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Harish-Chandra Theorem for Two-parameter

Quantum Groups

Naihong Hu∗ and Hengyi Wang

Abstract. The centre of two-parameter quantum groups Ur,s(g) is deter-
mined through the Harish-Chandra homomorphism. Based on the Rosso form
and the representation theory of weight modules, we prove that when rank g

is even, the Harish-Chandra homomorphism is an isomorphism, and in par-

ticular, the centre of the quantum group Ŭr,s(g) of the weight lattice type
is a polynomial algebra K[z̟1 , · · · , z̟n ], where canonical central elements
zλ (λ ∈ Λ+) are turned out to be uniformly expressed. For rank g to be odd,
we figure out a new invertible extra central generator z∗, which doesn’t survive
in Uq(g), and we get a larger centre containing K[z̟1 , · · · , z̟n ]⊗KK[z∗, z

−1
∗

].

1. Introduction

In mathematics and theoretical physics, by quantum groups mean a class of
noncommutative and noncocommutative Hopf algebras. It was Drinfel’d [18] and
Jimbo [34] who independently defined Uq(g) as a q-deformation of the universal
enveloping algebra U(g) for any semisimple Lie algebra g. Such q-deformed objects
provide the universal solutions for the quantum Yang-Baxter equation and numer-
ous quantum invariants for knots or links even 3-manifolds (eg. [41, 47, 46] etc.
and references therein).

A number of works on the centre of quantum groups have been developed over
the last three decades, including explicit generators and structures. Tanisaki proved
that the quantum Harish-Chandra homomorphism is an isomorphism [44, 45].
He used the quantum Killing form of Uq(g) (which is also called the Rosso form
[43]) to show the image of Harish-Chandra homomorphism, the Casimir element
and a detailed proof of the existence of universal R-matrix [45]. Also, Joseph
and Letzter proved the Harish-Chandra isomorphism theorem [35], they pointed
out that the centre Z(Uq) is not necessarily a polynomial algebra, Grk(O

q
f ) and

Z(Uq) are not always isomorphic. A couple of years ago, Li-Xia-Zhang proved that
Z(Uq) is isomorphic to a polynomial algebra in types A1, Bn, Cn, D2n, E7, E8,
F4, G2, while in the remaining cases it is isomorphic to a quotient of polynomial
algebra [36]. A general description of the centres of quantum groups Ŭq(g) of
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weight lattice types was earlier considered by Etingof in [20], where he concluded

that Z(Ŭq) ∼= K[c̟1 , · · · , c̟n
], with c̟i

is the quantum partial trace of Γ = R21R
on L(̟i) (coming from Reshetikhin et al [23, 41]). The theorem was in fact
generalized to the affine cases [20]. Dai supplemented a detailed proof for the

theorem of Z(Ŭq) and an explicit formula of generator cλ [10] via an operator Γ
from the work of R.B. Zhang et al [22, 47]. Recently, Luo-Wang-Ye settled the
Harish-Chandra theorem for some quantum superalgebras [39].

Figure 1. the central structure of the one-parameter quantum group

Since Benkart-Witherspoon redefined a class of two-parameter quantum groups
of type A motivated by up-down algebra [3], and Bergeron-Gao-Hu studied the
structures of two-parameter quantum groups of type B,C,D [5], the representation
theory have progressed simultaneously [6, 3]. A series of work on other types have
been done in [1, 29, 31, 40, 9], etc.

In this paper, we focus on the description of the centres of two-parameter
quantum groups Ur,s(g) in the case when r, s are indeterminates. We give a uniform
way to prove that the Harish-Chandra homomorphism ξ of Ur,s(g) is injective when
g is simple with even rank. This in particular recovers the work of Benkart-Kang-
Lee for type A2n [2], Hu-Shi for type B2n [30] and Gan for type G2 [21]. To do
this, there are 3 steps to do: (i) ξ : Z(U) → U0 is injective. (ii) The image Im is
in the subalgebra ⊆ (U0

♭ )
W . (iii) ξ : Z(U) → (U0

♭ )
W is surjective. With the help of

the weight module theory established by [6, 27, 40], we find that step (i) and (ii)
only rely on the non-degeneracy of matrices R−S and R+S derived from the the
structure constant matrix. Then we construct a certain element zλ (λ ∈ Λ+∩Q) to

Figure 2. the Harish-Chandra theorem of Ur,s(g) with even rank

realize the quantum trace trr,s on the weight module L(λ) by the Rosso form, that
is, 〈zλ,−〉U = trL(λ)(−◦Θ). These zλ are central elements which are used to prove
(iii). Although we successfully establish the Harish-Chandra isomorphism (see the
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vertical map in the Fig. 2), owing to the fact that the Rosso form realization of
trr,s and the quantum character all require λ ∈ Λ+ ∩ Q (this is distinct from the
one-parameter case: λ ∈ Λ+ ∩ 1

2Q ), they are not always well-defined on the whole
Grk(O

r,s
f ) := Gr(Or,sf )⊗ZK. To overcome this difficulty, we need to extend Ur,s(g)

to its weight lattice type Ŭr,s(g) such that all the maps above are well-defined

(see Fig. 3). It turns out that the Harish-Chandra homomorphism ξ̆ is also an
isomorphism. Furthermore, the bottom map Chr,s is shown to be an isomorphism
of algebras. Finally, the deformation theory on weight modules [27] tells us that our
Or,s
f is equivalent to the category of finite-dimensional weight modules Oq

f of Uq(g)

as braided tensor categories. Hence the centre Z(Ŭr,s) ∼= (Ŭ0
♭ )
W ∼= Grk(O

r,s
f ) ∼=

Grk(O
q
f ), which is also a polynomial algebra as in the one-parameter setting, that

is, Z(Ŭr,s) ∼= K[z̟1 , · · · , z̟n
].

Figure 3. the central structure of Ŭr,s(g)
with even rank

As for the cases of odd rank, by the fact that the matrix R+S is of corank 1, it
is not sufficient to prove the injectivity of the Harish-Chandra homomorphism and
characterize Im(ξ) in the same way. However, this degeneracy provides a unique
invertible central generator z∗ (it will degenerate to 1 in the one-parameter case,
i.e., r = q, s = q−1, ω′

i = ω−1
i ), which is a fixed point of ξ but z∗ /∈ (U0

♭ )
W . Thus

we have Im(ξ) ⊇ (U0
♭ )
W ⊗K[z∗, z

−1
∗ ]. It recovers the case of type A2n+1 [2].

The paper is structured as follows. Section 2 recalls two-parameter quantum
groups with their Rosso forms, the Harish-Chandra homomorphisms and results in
the related literature. Then we introduce two matrices relevant to the structure
constant matrix. Section 3 proves that the Harish-Chandra homomorphism ξ is
injective when n = rank(g) is even. Section 4 characterize the image of ξ and proves
that Im(ξ) falls in the subalgebra (U0

♭ )
W when rank n is even. Section 5 proves that

the Harish-Chandra image ξ(Z(U)) ⊇ (U0
♭ )
W . Then the Harish-Chandra theorem

ξ : Z(U) ∼= (U0
♭ )
W holds when rank n is even. While, in the odd rank case, we

construct a new extra generator z∗ of the centre, which leads to the Harish-Chandra
image ξ(Z(U)) ⊇ (U0

♭ )
W ⊗K[z±1

∗ ]. We also gives an alternative description to the
central elements by taking partial quantum trace. The last section introduces the
extended two-parameter quantum group Ŭr,s(g) of weight lattice type and proves

Harish-Chandra theorem ξ̆ : Z(Ŭr,s(g)) ∼= (Ŭ0
♭ )
W when rank n is even. Particularly,

in this case the centre Z(Ŭ) is a polynomial algebra. While for the cases of odd
rank n, we get a larger centre containing K[z̟1 , · · · , z̟n

]⊗K K[z∗, z
−1
∗ ].
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2. Preliminaries

2.1. The two-parameter quantum group Ur,s(g) and its Hopf algebra

structure. A root system Φ of one complex simple Lie algebra g is a finite subset
of a Euclidean space E. We fix a simple root set of Φ and denote it by Π. Let
W be the Weyl group of the root system Φ and σi ∈ W be the simple reflection
corresponding to the simple root αi. For data of Φ and Π, see Carter’s book [7,

p.543]. Let C = (cij)n×n be the Cartan matrix, where cij =
2(αi,αj)
(αi,αi)

.

Denote Q =
⊕n

i=1 Zαi as the root lattice of g. Put α∨
i = 2αi

(αi,αi)
, let Λ =

⊕n
i=1 Z̟i be the weight lattice and Λ+ =

⊕n
i=1 Z+̟i be the set of dominant

integral weights, where ̟i =
∑n

k=1 c
kiαk is the i-th fundamental weight, and

(cij)n×n = C−1 is the inverse of the Cartan matrix.
Let r, s be two indeterminates and Q(r, s) be the rational functions field. Let

K ⊇ Q(r, s) be a field contains r
1

m2 , s
1

m2 , where m = min{k ∈ Z+ | kΛ ⊆ Q} =

det(C). Let ri = rdi = r
(αi,αi)

ℓ and si = sdi = s
(αi,αi)

ℓ for i = 1, . . . , n, where ℓ = 2
for type An, Cn, Dn, E6, E7, E8, G2, and ℓ = 1 for type Bn, F4.

Let A = (aij)n×n be the structure constant matrix of Ur,s(g), which is given
by the Euler form of g as follows.

Definition 1. [26] The Euler form of g is the bilinear form 〈−,−〉 defined on
the root lattice Q satisfying

〈i, j〉 := 〈αi, αj〉 =











dicij i < j,

di i = j,

0 i > j.

For type D, it is necessary to revise 〈n− 1, n〉 = −1, 〈n, n− 1〉 = 1 ([5, 27]).
It can be linearly extended to the weight lattice Λ such that

〈̟i, ̟j〉 :=

n
∑

k,l=1

ckiclj〈k, l〉.

Write aij = r〈j,i〉s−〈i,j〉, and A = (aij)n×n is the structure constant matrix
of Ur,s(g). Denote Rij = 〈j, i〉, Sij = −〈i, j〉. Then we have aij = rRijsSij and
R = −ST .

Definition 2. [5, 26] Let U = Ur,s(g) be the unital associative algebra over

K, generated by elements ei, fi, ω
±1
i , ω′

i
±1

(i = 1, · · · , n) satisfying the following
relations (X1)—(X4) :

(X1) ω±1
i ω′

j
±1

= ω′
j
±1
ω±1
i , ωiω

−1
i = 1 = ω′

jω
′
j
−1
,

(X2) ωiejω
−1
i = aijej, ωifjω

−1
i = aij

−1fj ,

ω′
iejω

′−1
i = aji

−1ej , ω′
ifjω

′−1
i = ajifj ,

(X3) [ei, fj ] = δij
ωi−ω

′

i

ri−si
,

(X4) (adl ei)
1−cij (ej) = 0, (adr fi)

1−cij (fj) = 0, (i 6= j)

where the left (right)-adjoint action are as follows: for any x, y ∈ Ur,s(g),

adl x(y) =
∑

(x)

x(1)yS(x(2)), adr x(y) =
∑

(x)

S(x(1))yx(2).
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The comultiplication ∆(x) =
∑

(x) x(1) ⊗ x(2) is given by Proposition 3 below.

Proposition 3. [5, 26] The algebra Ur,s(g) has a Hopf algebra structure
(Ur,s(g), ∆, ε, M, ι, S) with the comultiplication ∆, the counit ǫ and the an-
tipode S defined below:

∆(ω±1
i ) = ω±1

i ⊗ ω±1
i , ∆(ω′

i
±1

) = ω′
i
±1

⊗ ω′
i
±1
,

∆(ei) = ei ⊗ 1 + ωi ⊗ ei , ∆(fi) = 1⊗ fi + fi ⊗ ω′
i ,

ε(ω±1
i ) = ε(ω′

i
±1

) = 1, ε(ei) = ε(fi) = 0,

S(ω±1
i ) = ω∓1

i , S(ω′
i
±1

) = ω′
i
∓1
,

S(ei) = −ω−1
i ei , S(fi) = −fiω

′
i
−1
.

The two-parameter quantum group U = Ur,s(g) has the triangular decomposi-

tion U ∼= U−⊗U0⊗U+, where U0 is the subalgebra generated by {ω±
i , ω

′
i
±
, 1 6 i 6

n}, U+ is generated by {ei, 1 6 i 6 n} and U− is generated by {fi, 1 6 i 6 n}. Let
B be the subalgebra of U generated by {ej, ω

±
j , 1 6 j 6 n}, and B′ the subalgebra

of U generated by {fj, ω
′
j
±
, 1 6 j 6 n}.

Proposition 4. [5, 26] There exists a unique skew-dual pairing 〈−,−〉 : B′ ×
B → K of the Hopf subalgebras B and B′ satisfying

〈fi, ej〉 = δij
1

si − ri
,

〈ω′
i, ωj〉 = aji,

〈ω′
i
±1
, ω−1

j 〉 = 〈ω′
i
±1
, ωj〉

−1 = 〈ω′
i, ωj〉

∓1,

for 1 6 i, j 6 n, and all other pairs of generators are 0. Moreover, 〈S(a), S(b)〉 =
〈a, b〉 for a ∈ B′, b ∈ B .

For η =
∑n

i=1 ηiαi ∈ Q, write

ωη = ωη11 · · ·ωηnn , ω′
η = ω′

1
η1 · · ·ω′

n
ηn .

Then we have

ωηeiω
−1
η = 〈ω′

i, ωη〉ei, ωηfiω
−1
η = 〈ω′

i, ωη〉
−1fi,

ω′
ηeiω

′
η
−1

= 〈ω′
η, ωi〉

−1ei, ω′
ηfiω

′
η
−1

= 〈ω′
η, ωi〉fi.

Introduce a Q-graded structure on Ur,s(g) :

deg ei = αi, deg fi = −αi, deg ωi = deg ω′
i = 0.

Namely, Ur,s(g) is a Q-graded algebra, and its subalgebras U± are Q±-graded.

U+ =
⊕

µ∈Q+

U+
µ , U− =

⊕

µ∈Q+

U−
−µ,

where U+
µ = U+ ∩ Uµ, U

−
−µ = U− ∩ U−µ and

U±
µ = {x ∈ U± | ωηxω

−1
η = 〈ω′

µ, ωη〉x, ω
′
ηxω

′
η
−1

= 〈ω′
η, ωµ〉

−1x}.

And B (resp. B′) is also Q+(resp. Q−)-graded algebras.
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2.2. The matrices R and S.

Proposition 5. The matrix R− S is a symmetric Cartan matrix, i.e.

R− S = DC =
2

ℓ

(

(αi, αj)
)

n×n

where the matrix D = diag(d1, · · · , dn), di = (αi, αi)/ℓ. For type Bn and F4 we
have ℓ = 1, while ℓ = 2 for type An, Cn, Dn, E6, E7, E8 and G2.

Proof. By definition, we haveR−S = R+RT = (〈j, i〉+ 〈i, j〉)n×n = DC. �

The symmetric matrix R−S can be considered as a metric matrix with respect
to the basis α1, · · · , αn of E, and every element of Weyl group is orthogonal, we
then have

Corollary 6. Let Σ be the matrix of σ ∈ W with respect to the basis {αi},
we have (R− S)Σ = ΣT (R− S).

Now we will discuss the non-degeneracy of another important matrix R + S
which is crucial in the study of the Harish-Chandra theorem of Ur,s(g).

Proposition 7. When n is even, the matrix R + S is invertible; when n is
odd, we have rank(R+ S) = n− 1.

Proof. We check the conclusion case by case. For type An, we have

det(R+ S) =

{

1, 2 | n,

0, 2 ∤ n,

where

A =























rs−1 s 1 · · · 1 1 1
r−1 rs−1 s · · · 1 1 1
1 r−1 rs−1 · · · 1 1 1
...

...
...

. . .
...

...
...

1 1 1 · · · rs−1 s 1
1 1 1 · · · r−1 rs−1 s
1 1 1 · · · 1 r−1 rs−1























, R+ S =























1

−1
. . .

. . .
. . .

. . . 1
−1 1

−1























.

For type Bn, we have

det(R+ S) =

{

2n, 2 | n,

0, 2 ∤ n,

where

A =























r2s−2 s2 · · · 1 1 1

r−2 r2s−2 . . . 1 1 1
...

. . .
. . .

. . .
...

...

1 1
. . . r2s−2 s2 1

1 1 · · · r−2 r2s−2 s2

1 1 · · · 1 r−2 rs−1























, R+ S =























2

−2
. . .

. . .
. . .

. . . 2
−2 2

−2























.

For type Cn, we have

det(R+ S) =

{

4, 2 | n,

0, 2 ∤ n,
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where

A =























rs−1 s · · · 1 1 1

r−1 rs−1 . . . 1 1 1
...

. . .
. . .

. . .
...

...

1 1
. . . rs−1 s 1

1 1 · · · r−1 rs−1 s2

1 1 · · · 1 r−2 r2s−2























, R+ S =























1

−1
. . .

. . .
. . .

. . . 1
−1 2

−2























.

For type Dn, we have

det(R+ S) =

{

4, 2 | n,

0, 2 ∤ n,

where

A =























rs−1 s · · · 1 1 1

r−1 rs−1 . . . 1 1 1
...

. . .
. . .

. . .
...

...

1 1
. . . rs−1 s s

1 1 · · · r−1 rs−1 rs
1 1 · · · r−1 r−1s−1 rs−1























, R+ S =























1

−1
. . .

. . .
. . .

. . . 1 1
−1 2
−1 −2























.

For the family of exceptional types E6, E7, E8, it suffices to list the data of type
E8 (from which we can read off the data of type E6, E7).

A =

























rs−1 1 s 1 1 1 1 1
1 rs−1 1 s 1 1 1 1
r−1 1 rs−1 s 1 1 1 1
1 r−1 r−1 rs−1 s 1 1 1
1 1 1 r−1 rs−1 s 1 1
1 1 1 1 r−1 rs−1 s 1
1 1 1 1 1 r−1 rs−1 s
1 1 1 1 1 1 r−1 rs−1

























,

R+ S =

























1
1

−1 1
−1 −1 1

−1 1
−1 1

−1 1
−1

























.

Hence, for types E6 and E8, we have det(R+ S) = 1; for type E7, det(R+ S) = 0.
For type F4, we have det(R + S) = 4, where

A =









r−2s−2 s2 1 1
r−2 r−2s−2 s2 1
1 r−2 rs−1 s
1 1 r−1 rs−1









, R+ S =









2
−2 2

−2 1
−1









.
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For type G2, we have det(R+ S) = 9, where

A =

(

rs−1 s3

r−3 r3s−3

)

, R+ S =

(

3
−3

)

.

When n is odd, we have corank (R + S) = 1. We list the unique non-zero solution
(up to scalar) for each type as follow.

A2k+1 : sl2k+2 v∗ = (1, 0, 1, 0, · · · , 1, 0, 1)T

B2k+1 : so4k+3 v∗ = (1, 0, 1, 0, · · · , 1, 0, 1)T

C2k+1 : sp4k+2 v∗ = (2, 0, 2, 0, · · · , 2, 0, 1)T

D2k+1 : so4k+2 v∗ = (2, 0, 2, 0, · · · , 2, 1,−1)T

E7 v∗ = (0, 1, 0, 0, 1, 0, 1)T

This completes the proof. �

2.3. Weight modules and the category Or,s
f . Recall the structure of weight

modules studied by [6, 40].
Let ̺ : U0 → K be an algebraic homomorphism and V ̺ be a 1-dimensional

B-module. Denote M(̺) = U ⊗B V
̺ as the Verma module with the highest weight

̺ and L(̺) as its unique irreducible quotient.
Let λ ∈ Λ and rewrite it as λ =

∑n
i=1 λiαi, λi ∈ Q. Then we can define an

algebraic homomorphism ̺λ : U0 → K, satisfying

̺λ(ωj) :=
n
∏

i=1

〈ω′
i, ωj〉

λi =
n
∏

i=1

aλi

ji .

Clearly, it satisfies the property ̺λ+µ = ̺λ̺µ.
When λ ∈ Q, one would get following relations from the Hopf paring.

̺λ(ωj) = 〈ω′
λ , ωj〉, ̺λ(ω′

j) = 〈ω′
j , ω−λ〉.

For convenience, we denote M(λ) :=M(̺λ) and L(λ) := L(̺λ) when λ ∈ Λ.

Lemma 8. [2, 6, 40] For the two-parameter quantum group Ur,s(g), we have
(1) Let vλ be a highest weight vector of M(λ) for λ ∈ Λ+. Then

L(λ) =M(λ)
/

(

n
∑

i=1

Uf
(λ,α∨

i )+1
i · vλ).

is a finte dimensional irreducible Ur,s(g)-module. Also, it has the decomposition of
weight space L(λ) =

⊕

η6λ L(λ)η, where

L(λ)η = {x ∈ L(λ) | ωi.x = ̺η(ωi)x, ω
′
i.x = ̺η(ω′

i)x, 1 6 i 6 n}.

(2) The elements ei, fi (1 6 i 6 n) act locally nilpotently on L(λ).

Theorem 9. [2, 6, 40] Suppose rs−1 is not a root of unity, when λ ∈ Λ+, we
have

dim L(λ)η = dim L(λ)σ(η), ∀ η ∈ Λ, σ ∈ W.

Definition 10. [27] The category Or,s
f consists of finite-dimensional Ur,s(g)-

modules V (of type 1) satisfying the following conditions:
(1) V has a weight space decomposition V =

⊕

λ∈Λ Vλ,

Vλ = {v ∈ V | ωηv = r〈λ,η〉s−〈η,λ〉v, ω′
ηv = r−〈η,λ〉s〈λ,η〉v, ∀ η ∈ Q },
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where dim(Vλ) is finite for all λ ∈ Λ;
(2) there exist a finite number of weights λ1, · · · , λt ∈ Λ, such that

Wt(V ) ⊆
t
⋃

i=1

D(λi),

where D(λ) := {µ ∈ Λ | µ < λ}. The morphisms are Ur,s(g)-module homomor-
phisms.

2.4. Rosso form and characters.

Definition 11. [5] The bilinear form 〈− , −〉U : U × U → K defined by
〈

fαω
′
µωveβ, fθω

′
σωδeγ

〉

U
= 〈ω′

σ, ωv〉
〈

ω′
µ, ωδ

〉

〈fθ, eβ〉
〈

S2 (fα) , eγ
〉

is called the Rosso form of the two-parameter quantum group U = Ur,s(g).

Theorem 12. [5, 40] The Rosso form 〈−,−〉U on U ×U is adl-invariant, i.e.,

〈adl(a)b, c〉U = 〈b, adl(S(a))c〉U , ∀ a, b, c ∈ U.

Theorem 13. [6, 40] For any β ∈ Q+, the restriction of the skew-pairing
〈−,−〉 to B′

−β × Bβ is nondegenerate.

Definition 14. Define a group homomorphism χη,φ : Q×Q→ K× by

χη,φ(η
′, φ′) = 〈ω′

η, ωφ′〉〈ω′
η′ , ωφ〉,

where (η, φ), (η′, φ′) ∈ Q×Q, K× = K \ {0}.

Lemma 15. If χη,φ = χη′,φ′ , then (η, φ) = (η′, φ′).

Proof. Let η =
∑n

i=1 ηiαi, η
′ =

∑n
i=1 η

′
iαi, and φ, φ′ ∈ Q, for j = 1, · · · , n

we have

χη,φ(0, αj) = 〈ω′
η, ωj〉 =

n
∏

i=1

〈ω′
i, ωj〉

ηi , χη′,φ′(0, αj) =

n
∏

i=1

〈ω′
i, ωj〉

η′i .

Since χη,φ = χη′,φ′ , we have

1 =
χη,φ(0, αj)

χη′,φ′(0, αj)
=

n
∏

i=1

〈ω′
i, ωj〉

ηi−η
′

i =

n
∏

i=1

a
ηi−η

′

i

ji

=

n
∏

i=1

rRji(ηi−η
′

i)sSji(ηi−η
′

i),

which in turn gives (R − S)(η − η′) = 0. Finally, Proposition 5 yields η = η′. A
similar argument leads to the conclusion φ = φ′. �

Theorem 16. The Rosso form 〈−,−〉U of Ur,s(g) is nondegenerate.

Proof. Since the skew-pairing 〈−,−〉 has orthogonality for the grading, it
suffices to check the case when u ∈ U−

−νU
0U+

µ , if 〈u, v〉U = 0 holds for all v ∈

U−
−µU

0U+
ν , then u = 0.

Denote dµ = dim U+
µ . Let {uµ1 , · · · , u

µ
dµ
} be a basis of U+

µ and {vµ1 , · · · , v
µ
dµ
}

be its dual basis in U−
−µ with respect to the Rosso form by Theorem 13, that is,



10 N.H. HU AND H.Y. WANG

〈vµi , u
µ
j 〉U = δij . Hence U−

−νU
0U+

µ = span
K
{vνi ω

′
ηωφu

µ
j | 1 6 i 6 dν , 1 6 j 6 dµ}.

Notice that

〈vνi ω
′
ηωφu

µ
j , v

µ
kω

′
η′ωφ′uνl 〉U = 〈ω′

η, ωφ′〉〈ω′
η′ , ωφ〉〈v

µ
k , u

µ
j 〉〈S

2(vνi ), u
ν
l 〉

= δkjδil(rs
−1)

2
ℓ
(ρ,ν)〈ω′

η, ωφ′〉〈ω′
η′ , ωφ〉,

where ρ is the half sum of positive roots. Let u =
∑

i,j,η,φ ki,j,η,φv
ν
i ω

′
ηωφu

µ
j , v =

vµkω
′
η′ωφ′uνl , where 1 6 k 6 dµ, 1 6 l 6 dν , η

′, φ′ ∈ Q. Suppose 〈u, v〉U = 0, we
have

0 =
∑

η,φ

kk,l,η,φ(rs
−1)

2
ℓ
(ρ,ν)〈ω′

η, ωφ′〉〈ω′
η′ , ωφ〉

=
∑

η,φ

kk,l,η,φ(rs
−1)

2
ℓ
(ρ,ν)χη,φ(η

′, φ′),

By Dedekind theorem, we have kl,k,η,φ = 0. so u = 0. �

2.5. Harish-Chandra homomorphism. Let Z(U) be the centre of Ur,s(g).
It follows that Z(U) ⊆ U0. Now we define an algebra homomorphism γ−ρ : U0 →
U0 as

γ−ρ(ω′
ηωφ) = ̺−ρ(ω′

ηωφ)ω
′
ηωφ.

Particularly, we have

γ−ρ(ω′
iω

−1
i ) = (ris

−1
i )(ρ,α

∨

i )ω′
iω

−1
i .

Definition 17. Denote ξ : Z(U) → U0 as the restricted map γ−ρ ◦ π|Z(U),

γ−ρπ : U0 → U0 → U0,

where π : U0 → U0 is the canonical projection. We call ξ the Harish-Chandra
homomorphism of U .

Define a subalgebra U0
♭ =

⊕

η∈Q

Kω′
ηω−η and let the Weyl group W act on it

σ(ω′
ηω−η) = ω′

σ(η)ω−σ(η), ∀ σ ∈W, η ∈ Q.

Theorem 18. [2, 5, 21] For types An, Bn and G2, when rank n is even, the
Harish-Chandra homomorphism ξ : Z(U) → (U0

♭ )
W is an algebra isomorphism.

3. Harish-Chandra homomorphism ξ is injective with even rank

Lemma 19. For all λ ∈ Λ+, we have
(i) If ̺λ(ω′

ηωφ) = 1, then η = φ.

(ii) When rank n is even, then ̺λ(ω′
ηωφ) = 1 if and only if (η, φ) = (0, 0).

Proof. (i) Fix η, φ ∈ Q, λ ∈ Λ+, and write them as η =
n
∑

i=1

ηiαi, φ =

n
∑

i=1

φiαi, λ =
n
∑

i=1

λiαi, ηi, φi ∈ Z, λi ∈ Q, and denote ηα, φα, λα as their column
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vectors with respect to the basis {αi}, respectively. Then

̺λ(ωφ) =
n
∏

j=1

(̺λ(ωj))
φi =

n
∏

j,i=1

a
λiφj

ji(1)

=

n
∏

j,i=1

rRjiλiφjsSjiλiφj = rφ
T
αRλα · sφ

T
αSλα .

Similarly, we have ̺λ(ω′
η) = sη

T
αRλαrη

T
αSλα , then

1 = ̺λ(ω′
ηωφ) = rλ

T
α (RT φα+ST ηα) · sλ

T
α (STφα+RT ηα).

It follows that

RTφα + ST ηα = 0,(2)

STφα +RT ηα = 0.(3)

(R− S)T (φα − ηα) = 0.(4)

Then by Proposition 5 we know that R− S is invertible, hence φ = η.
(ii) Let φ = η, then (2) yields

(R + S)T ηα = 0.

When n is even, η = 0 = φ holds since R+ S is invertible by Proposition 7. �

Theorem 20. The Harish-Chandra homomorphism ξ : Z(U) → U0 is injective
when n = rank(g) is even.

Proof. Consider the triangular decomposition of U = U−U0U+ and set K =
⊕

v>0 U
−
−vU

0U+
v . which is a two-sided ideal of U0 = U0 ⊕K and K = ker(π), the

following argument shows that when z ∈ Z(U) and ξ(z) = 0, we will get z = 0.
Let z =

∑

v∈Q+ zv, where zv ∈ U−
−vU

0U+
v . Fix a minimal root v ∈ Q+ that

zv 6= 0, and choose bases {xl} and {yk} for spaces U+
+v and U−

−v respectively. Now
we write zv =

∑

k,l yktk,lxl, tk,l ∈ U0. Then

0 = eiz − zei

=
∑

γ 6=ν

(eizγ − zγei) + (eizν − zνei)

=
∑

γ 6=ν

(eizγ − zγei) +
∑

k,l

(eiyk − ykei) tk,lxl +
∑

k,l

yk (eitk,lxl − tk,lxlei) .

Since eiyk − ykei ∈ U−
−(v−αi)

U0, only the second term in the equation falls in

U−
−(v−αi)

U0U+
v , so it is forced to be 0, that is

∑

k,l

(eiyk − ykei) tk,lxl = 0.

Based on the triangular decomposition of U and the fact that {xl} is a set of basis
of U+

v , the equation
∑

k eiyktk,l =
∑

k ykeitk,l holds for each pair (l, i). Fix a l
with a λ ∈ Λ+ and take an element m = (

∑

k yktk,l) · vλ /∈ L(λ)λ in the irreducible
module L(λ), for each i we have

eim =
∑

k

eiyktk,l · vλ =
∑

k

ykeitk,l · vλ = 0.
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This shows that m generates a proper submodule of L(λ) which contradicts the
irreducibility of L(λ), hence

0 = m =
∑

k

yktk,l · vλ =
∑

k

yk.̺
λ(tk,l)vλ.

Let v = k1α1 + · · · + knαn ∈ Q+ \ 0. Taking N = max{ki | 1 6 i 6 n}
and λ = Nρ, we have (λ, α∨

i ) ≥ ki. By the fact that the map
∑

k yk̺
λ(tk,l) 7→

(
∑

k yk̺
λ(tk,l)) ·vλ is injective in [6, Theorem 2.12] and [40, Corollary 38], we have

∑

k yk̺
λ(tk,l) = 0. Then ̺λ(tk,l) = 0 for each k since {yk} is a basis of U−

−v.

Now let tk,l =
∑

η,φ kη,φω
′
ηωφ, kη,φ ∈ K. Since ̺λ(tk,l) = 0 and there are

only finitely many non-zero terms in tk,l =
∑

η,φ kη,φω
′
ηωφ. Count the number of

non-zero terms by p. Taking m = 1, 2, · · · , p, we obtain

0 = ̺mλ(tk,l) =
∑

η,φ

̺λ(ω′
ηωφ)

m
kη,φ,

whose coefficients ̺λ(ω′
ηωφ) form a Vandermonde matrix. It follows from Lemma

19 that when n is even, for each λ ∈ Λ+ we have ̺λ(ω′
ηωφ) = ̺λ(ω′

ζωψ), ⇐⇒

(η, φ) = (ζ, ψ). Hence all kη,φ = 0, that is, tk,l = 0. �

Remark 21. The assumption on rank n to be even is a sufficient condition for
ξ to be injective. Note that in the case when rank n is odd, the proof of Propostion
5.2 (see p. 458, -line 3 [2]) for type An really contains a gap, as was pointed out
in Remark 3.5 [30].

4. The image of the Harish-Chandra homomorphism ξ with even rank

Define an algebra homomorphisms ̺λ,µ from U0 to K as ̺λ,µ = ̺0,λ̺µ,0, λ, µ
∈ Λ, where

̺0,µ : ω′
ηωφ 7→ (rs−1)(η+φ,µ),

̺λ,0 : ω′
ηωφ 7→ ̺λ(ω′

ηωφ).

Lemma 22. Suppose n is even, then
(1) let u = ω′

ηωφ, η, φ ∈ Q. If ̺λ,µ(u) = 1, ∀ λ, µ ∈ Λ, then u = 1;

(2) if u ∈ U0 satisfying ̺λ,µ(u) = 0 for all λ, µ ∈ Λ, then u = 0.

Proof. (1) Again, denote ηα, φα and λα as coordinates of η, φ ∈ Q and λ
with respect to the basis {αi}, respectively. By 1 = ̺λ,µ(u) = ̺λ(u)̺0,µ(u) and the
formula (1) in the proof of Lemma 19, we have

̺λ(ω′
ηωφ) = rλ

T
α (RT φα+ST ηα)sλ

T
α (STφα+RT ηα),

̺0,µ(ω′
ηωφ) = (rs−1)(η+φ,µ).

It follows that
{

(η + φ, µ) + λTα(R
Tφα + ST ηα) = 0,

−(η + φ, µ) + λTα (S
Tφα +RT ηα) = 0.

Set λ = 0, we have η+φ = 0. Similarly, it leads to η = φ = 0, that is, u = ω′
ηωφ = 1.

(2) Fixing a pair (η, φ) ∈ Q ×Q, one can define a character κη,φ on the group
Λ× Λ to be κη,φ : (λ, µ) 7→ ̺λ,µ(ω′

ηωφ).
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Let u =
∑

(η,φ)

kη,φω
′
ηωφ, kη,φ ∈ K. Then

0 = ̺λ,µ(u) =
∑

(η,φ)

kη,φ̺
λ,µ(ω′

ηωφ) =
∑

(η,φ)

kη,φκη,φ(λ, µ).

Since characters {κη,φ} are different from each other, we have kη,φ = 0, that is,
u = 0. �

Proposition 23. ̺σ(λ),µ(u) = ̺λ,µ(σ−1(u)), for u ∈ U0
♭ , σ ∈W, λ, µ ∈ Λ.

Proof. It is sufficient to check the case that u = ω′
ηω−η and σ = σi a simple

reflection. As we did earlier, use subscript α to denote ones column vectors with
respect to the basis {αi}. By Corollary 6, we have

̺λ,0(σ−1
i (u)) = ̺λ(ω′

σi(η)
ω−σi(η))

= rλ
T
α (RT (σi(η))α+ST (σi(−η))α)sλ

T
α (ST (σi(η))α+RT (σi(−η))α)

= rλ
T
α (R−S)Σi·ηαsλ

T
α (S−R)Σi·ηα

= rλ
T
αΣT

i ·(R−S)ηαsλ
T
αΣT

i ·(S−R)ηα

= r(σi(λ))
T
α (RT ηα+ST (−η)α)s(σi(λ))

T
α (ST ηα+RT (−η)α)

= ̺σi(λ)(ω′
ηω−η) = ̺σi(λ),0(u),

̺0,µ(σ−1(u)) = ̺0,λ(σ−1(ω′
ηω−η))

= (rs−1)(σ
−1(η)+σ−1(−η),µ)

= (rs−1)(0,µ) = ̺0,µ(ω′
ηω−η).

So ̺λ,µ(σ−1(u)) = ̺σ(λ),µ(u). �

Define a subalgebra (U0
♭ )
W = {u ∈ U0

♭ | σ(u) = u, ∀σ ∈ W} and characters

κη,φ : (λ, µ) 7→ ̺λ,µ(ω′
ηωφ), on Λ × Λ for each (η, φ) ∈ Q × Q. Further we define

κiη,φ : (λ, µ) 7→ ̺σi(λ),µ(ω′
ηωφ).

Lemma 24. Suppose that rank n is even, σ ∈ W, λ, µ ∈ Λ. If u ∈ U0 satisfies
that ̺σ(λ),µ(u) = ̺λ,µ(u), then u ∈ (U0

♭ )
W .

Proof. Let u =
∑

(η,φ)

kη,φω
′
ηωφ ∈ U0 , then

∑

(η,φ)

kη,φ̺
λ,µ(ω′

ηωφ) =
∑

(ζ,ψ)

kζ,ψ̺
σ(λ),µ(ω′

ζωψ),

hence we have an equation for characters:
∑

(η,φ)

kη,φκη,φ =
∑

(ζ,ψ)

kζ,ψκ
i
ζ,ψ.

Comparing the two sides of the equation, for each kη,φ 6= 0, there exists one (ζ, ψ) ∈
Q×Q, such that κη,φ = κiζ,ψ and kζ,ψ = kη,φ. Then

κη,φ(0, ̟j) = ̺0,̟j (ω′
ηωφ) = (rs−1)(η+φ,̟j)

= κiζ,φ(0, ̟j)

= ̺0,̟j (ω′
ζωψ) = (rs−1)(ζ+φ,̟j)
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yields η + φ = ζ + ψ, and

̺̟i(ω′
ηωφ) = ̺σi(̟i)(ω′

ζωφ) = ̺̟i−αi(ω′
ζωφ).

Since φ = ζ + ψ − η, it follows that

̺̟i(ω′
η−ζω−(η−ζ))̺

αi(ω′
ζω−ζ) = ̺−αi(ωζ+φ).

Rewrite the equation in the form of rksl = 1, for i = 1, · · · , n, we have

(̟i)
T
α (R− S)T (η − ζ)α + εTi (R− S)T ζα + εTi S

T (ζ + ψ)α = 0,

(̟i)
T
α (S −R)T (η − ζ)α + εTi (S −R)T ζα + εTi R

T (ζ + ψ)α = 0,

where εi is the i-th unit vector. Adding two equations, one has εTi (R+S)
T (ζ+ψ)α =

0, i = 1, · · · , n. That is, (R + S)T (ζ + ψ)α = 0. Since n is even, det(R + S) 6= 0,
we have ζ + ψ = 0 = φ+ η. Then

u =
∑

(η,−η)

kη,−ηω
′
ηω−η ∈ U0

♭ .

Finally, by Lemma 23,

̺λ,µ(σ−1(u)) = ̺σ(λ),µ(u) = ̺λ,µ(u), ∀ λ, µ ∈ Λ, σ ∈W,

which yields u = σ−1(u) for all σ ∈W . So u ∈ (U0
♭ )
W . �

Theorem 25. Suppose rank n is even, then ̺λ+ρ,µ(ξ(z)) = ̺σ(λ+ρ),µ(ξ(z)), ∀z ∈
Z(U), σ ∈W, λ, µ ∈ Λ. As a result, we have Im(ξ) ⊆ (U0

♭ )
W .

Proof. Let z ∈ Z(U) and µ ∈ Λ, take a λ ∈ Λ such that (λ, α∨
i ) ≥ 0 for some

fixed i. Let vλ,µ be the highest weight vector of the Verma module M(̺λ,µ). Then

z · vλ,µ = π(z) · vλ,µ = ̺λ,µ(π(z))vλ,µ = ̺λ+ρ,µ(ξ(z))vλ,µ.

That is, z acts on M(̺λ,µ) by scalar ̺λ+ρ,µ(ξ(z)). On the other hand, by [5,

Corollary 2.6] and [40, Property 37], let [m]i =
rmi −smi
ri−si

, then we have

eif
(λ,α∨

i )+1
i · vλ,µ = [(λ, α∨

i ) + 1]i f
(λ,α∨

i )
i

r
−(λ,α∨

i )
i ωi − s

−(λ,α∨

i )
i ω′

i

ri − si
· vλ,µ.

Notice that

(r
−(λ,α∨

i )
i ωi − s

−(λ,α∨

i )
i ω′

i) · vλ,µ =
(

r
−(λ,α∨

i )
i ̺λ,µ(ωi)− s

−(λ,α∨

i )
i ̺λ,µ(ω′

i)
)

· vλ,µ.

Since r
−(λ,α∨

i )
i ̺λ,0(ωi) = s

−(λ,α∨

i )
i ̺λ,0(ω′

i), it follows that

ejf
(λ,α∨

i )+1
i · vλ,µ = 0, j = 1, · · · , n,

zf
(λ,α∨

i )+1
i · vλ,µ = π(z)f

(λ,α∨

i )+1
i · vλ,µ

= ̺σi(λ+ρ)−ρ,µ(π(z))f
(λ,α∨

i )+1
i · vλ,µ

= ̺σi(λ+ρ),µ(ξ(z))f
(λ,α∨

i )+1
i · vλ,µ, ∀ z ∈ Z(U).

Hence, z acts on M(̺λ,µ) by scalar ̺σi(λ+ρ),µ(ξ(z)). we have

̺λ+ρ,µ(ξ(z)) = ̺σi(λ+ρ),µ(ξ(z)).(5)
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In fact, equation (5) holds for any λ ∈ Λ. This is because if (λ, α∨
i ) = −1, then

λ + ρ = σi(λ
′ + ρ) such that (5) holds. If (λ, α∨

i ) < −1, let λ′ = σi(λ + ρ) − ρ,
then (λ′, α∨

i ) ≥ 0 such that (5) holds for λ′. Relacing λ′ with σi(λ + ρ) − ρ into
the result that (5) holds for λ in this case. Finally, since (5) holds for each σi, so it
holds for all σ ∈W , which implies that Im (ξ) ⊆ (U0

♭ )
W , by Lemma 24. �

5. Central elements and the Harish-Chandra theorem

In this section, we will deal with arbitary rank.

5.1. The Harish-Chandra theorem. In what follows, we aim to prove that
the subspace (U0

♭ )
W is in Im(ξ).

Lemma 26. Let z ∈ U , then z ∈ Z(U) if and only if adl(x)z = ε(x)z, ∀ x ∈ U.

Proof. Suppose z ∈ Z(U), then for all x ∈ U , we have

adl(x)z =
∑

(x)

x(1)zS(x(2)) = z
∑

(x)

x(1)S(x(2)) = ε(x)z.

Conversely, if adl(x)z = ε(x)z holds for all x ∈ U , then

ωizω
−1
i = adl(wi)z = ε(ωi)z = z.

Since for each generator ei and fi of Ur,s(g), we have

0 = ε(ei)z = adl(ei)z

= eiz + ωizS(ei) = eiz − (ωizω
−1
i )ei = eiz − zei,

0 = ε(fi)z = adl(fi)z

= zS(fi) + fizS(ω
′
i) = (−zfi + fiz)ω

′
i
−1
.

So z ∈ Z(U). �

Lemma 27. Given a bilinear form Ψ : U−
−µ×U

+
υ → K and a pair (η, φ) ∈ Q×Q,

then there exists an element u ∈ U−
−µU

0U+
υ such that for any x ∈ U+

υ , y ∈ U−
−µ

and (ζ, ψ) ∈ Q×Q,

〈u, yω′
ζωψx〉U = 〈ω′

ζ , ωφ〉〈ω
′
η, ωψ〉Ψ(y, x).

Proof. Let µ ∈ Q+ and {uµ1 , · · · , u
µ
dµ
} be a basis of U+

µ , then take a dual

basis {vµ1 , · · · , v
µ
dµ
} in U−

−µ with respect to 〈−,−〉. Take that

u =
∑

i,j

(rs−1)−
2
ℓ
(ρ,ν) Ψ(vµj , u

ν
i ) v

ν
i ω

′
ηωφu

µ
j ,

then u satisfies the identity in the lemma. �

Definition 28. (1) Define a U -module structure on U∗ by

(x · f)(v) = f(adl(S(x))v), ∀ x ∈ U, f ∈ U∗.

Then we define a morphsim β : U → U∗, u 7→ 〈u,−〉U . It follows that β is
an injective morphism of U -module since Rosso form is nondegenerate and ad-
invariant.

(2) Let M be a finite-dimensional U -module. For each m ∈M, f ∈M∗, define
the matrix coefficient by Cf,m ∈ U∗, Cf,m(v) = f(v ·m), ∀ v ∈ U.
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Theorem 29. Let M be a finite-dimensional U -module. Decompose M =
⊕

λ∈Π(M)Mλ, where

Mλ = {m ∈M | ωi ·m = ̺λ(ωi)m, ω
′
i ·m = ̺λ(ω′

i)m}.

If the weight set of M satisfies Wt(M) ⊆ Q, then for f ∈M∗, m ∈M, there exists
a unique u ∈ U such that

Cf,m(v) = 〈u, v〉U , ∀ v ∈ U.

Proof. We start by proving the existence of u. Since Cf,m is linear with
respect to m ∈M , it is sufficient to check the case of m ∈Mλ for each λ. Suppose
v is a monomial v = yω′

ηωφx, where x ∈ U+
ν , y ∈ U−

−µ, then for each f ∈ M∗, we
have

Cf,m(v) = Cf,m(yω′
ηωφx) = f(yω′

ηωφx.m)

= ̺λ+ν(ω′
ηωφ)f(y.x.m)

= 〈ω′
η, ω−(λ+ν)〉〈ω

′
λ+ν , ωφ〉f(y.x.m),

Since Ψ : (y, x) 7→ f(y.x.m) is a bilinear form, by Lemma 27, there exists a unique
uνµ such that for all v ∈ U−

−µU
0U+

ν , Cf,m(v) = 〈uνµ, v〉U holds.

More generally, let v ∈ U with v =
∑

(µ,ν) vµν , where vµν ∈ U−
−µU

0U+
ν . Since

M is finite-dimensional, there exists a finite set Ω of pairs (µ, ν) ∈ Q×Q, such that

Cf,m(v) = Cf,m

(

∑

(µ,ν)

vµν

)

, ∀ ν ∈ U.

Let u =
∑

(µ,ν)∈Ω uνµ, then

〈u, v〉U =
∑

(µ,ν),(µ′,ν′)∈Ω

〈uν′µ′ , vµν〉U

=
∑

(µ,ν)∈Ω

〈uνµ, vµν〉U

=
∑

(µ,ν)∈Ω

〈uµν , v〉U = Cf,m(v).

Here the second row of the equations holds by Lemma 13. �

Lemma 30. Let (M, ζ) be a weight module, where ζ : U → End(M) and define
a linear map Θ : M →M by

m 7→ (rs−1)−
2
ℓ
(ρ,λ)m, ∀ m ∈Mλ, λ ∈ Λ.

Then for all u ∈ U, Θ ◦ ζ(u) = ζ(S2(u)) ◦Θ. That is,

Θ(u.m) = S2(u).Θ(m), ∀ m ∈M.

Proof. It is sufficient to check it for the generators ei, fi. Notice that

〈ω′
i, ωi〉 = aii = (rs−1)di = (rs−1)

(αi,αi)

ℓ

= (rs−1)
2
ℓ
(̟i,αi) = (rs−1)

2
ℓ
(ρ,αi) ,
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which yields for any m ∈Mλ,

S2(ei).Θ(m) = (rs−1)−
2
ℓ
(ρ,λ)(S2(ei).m)

= (rs−1)−
2
ℓ
(ρ,λ)〈ω′

i, ωi〉
−1ei.m

= (rs−1)−
2
ℓ
(ρ,λ+αi)ei.m = Θ(ei.m),

S2(fi).Θ(m) = S2(fi)(rs
−1)−

2
ℓ
(ρ,λ).m

= 〈ω′
i, ωi〉(rs

−1)−
2
ℓ
(ρ,λ)fi.m

= (rs−1)−
2
ℓ
(ρ,λ−αi)fi.m = Θ(fi.m).

This completes the proof. �

Proposition 31. For λ ∈ Λ+, define a quantum trace tλ ∈ U∗ as tλ(u) :=
trL(λ)(uΘ). If λ ∈ Λ+ ∩Q, then tλ ∈ Im(β), and zλ := β−1(tλ) ∈ Z(U).

Proof. (1) Since β(u) = 〈u,−〉U is injective and tλ = trL(λ)(− ◦ Θ) ∈ U∗,

denote the dimension of L(λ) by d, take a basis {mi}
d
i=1 in L(λ) and its dual basis

{fi}
d
i=1 in L(λ)∗, we have

v.Θ(mi) =

d
∑

j=1

fj(v.Θ(mi))mj =

d
∑

j=1

Cfj ,Θ(mi)(v)mj ,

tλ(v) = trL(λ)(v ◦Θ) =

d
∑

i=1

Cfi,Θ(mi)(v).

By Theorem 27, for each i = 1, · · · , d, there exists ui ∈ U that realizes the matrix

coefficient by 〈ui, v〉U = Cfi,Θ(mi)(v). Write u =
∑d

i=1 ui, then

β(u)(v) = 〈u, v〉U =

d
∑

i=1

〈ui, v〉U

=
d

∑

i=1

Cfi,Θ(mi)(v) = tλ(v).

It follows that tλ ∈ Im(β).
(2) Since U∗ has a U -module structure (x ·f)(v) = f(adl(S(x))v), ∀ x ∈ U, f ∈

U∗, then for any x, u ∈ U, we have

(S−1(x).tλ)(u) = tλ(adl(x)u) = trL(λ)
(

∑

(x)

x(1)uS(x(2))Θ
)

= trL(λ)
(

u
∑

(x)

S(x(2))Θx(1)
)

= trL(λ)
(

u
∑

(x)

S(x(2))S
2(x(1))Θ

)

= trL(λ)
(

uS
(

∑

(x)

S(x(1))x(2)
)

Θ
)

= (ι ◦ ε)(x) trL(λ)(uΘ)

= (ι ◦ ε)(x)tλ(u).
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Substituting S(x) for x above, we get x.tλ = (ι ◦ ε)(x)tλ, ∀ x ∈ U. Notice the fact
tλ ∈ Imβ, we define zλ := β−1(tλ), then

x.tλ = x.(β(zλ))) = (x.β)(zλ) = β(adl(x)(zλ)),

(ι ◦ ε)(x)tλ = (ι ◦ ε)(x)β(zλ) = β((ι ◦ ε)(x)zλ).

Since β is injective, adl(x)(zλ) = (ι ◦ ε)(x)zλ, ∀ x ∈ U. Therefore, by Lemma 26, it
follows that zλ ∈ Z(U). �

As described in Theorem 29, for each λ ∈ Λ, there is the unique simple
weight module L(λ) with the weight space decomposition

⊕

τ≤λL(λ)τ . Define

dτ = dim L(λ)τ and set a basis {mτ
i }
dτ
i=1 for this weight space. Then L(λ) has

a basis {mτ
i }τ,i and L(λ)∗ has the canonical dual basis {f iτ}τ,i. Since L(λ) has

finite dimension, there exists a finite set Ω ⊆ Q × Q such that for any v ∈ U =
U−U0U+,m ∈ L(λ), we have v ·m =

∑

(µ,ν)∈Ω vµ,ν ·m, where vµ,ν ∈ U−
−µU

0U+
ν .

Theorem 32. For each λ ∈ Λ+
⋂

Q, the central element zλ is

zλ =
∑

τ≤λ

∑

µ∈Q+

∑

i,j

(rs−1)−
2
ℓ
(ρ,τ+µ)tr(vµj u

µ
i ◦ Pτ ) v

µ
i ω

′
τ+µω

−1
τ+µu

µ
j ,

where {uµj }
dµ
j=1 is a basis of U+

µ and {vµi }
dµ
i=1 is the dual basis of U−

−µ with respect to

the restriction of 〈−,−〉 to U−
−µ ×U+

µ , and Pτ is the projector from L(λ) to L(λ)τ .

Proof. We have shown that for any v ∈ U ,

trL(λ)(v ◦Θ) =
∑

τ,l

f lτ (v ·Θ(mτ
l )) =

∑

τ,l

Cf l
τ ,Θ(mτ

l
)(v).

Firstly, we restrict v to any graded space U−
−µU

0U+
ν and take a monomial

v = yω′
ηωφx, x ∈ U+

ν , y ∈ U−
−µ, then by Theorem 29, we have

Cf l
τ ,Θ(mτ

l
)(v) = f lτ (yω

′
ηωφx ·Θ(mτ

l ))

= ̺τ+ν(ω′
ηωφ)f

l
τ (yx ·Θ(mτ

i ))

= 〈ω′
η, ω−(τ+ν)〉〈ω

′
τ+ν , ωφ〉f

l
τ (yx ·Θ(mτ

l )).

Then by Lemma 27, put Ψ(y, x) = f lτ (yx ·Θ(mτ
i )), then we get an element

z(τ,l)ν,µ =
∑

i,j

(rs−1)−
2
ℓ
(ρ,ν)Ψ(vµj , u

ν
i ) v

ν
i ω

′
τ+νω−(τ+ν)u

µ
j

=
∑

i,j

(rs−1)−
2
ℓ
(ρ,τ+ν) f lτ (v

µ
j u

ν
i .m

τ
l ) v

ν
i ω

′
τ+νω

−1
τ+νu

µ
j ,

so that 〈z
(τ,l)
ν,µ , v〉U = Cfi

τ ,Θ(mτ
i )
(v), for any v ∈ U−

−µU
0U+

ν .

Further, we add up all the elements labeled by the finite set Ω and write z(τ,l) =
∑

(ν,µ)∈Ω z
(τ,l)
ν,µ , then

〈z(τ,l), v〉U = Cf l
τ ,Θ(mτ

l
)(v), ∀ v ∈ U.

Finally, since zλ =
∑

τ,l z
(τ,l), we get the expression

zλ =
∑

τ≤λ

dτ
∑

l=1

∑

(ν,µ)∈Ω

(dν ,dµ)
∑

(i,j)=(1,1)

(rs−1)−
2
ℓ
(ρ,τ+ν) f lτ (v

µ
j u

ν
i ·m

τ
l ) v

ν
i ω

′
τ+νω

−1
τ+νu

µ
j .
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Since {mτ
i }
dτ
i=1 and {f iτ}τ,i are dual to each other, when ν 6= µ the component

in z
(τ,l)
ν,µ = 0. Also, we can simplify the expression of zλ by projectors Pτ , then

zλ =
∑

τ≤λ

∑

µ∈Q+

∑

i,j

(rs−1)−
2
ℓ
(ρ,τ+µ) tr(vµj u

µ
i ◦ Pτ ) v

µ
i ω

′
τ+µω

−1
τ+µu

µ
j .

This completes the proof. �

Theorem 33. Suppose rank n is odd, there is one extra invertible central gen-
erator z∗ :=

∏n
i=1(ωiω

′
i)
v∗i in Ur,s(g) (which doesn’t survive in Uq(g)), where the

vector v∗ is given in Proposition 7.

Proof. It suffices to show z∗ commutes with generators ei and fi.

z∗ei =
(

n
∏

j=1

(ωjω
′
j)
v∗j
)

ei = ei
(

n
∏

j=1

(ωjω
′
j)
v∗j
)

n
∏

j=1

(ajia
−1
ij )v

∗

j

= eiz∗(rs)
∑n

j=1(〈i,j〉−〈j,i〉)v∗j

= eiz∗(rs)
(R+S)v∗ = eiz∗,

z∗fi = fi
(

n
∏

j=1

(ωjω
′
j)
v∗j
)

n
∏

j=1

(ajia
−1
ij )−v

∗

j

= fz∗(rs)
−(R+S)v∗ = fiz∗.

This completes the proof. �

Proposition 34. When rank n is odd, the central element z∗ is a fixed point
of the Harish-Chandra homomorphism ξ, and ξ(z∗) = z∗ /∈ (U0

♭ )
W .

Proof. The first statement is proved directly as follow.

ξ(z∗) = (

n
∏

j=1

̺−ρ((ωjω
′
j)
v∗j ))z∗ = (

n
∏

i,j=1

(a−1
ji aij)

v∗j /2)z∗

= (rs)
1
2

∑n
i,j=1(R+S)ijv

∗

j z∗ = z∗.

Since Ur,s is also a Q-bigraded Hopf algebra [27] where ei ∈ (Ur,s)(αi,0), fi ∈

(Ur,s)(0,−αi), ωi, ω
′
i ∈ (Ur,s)(αi,−αi). Thus all generators ω′

ηω−η of U0
♭ have the

same bigrade (0, 0), they can not generate an element graded by (η,−η), η ∈ Q \ 0,
which leads to the second statement. �

Theorem 35. If rank n is even, then the Harish-Chandra homomorphism ξ :
Z(Ur,s(g)) → (U0

♭ )
W is an algebra isomorphism. If rank n is odd, we have Im(ξ) ⊇

(U0
♭ )
W ⊗K[z∗, z

−1
∗ ].

Proof. Firstly by Theorem 32, for each zλ, λ ∈ Λ+ ∩Q, we have

z0λ =
∑

µ6λ

(rs−1)−
2
ℓ
(ρ,µ) dim(L(λ)µ)ω

′
µω−µ.
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Therefore, by definition in section 2.5, we have

ξ(zλ) = γ−ρ(z0λ) =
∑

µ6λ

(rs−1)−
2
ℓ
(ρ,µ) dim(L(λ)µ) ̺

−ρ(ω′
µω−µ)ω

′
µω−µ

=
∑

µ6λ

dim(L(λ)µ)ω
′
µω−µ.

Notice that {ξ(zλ) | λ ∈ Λ+ ∩ Q} ⊆ Im ξ ⊆ (U0
♭ )
W in Theorem 24. It is sufficient

to show (U0
♭ )
W ⊆ Im(ξ). Since for each η ∈ Q, there exists a unique σ ∈ W such

that σ(η) ∈ Λ+ ∩Q, it is clear that the elements

av(λ) =
1

|w|

∑

σ∈W

σ(ω′
λω−λ) =

1

|w|

∑

σ∈W

ω′
σ(λ)ω−σ(λ), λ ∈ Λ+ ∩Q

form a basis of (U0
♭ )
W .

It only remains to prove that av(λ) ∈ Im(ξ). By induction on the height of λ, if
λ = 0, then av(λ) = 1 ∈ Im(ξ). Assume that λ > 0, by the fact that dim(L(λ)µ) =
dim(L(λ)σ(µ)), ∀ σ ∈ W and dim(L(λ)λ) = 1, we have

ξ(zλ) =
∑

µ6λ

dim(L(λ)µ)ω
′
µω−µ

= |W | av(λ) + |W |
∑

µ<λ, µ∈Λ+∩Q

dim(L(λ)µ) av(µ).

By the induction hypothesis, we get

av(λ) =
1

|W |
ξ(zλ)−

∑

µ<λ, µ∈Λ+∩Q

dim(L(λ)µ) av(µ) ∈ Im ξ.

Therefore,

(U0
♭ )
W = span

K
{av(λ) | λ ∈ Λ+ ∩Q} ⊆ Im(ξ).

When rank n is even, combining Theorem 25, we have that ξ is isomorphic to
its image. When rank n is odd, we have (U0

♭ )
W ⊗ K[z∗, z

−1
∗ ] ⊂ Im(ξ) by Theorem

33 and Proposition 34. �

5.2. Alternative approach to central elements. Similar to [47], we can
also construct central elements by taking quantum partial trace.

Proposition 36. Let λ ∈ Λ+ and ζ : Ur,s(g) → End(L(λ)) be the weight
representation. If there is an operator Γ ∈ Ur,s(g)⊗ End(L(λ)) such that

Γ ◦ (id⊗ ζ)∆(x) = (id⊗ ζ)∆(x) ◦ Γ, ∀ x ∈ Ur,s(g),

then the element c = tr2(Γ(1 ⊗Θ)) ∈ Z(Ur,s(g)).

Proof. It is enough to check this element commutes with all generators of
U . In convenience we view the operator (id ⊗ ζ)∆(x) as ∆(x), and write Γ =
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∑

Γ Γ(1) ⊗ Γ(2) . Since [Γ,∆(ω±1
i )] = 0, and S2(u)Θ = Θu, ∀ u ∈ U , we have

0 = tr2([Γ,∆(ω±1
i )] · (1⊗Θω∓1

i ))

=
∑

Γ

Γ(1)ω
±1
i ⊗ tr(Γ(2)ω

±1
i Θω∓1

i )−
∑

Γ

ω±1
i Γ(1) ⊗ tr(ω±1

i Γ(2)Θω
∓1
i )

=
∑

Γ

Γ(1)ω
±1
i ⊗ tr(Γ(2)Θ)−

∑

Γ

ω±1
i Γ(1) ⊗ tr(Γ(2)Θ)

=
∑

Γ

[Γ(1), ω
±1
i ]⊗ tr(Γ(2)Θ)

= [tr2(Γ(1⊗Θ)), ω±1
i ] = [c, ω±1

i ].

Similarly, we have [c, ω′
i
±1

] = 0.
To prove [c, ei] = 0, we have to check [c, eiω

−1
i ] = 0,

0 = tr2([Γ,∆(eiω
−1
i )] · (1⊗Θωi))

= tr2([Γ, eiω
−1
i ⊗ ω−1

i + 1⊗ eiω
−1
i ](1⊗Θωi))

= tr2(Γ(eiω
−1
i )⊗Θ+ Γ(1⊗ eiΘ)

− (eiω
−1
i ⊗ ω−1

i )Γ(1 ⊗Θωi)− (1 ⊗ eiω
−1
i )Γ(1⊗Θωi))

= tr2(Γ(1⊗Θ)(eiω
−1
i ⊗ 1) + Γ(1⊗ eiΘ)

− (eiω
−1
i ⊗ 1)Γ(1⊗Θ)− Γ(1⊗Θωieiw

−1
i ))

= [tr2(Γ(1⊗Θ)), eiω
−1
i ] = [c, eiω

−1
i ].

The fifth equation holds since Θωieiw
−1
i = ωiS

2(ei)w
−1
i Θ = eiΘ.

Similarly, we have [c, fi] = 0. �

6. Centre of Ŭr,s(g) of weight lattice type

In this section, we will add some group-like elements to Ur,s(g) to get the

two-parameter quantum group Ŭr,s(g) of weight lattice type.

Definition 37. The algebra Ŭr,s(g) of the so-called weight lattice form of

Ur,s(g), is the unital associative algebra generated by elements ei, fi, ω
±1
̟i
, ω′

̟i

±1

(i = 1, · · · , n) over K. Set ωi :=
∏n
l=1 ω̟l

cli , ω′
j :=

∏n
k=1 ω

′
̟k

ckj , the generators
satisfy the following relations:

(X1,Λ) ω±1
̟i
ω′
̟j

±1
= ω′

̟j

±1
ω±1
̟i
, ω̟i

ω−1
̟i

= 1 = ω′
̟j
ω′
̟j

−1
,

(X2,Λ) ω̟i
ejω

−1
̟i

= r〈j,̟i〉s−〈̟i,j〉ej , ω̟i
fjω

−1
̟i

= r−〈j,̟i〉s〈̟i,j〉fj ,

ω′
̟i
ejω

′−1
̟i

= r−〈̟i,j〉s〈j,̟i〉ej , ω′
̟i
fjω

′−1
̟i

= r〈̟i,j〉s−〈j,̟i〉fj ,

(X3) [ei, fj ] = δij
ωi−ω

′

i

ri−si
,

(X4) (adl ei)
1−cij (ej) = 0, (adr fi)

1−cij (fj) = 0, (i 6= j).

Here Ŭr,s(g) naturally extends the Hopf structure of Ur,s(g) (elements ω̟i
, ω′

̟i

are group-likes).
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Proposition 38. There exists a unique skew-dual pairing 〈 −,−〉 : B̆′×B̆ → K

of the Hopf subalgebra B̆ and B̆′ satisfying

〈fi, ej〉 = δij
1

si − ri
, 1 6 i, j 6 n,

〈ω′
̟i
, ω̟j

〉 = r〈̟i,̟j〉s−〈̟j ,̟i〉, 1 6 i, j 6 n,

〈ω′
i
±1
, ω−1

j 〉 = 〈ω′
i
±1
, ωj〉

−1 = 〈ω′
i, ωj〉

∓1, 1 6 i, j 6 n,

and all other pairs of generators are 0.

Corollary 39. For any λ1, λ2 ∈ Λ, we have 〈ω′
λ1
, ωλ2〉 = r〈λ1,λ2〉s−〈λ2,λ1〉.

It is obvious that Ur,s is a Hopf subalgebra of Ŭr,s, and these two Hopf alge-
bras have the same category of the weight modules, namely Or,s

f . Notice that our

approach to the Harish-Chandra isomorphism of Ŭ is exactly the same as in the
previous sections, so it is sufficient to show that the lemmas and properties affected
by the extension still hold.

Lemma 40. The Rosso form 〈−,−〉Ŭ defined as in Definition 11 is non-degenerate

on Ŭ .

Proof. The only difference with Theorem 14 is the character. Define a group

homomorphism χη,φ : Λ× Λ → K̆× by

χη,φ(ν, µ) = 〈ω′
η, ωµ〉〈ω

′
ν , ωφ〉.

Parallel to Lemma 15, we only need to prove that if χη,φ = χη′,φ′ , then (η, φ) =
(η′, φ′).

Let η =
∑n
i=1 ηiαi, η

′ =
∑n
i=1 η

′
iαi, for j = 1, · · · , n, we have

1 =
χη,φ(0, ̟j)

χη′,φ′(0, ̟j)
=

n
∏

i=1

〈ω′
i, ω̟j

〉ηi−η
′

i =
n
∏

i=1

n
∏

k=1

〈ω′
i, ωk〉

ckj(ηi−η
′

i)

= r
∑n

i,k=1 c
kjRki(ηi−η

′

i)s
∑n

i,k=1 c
kjSki(ηi−η

′

i),

which leads to C−T (R−S)(η−η′) = 0 and yields η = η′. A similar argument leads
to φ = φ′. �

Lemma 41. When rank n is even, the Harish-Chandra homomorphism ξ̆ :
Z(Ŭ) → Ŭ0 is injective .

Proof. It is sufficient to show Lemma 19 holds in Ŭ , that is for all λ ∈ Λ+

and η, φ ∈ Λ, one has
(1) If ̺λ(ω′

ηωφ) = 1, then η = φ.

(2) When n is even, then ̺λ(ω′
ηωφ) = 1 if and only if (η, φ) = (0, 0).

Notice that here η =
n
∑

i=1

ηiαi, φ =
n
∑

i=1

φiαi, λ =
n
∑

i=1

λiαi, ηi, φi, λi ∈ Q, and

the proof of Lemma 19 is independent of where the coefficients are taken from, it
follows that these two propositions also hold true. �

The same reason can be used to show that Lemmas 22-24, 27 still hold in Ŭ ,

which leads to Theorem 25, that is Im(ξ̆) ⊆ (Ŭ0
♭ )
W , where Ŭ0

♭ :=
⊕

η∈Λ Kω′
ηω−η.

Parallel to Proposition 31 and Theorem 32, there are enough group-like elements
to define all zλ ∈ Ŭ , ∀ λ ∈ Λ+. Finally by the fact that (Ŭ0

♭ )
W has a basis

{av(λ) | λ ∈ Λ+}, repeating the proof of Theorem 35, one gets:
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Theorem 42. The Harish-Chandra homomorphism ξ̆ : Z(Ŭr,s(g)) → (Ŭ0
♭ )
W is

an isomorphism of algebras when rank n is even. In particular, for each λ ∈ Λ+,

ξ̆(zλ) =
∑

µ≤λ

dim(L(λ)µ)ω
′
µω−µ.

When rank n is odd, Im(ξ) ⊇ (Ŭ0
♭ )
W ⊗K[z∗, z

−1
∗ ].

Now we are able to construct the character map to study the centre Z(Ŭr,s(g)).

Proposition 43. Let K(Ur,s) := Gr(Or,s
f )⊗ZK, then the character map Chr,s :

K(Ur,s) → (Ŭ0
♭ )
W is an isomorphism of algebras with

Chr,s([V ]) =
∑

µ≤λ

dim(Vµ)ω
′
µω−µ, ∀V ∈ Or,s

f .

Proof. Since (V ⊗W )µ =
⊕

λ∈Λ Vλ⊗Wµ−λ still holds in Or,s
f , it is clear that

Chr,s is a homomorphism of algebras. Next, if Chr,s([V ]) = Chr,s([W ]) for some
V,W ∈ Or,s

f , then
∑

µ∈Π(V )

dim(Vµ)ω
′
µω−µ =

∑

ν∈Π(W )

dim(Wν)ω
′
νω−ν ,

where Π(V ) is the weight set of V . Since ω′
µω−µ with µ ∈ Λ are linear independent,

we have dim(Vµ) = dim(Wµ) for any µ, i.e., [V ] = [W ]. Finally, for any λ ∈ Λ+,

we have Chr,s([L(λ)]) = ξ̆(zλ). Parallel to the proof of Theorem 35, Chr,s is also
surjective. �

In [27], one of us and Pei have studied the deformation theory of the repre-
sentations of two-parameter quantum groups Ur,s(g), where Or,s

f is defined as the

category of finite-dimensional weight modules (of type 1) of Ur,s(g), and proved
that

Theorem 44. Assume that rs−1 = q2, there is an equivalence as braided tensor
categories that

Or,s
f ≃ Oq,q−1

f ≃ Oq
f ,

where Oq
f is the category of the finite-dimensional weight modules (of type 1) of the

quantum group Uq(g), and the equivalence takes L(λ) ∈ Oq
f to a deformed weight

module in Or,s
f which is just L(λ) defined in Lemma 8.

Combining the results in [20, 10]:

Theorem 45. The K(Ŭq) := Gr(Oq
f ) ⊗Z K, the Grothendieck ring (over K)

of the category Oq
f of the quantum group Ŭq(g), is a polynomial algebra. More

precisely, let {̟i}
n
i=1 be the set of fundamental weights of g, then

Z(Ŭq) ∼= K(Ŭq) = K[ [L(̟1)], · · · , [L(̟n)] ].

with Theorem 44, we arrive at the following

Theorem 46. The algebra K(Ŭr,s) := Gr(Or,s
f )⊗Z K is a polynomial algebra.

When rank n is even, the centre of the extended two-parameter quantum group
Ŭr,s(g) is a polynomial algebra Z(Ŭr,s) = K[z̟1 , · · · , z̟n

]. When rank n is odd,

the centre Z(Ŭr,s) ⊇ K[z̟1 , · · · , z̟n
]⊗K[z∗, z

−1
∗ ].
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Remark 47. When n = rank (g) is odd, we still cannot claim if the centre of

Ur,s(g) or Ŭr,s(g) is equal to K[z̟1 , · · · , z̟n
] ⊗ K[z∗, z

−1
∗ ] or not. It remains an

open question.
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