, 𝑦) + 𝛼𝑚 ⋅
𝑚
∑

𝑗=1
𝑒𝑓𝑗 ⋅ 𝑒𝑝𝑗 .

(7)

4. Experiment Setup
4.1. Datasets

In this work, we utilize three distinct datasets of un-
derwater ship-radiated noise at varying scales. The detailed
information is provided in Table 2 and the subsequent para-
graphs.

1. Shipsear (Santos-Domínguez et al., 2016) is an open-
source database of underwater recordings of ship and boat
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Table 2
Information of the three datasets. “sr” represents the sampling rate and “dim” represents the feature dimensions.

dataset duration (hours) sr (Hz) efficient band (Hz) STFT dim Mel dim Bark dim CQT dim
Shipsear 2.94 52734 100-26367 1200,1318 1200,300 1200,300 900,340
DTIL 10.25 17067 100-2000 1200,99 1200,300 1200,300 900,230
Deepship 47.07 32000 100-8000 1200,400 1200,300 1200,300 900,290

sounds. The database comprises 90 records from 11 different
vessel types, totaling nearly three hours of duration. To
ensure an adequate amount of records for the “train, vali-
dation, test” split, we have selected a subset of 9 categories
(dredger, fish boat, motorboat, mussel boat, natural noise,
ocean liner, passenger ship, ro-ro ship, sailboat) from the
Shipsear database for the recognition task.

2. Our private dataset (Ren, Huang, Li, Guo and Xu,
2019) - DTIL is collected from Thousand Island Lake,
which contains multiple sources of interference. It contains
330 minutes of speedboat recordings and 285 minutes of
experimental vessel recordings.

3. DeepShip (Irfan et al., 2021) is an open-source under-
water acoustic benchmark dataset, which consists of 47.07
hours of real-world underwater recordings of 265 different
ships belonging to four classes: cargo ship, passenger ship,
tanker, and tugboat.
4.2. Effective Frequency Bands

To reduce the redundancy of acoustic features, we apply
effective frequency bands as substitutes for full bands during
feature extraction. It involves performing a time-frequency
transformation within the bandwidth that encompasses the
most relevant frequency components. By doing so, we aim
to reduce redundant components in input features while
simultaneously reducing time and hardware consumption.
Considering that the useful energy of signals predominantly
concentrates on distinct frequency ranges in Shipsear, DTIL,
and DeepShip, we establish independent effective frequency
bands for each dataset (refer to Table 2). It is worth mention-
ing that the upper limit of the effective frequency band must
be set below half of the sample rate according to the Nyquist
theory. Further details about the experiments conducted to
determine the optimal effective frequency band selection can
be found in Section 5.1. Additionally, Table 2 also presents
the dimensions of each acoustic feature on the three datasets.
4.3. Data Division

In this work, each signal is cut into 30-second segments
with a 15-second overlap. To prevent information leakage,
we ensure that segments in the training set and the test set do
not originate from the same audio track. This precautionary
measure guarantees that the reported accuracy truly reflects
the system’s recognition ability and generalization perfor-
mance, rather than its memory capacity.

We find that almost all previous works on underwater
acoustic target recognition have not disclosed their train-test
splits, making it challenging to establish fair comparisons.

Table 3
Train-test split for Shipsear. The “ID” in the table refers to the
ID of the .wav file in the dataset.

Category ID in Training set ID in Test set
Dredger 80,93,94,96 95
Fish boat 73,74,76 75
Motorboat 21,26,33,39,45,51,52,70,77,79 27,50,72
Mussel boat 46,47,49,66 48
Natural noise 81,82,84,85,86,88,90,91 83,87,92
Ocean liner 16,22,23,25,69 24,71
Passenger ship 06,07,08,10,11,12,14,17,32,34,36,38,40, 9,13,35,42,55,62,65

41,43,54,59,60,61,63,64,67
RO-RO ship 18,19,58 20,78
Sailboat 37,56,68 57

Table 4
Train-test split for DeepShip. The “ID” in the table refers to
the ID of the .wav file in the dataset.

Category ID in Training set ID in Test set
Cargo ship Else 01,02,04,05,18,30,32,35,40,48,56,62,

63,67,68,72,74,79,83,91,92,93,95,97,
100,104

Passenger ship Else 02,04,05,07,11,15,17,19,20,23,30,31,
37,45,46,52,53,60,61,62,64,67,68,70,
75,76,77,84,86,91,101,106,113,117,122,
125,129,130,134,135,142,144,152,157,
159,161,167,168,177,179,187,188,189

Tanker Else 02,03,04,07,08,13,14,15,19,22,25,28,
35,37,46,58,62,71,73,79,82,84,88,89,
92,99,106,115,118,124,126,127,131,134,
141,144,147,151,153,156,158,167,171,
178,179,185,186,190,192,193,201,205,
213,217,228,233

Tugboat Else 07,08,18,20,24,25,27,29,32,33,37,39,
40,44,45,56,59,70

To address this issue, we provide our carefully selected train-
test splits for Shipsear (see Table 33) and DeepShip (see
Table 4). 15% of the data from the training set is randomly
taken as the validation set. Our manual selection principle
is to ensure that the correlation between the test data and
the training data is minimal. By releasing this benchmark,
we aim to establish a reliable reference for future research
endeavors seeking fair comparisons in this field.
4.4. Parameter Setup

In this work, The frame length is set to 50ms and the
frame shift defaults to half the frame length. We conduct
experiments to investigate the effect of frame length on
recognition results, as detailed in Section 5.1. Additionally,
as a default, the number of Mel or Bark filter banks is set to
300.

During training, we employ the AdamW (Loshchilov
and Hutter, 2017) optimizer with weight decay. The maxi-
mum learning rate is set to 5×10−4, and the weight decay is

3The train-test split for Shipsear is also released at
https://github.com/xy980523/ShipsEar-An-Unofficial-Train-Test-Split
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Figure 4: Preliminary experiments on the selection of effective frequency bands, frame lengths, and front-end backbone models.
The frame shift is set to half the frame length by default.

set to 10−5 for all experiments. The models are trained for
200 epochs on A40 GPUs.

5. Results and Analyses
For the multi-class recognition task addressed in this

work, we uniformly adopt the accuracy rate as the evaluation
metric, which is determined by dividing the number of
correctly predicted samples by the total number of samples.
Besides, given the limited number of audio files in the test
set, multiple groups of experiments yield the same file-level
accuracy. Consequently, we present results at the segment
level (30 seconds) rather than the file level. Moreover, to
mitigate randomness, all reported results represent the av-
erage of experimental outcomes obtained using two distinct
random seeds (42 and 123).

In this section, we initially conduct preliminary experi-
ments on the frame length, effective frequency bands, and
the structure of the front-end backbone network. After that,
we perform main experiments to validate the effectiveness
of CMoE based on four acoustic features and compare the
experimental results with various advanced methods. This
part also encompasses ablation experiments concerning the
optional residual module and balancing regularization. We
then provide a comprehensive visualization analysis of the
expert assignment to further demonstrate the effective cap-
ture of useful information by the experts. Lastly, we carry
out relevant experiments on the number of expert layers and
the selection of the normalization function.
5.1. Preliminary Experiments

Before validating CMoE, we conduct preliminary exper-
iments on the effective frequency bands, frame length, and
structure of the front-end backbone network. The detailed
results are presented in Figure 4. Regarding the selection of
effective frequency bands, relevant experiments consistently
employ the STFT spectrogram as the input feature, utilize
ResNet with attention pooling (ResNet-AP) as the model,
and set the frame length to 50ms. A lower-cut-off frequency
of 100Hz is set to filter out frequency bands with low signal-
to-noise ratios. Experimental results indicate that Shipsear,

Table 5
Main results of CMoE on four acoustic features. The “Baseline
model” refers to the ResNet-AP selected in the preliminary
experiments. Ablation experiments on the balancing regular-
ization and the residual module are also included.

Dataset Model STFT Mel Bark CQT
Shipsear AGNet (Xie et al., 2022b) 85.48 - - -

Smooth-ResNet (Xu et al., 2023) 81.90 82.76 - 75.86
Baseline model 75.24 77.14 72.86 73.33
CMoE 84.91 83.59 81.33 80.48
CMoE+balance 86.21 85.35 84.48 82.76
RCMoE+balance 85.34 84.48 83.62 82.76

DTIL AGNet 95.76 - - -
TDNN& WPCS (Ren et al., 2019) 95.31 - - -
Baseline model 95.93 95.48 96.30 96.48
CMoE 96.61 95.48 96.05 97.04
CMoE+balance 97.89 97.46 96.89 97.88
RCMoE+balance 98.17 97.60 97.18 97.89

DeepShip AGNet 77.09 - - -
Smooth-ResNet (Xu et al., 2023) 76.38 77.05 - 78.25
SCAE (Irfan et al., 2021) - 70.18 - 77.53
Baseline model 74.68 74.85 75.15 77.82
CMoE 75.65 76.09 76.95 77.09
CMoE+balance 76.33 76.72 77.27 79.62
RCMoE+balance 76.80 76.60 77.50 78.76

DTIL, and DeepShip are suitable for utilizing 100-26.36kHz
(Nyquist frequency), 100-2 kHz, and 100-8 kHz as effective
frequency bands, respectively. For the selection of frame
length, we also uniformly employ the STFT spectrogram
as the input feature and ResNet-AP as the model. Optimal
performance is consistently achieved with a frame length of
50ms across the three datasets. Therefore, a default frame
length of 50ms is established.

Next, a comparison is made among six different back-
bone models - Support Vector Machine (SVM), Fully Con-
volutional Network (FCN), MobileNet-v3 (Howard, San-
dler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan
et al., 2019), ResNet (He et al., 2016), SE-ResNet (Hu,
Shen and Sun, 2018), and ResNet with attention pooling
(ResNet-AP) (Wang et al., 2018) - for the selection of the
backbone model. Among them, ResNet-AP demonstrates the
highest recognition accuracy across the three datasets. Con-
sequently, ResNet-AP is uniformly adopted as the default
front-end backbone model in subsequent experiments.
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5.2. Main Results of CMoE
Then, we experimentally validate the performance of

our CMoE approach. To demonstrate its superiority, we
compare our results with several existing advanced methods
(AGNet (Xie et al., 2022b), smoothness-inducing regular-
ization (Xu et al., 2023), TDNN and WPCS (Ren et al.,
2019), SCAE (Irfan et al., 2021)) on three datasets4. The
main results of our experiments are presented in Table 5.
It is observed that vanilla CMoE can generally improve
the recognition accuracy. Nevertheless, there are instances
where the performance of CMoE may degrade due to the
load imbalance issue, which is discussed in subsection 3.4.
As an illustration, the CQT-based CMoE model experiences
a 0.73% decrease in accuracy compared to the baseline
model on DeepShip. This decrease can be attributed to
the under-training of certain experts caused by the load
imbalance. Notably, this problem has the risk of worsening
as the number of experts increases.

With the incorporation of balancing regularization, CMoE
begins to demonstrate its potential. Particularly on Shipsear,
where data originates from diverse regions and exhibits
varied target motion statuses, the addition of the expert
layers can help model learn effectively from diverse data
and significantly increase the recognition accuracy from
75.24% to 86.21%. Furthermore, it is observed that CMoE
proves effective across recognition systems based on all four
features, confirming its generalizability.

Furthermore, we also conduct a set of ablation exper-
iments on the residual module (see CMoE vs. RCMoE in
Table 5). It reveals that the residual module can not consis-
tently yield improvements. RCMoE introduces a non-gated
residual layer, which mitigates performance losses caused
by inappropriate routing or expert overfitting. However,
while addressing potential drawbacks, it also diminishes the
sparsity of the network and reduces the disassembling effect
of multiple expert layers on diverse data. Consequently,
CMoE and RCMoE exhibit their respective strengths and
weaknesses in different situations.
5.3. Visualization Analyses

We proceed to use the confusion matrix heatmaps to
visually illustrate the model accuracy for each category. The
confusion matrix compares the predicted labels (x-axis) with
the actual labels (y-axis), and the heat map represents this
matrix graphically, with colors indicating the values. In Fig-
ure 5, it is evident that the baseline model’s recognition per-
formance is unsatisfactory, with some categories (dredger,
ocean liner, ro-ro ship, sailboat) achieving accuracy rates
below 50%. For our proposed CMoE, the model achieves
nearly 100% accuracy for several categories that were previ-
ously challenging to recognize, such as dredgers, ro-ro ships,
and sailboats, indicating a promising improvement.

4Since no official train-test split is released for these datasets, a fair
comparison to substantiate the claim of being “state-of-the-art” is lacking.
Therefore, instead of using the term “state-of-the-art”, we refer to the
selected methods as “advanced methods”. We select these four methods for
benchmarks as they have demonstrated competitiveness and superiority in
their respective works.

Then, we perform a visualization analysis of the expert
assignments in Shipsear. Heat maps are used to display the
results, presenting the expert assignment for CMoE models
with 4 and 8 experts (see Figure 6). The colors in the heat
maps represent the proportion of samples assigned to each
expert category. Our analysis reveals a possible correlation
between expert assignment and target size. According to
experiential knowledge, ocean liners and ro-ro ships are
classified as large targets, while motorboats and sailboats
are considered small targets. As depicted in Figure 6, the
8-expert CMoE tends to assign both ocean liners and ro-ro
ships to the No.5 expert, while motorboats and sailboats are
predominantly assigned to the No.1 expert. Similarly, the
4-expert CMoE exhibits similar assignments for small and
large targets. This finding suggests that the routing module
may capture inherent characteristics associated with target
size.

Furthermore, Figure 7 presents the expert assignments
for the six samples mentioned in Figure 1. By comparing
three motorboat samples with different motion states and
types, we observe both overlaps and differences in their
expert assignments. To some extent, the overlaps represent
the target-related patterns, while the differences reflect the
intra-class diversity. Additionally, we compare the expert
assignment for samples from different categories with sim-
ilar spectrograms (e.g., motorboat 33 vs passenger ship
59) and find that samples with similar spectrograms have
different expert assignments. This suggests that our CMoE
is successful in dealing with the inter-class similarity issue.

To conclude, the routing module responsible for expert
assignment demonstrates the capability to capture target-
related characteristics and intra-class diversity from high-
level representations. Furthermore, we also find that the
expert assignment of CMoE is little affected by inter-class
similarity. The above visualization analysis provides certain
interpretability for routing assignments.
5.4. Number of Experts

In this subsection, we delve into the examination of the
influence of the number of experts in CMoE models. Our
analysis reveals that while increasing the number of experts
allows for a more fine-grained understanding of the data, it
also diminishes the data dispatched to each expert, thereby
increasing the risk of overfitting. Consequently, selecting
the optimal number of experts becomes a complex trade-off.
Figure 8 presents the results for CMoE models with 2, 4, and
8 experts across three datasets. The results illustrate that the
impact of the number of experts is not simply proportional
but varies depending on factors such as data scale, data
diversity, input features, and other considerations. Only a
portion of results show obvious correlations. On DeepShip,
where the training data is relatively abundant compared
to the other two datasets, CMoE with 2 experts exhibits
the poorest performance. This is attributed to the limited
capacity of CMoE to learn from diverse data. Besides,
for redundant features, such as the STFT spectrogram on
Shipsear with a dimension of 1200×1318, increasing the
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Figure 5: The confusion matrix heat maps of the baseline model and CMoE on Shipsear. Both models take the STFT spectrogram
as the input feature.

Figure 6: The overall assignment status of 4-expert CMoE and 8-expert CMoE on Shipsear. Both models take the STFT
spectrogram as the input feature.

number of expert layers can enhance performance. For other
sets of experiments, the coupling of multiple influencing
factors complicates the discovery of clear rules.

To summarize, selecting the optimal number of experts
is a multifaceted trade-off task, and the impact of the expert
layer on performance is contingent upon the characteristics
of the data and features. Therefore, an extensive search for
the optimal number of experts through traversal becomes
necessary.
5.5. Selection of the Normalization Function

Table 6 provides an overview of the impact of normal-
ization functions on the recognition performance of CMoE
and RCMoE. Note that the probability distribution to be
normalized is 𝑝, and the formulas for the two normalization
functions are as follows:

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑝𝑖) =
𝑒𝑝𝑖

∑𝑛
𝑗=1 𝑒

𝑝𝑗
(𝑑𝑖𝑚 = −1),

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝) = 1
1 + 𝑒−𝑝

,
(8)

where 𝑝𝑖 represents the probability distribution corre-
sponding to the 𝑖-th class, while 𝑛 represents the total number

Table 6
Experiments about the normalization function with various
features on three datasets.

Dataset Model Norm func STFT Mel Bark CQT
Shipsear CMoE softmax 84.48 83.19 84.48 82.76

sigmoid 86.21 85.35 84.48 80.17
RCMoE softmax 84.19 82.76 83.19 82.33

sigmoid 85.34 84.48 83.62 82.76
DTIL CMoE softmax 97.89 97.46 96.89 97.60

sigmoid 97.88 96.89 96.61 97.88
RCMoE softmax 98.17 97.18 96.89 97.89

sigmoid 97.74 97.60 97.18 97.32
DeepShip CMoE softmax 76.33 76.36 76.52 79.62

sigmoid 75.66 76.72 77.27 78.56
RCMoE softmax 76.80 76.60 77.50 78.76

sigmoid 76.23 76.46 76.56 77.99

of classes. The softmax function effectively converts the
multi-category output values into a probability distribution
within the range of (0, 1), where the sum of all probability
values is equal to 1. On the other hand, the sigmoid function
also maps the output values to the interval of (0, 1), with a
steeper slope near the value of 0.5.

Upon analyzing the experimental results presented in
Table 6, it becomes apparent that the performance of the two
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Motorboat_33 Motorboat_39 Motorboat_79

Passenger ship_59 Fish boat_76Sailboat_56

0,1 1,5 1,5,7

2,4,5 6 3,7

n The segments of this signal track are dispatched to the n-th expert(s) 

Figure 7: The expert assignment for the six samples. Since each sample can be cut into multiple 30s segments, these segments
may be dispatched to multiple experts.

normalization functions exhibits distinct advantages and dis-
advantages across different features and datasets. Although
both functions only serve to normalize, they possess distinct
gradient properties that can influence the weight updates
of the network during backpropagation. Consequently, it
is challenging to determine a universally superior normal-
ization function. Both softmax and sigmoid normalization
approaches are employed in this study, and the approach that
yields superior results is selected.

6. Conclusion
This work unveils the uniqueness of underwater acoustic

signals, characterized by high intra-class diversity and inter-
class similarity. Building upon this foundation, we propose
an innovative application of the mixture of experts to un-
derwater acoustic recognition, called CMoE. This technique
captures latent characteristics from high-level representa-
tions and adaptively learns diverse data with multiple in-
dependent parameter spaces. To optimize our model, we
further incorporate balancing regularization and a residual
module. Through comprehensive experiments, we demon-
strate the superiority of our proposed method and underscore
the necessity of balancing regularization. Furthermore, visu-
alization analysis validates the effectiveness of our approach
and enhances interpretability of the model.

Despite promising results, our CMoE still leaves certain
limitations. First, we show that the assignment of experts
is related to the intrinsic properties of targets (e.g., target
size) to a certain extent, but the phenomenon lacks sufficient
theoretical support. Moreover, the design of the structure
of expert layers and routing layer is relatively simple. We
believe that the current CMoE with simple linear layers as
the experts or the routing layer does not fully exploit the
potential of the MoE structure. In our future work, we aim to
investigate the potential of utilizing physically-based target
characteristics, such as the number of propeller blades, as

the foundation for routing instead of relying solely on the
automatically learned routing layer. This approach offers
improved interpretability and holds promise for our research
endeavors.
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(a) Experiments on Shipsear.

(b) Experiments on DTIL.

(c) Experiments on DeepShip.

Figure 8: Experiments about the number of experts with various features on three datasets.
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