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ON THE SEMIGROUP OF MONOID ENDOMORPHISMS OF THE SEMIGROUP
B7 WITH THE TWO-ELEMENT FAMILY .# OF INDUCTIVE NONEMPTY
SUBSETS OF w

OLEG GUTIK AND INNA POZDNIAKOVA

ABSTRACT. We study the semigroup of non-injective monoid endomorphisms of the semigroup Bf with
the two-elements family .% of inductive nonempty subsets of w. We describe the structure of elements of
the semigroup End, (Bf) of non-injective monoid endomorphisms of the semigroup Bf. In particular
we show that its subsemigroup End* (Bf) of non-injective non-annihilating monoid endomorphisms
of the semigroup Bf is isomorphic to the direct product the two-element left-zero semigroup and the
multiplicative semigroup of positive integers and describe Green’s relations on End” (Bf)

We shall follow the terminology of [1,2,0]. By w we denote the set of all non-negative integers, by N
the set of all positive integers, and by Z the set of all integers.

Let & (w) be the family of all subsets of w. For any F' € & (w) and n € Z we put nF = {nk: k € F'}
if F'# @ and n@ = @. A subfamily .# C & (w) is called w-closed if Fy N (—n + Fy) € Z for alln € w
and Fy, Fy € #. For any a € w we denote [a) = {z € w: x > a}.

A subset A of w is said to be inductive, if i € A implies ¢ + 1 € A. Obvious, that @ is an inductive
subset of w.

Remark 1 ([5]). (1) By Lemma 6 from [4] nonempty subset ' C w is inductive in w if and only
(-1+F)NF=F.
(2) Since the set w with the usual order is well-ordered, for any nonempty inductive subset F' in w
there exists nonnegative integer ng € w such that [ng) = F.
(3) Statement (2]) implies that the intersection of an arbitrary finite family of nonempty inductive
subsets in w is a nonempty inductive subset of w.

A semigroup S is called inverse if for any element x € S there exists a unique z=! € S such that
v 'z = x and v 'ez~! = 27!, The element z~! is called the inverse of x+ € S. If S is an inverse
semigroup, then the function inv: S — S which assigns to every element z of S its inverse element z~*
is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by £(S). If S is an inverse
semigroup, then E/(S) is closed under multiplication and we shall refer to E(S) as a band (or the band
of S). Then the semigroup operation on S determines the following partial order < on F(S): e < f
if and only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice is a
commutative semigroup of idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the following partial order
< on S: s < tif and only if there exists e € E(S) such that s = te. This order is called the natural
partial order on S [12].
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If S is a semigroup, then we shall denote the Green relations on S by Z, £, ¢, 2 and J (see [I,
Section 2.1)):

aZb if and only if a.S' = bS*;

a.?b if and only if Sta = S'b;
a_Zb if and only if StaSt = S'bS?;
D=L oAR=XH0L,
H=LNX.

The Z-class [#-class, F-class, D-class, £ -class]| of the semigroup S containing the element a € S will
be denoted by L, [R,, H,, D,, J,].

The bicyclic monoid %'(p, q) is the semigroup with the identity 1 generated by two elements p and ¢
subjected only to the condition pg = 1. The semigroup operation on % (p, q) is determined as follows:

qkpl . qmpn — qk—l—m—min{l,m}pl—l—n—min{l,m}'
It is well known that the bicyclic monoid % (p, q) is a bisimple (and hence simple) combinatorial E-
unitary inverse semigroup and every non-trivial congruence on % (p, q) is a group congruence [IJ.

On the set B, = w X w we define the semigroup operation “.” in the following way

. . . . (Zl - jl + ig,jg), if jl < ig;
1 11,71) - (12, J2) = o : . e .
(1) (i1 51) - (22, Jo) { (i1, 51 — iz + ja), if ji = da.

It is well known that the bicyclic monoid €'(p, q) is isomorphic to the semigroup B, by the mapping
h: €(p,q) = Bu, ¢*p' — (k,1), k,1 € w (see: [1, Section 1.12] or [I1], Exercise IV.1.11(ii)]). Later we
identify the bicyclic monoid € (p, ¢) with the semigroup B,, by the mapping b.

Next we shall describe the construction which is introduced in [4].

Let B, be the bicyclic monoid and .% be an w-closed subfamily of &(w). On the set B, X % we
define the semigroup operation “-” in the following way

- - Gy =gy g, o, (1 —de + F1) N Fy), if gy <y
@) (611, F2) - (i, 2, F2) = { (i1, 1 — d2 + Jo, F1 O (i — j1 + F2)), if j1 = da.

In [4] is proved that if the family .# C #(w) is w-closed then (B, x .#,-) is a semigroup. Moreover,
if an w-closed family . C Z(w) contains the empty set & then the set I = {(i,7,9): 4,7 € w} is an
ideal of the semigroup (B, x #,-). For any w-closed family .% C % (w) the following semigroup

p7_ | (Bux Z./I, ifoeF;
© =\ (B,xZ,), io¢F

is defined in [4]. The semigroup B7 generalizes the bicyclic monoid and the countable semigroup of
matrix units. It is proven in [4] that B is a combinatorial inverse semigroup and Green’s relations,
the natural partial order on Bf’ and its set of idempotents are described. Here, the criteria when the
semigroup Bf’ is simple, 0-simple, bisimple, 0-bisimple, or it has the identity, are given. In particularly
in [4] it is proved that the semigroup Bf is isomorphic to the semigrpoup of wxw-matrix units if and
only if .# consists of a singleton set and the empty set, and Bi] is isomorphic to the bicyclic monoid if
and only if .% consists of a non-empty inductive subset of w.

Group congruences on the semigroup Bf and its homomorphic retracts in the case when an w-closed
family .7 consists of inductive non-empty subsets of w are studied in [5]. It is proven that a congruence €
on Bf is a group congruence if and only if its restriction on a subsemigroup of Bf, which is isomorphic
to the bicyclic semigroup, is not the identity relation. Also in [5], all non-trivial homomorphic retracts
and isomorphisms of the semigroup Bf are described. In [6] it is proved that an injective endomorphism
¢ of the semigroup Bf is the indentity transformation if and only if € has three distinct fixed points,
which is equivalent to existence non-idempotent element (4, 5, [p)) € B such that (i, j, [p))e = (i, 4, [p)).
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In [3,10] the algebraic structure of the semigroup B is established in the case when w-closed family
Z consists of atomic subsets of w.

It is well-known that every automorphism of the bicyclic monoid B,, is the identity self-map of B, [1I,
and hence the group Aut(B,,) of automorphisms of B,, is trivial. In [§] it is proved that the semigroup
End(B,,) of all endomorphisms of the bicyclic semigroup B,, is isomorphic to the semidirect products
(w,+) Xy (w, *), where + and * are the usual addition and the usual multiplication on w.

In the paper [7] we study injective endomorphisms of the semigroup Bi] with the two-elements family
Z of inductive nonempty subsets of w. We describe the elements of the semigroup End.(B7) of all
injective monoid endomorphisms of the monoid Bf . In particular we show that every element of the
semigroup End!(B7) has a form either ay, or B, where the endomorphism oy, is defined by the
formulae

(iv.jv [O>>ak,p = (]W'v k.]v [O>>7
(i, 3, [1)awp = (p + ki, p + kg, [1)),

for an arbitrary positive integer k£ and any p € {0,...,k — 1}, and the endomorphism S, is defined by
the formulae

(Za]a [0))ﬁk,p = (kl> k]a [O))>
(i, 7, 11))Brp = (p + ki, p + k5, (0)),

an arbitrary positive integer k > 2 and any p € {1,...,k—1}. In [7] we describe the product of elements
of the semigroup End.(B7):

Qky,p1 Ckg,py = Ckika,pa+kapr)
O‘klmlﬁkz,m = Bk1k2,p2+k2p1;
51914715162,102 = 51@1/62,]92101;
ﬁkhmakz,pz = 51@1/62,192101'

Also, here we prove that Green’s relations %, £, ¢, ¥, and # on Endi(Bf) coincide with the
equality relation.

Later we assume that an w-closed family .% consists of two nonempty inductive nonempty subsets of
w.
This paper is a continuation of [7]. We study non-injective monoid endomorphisms of the semigroup
B7 . We describe the structure of elements of the semigroup End, (B ) of all non-injective monoid
endomorphisms of the semigroup B . In particular we show that its subsemigroup End*(B) of all
non-injective non-annihilating monoid endomorphisms of the semigroup Bf is isomorphic to the direct
product the two-element left-zero semigroup and the multiplicative semigroup of positive integers and
describe Green’s relations on End*(B7).

Remark 2. By Proposition 1 of [5] for any w-closed family .% of inductive subsets in & (w) there exists
an w-closed family .#* of inductive subsets in #(w) such that [0) € .#* and the semigroups B and

gr*

B are isomorphic. Hence without loss of generality we may assume that the family .# contains the

set [0).
If . is an arbitrary w-closed family .# of inductive subsets in Z(w) and [s) € .% for some s € w then
B ={(i,5,]s)): 4,j € w}

is a subsemigroup of B [5] and by Proposition 3 of [4] the semigroup B*} is isomorphic to the bicyclic
semigroup.

Lemma 1. Let . # = {[0), [1)} and let ¢ be a monoid endomorphism of the semigroup B2 . If (i1, j1, F)e =
(i9, jo, F)e for distinct two elements (iy, j1, F), (ig, jo, F) of B2 for some F € F then ¢ is the annihi-
lating endomorphism of Bf
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Proof. By Theorem 1 of [5] the image (B )e is a subgroup of B . By Theorem 4(iii) of [4] every
JC-class in Bf is a singleton, and hence ¢ is the annihilating monoid endomorphism of Bi; . U

Lemma 2. Let . = {[0),[1)}. Then (BZ)e € B!} for any non-injective monoid endomorphism ¢ of
B7.

Proof. Since ¢ is an monoid endomorphism of BZ, (0,0,[0))e = (0,0,[0)). By Proposition 3 of [
the subsemigroup BO{J[O)} of Bi] is isomorphic to the bicyclic semigroup and hence by Corollary 1.32
of [1] the image (B{"})e either is isomorphic to the bicyclic semigroup or is a cyclic subgroup of B .
If S is a subsemigroup of Bf which is isomorphic to the bicyclic semigroup then by Proposition 4
of [5] there exists F € .# such that S € B} Since (0,0,[0))e = (0,0,[0)), Proposition 4 from
[5] implies that (B{)e € B in the case when the image (B{”})e is isomorphic to the bicyclic
semigroup. In the case when the image (Bﬂo)})e is isomorphic to the cyclic group we have that the
equality (0,0, [0))e = (0,0, [O)) implies that (BI?})e C {(0,0,[0))} € B because by Theorem 4(ii1)
of [] every #-class in B 7 is a singleton.

Next, by Proposition 3 of [4] the subsemigroup Bi[l)} of Bf is isomorphic to the bicyclic semigroup
and hence by Corollary 1.32 of [I] the image (B{"})e either is isomorphic to the bicyclic semigroup or
is a cyclic subgroup of BZ. Suppose that the image (Bﬂl)})e is isomorphic to the bicyclic semigroup
and (B{"e € BV} Then monoid endomorphism e of B is injective. Indeed, injectivity of the
restriction e] Bi[l)}Bu{J[l)} — B} Proposition 4 of [5], Corollary 1.32 of [I], Theorem 4(iii) of [4], and
the equality (0,0, [0))e = (0,0, [0)) imply that either the restriction e] B£[0>}Bi[0)} — B} is an injective
mapping or is an annihilating endomorphism. In the case when the restriction e} g By Oy - BiOY i
an injective mapping we get that the endomorphism e is injective. If the image (B{[ )e is a singleton

then by Lemma [l we have that e is the annihilating monoid endomorphism of Bj . In the both cases
we obtain that (B )e C B9}, O
Example 1. Let .% = {[0),[1)} and k be an arbitrary non-negative integer. We define a map v,: B2 —
B7 by the formulae

for all i, j € w.

We claim that 7: B2 — B is an endomorphism. Example 2 and Proposition 5 from [5] imply
that the map v,: B2 — B is a homomorphic retraction of the monoid B, and hence it is a monoid
endomorphism of Bf By Lemma 2 of [8] every monoid endomorphism b of the semigroup B, has the
following form

(1,7)b = (ki, kj), for some k € w.
This implies that the map 7, is a monoid endomorphism of Bf

Example 2. Let .# = {[0), [1)} and k be an arbitrary non-negative integer. We define a map dy, : Bf —
B7 by the formulae

for all i, j € w.
Proposition 1. Let % = {[0),[1)}. Then for any k € w the map d; is an endomorphism of the monoid
B7.
Proof. Since by Proposition 3 of [4] the subsemigroups B{[ and B{[1 of By' are isomorphic to the
bicyclic semigroup, by Lemma 2 of [§] the restrictions Ok gt (o) : B{[ SN B/ and (m B{[l)} — BJ
of 9;, are homomorphisms. Hence it sufficient to show that the following equalities

(7’17]17 [0))5k . (127J27 [ ))5k = ((7’17J17 [0)) ’ (127J27 [ )))5k7

(7;17j17 [1))5k . (i27j27 [O)>5k = <<i17j17 [1)) ’ (i27j27 [O>))5k7
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hold for any i1, j1, 2, jo € w.

We observe that the above equalities are trivial in the case when k£ = 0. Hence later we assume that
k is a positive integer.

Then we have that

(i1, 71, (0)) 0 - (i2, 2, [1))0k = (Ki1, kj1,[0)) - (k(i2 + 1), k(j2 +1),[0)) =
{ (kiy + k(iy + 1) — kj1, k(jo + 1), (kj1 — k(iy + 1) +[0)) N [0)), if kjy < k(g + 1);

iy, k(42 +1),[0) N [0)), if kj; = k(i + 1);
( (Zl+7'2+1_]1)7k(j2+1)7[0))7 lfjl <i2§
k(j

(
(]{Z’Ll, ]fjl + ]{Z(jg + 1) k(ZQ -+ 1), [0) N (]{7(7,2 + 1) — ]{Zjl + [O))), if ]{le > ]{Z(’LQ + 1)
(k
(
(
(K
_ E (Zl+z2+1_]1>7 .2+1)7[0))7 lfjl :i2§
(
(k
(k
(
(

(i1 +i2+1—71),k(j2+1),(0)), if j1 <ip+1;
(j2+1),10)), if j1 =is+ 1;

]{7517
kll? (]1"‘]2—@2),[0)), lfjl >12+1

i1, k(j2 +1),[0)), if j1 =12+ 1;
1, (]1"‘]2—@2),[0)), lfjl >12+1

k1
k1
(i1 +ig + 1 —=71),k(j2 +1),[0)), if j1 <iy;
(41 + 1), k(j2 + 1),(0)), if j1 = i9;
Kiv, k(j2 + 1), [0)) if j1 =i+ 1;
ki, k (]1 +.72_Z2 ) if 71 > i9 + 1,

(41 + iy — J1,J2, (J1 —d2 +1[0)) N [1))6k, if ji < iy;
((i1,71,10)) - (@2, Ja, [1)))0k = < (21, J2, [0) N 1))k, if j1 = iy;
(i1, 1 +]2 — 9, [0) N (G2 — j1 + [1)))0k, if j1 > 7o
(Zl +Z2 _j17j27 [ ))5k7 if jl < 127
(117.]27 5]67 lf jl
(i1, J1 + J2 — 92, [0))0p, if j1 > 22
(k(iy + 2 — J1 +1),k(j2 +1),[0)), if ji < iy;
= (]{Z Zl+1 j2—|—1) [0)) 1fj1 :’ig;
(kir, k(jr + J2 — 12),0)), if j1 > 49
( (1{3(11 +i0—J1 + 1) k(jg + 1), [0)), if g1 < io;
_ ) (ki +1), k(2 + 1), [0)), if j1 = iy;
(]{Z’Ll, (jl +j2—12),[0)), 1fj1 :’i2—|—1;
\ (k‘”l (]1 +]2_Z2)>[O))> 1f]1 >i2+1
[ (k(iy + iy +1—51), k(jo + 1),]0)), if 5, < ia;
_ ) k(i + 1), k(2 + 1), [0)), if j1 = i;
(]{Z’Ll, (jg + 1) [0)), lf jl = ’ig + 1,
L (]{Z’Ll, (jl +j2—12),[0)) 1fj1 >’i2—|—1,
and
(i1, 71, (1)) - (i2, j2, [0)) 0% = (k(ix + 1), k(j1 + 1), [0)) - (Kiz, kj2, [0)) =
(k(th + 1) 4+ kis — k(51 + 1), kja, (k(j1 + 1) — kia +[0)) N [0)), if k(j1 +1) < kiy;
(k(i1 + 1), kj2, [0) N ]0)), if k(j1 + 1) = kis;
(k(ir + 1), k(1 + 1) + kj2 — ki, [0) N (kiz — k(51 + 1) +[0))), if k(j1 +1) > kiy
(ki1 + 2 — j1), kj2, [0)), if g1+ 1 <o
(k(i1 + 1), kj2, [0)), if 71 + 1 = 19;
(k?(21+1) (]1+1+j2—’i2),[0)), 1f]1—|—1 >i2
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i1 + 12 — J1), kJ2, [0)), if g1+ 1 <iy;
i1+ 1), kja, [0)), if 1 +1 =1
’il+1),]€(j1+1+j2—i2),[0)), lfjl :’ig;

’il+1),]€(j1+1+j2—i2),[0)), 1fj1—|—1 > 19

’é1+i2—j1),kj2,[0)), 1f]1+1 <i2;
in+ 1), kj2,[0)), if j1+1 =1,
Zl+1)>k(]2+1)>[0))> lfjl = l3;
i1+ 1), k(j1 + j2 — 12 +1),[0)), if j1 > iy,

Py

i1+ i — J1,J2, (1 — 2+ [1)) N[0))6, if j1 < i
11, ]2>[ ) [ ))5k> if jl - i2;
Q1,1+ J2 — 42, [1) N (ia — 41 +[0))) 0k, if j1 > io

i1+ g — J1, J2, [0))0r, if j1 < iy

((71, 41, (1)) - (72, J2,[0))) 0k =

(i

(¢

(é

(i
= (21 ]2> [ ))519’ if jl = ’ig;

(01,51 + J2 — 12, [1))0k, if j1 > ia

( (k‘(’ll + 19 — ]1) k7jo, [O)), if j1 + 1 < d9;

— (k(i1 + 2 — j1), kJ2, [0)), if j14+1=15

(K(ir + 1), k(jo + 1),[0), it = iy

| (E(in + 1), k(1 + jo — 2+ 1),[0)), if ji > iy

(k‘(’ll + 19 — ]1) k7jo, [O)), if j1 + 1 < 49;
= (k(zl_l'l) k’]g,[ ))a 1f]1+1212

(k(ir + 1), (o + 1),[0), it = iy

(k:(zl + 1) (]1 + 9o — 19 + 1), [O)), if j1 > 1s.

\

This completes the proof of the statement of the proposition. O
Remark 3. It obvious that if ¢ is the annihilating endomorphism of the monoid Bf then e = vy = dp.

By End,(B7) we denote the semigroup of all non-injective monoid endomorphisms of the monoid
B7 for the family .Z = {[0), [1)}.
Theorems [l and @ describe the algebraic structure of the semigroup End,(B7).

Theorem 1. If % = {[0),[1)}, then for any non-injective monoid endomorphism ¢ of the monoid B
only one of the following conditions holds:

(1) e is the annihilating endomorphism, i.e., ¢ = v9 = dp;

(2) e =y, for some positive integer k;

(3) e = Oy for some positive integer k.

Proof. Fix an arbitrary non-injective monoid endomorphism ¢ of the monoid Bf . If e is the annihilating
endomorphism then statement () holds. Hence, later we assume that the endomorphism e is not
annihilating.

By Lemma [ the restriction elg [0)}B{0} — B/m of the endomorphism ¢ is an injective mapping.
Since by Proposition 3 of [4] the subsemlgroup B{ of B 7 are isomorphic to the bicyclic semigroup,
the injectivity of the restriction e] 5(0) of the endomorphlsm ¢, Proposition 4 of [5], and Lemma 2 of [§]
imply that there exists a positive inwteger k such that

(3) (2,4,[0))e = (ki, k3, [0)),
for all 7,5 € w.
By Lemma [I] the restriction e] B{[l)}Bi}[l)} — Bi] of the endomorphism e is an injective mapping, and

by Lemma 2 we have that (BM})e € BI?}. By Proposition 1.4.21(6) of [9] a homomorphism of inverse



ON THE SEMIGROUP OF MONOID ENDOMORPHISMS OF THE SEMIGROUP B 7

semigroups preserves the natural partial order, and hence the following inequalities
(1,1,[0)) < (0,0,[1)) < (0,0,[0)),
Lemma [2] and Propositions 2 of [5] imply that
(K, k,[0)) = (1,1,10))e < (s,5,[0)) = (0,0, [1))e < (0,0, [0)) = (0,0,[0))e
for some s € {0,1,...,k}. Again by Proposition 1.4.21(6) of [9] and by Lemma [2] we get that
(L,1,[1))e = (s+p,s+p,[0))

for some non-negative integer p. If p = 0 then (1, 1,[1))e = (0,0, [1))e. By Lemma [ the endomorphism
¢ is annihilating. Hence we assume that p is a positive integer.
Let (0,1,[1))e = (z,y,[0)) for some x,y € w. By Proposition 1.4.21(1) of [9] and Lemma 4 of [4] we

have that
(1,0,[1))e = ((0,1,[1)) e = ((0,1,[1))e) ™ = (,4,[0)) ™" = (y,[0)).
Since
(0,1,[1)) - (1,0,[1)) = (0,0,[1)) and (0,1,[1)) - (1,0,[1)) = (0,0, [1)),
the equalities (0,0,[1))e = (s,s,[0)) and (1,1,[1))e = (s +p,s+ p,[0)) imply that
(s,5,[0)) = (0,0, [1))e = ((0,1,[1)) - (1,0, [1)))e = (0, 1, [1))e- (1,0, [1))e =
= (z,9,10)) - (y, %, [0)) = (x, z,(0))

and
(s+p,s+p,00)) = (1,1,[1))e = ((1,0,[1)) - (0,1, [1)))e = (1,0, [1))e- (0,1, [1))e =
= (y,2,[0) - (z,4,10)) = (y,,10)).
This and the definition of the semigroup Bi; imply that
(0,1,[1))e = (s,s+p,[0)) and (1,0,[1))e = (s+p,s,[0)).
Then for any positive integers n; and ns by usual calculations we get that

(0,n1,[1))e = ((0,1,[1))-...- (0,1, [1)2)2 =(0,1,[1))e-...- (0,1, [1))5 = (s,5+p,[0))™ = (s,s+nip, [0))

g g

and

(ng, 0, [1))6 = (Sl, 0, [1)) : v : (1> 0, [1)Z)e = Sla 0, [1))6 : v ’ (1> 0, [1))5 = (S+p> S, [O))m = (S—I—?”Lgp, S, [O))>
and hence _ _

(4) (n1,n2, [1))e = (s + n1p, s + nap, [0)).

The definition of the natural partial order on the semigroup B (see Proposition 4 of [5]) imply that
for any positive integer m we have that

(m+1,m+1,]0)) < (m,m,[1)) < (m,m,[0)).
Then by equalities ([3]), (), and Proposition 1.4.21(6) of [9] we obtain that
(k(m+1),k(m+1),[0)=(m+1,m+1,[0))e < (s+pm,s+pm,[0)) = (m,m,[1))e <
< (m,m, [0))e = (km, km, [0)).
The above inequalities and the definition of the natural partial order on the semigroup Bi] (see Propo-

sition 4 of [5]) imply that km < s+ pm < k(m + 1) for any positive integer m. This implies that

1
k< —+p k:+—
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and since p is a positive integer we get that p = k. Hence by (@) we get that
(5> (nlvn?v[l))e = (S+n1k78+n2k7 [0))7

for all ny,ny € w.
It is obvious that if s € {1,...,k — 1} then ¢ is an injective monoid endomorphism of the semigroup.
Hence we have that either s = 0 or s = k, Simple verifications show that

o, ifs=0;
=\ 0, ifs=k.

This completes the proof of the theorem. O

Theorem 2. Let # = {[0),[1)}. Then for all positive integers ki and ko the following conditions hold:

(1) Ve Voo = Virhas
(2) 71615192 = Vkikss
<3> 5141”}%2 = 5/61/62;
<4> 5k15k2 = 5k1k2'

Proof. () For any i, j € w we have that
(iv.jv [O))Vklvkz = (kliv klju [0))7/62 = (klk?iv klk?ju [0))7
and (iv.jv [1>>fyk1 = (i,j, [O>>fyk1 This implies that Vi1 Vha = Vkika-

@) Since
(4, 7, 10)) 7k, Ok, = (Kd, k17, [0)) 0k, = (K1kai, kikaj, [0)),
and (7,7, (1), = (4, 7,[0))y, for all i, j € w, we get that vk, 0k, = Ve, ks-
@) For any i, j € w we have that
(4, 7,10))0k, iy = (K1t k17, [0)) v, = (Kkai, K1k, [0)),
and

(iaja [1))5/617/62 = (kl(Z + 1)a kl(] + 1)> [O))’ykz = (kle(z + 1)’ klk?(] + 1)> [O))>
and hence 0, Yk, = Okks-
@) For any i, j € w we have that
('i,j, [0))5k15k2 = (klia klja [0))5k2 = (klk2i> k1k2j> [O))>
and
(4,5, [1))0ky Oy = (Rr (i 4 1), k1 (5 +1),[0))0k, = (Kaka(i + 1), kaka(j + 1), [0)),
and hence 0y, 0k, = Ok, 1, - O
By ¢o we denote the annihilating monoid endomorphism of the monoid Bf for the family . =
{[0), [1)}, i.e., (i,4,[p))eo = (0,0,[0)) for all i, j € w and p = 0,1. We put End*(B”) = End,.(B) \

{eo}. Theorem 2 implies that End*(B7) is a subsemigroup of End,(B7).
Theorem [2 implies the following corollary.

Corollary 1. If # = {[0),[1)}, then the elements v, and 6, are unique idempotents of the semigroup
End*(B7).

Next, by £3, we denote the left zero semigroup with two elements and by N, the multiplicative
semigroup of positive integers.

Proposition 2. Let .Z = {[0),[1)}. Then the semigroup End*(BZ7) is isomorphic to the direct product
232 X Nu
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Proof. Put LZ, = {c,d}. We define a map J: End*(B7) — £3, x N, by the formula

~ (C,]{Z), ifQI’}/k;
ON —{ (d, k), if e = 0.

It is obvious that such defined map J is bijective, and by Theorem [2] it is a homomorphism. O

Theorem Bldescribes Green’s relations on the semigroup End*(B7). Later by End* (B )" we denote
the semigroup End*(B7) with adjoined identity element.

Theorem 3. Let # = {[0),[1)}. Then the following statements hold:
(1) Ve, Z#Vk, in End*(BZ) if and only if ky = ko;

) Ve, 0k, does not hold in End*(BZ) for any Yi,, 0k, ;

3) 0y, 01, in End’(BY) if and only if k1 = ky;

4) Y, LV, i End*(BY) if and only if ky = ky;
) Ve, L0k, in End*(BY) if and only if ki = ky;
) Ok, Lk, in End*(B7) if and only if ky = ky;

) A is the identity relation on End*(B7);
) e1Pey in End*(B7) if and only if there exists a positive integer k such that ey, es € {Vi, Ox};
)

(2
(
(
(
(
E
(9) 2 = ¢ in End’(B7).

3
6
7
8
9

Proof. () (=) Suppose that vy, Zvi, in End*(B.). Then there exist ey, ¢, € End*(B7)! such that
Vi, = Vko€1 and g, = Vi, ¢2. The equality i, = Yr,¢1 and Theorem [2] imply that there exists a positive
integer p such that either ¢; = v, or ¢; = J,. In both above cases by Theorem [2 we have that

Vit = Vha®1l = Vo Vp = VhaOp = Vieaps

and hence ks|k;. The proof of the statement that g, = 7k, ¢o implies that k;|ky is similar. Therefore we
get that k’l = k‘g.
Implication (<) is trivial.

Statement (2)) follows from Theorem 2/[2)).
The proof of statement (3]) is similar to ().

@) (=) Suppose that v, L, in End*(B7). Then there exist ¢,¢; € End*(B.)" such that
Vi, = €17k, and yg, = e27Y,. The equality vy, = e17yk, and Theorem [2] imply that there exists a positive
integer p such that ¢; = 7,. Then we have that

Y1 = €1Vka = VpVka = Vpkas

and hence ky|k;. The proof of the statement that g, = es7yg, implies that kq|ks is similar. Therefore we
get that k1 = ks.
Implication (<) is trivial.

@) (=) Suppose that v, L6, in End*(B7). Then there exist ej, ¢, € End*(B7)" such that
Vi, = €10k, and 0k, = €27k, The equality vx, = €10y, and Theorem [2] imply that there exists a positive
integer p such that ¢; = ~,. Then we have that

Vey = 215/@ = 7;05/42 = Vpkas
and hence ko|k;. The equality g, = 2y, and Theorem 2] imply that there exists a positive integer ¢
such that ¢; = d,. Then we have that

Ok, = €2k, = 5(1’7’61 = Vqki>

and hence kq|ks. Thus we get that ky = ko.
Implication (<) is trivial.



10 OLEG GUTIK AND INNA POZDNIAKOVA

@ (=) Suppose that &, .20, in End*(B7). Then there exist e;, ¢, € End*(B7)" such that
Ok, = €10k, and 0y, = e2dy,. The equality o, = €10k, and Theorem [2] imply that there exists a positive
integer p such that ¢; = d,. Then we have that

5k1 = 215k2 = 6p5k2 = 5pk2,

and hence ky|k;. The proof of the statement that o, = €30, implies that ki |k is similar. Hence we get
that ]{31 = ]{52.
Implication (<) is trivial.

([@ By statements (@), @), and @), Z is the identity relation on the semigroup End*(B?). Then so
is A, because H C X.

Statement (8) follows from statements (I)—(@l).

(@) Suppose to the contrary that 2 # ¢ in End*(B7). Since 2 C ¢, statement (8) implies that
there exist eq, ¢y € End*(Bi;)1 such that e;_Ze; and ey, es ¢ {7k, 0} for any positive integer k. Then
there exist distinct positive integers k; and ko such that e; € {Vx,,d, } and es € {V,, o, }. Without
loss of generality we may assume that k; < ky. Since ¢, _£ ¢, there exist ¢}, ¢}, ¢/, ¢4 € End*(B7)! such
that e; = ejeqe] and ey = eheqely. Since e € {7k, 0k, } and ey € {Vk,, Ik, }, the equality e; = ¢feqef,
Theorems [Tl and 2limply that ko|k;. This contradicts the inequality k; < k2. The obtained contradiction
implies the requested statement O

Remark 4. Since e is zero of the semigroup End, (B ), the classes of equivalence of Green’s relations
of non-zero elements of End,(B7) in the semigroup End,(B?) coincide with their corresponding
classes of equivalence in End*(B;), and moreover we have that Ly, = Ry, = H,y = Doy = J, = {20}
in the semigroup End,(B7).
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