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ON THE SEMIGROUP OF MONOID ENDOMORPHISMS OF THE SEMIGROUP

B
F
ω WITH THE TWO-ELEMENT FAMILY F OF INDUCTIVE NONEMPTY

SUBSETS OF ω

OLEG GUTIK AND INNA POZDNIAKOVA

Abstract. We study the semigroup of non-injective monoid endomorphisms of the semigroup B
F

ω
with

the two-elements family F of inductive nonempty subsets of ω. We describe the structure of elements of
the semigroup End∗(B

F

ω
) of non-injective monoid endomorphisms of the semigroup B

F

ω
. In particular

we show that its subsemigroup End
∗(BF

ω
) of non-injective non-annihilating monoid endomorphisms

of the semigroup B
F

ω
is isomorphic to the direct product the two-element left-zero semigroup and the

multiplicative semigroup of positive integers and describe Green’s relations on End
∗(BF

ω
).

We shall follow the terminology of [1, 2, 9]. By ω we denote the set of all non-negative integers, by N

the set of all positive integers, and by Z the set of all integers.
Let P(ω) be the family of all subsets of ω. For any F ∈ P(ω) and n ∈ Z we put nF = {nk : k ∈ F}

if F 6= ∅ and n∅ = ∅. A subfamily F ⊆ P(ω) is called ω-closed if F1 ∩ (−n + F2) ∈ F for all n ∈ ω
and F1, F2 ∈ F . For any a ∈ ω we denote [a) = {x ∈ ω : x > a}.

A subset A of ω is said to be inductive, if i ∈ A implies i + 1 ∈ A. Obvious, that ∅ is an inductive
subset of ω.

Remark 1 ( [5]). (1) By Lemma 6 from [4] nonempty subset F ⊆ ω is inductive in ω if and only
(−1 + F ) ∩ F = F .

(2) Since the set ω with the usual order is well-ordered, for any nonempty inductive subset F in ω
there exists nonnegative integer nF ∈ ω such that [nF ) = F .

(3) Statement (2) implies that the intersection of an arbitrary finite family of nonempty inductive
subsets in ω is a nonempty inductive subset of ω.

A semigroup S is called inverse if for any element x ∈ S there exists a unique x−1 ∈ S such that
xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse of x ∈ S. If S is an inverse
semigroup, then the function inv : S → S which assigns to every element x of S its inverse element x−1

is called the inversion.
If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse

semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as a band (or the band

of S). Then the semigroup operation on S determines the following partial order 4 on E(S): e 4 f
if and only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice is a
commutative semigroup of idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the following partial order
4 on S: s 4 t if and only if there exists e ∈ E(S) such that s = te. This order is called the natural

partial order on S [12].
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If S is a semigroup, then we shall denote the Green relations on S by R, L , J , D and H (see [1,
Section 2.1]):

aRb if and only if aS1 = bS1;

aL b if and only if S1a = S1b;

aJ b if and only if S1aS1 = S1bS1;

D = L ◦ R = R ◦ L ;

H = L ∩ R.

The L -class [R-class, H -class, D-class, J -class] of the semigroup S containing the element a ∈ S will
be denoted by La [Ra, Ha, Da, Ja].

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two elements p and q
subjected only to the condition pq = 1. The semigroup operation on C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combinatorial E-
unitary inverse semigroup and every non-trivial congruence on C (p, q) is a group congruence [1].

On the set Bω = ω × ω we define the semigroup operation “·” in the following way

(1) (i1, j1) · (i2, j2) =

{
(i1 − j1 + i2, j2), if j1 6 i2;
(i1, j1 − i2 + j2), if j1 > i2.

It is well known that the bicyclic monoid C (p, q) is isomorphic to the semigroup Bω by the mapping
h : C (p, q) → Bω, q

kpl 7→ (k, l), k, l ∈ ω (see: [1, Section 1.12] or [11, Exercise IV.1.11(ii)]). Later we
identify the bicyclic monoid C (p, q) with the semigroup Bω by the mapping h.

Next we shall describe the construction which is introduced in [4].
Let Bω be the bicyclic monoid and F be an ω-closed subfamily of P(ω). On the set Bω × F we

define the semigroup operation “·” in the following way

(2) (i1, j1, F1) · (i2, j2, F2) =

{
(i1 − j1 + i2, j2, (j1 − i2 + F1) ∩ F2), if j1 6 i2;
(i1, j1 − i2 + j2, F1 ∩ (i2 − j1 + F2)), if j1 > i2.

In [4] is proved that if the family F ⊆ P(ω) is ω-closed then (Bω × F , ·) is a semigroup. Moreover,
if an ω-closed family F ⊆ P(ω) contains the empty set ∅ then the set I = {(i, j,∅) : i, j ∈ ω} is an
ideal of the semigroup (Bω × F , ·). For any ω-closed family F ⊆ P(ω) the following semigroup

B
F
ω =

{
(Bω × F , ·)/I, if ∅ ∈ F ;
(Bω × F , ·), if ∅ /∈ F

is defined in [4]. The semigroup B
F
ω generalizes the bicyclic monoid and the countable semigroup of

matrix units. It is proven in [4] that B
F
ω is a combinatorial inverse semigroup and Green’s relations,

the natural partial order on B
F
ω and its set of idempotents are described. Here, the criteria when the

semigroup B
F
ω is simple, 0-simple, bisimple, 0-bisimple, or it has the identity, are given. In particularly

in [4] it is proved that the semigroup B
F
ω is isomorphic to the semigrpoup of ω×ω-matrix units if and

only if F consists of a singleton set and the empty set, and B
F
ω is isomorphic to the bicyclic monoid if

and only if F consists of a non-empty inductive subset of ω.
Group congruences on the semigroup B

F
ω and its homomorphic retracts in the case when an ω-closed

family F consists of inductive non-empty subsets of ω are studied in [5]. It is proven that a congruence C
on B

F
ω is a group congruence if and only if its restriction on a subsemigroup of BF

ω , which is isomorphic
to the bicyclic semigroup, is not the identity relation. Also in [5], all non-trivial homomorphic retracts
and isomorphisms of the semigroup B

F
ω are described. In [6] it is proved that an injective endomorphism

ε of the semigroup B
F
ω is the indentity transformation if and only if ε has three distinct fixed points,

which is equivalent to existence non-idempotent element (i, j, [p)) ∈ B
F
ω such that (i, j, [p))ε = (i, j, [p)).
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In [3,10] the algebraic structure of the semigroup B
F
ω is established in the case when ω-closed family

F consists of atomic subsets of ω.
It is well-known that every automorphism of the bicyclic monoid Bω is the identity self-map of Bω [1],

and hence the group Aut(Bω) of automorphisms of Bω is trivial. In [8] it is proved that the semigroup
End(Bω) of all endomorphisms of the bicyclic semigroup Bω is isomorphic to the semidirect products
(ω,+)⋊ϕ (ω, ∗), where + and ∗ are the usual addition and the usual multiplication on ω.

In the paper [7] we study injective endomorphisms of the semigroup B
F
ω with the two-elements family

F of inductive nonempty subsets of ω. We describe the elements of the semigroup End
1
∗(B

F
ω ) of all

injective monoid endomorphisms of the monoid B
F
ω . In particular we show that every element of the

semigroup End
1
∗(B

F
ω ) has a form either αk,p or βk,p, where the endomorphism αk,p is defined by the

formulae

(i, j, [0))αk,p = (ki, kj, [0)),

(i, j, [1))αk,p = (p+ ki, p+ kj, [1)),

for an arbitrary positive integer k and any p ∈ {0, . . . , k − 1}, and the endomorphism βk,p is defined by
the formulae

(i, j, [0))βk,p = (ki, kj, [0)),

(i, j, [1))βk,p = (p+ ki, p+ kj, [0)),

an arbitrary positive integer k > 2 and any p ∈ {1, . . . , k−1}. In [7] we describe the product of elements
of the semigroup End

1
∗(B

F
ω ):

αk1,p1αk2,p2 = αk1k2,p2+k2p1 ;

αk1,p1βk2,p2 = βk1k2,p2+k2p1 ;

βk1,p1βk2,p2 = βk1k2,k2p1 ;

βk1,p1αk2,p2 = βk1k2,k2p1 .

Also, here we prove that Green’s relations R, L , H , D , and J on End
1
∗(B

F
ω ) coincide with the

equality relation.
Later we assume that an ω-closed family F consists of two nonempty inductive nonempty subsets of

ω.
This paper is a continuation of [7]. We study non-injective monoid endomorphisms of the semigroup

B
F
ω . We describe the structure of elements of the semigroup End∗(B

F
ω ) of all non-injective monoid

endomorphisms of the semigroup B
F
ω . In particular we show that its subsemigroup End

∗(BF
ω ) of all

non-injective non-annihilating monoid endomorphisms of the semigroup B
F
ω is isomorphic to the direct

product the two-element left-zero semigroup and the multiplicative semigroup of positive integers and
describe Green’s relations on End

∗(BF
ω ).

Remark 2. By Proposition 1 of [5] for any ω-closed family F of inductive subsets in P(ω) there exists
an ω-closed family F ∗ of inductive subsets in P(ω) such that [0) ∈ F ∗ and the semigroups B

F
ω and

B
F∗

ω are isomorphic. Hence without loss of generality we may assume that the family F contains the
set [0).

If F is an arbitrary ω-closed family F of inductive subsets in P(ω) and [s) ∈ F for some s ∈ ω then

B
{[s)}
ω = {(i, j, [s)) : i, j ∈ ω}

is a subsemigroup of BF
ω [5] and by Proposition 3 of [4] the semigroup B

{[s)}
ω is isomorphic to the bicyclic

semigroup.

Lemma 1. Let F = {[0), [1)} and let e be a monoid endomorphism of the semigroupBF
ω . If (i1, j1, F )e =

(i2, j2, F )e for distinct two elements (i1, j1, F ), (i2, j2, F ) of BF
ω for some F ∈ F then e is the annihi-

lating endomorphism of BF
ω .
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Proof. By Theorem 1 of [5] the image (BF
ω )e is a subgroup of BF

ω . By Theorem 4(iii) of [4] every
H -class in B

F
ω is a singleton, and hence e is the annihilating monoid endomorphism of BF

ω . �

Lemma 2. Let F = {[0), [1)}. Then (BF
ω )e ⊆ B

{[0)}
ω for any non-injective monoid endomorphism e of

B
F
ω .

Proof. Since e is an monoid endomorphism of BF
ω , (0, 0, [0))e = (0, 0, [0)). By Proposition 3 of [4]

the subsemigroup B
{[0)}
ω of BF

ω is isomorphic to the bicyclic semigroup and hence by Corollary 1.32

of [1] the image (B{[0)}
ω )e either is isomorphic to the bicyclic semigroup or is a cyclic subgroup of BF

ω .
If S is a subsemigroup of BF

ω which is isomorphic to the bicyclic semigroup then by Proposition 4
of [5] there exists F ∈ F such that S ⊆ B

{F}
ω . Since (0, 0, [0))e = (0, 0, [0)), Proposition 4 from

[5] implies that (B{[0)}
ω )e ⊆ B

{[0)}
ω in the case when the image (B{[0)}

ω )e is isomorphic to the bicyclic

semigroup. In the case when the image (B{[0)}
ω )e is isomorphic to the cyclic group we have that the

equality (0, 0, [0))e = (0, 0, [0)) implies that (B{[0)}
ω )e ⊆ {(0, 0, [0))} ⊆ B

{[0)}
ω , because by Theorem 4(iii)

of [4] every H -class in B
F
ω is a singleton.

Next, by Proposition 3 of [4] the subsemigroup B
{[1)}
ω of BF

ω is isomorphic to the bicyclic semigroup

and hence by Corollary 1.32 of [1] the image (B{[1)}
ω )e either is isomorphic to the bicyclic semigroup or

is a cyclic subgroup of BF
ω . Suppose that the image (B{[1)}

ω )e is isomorphic to the bicyclic semigroup

and (B{[1)}
ω )e ⊆ B

{[1)}
ω . Then monoid endomorphism e of BF

ω is injective. Indeed, injectivity of the

restriction e↿
B

{[1)}
ω

B
{[1)}
ω → B

{[1)}
ω , Proposition 4 of [5], Corollary 1.32 of [1], Theorem 4(iii) of [4], and

the equality (0, 0, [0))e = (0, 0, [0)) imply that either the restriction e↿
B

{[0)}
ω

B
{[0)}
ω → B

{[0)}
ω is an injective

mapping or is an annihilating endomorphism. In the case when the restriction e↿
B

{[0)}
ω

B
{[0)}
ω → B

{[0)}
ω is

an injective mapping we get that the endomorphism e is injective. If the image (B{[0)}
ω )e is a singleton

then by Lemma 1 we have that e is the annihilating monoid endomorphism of BF
ω . In the both cases

we obtain that (BF
ω )e ⊆ B

{[0)}
ω . �

Example 1. Let F = {[0), [1)} and k be an arbitrary non-negative integer. We define a map γk : B
F
ω →

B
F
ω by the formulae

(i, j, [0))γk = (i, j, [1))γk = (ki, kj, [0))

for all i, j ∈ ω.
We claim that γk : B

F
ω → B

F
ω is an endomorphism. Example 2 and Proposition 5 from [5] imply

that the map γ1 : B
F
ω → B

F
ω is a homomorphic retraction of the monoid B

F
ω , and hence it is a monoid

endomorphism of BF
ω . By Lemma 2 of [8] every monoid endomorphism h of the semigroup Bω has the

following form
(i, j)h = (ki, kj), for some k ∈ ω.

This implies that the map γk is a monoid endomorphism of BF
ω .

Example 2. Let F = {[0), [1)} and k be an arbitrary non-negative integer. We define a map δk : B
F
ω →

B
F
ω by the formulae

(i, j, [0))δk = (ki, kj, [0)) and (i, j, [1))δk = (k(i+ 1), k(j + 1), [0))

for all i, j ∈ ω.

Proposition 1. Let F = {[0), [1)}. Then for any k ∈ ω the map δk is an endomorphism of the monoid

B
F
ω .

Proof. Since by Proposition 3 of [4] the subsemigroups B
{[0)}
ω and B

{[1)}
ω of BF

ω are isomorphic to the

bicyclic semigroup, by Lemma 2 of [8] the restrictions δk↿
B

{[0)}
ω

: B{[0)}
ω → B

F
ω and δk↿

B
[1)
ω

: B{[1)}
ω → B

F
ω

of δk are homomorphisms. Hence it sufficient to show that the following equalities

(i1, j1, [0))δk · (i2, j2, [1))δk = ((i1, j1, [0)) · (i2, j2, [1)))δk;

(i1, j1, [1))δk · (i2, j2, [0))δk = ((i1, j1, [1)) · (i2, j2, [0)))δk,
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hold for any i1, j1, i2, j2 ∈ ω.
We observe that the above equalities are trivial in the case when k = 0. Hence later we assume that

k is a positive integer.
Then we have that

(i1, j1, [0))δk · (i2, j2, [1))δk = (ki1, kj1, [0)) · (k(i2 + 1), k(j2 + 1), [0)) =

=







(ki1 + k(i2 + 1)− kj1, k(j2 + 1), (kj1 − k(i2 + 1) + [0)) ∩ [0)), if kj1 < k(i2 + 1);
(ki1, k(j2 + 1), [0) ∩ [0)), if kj1 = k(i2 + 1);
(ki1, kj1 + k(j2 + 1)− k(i2 + 1), [0) ∩ (k(i2 + 1)− kj1 + [0))), if kj1 > k(i2 + 1)

=







(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 < i2 + 1;
(ki1, k(j2 + 1), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1

=







(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j2 + 1), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1

=







(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j2 + 1), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1,

((i1, j1, [0)) · (i2, j2, [1)))δk =







(i1 + i2 − j1, j2, (j1 − i2 + [0)) ∩ [1))δk, if j1 < i2;
(i1, j2, [0) ∩ [1))δk, if j1 = i2;
(i1, j1 + j2 − i2, [0) ∩ (i2 − j1 + [1)))δk, if j1 > i2

=







(i1 + i2 − j1, j2, [1))δk, if j1 < i2;
(i1, j2, [1))δk, if j1 = i2;
(i1, j1 + j2 − i2, [0))δk, if j1 > i2

=







(k(i1 + i2 − j1 + 1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2

=







(k(i1 + i2 − j1 + 1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j1 + j2 − i2), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1

=







(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j2 + 1), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1,

and

(i1, j1, [1))δk · (i2, j2, [0))δk = (k(i1 + 1), k(j1 + 1), [0)) · (ki2, kj2, [0)) =

=







(k(i1 + 1) + ki2 − k(j1 + 1), kj2, (k(j1 + 1)− ki2 + [0)) ∩ [0)), if k(j1 + 1) < ki2;
(k(i1 + 1), kj2, [0) ∩ [0)), if k(j1 + 1) = ki2;
(k(i1 + 1), k(j1 + 1) + kj2 − ki2, [0) ∩ (ki2 − k(j1 + 1) + [0))), if k(j1 + 1) > ki2

=







(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + 1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j1 + 1 + j2 − i2), [0)), if j1 + 1 > i2
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=







(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + 1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j1 + 1 + j2 − i2), [0)), if j1 = i2;
(k(i1 + 1), k(j1 + 1 + j2 − i2), [0)), if j1 + 1 > i2

=







(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + 1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(k(i1 + 1), k(j1 + j2 − i2 + 1), [0)), if j1 > i2,

((i1, j1, [1)) · (i2, j2, [0)))δk =







(i1 + i2 − j1, j2, (j1 − i2 + [1)) ∩ [0))δk, if j1 < i2;
(i1, j2, [1) ∩ [0))δk, if j1 = i2;
(i1, j1 + j2 − i2, [1) ∩ (i2 − j1 + [0)))δk, if j1 > i2

=







(i1 + i2 − j1, j2, [0))δk, if j1 < i2;
(i1, j2, [1))δk, if j1 = i2;
(i1, j1 + j2 − i2, [1))δk, if j1 > i2

=







(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(k(i1 + 1), k(j1 + j2 − i2 + 1), [0)), if j1 > i2

=







(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + 1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(k(i1 + 1), k(j1 + j2 − i2 + 1), [0)), if j1 > i2.

This completes the proof of the statement of the proposition. �

Remark 3. It obvious that if e is the annihilating endomorphism of the monoid B
F
ω then e = γ0 = δ0.

By End∗(B
F
ω ) we denote the semigroup of all non-injective monoid endomorphisms of the monoid

B
F
ω for the family F = {[0), [1)}.
Theorems 1 and 2 describe the algebraic structure of the semigroup End∗(B

F
ω ).

Theorem 1. If F = {[0), [1)}, then for any non-injective monoid endomorphism e of the monoid B
F
ω

only one of the following conditions holds:

(1) e is the annihilating endomorphism, i.e., e = γ0 = δ0;
(2) e = γk for some positive integer k;
(3) e = δk for some positive integer k.

Proof. Fix an arbitrary non-injective monoid endomorphism e of the monoid B
F
ω . If e is the annihilating

endomorphism then statement (1) holds. Hence, later we assume that the endomorphism e is not
annihilating.

By Lemma 1 the restriction e↿
B

{[0)}
ω

B
{[0)}
ω → B

F
ω of the endomorphism e is an injective mapping.

Since by Proposition 3 of [4] the subsemigroup B
{[0)}
ω of BF

ω are isomorphic to the bicyclic semigroup,
the injectivity of the restriction e↿

B
{[0)}
ω

of the endomorphism e, Proposition 4 of [5], and Lemma 2 of [8]

imply that there exists a positive integer k such that

(3) (i, j, [0))e = (ki, kj, [0)),

for all i, j ∈ ω.
By Lemma 1 the restriction e↿

B
{[1)}
ω

B
{[1)}
ω → B

F
ω of the endomorphism e is an injective mapping, and

by Lemma 2 we have that (B{[1)}
ω )e ⊆ B

{[0)}
ω . By Proposition 1.4.21(6) of [9] a homomorphism of inverse
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semigroups preserves the natural partial order, and hence the following inequalities

(1, 1, [0)) 4 (0, 0, [1)) 4 (0, 0, [0)),

Lemma 2, and Propositions 2 of [5] imply that

(k, k, [0)) = (1, 1, [0))e 4 (s, s, [0)) = (0, 0, [1))e 4 (0, 0, [0)) = (0, 0, [0))e

for some s ∈ {0, 1, . . . , k}. Again by Proposition 1.4.21(6) of [9] and by Lemma 2 we get that

(1, 1, [1))e = (s+ p, s+ p, [0))

for some non-negative integer p. If p = 0 then (1, 1, [1))e = (0, 0, [1))e. By Lemma 1 the endomorphism
e is annihilating. Hence we assume that p is a positive integer.

Let (0, 1, [1))e = (x, y, [0)) for some x, y ∈ ω. By Proposition 1.4.21(1) of [9] and Lemma 4 of [4] we
have that

(1, 0, [1))e = ((0, 1, [1))−1)e = ((0, 1, [1))e)−1 = (x, y, [0))−1 = (y, x, [0)).

Since

(0, 1, [1)) · (1, 0, [1)) = (0, 0, [1)) and (0, 1, [1)) · (1, 0, [1)) = (0, 0, [1)),

the equalities (0, 0, [1))e = (s, s, [0)) and (1, 1, [1))e = (s+ p, s+ p, [0)) imply that

(s, s, [0)) = (0, 0, [1))e = ((0, 1, [1)) · (1, 0, [1)))e = (0, 1, [1))e · (1, 0, [1))e =

= (x, y, [0)) · (y, x, [0)) = (x, x, [0))

and

(s+ p, s+ p, [0)) = (1, 1, [1))e = ((1, 0, [1)) · (0, 1, [1)))e = (1, 0, [1))e · (0, 1, [1))e =

= (y, x, [0)) · (x, y, [0)) = (y, y, [0)).

This and the definition of the semigroup B
F
ω imply that

(0, 1, [1))e = (s, s+ p, [0)) and (1, 0, [1))e = (s+ p, s, [0)).

Then for any positive integers n1 and n2 by usual calculations we get that

(0, n1, [1))e = ((0, 1, [1)) · . . . · (0, 1, [1))
︸ ︷︷ ︸

n1-times

)e = (0, 1, [1))e · . . . · (0, 1, [1))e
︸ ︷︷ ︸

n1-times

= (s, s+p, [0))n1 = (s, s+n1p, [0))

and

(n2, 0, [1))e = ((1, 0, [1)) · . . . · (1, 0, [1))
︸ ︷︷ ︸

n2-times

)e = (1, 0, [1))e · . . . · (1, 0, [1))e
︸ ︷︷ ︸

n2-times

= (s+p, s, [0))n2 = (s+n2p, s, [0)),

and hence

(4) (n1, n2, [1))e = (s+ n1p, s+ n2p, [0)).

The definition of the natural partial order on the semigroup B
F
ω (see Proposition 4 of [5]) imply that

for any positive integer m we have that

(m+ 1, m+ 1, [0)) 4 (m,m, [1)) 4 (m,m, [0)).

Then by equalities (3), (4), and Proposition 1.4.21(6) of [9] we obtain that

(k(m+ 1), k(m+ 1), [0)) = (m+ 1, m+ 1, [0))e 4 (s+ pm, s+ pm, [0)) = (m,m, [1))e 4

4 (m,m, [0))e = (km, km, [0)).

The above inequalities and the definition of the natural partial order on the semigroup B
F
ω (see Propo-

sition 4 of [5]) imply that km 6 s+ pm 6 k(m+ 1) for any positive integer m. This implies that

k 6
s

m
+ p 6 k +

1

m
,
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and since p is a positive integer we get that p = k. Hence by (4) we get that

(5) (n1, n2, [1))e = (s+ n1k, s+ n2k, [0)),

for all n1, n2 ∈ ω.
It is obvious that if s ∈ {1, . . . , k − 1} then e is an injective monoid endomorphism of the semigroup.

Hence we have that either s = 0 or s = k, Simple verifications show that

e =

{
γk, if s = 0;
δk, if s = k.

This completes the proof of the theorem. �

Theorem 2. Let F = {[0), [1)}. Then for all positive integers k1 and k2 the following conditions hold:

(1) γk1γk2 = γk1k2;
(2) γk1δk2 = γk1k2;
(3) δk1γk2 = δk1k2;
(4) δk1δk2 = δk1k2.

Proof. (1) For any i, j ∈ ω we have that

(i, j, [0))γk1γk2 = (k1i, k1j, [0))γk2 = (k1k2i, k1k2j, [0)),

and (i, j, [1))γk1 = (i, j, [0))γk1. This implies that γk1γk2 = γk1k2.

(2) Since

(i, j, [0))γk1δk2 = (k1i, k1j, [0))δk2 = (k1k2i, k1k2j, [0)),

and (i, j, [1))γk1 = (i, j, [0))γk1 for all i, j ∈ ω, we get that γk1δk2 = γk1k2.

(3) For any i, j ∈ ω we have that

(i, j, [0))δk1γk2 = (k1i, k1j, [0))γk2 = (k1k2i, k1k2j, [0)),

and

(i, j, [1))δk1γk2 = (k1(i+ 1), k1(j + 1), [0))γk2 = (k1k2(i+ 1), k1k2(j + 1), [0)),

and hence δk1γk2 = δk1k2 .

(4) For any i, j ∈ ω we have that

(i, j, [0))δk1δk2 = (k1i, k1j, [0))δk2 = (k1k2i, k1k2j, [0)),

and

(i, j, [1))δk1δk2 = (k1(i+ 1), k1(j + 1), [0))δk2 = (k1k2(i+ 1), k1k2(j + 1), [0)),

and hence δk1δk2 = δk1k2. �

By e0 we denote the annihilating monoid endomorphism of the monoid B
F
ω for the family F =

{[0), [1)}, i.e., (i, j, [p))e0 = (0, 0, [0)) for all i, j ∈ ω and p = 0, 1. We put End
∗(BF

ω ) = End∗(B
F
ω ) \

{e0}. Theorem 2 implies that End
∗(BF

ω ) is a subsemigroup of End∗(B
F
ω ).

Theorem 2 implies the following corollary.

Corollary 1. If F = {[0), [1)}, then the elements γ1 and δ1 are unique idempotents of the semigroup

End
∗(BF

ω ).

Next, by LZ2 we denote the left zero semigroup with two elements and by Nu the multiplicative
semigroup of positive integers.

Proposition 2. Let F = {[0), [1)}. Then the semigroup End
∗(BF

ω ) is isomorphic to the direct product

LZ2 × Nu.
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Proof. Put LZ2 = {c, d}. We define a map I : End
∗(BF

ω ) → LZ2 × Nu by the formula

(e)I =

{
(c, k), if e = γk;
(d, k), if e = δk.

It is obvious that such defined map I is bijective, and by Theorem 2 it is a homomorphism. �

Theorem 3 describes Green’s relations on the semigroup End
∗(BF

ω ). Later by End
∗(BF

ω )1 we denote
the semigroup End

∗(BF
ω ) with adjoined identity element.

Theorem 3. Let F = {[0), [1)}. Then the following statements hold:

(1) γk1Rγk2 in End
∗(BF

ω ) if and only if k1 = k2;
(2) γk1Rδk2 does not hold in End

∗(BF
ω ) for any γk1, δk2;

(3) δk1Rδk2 in End
∗(BF

ω ) if and only if k1 = k2;
(4) γk1L γk2 in End

∗(BF
ω ) if and only if k1 = k2;

(5) γk1L δk2 in End
∗(BF

ω ) if and only if k1 = k2;
(6) δk1L δk2 in End

∗(BF
ω ) if and only if k1 = k2;

(7) H is the identity relation on End
∗(BF

ω );
(8) e1De2 in End

∗(BF
ω ) if and only if there exists a positive integer k such that e1, e2 ∈ {γk, δk};

(9) D = J in End
∗(BF

ω ).

Proof. (1) (⇒) Suppose that γk1Rγk2 in End
∗(BF

ω ). Then there exist e1, e2 ∈ End
∗(BF

ω )1 such that
γk1 = γk2e1 and γk2 = γk1e2. The equality γk1 = γk2e1 and Theorem 2 imply that there exists a positive
integer p such that either e1 = γp or e1 = δp. In both above cases by Theorem 2 we have that

γk1 = γk2e1 = γk2γp = γk2δp = γk2p,

and hence k2|k1. The proof of the statement that γk2 = γk1e2 implies that k1|k2 is similar. Therefore we
get that k1 = k2.

Implication (⇐) is trivial.

Statement (2) follows from Theorem 2(2).

The proof of statement (3) is similar to (1).

(4) (⇒) Suppose that γk1L γk2 in End
∗(BF

ω ). Then there exist e1, e2 ∈ End
∗(BF

ω )1 such that
γk1 = e1γk2 and γk2 = e2γk1. The equality γk1 = e1γk2 and Theorem 2 imply that there exists a positive
integer p such that e1 = γp. Then we have that

γk1 = e1γk2 = γpγk2 = γpk2,

and hence k2|k1. The proof of the statement that γk2 = e2γk1 implies that k1|k2 is similar. Therefore we
get that k1 = k2.

Implication (⇐) is trivial.

(5) (⇒) Suppose that γk1L δk2 in End
∗(BF

ω ). Then there exist e1, e2 ∈ End
∗(BF

ω )1 such that
γk1 = e1δk2 and δk2 = e2γk1. The equality γk1 = e1δk2 and Theorem 2 imply that there exists a positive
integer p such that e1 = γp. Then we have that

γk1 = e1δk2 = γpδk2 = γpk2,

and hence k2|k1. The equality δk2 = e2γk1 and Theorem 2 imply that there exists a positive integer q
such that e1 = δq. Then we have that

δk2 = e2γk1 = δqγk1 = γqk1,

and hence k1|k2. Thus we get that k1 = k2.
Implication (⇐) is trivial.
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(6) (⇒) Suppose that δk1L δk2 in End
∗(BF

ω ). Then there exist e1, e2 ∈ End
∗(BF

ω )1 such that
δk1 = e1δk2 and δk2 = e2δk1 . The equality δk1 = e1δk2 and Theorem 2 imply that there exists a positive
integer p such that e1 = δp. Then we have that

δk1 = e1δk2 = δpδk2 = δpk2,

and hence k2|k1. The proof of the statement that δk2 = e2δk1 implies that k1|k2 is similar. Hence we get
that k1 = k2.

Implication (⇐) is trivial.

(7) By statements (1), (2), and (3), R is the identity relation on the semigroup End
∗(BF

ω ). Then so
is H , because H ⊆ R.

Statement (8) follows from statements (1)–(6).

(9) Suppose to the contrary that D 6= J in End
∗(BF

ω ). Since D ⊆ J , statement (8) implies that

there exist e1, e2 ∈ End
∗(BF

ω )1 such that e1J e2 and e1, e2 /∈ {γk, δk} for any positive integer k. Then
there exist distinct positive integers k1 and k2 such that e1 ∈ {γk1, δk1} and e2 ∈ {γk2, δk2}. Without
loss of generality we may assume that k1 < k2. Since e1J e2 there exist e

′
1, e

′
2, e

′′
1, e

′′
2 ∈ End

∗(BF
ω )1 such

that e1 = e′1e2e
′′
1 and e2 = e′2e2e

′′
2. Since e1 ∈ {γk1, δk1} and e2 ∈ {γk2, δk2}, the equality e1 = e′1e2e

′′
1,

Theorems 1 and 2 imply that k2|k1. This contradicts the inequality k1 < k2. The obtained contradiction
implies the requested statement �

Remark 4. Since e0 is zero of the semigroup End∗(B
F
ω ), the classes of equivalence of Green’s relations

of non-zero elements of End∗(B
F
ω ) in the semigroup End∗(B

F
ω ) coincide with their corresponding

classes of equivalence in End
∗(BF

ω ), and moreover we have that Le0 = Re0 = H e0 = De0 = J e0 = {e0}
in the semigroup End∗(B

F
ω ).
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