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Harish-Chandra Theorem for Two-parameter
Quantum Groups

Naihong Hu* and Hengyi Wang

ABSTRACT. The centre of two-parameter quantum groups Uy s(g) is deter-
mined through the Harish-Chandra homomorphism. Based on the Rosso form
and the representation theory of weight modules, we prove that when rank g
is even, the Harish-Chandra homomorphism is an isomorphism, and in par-
ticular, the centre of the quantum group [ufr,s(g) of the weight lattice type
is a polynomial algebra K[zw,, -, 2w,], Where canonical central elements
zx (A € A1) are turned out to be uniformly expressed. For rank g to be odd,
we figure out a new invertible extra central generator z, which doesn’t survive
in Uqy(g), and we get a larger centre containing K[zw, , - ; Ze,, | Ok K[z, 25 1].

1. Introduction

In mathematics and theoretical physics, by quantum groups mean a class of
noncommutative and noncocommutative Hopf algebras. It was Drinfel’d [18] and
Jimbo [34] who independently defined U,(g) as a g-deformation of the universal
enveloping algebra U(g) for any semisimple Lie algebra g. Such ¢-deformed objects
provide the universal solutions for the quantum Yang-Baxter equation and numer-
ous quantum invariants for knots or links even 3-manifolds (eg. [41l 47 [46] etc.
and references therein).

A number of works on the centre of quantum groups have been developed over
the last three decades, including explicit generators and structures. Tanisaki proved
that the quantum Harish-Chandra homomorphism is an isomorphism [44, [45].
He used the quantum Killing form of Uy(g) (which is also called the Rosso form
[43]) to show the image of Harish-Chandra homomorphism, the Casimir element
and a detailed proof of the existence of universal R-matrix [45]. Also, Joseph
and Letzter proved the Harish-Chandra isomorphism theorem [35], they pointed
out that the centre Z(U,) is not necessarily a polynomial algebra, Gry(O%) and
Z(U,) are not always isomorphic. A couple of years ago, Li-Xia-Zhang proved that
Z(Uy) is isomorphic to a polynomial algebra in types Ai, By, Cy, Day, E7, Es,
F4, G2, while in the remaining cases it is isomorphic to a quotient of polynomial
algebra [36]. A general description of the centres of quantum groups U,(g) of
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weight lattice types was earlier considered by Etingof in [20], where he concluded
that Z(U,) = Klcw,, - ,Ca, ], With ¢, is the quantum partial trace of I' = R?'R
on L(w;) (coming from Reshetikhin et al [23], [41]). The theorem was in fact
generalized to the affine cases [20]. Dai supplemented a detailed proof for the
theorem of Z (Uq) and an explicit formula of generator ¢y [10] via an operator T’
from the work of R.B. Zhang et al [22], 47]. Recently, Luo-Wang-Ye settled the

Harish-Chandra theorem for some quantum superalgebras [39].
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FIGURE 1. the central structure of the one-parameter quantum group

Since Benkart-Witherspoon redefined a class of two-parameter quantum groups
of type A motivated by up-down algebra [3], and Bergeron-Gao-Hu studied the
structures of two-parameter quantum groups of type B, C, D [5], the representation
theory have progressed simultaneously [6], [3]. A series of work on other types have
been done in [T, 29, [31], 40, [9], etc.

In this paper, we focus on the description of the centres of two-parameter
quantum groups U, s(g) in the case when r, s are indeterminates. We give a uniform
way to prove that the Harish-Chandra homomorphism & of U, 4(g) is injective when
g is simple with even rank. This in particular recovers the work of Benkart-Kang-
Lee for type As, [2], Hu-Shi for type B, [30] and Gan for type Gy [2I]. To do
this, there are 3 steps to do: (i) £ : Z(U) — UY is injective. (ii) The image Im is
in the subalgebra C (UY)W. (iii) £ : Z(U) — (U)W is surjective. With the help of
the weight module theory established by [6], 27, [40], we find that step (i) and (ii)
only rely on the non-degeneracy of matrices R — .S and R+ S derived from the the
structure constant matrix. Then we construct a certain element z) (A € ATNQ) to

2\
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FIGURE 2. the Harish-Chandra theorem of U, s(g) with even rank

realize the quantum trace tr, ; on the weight module L(X) by the Rosso form, that
is, (2x, —)u = trp(\)(—0©). These z) are central elements which are used to prove
(iii). Although we successfully establish the Harish-Chandra isomorphism (see the
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vertical map in the Fig. 2), owing to the fact that the Rosso form realization of
tr. s and the quantum character all require A € AT N Q (this is distinct from the
one-parameter case: A € AT N %Q ), they are not always well-defined on the whole
Gry,(0}®) := Gr(0}°) @z K. To overcome this difficulty, we need to extend U, 5(g)
to its weight lattice type (u]m(g) such that all the maps above are well-defined
(see Fig. 3). It turns out that the Harish-Chandra homomorphism 5 is also an
isomorphism. Furthermore, the bottom map Ch, , is shown to be an isomorphism
of algebras. Finally, the deformation theory on weight modules [27] tells us that our
07" is equivalent to the category of finite-dimensional weight modules O% of U,(g)

as braided tensor categories. Hence the centre Z(U, ) = ((Z?)W = Gry(0}°) =
Gry (O‘]{), which is also a polynomial algebra as in the one-parameter setting, that

iS, Z([jTﬁS) = K[zwn e azwn]'

L(X\) P Zx
1 onoy 2(U,.(a))
deformation
theory ! O !
l o G0 = o
L(\) | s > dim(L(A))w),w_y
Ae At HEA

FIGURE 3. the central structure of U, ,(g)
with even rank

As for the cases of odd rank, by the fact that the matrix R+ .S is of corank 1, it
is not sufficient to prove the injectivity of the Harish-Chandra homomorphism and
characterize Im(§) in the same way. However, this degeneracy provides a unique
invertible central generator z, (it will degenerate to 1 in the one-parameter case,
ie,r=gq, s=q ' w =w; "), which is a fixed point of £ but z. ¢ (U?)". Thus
we have Im(§) 2 (U))Y ® Kz, 2,7 It recovers the case of type Agnq1 [2].

The paper is structured as follows. Section 2 recalls two-parameter quantum
groups with their Rosso forms, the Harish-Chandra homomorphisms and results in
the related literature. Then we introduce two matrices relevant to the structure
constant matrix. Section 3 proves that the Harish-Chandra homomorphism ¢ is
injective when n = rank(g) is even. Section 4 characterize the image of £ and proves
that Im(&) falls in the subalgebra (U?)" when rank n is even. Section 5 proves that
the Harish-Chandra image £(Z(U)) 2 (U?)". Then the Harish-Chandra theorem
¢€:Z(U) = (U)W holds when rank n is even. While, in the odd rank case, we
construct a new extra generator z, of the centre, which leads to the Harish-Chandra
image £(Z(U)) 2 (U)W @ K[z, We also gives an alternative description to the
central elements by taking partial quantum trace. The last section introduces the
extended two-parameter quantum group UT,S(g) of weight lattice type and proves
Harish-Chandra theorem ¢ : Z(U,.4(g)) = ([jb())w when rank n is even. Particularly,

v

in this case the centre Z(U) is a polynomial algebra. While for the cases of odd
rank n, we get a larger centre containing K[z, , - - , 2w, | ®x K|zs, 27 1.
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2. Preliminaries

2.1. The two-parameter quantum group U, ;(g) and its Hopf algebra
structure. A root system ® of one complex simple Lie algebra g is a finite subset
of a Euclidean space E. We fix a simple root set of ® and denote it by II. Let
W be the Weyl group of the root system ® and o; € W be the simple reflection

corresponding to the simple root a;. For data of ® and II, see Carter’s book [7,
2(a,a5)
(ai,af) '

p.543]. Let C' = (¢ij)nxn be the Cartan matrix, where ¢;; =
Denote @ = @, Za; as the root lattice of g. Put ay = (a o ), let A =

@, Zw; be the weight lattice and AT = @), Z;w; be the set of dominant
integral weights, where w; = >.;_; *ay is the i-th fundamental weight, and
(¢7)pxn = C~1 is the inverse of the Cartan matrix.

Let 7, s be two indeterminates and Q(r s) be the rational functions field. Let

K 2 Q(r, s) be a field contains rm?, sm?, where m = =min{k € ZT | kA C Q} =
det(C). Let r; = rdi = r 2 and s; = st = s for i = 1,...,n, where £ = 2

for type A,,, Cn, Dy, Eg¢, E7, Eg, Go, and £ = 1 for type B, Fj.
Let A = (a;j)nxn be the structure constant matrix of U, s(g), which is given
by the Euler form of g as follows.

DEFINITION 1. [26] The Fuler form of g is the bilinear form (—, =) defined on
the root lattice Q) satisfying

dicij 1<,
<Zaj> = <alvaj>: dz Z:jv
0 1> ]

For type D, it is necessary to revise {n —1,n) = =1, (n,n — 1) =1 (5} 27]).
It can be linearly extended to the weight lattice A such that

(w0, 005) = e (kD).

k=1

Write a;; = r<j’i>s_<i’j>, and A = (ai;j)nxn is the structure constant matrix

of U,s(g). Denote R;; = (j,i), S;j = —(i,7). Then we have a;; = rfis%i and
R=-ST.

DEFINITION 2. [5, 26] Let U = U, s(g) be the unital associative algebra over
K, generated by elements e;, fi, il,wgil (i = 1,---,n) satisfying the following
relations (X1)—(X4) :

(X1) wilw’il wgilw;tl, wiw; T =1= w}o.);_l,

(X2) wiejw; ' = aije;, wifiw; = a7V,

wiejwi Tt = ajflejv wifiwi = ajify,

(X3) [eq, fi] = 0,472,
(X4) (adye)' %( D=0, (ad, ) (f) =0, (i #£7)

where the left (Tight)-adjomt action are as follows: for any x,y € U, s(g),

ad; z( Z (1) yS(z 2) ad, z(y) = Z S(x(l))yaj(g)
(z)
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The comultiplication A(xz) = Z(m) T(1) ® T(2) is given by Proposition [3 below.

PROPOSITION 3. [5, 26] The algebra U, s(g) has a Hopf algebra structure
(Urs(g), A, e, M, v, S) with the comultiplication A, the counit € and the an-
tipode S defined below:

AW = v o wi, AW =wi @ W™,
Ale))=e;@1+w; Qe , Afi)=1® fi + fi®w; ,
e(wih) = e(w™) =1, eler) = e(fi) =0,

S(wih) = Wi, Sty = Wi,

S(e;) = —wj te;, S(fi) = —fuw .

The two-parameter quantum group U = U, 5(g) has the triangular decomposi-
tion U = U~ @U°®U™, where UY is the subalgebra generated by {w:, wgi, 1<i<
n}, Ut is generated by {e;,1 < i < n} and U~ is generated by {f;, 1 <i < n}. Let
B be the subalgebra of U generated by {e;, wjj-[, 1< j < n}, and B’ the subalgebra
of U generated by {fj,wéi, 1<j<n}

/

PROPOSITION 4. [5], [26] There exists a unique skew-dual pairing (—,—) : B’ X
B — K of the Hopf subalgebras B and B' satisfying
1
(fiej) = 5ijﬁa

(wi, ws) = aji,
<wz{i17wj_l> = <wz{i17wj>7l = <W£7Wj>$17
for 1 <i,j < n, and all other pairs of generators are 0. Moreover, (S(a), S(b)) =
(a,by fora e B',beB.

For n =" | mioy € Q, write

_ ., m . ...m o /771'” ! Mn
Wy = Wy wy" Wy, = Wy Wy, -
Then we have
—1_ g _ [ —1p
WneiW, = = <wi,wn>61, anzwn = <wi7w77> fis
/ =1 _ -1 / r—=1 _ /
WpeiW, = <W777Wi> €, wpfiwy = (wn,wi>fi.
Introduce a Q-graded structure on U, 4(g) :
/
deg e; = a, deg fi = —au, deg w; =deg w; = 0.

Namely, U, s(g) is a Q-graded algebra, and its subalgebras U + are Q*-graded.

vt=@pur, U =PUu,,

HEQT HEQT

where U =U* NU,, UZ, =U"NU_, and

wy)z, whaw! = (wh,wu) 'z}

+ _
Ul ={z e U* |wpaw, ' = (w] W

7 %
And B (resp. B’) is also Q% (resp. Q7 )-graded algebras.
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2.2. The matrices R and S.

PROPOSITION 5. The matrix R — S is a symmetric Cartan matriz, i.e.
2
R—-S=DC= Z((ai, aj))an
where the matric D = diag(dy, -+ ,d,), di = (ay,;)/L. For type By, and Fy we
have £ = 1, while £ = 2 for type A, C,, Dy, Fg, E7, Es and Gs.
PROOF. By definition, we have R—S = R+RT = ((j,i) + (i, 4)),,x, = DC. O

The symmetric matrix R— .S can be considered as a metric matrix with respect
to the basis aj, - ,a, of E, and every element of Weyl group is orthogonal, we
then have

COROLLARY 6. Let X be the matriz of o € W with respect to the basis {«;},
we have (R — 9)% = ST (R - 9).

Now we will discuss the non-degeneracy of another important matrix R + S
which is crucial in the study of the Harish-Chandra theorem of U, s(g).

PROPOSITION 7. When n is even, the matriz R + S is invertible; when n is
odd, we have rank(R+ S) =n — 1.

PROOF. We check the conclusion case by case. For type A,, we have

1, 2|n
det(R+5) =" I,
0, 21n,
where
rs~! s 1 1 1 1 1
r~l sl s 1 1 1 _1
1 r=t st 1 1 1
A=| ¢ r o | RES=
1 1 1 rs”t s 1
1 1 1 r=1 sl S -1 1
1 1 1 1 1 sl —1
For type B,,, we have
2" 2| n
det(R+ S) = » 20m
0, 2fn,
where
r?s72 §2 1 1 1 2
r2 2572 1 1 1 -2
A= : R 1 | R+S=
1 1 ' r2s?2 52 2
1 1 r=2  p2s2 52 —2 2
1 1 1 r=2 sl -2

For type C,,, we have

4, 2|n,

det(R+S) = {O 21n
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where
rs”! s 1 1 1 1
r~1 st 1 1 1 -1
A= = e e e : , R+ 5=
1 1 ' rs~1 s 1 1
1 1 r=b sl 52 -1 2
1 1 1 r 2 2572 -2

For type D,,, we have

4, 2| n
det(R+S) =<’ I,
0, 2tn,
where
re”! s 1 1 1 1
r~b psTt 1 1 1 -1
A=| e | R+s=
1 1 N s s 1 1
1 1 ceeopd rs—! rs —1 2
1 1 el gl gl -1 -2

For the family of exceptional types Fg, E7, Eg, it suffices to list the data of type
Eg (from which we can read off the data of type Eg, E7).

rs~1 1 S 1 1 1 1 1
1 rs~1 1 s 1 1 1 1
r1 1 rs1 s 1 1 1 1
A= 1 Pt r—b psTl S 1 1 1
o 1 1 1 r~b psTl s 1 1 ’
1 1 1 1 r~1 psTl S 1
1 1 1 1 1 1 psTl S
1 1 1 1 1 1 r~1 psTt
1
1
-1 1
-1 -1 1
R+ S= 1 1
-1 1
-1 1
-1

Hence, for types Eg and Eg, we have det(R+ S) = 1; for type E7, det(R+ S) = 0.
For type Fy, we have det(R + S) = 4, where

r=2s72 52 1 1 2
r—2 r2s72 &2 1 —2 2
A= 1 r2 rs1 s , B+5= -2 1
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For type G, we have det(R + S) =9, where

rs~1 s° 3

When n is odd, we have corank (R +.5) = 1. We list the unique non-zero solution
(up to scalar) for each type as follow.

A2k+1 : 5[2k+2 v* = (1,0,1,0, . ,1,0,1)T
BQk+1 P 504k+3 vt = (1,0,1,0, . ,1,0,1)T
Cory1: SPypyo | v =1(2,0,2,0,---,2,0, nHT
D2k+1 P 504k42 vt = (2,0,2,0, e ,2,1,—1)T
Er v* =(0,1,0,0,1,0,1)T
This completes the proof. ([

2.3. Weight modules and the category O;’S. Recall the structure of weight
modules studied by [6}, [40]. '

Let o : UY — K be an algebraic homomorphism and V¢ be a 1-dimensional
B-module. Denote M (p) = U ®p V@ as the Verma module with the highest weight
o and L(p) as its unique irreducible quotient.

Let A € A and rewrite it as A\ = Z?:l Aiai, A\; € Q. Then we can define an
algebraic homomorphism ¢* : U? — K, satisfying

n n
oMwy) = [ [whwp) = aji-
i=1 i=1
Clearly, it satisfies the property o** = p*o*.
When A € @, one would get following relations from the Hopf paring.

QA(wj) = <w3\ 7wj>7 QA(w;‘) = <w;’7w—>\>'

For convenience, we denote M (\) := M (o*) and L()) := L(¢") when X € A.

LEMMA 8. [2], [6, [40] For the two-parameter quantum group U, s(g), we have
(1) Let vy be a highest weight vector of M(X\) for X € AT. Then

L(\) = M(A)/(i Ut ),

i=1
is a finte dimensional irreducible U, s(g)-module. Also, it has the decomposition of
weight space L(A) = B, <, L(A)y, where
L)y ={z € L\ |wi.z = 0"(wi)z, wix = 0" (w])z, 1<i< n}.
(2) The elements e;, f; (1 < i< n) act locally nilpotently on L(X).
THEOREM 9. [2} 6, [40] Suppose rs~! is not a root of unity, when X\ € A*, we

have
dim L(\)y = dim L(N)g(y), YneA ocW.

DEFINITION 10. [27] The category O consists of finite-dimensional Uy, s(g)-
modules V' (of type 1) satisfying the following conditions:
(1) V has a weight space decomposition V = P, Vi,

Va={veV |wp=rtms Ay, wyv = r N Ay e Q Y,
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where dim(Vy) is finite for all A € A;
(2) there exist a finite number of weights A1,--- , At € A, such that

wiwv) € [J pow),
=1

where D(A) := {p € A | p < A}. The morphisms are U, s(g)-module homomor-
phisms.

2.4. Rosso form and characters.

DEFINITION 11. [5] The bilinear form (— , —)u : U x U — K defined by
(fawpwoes, fowhwsey), = (Wh,wo) (W), ws) (fo,ep) (S? (fa) s ev)
is called the Rosso form of the two-parameter quantum group U = U, 4(g).
THEOREM 12. [5, [40] The Rosso form (—,—)y on U x U is ad;-invariant, i.e.,
(ad;(a)b, c)u = (b,ad;(S(a))c)y, VYa,b,ceU.

THEOREM 13. [6l, [40] For any 8 € QT, the restriction of the skew-pairing
(=, =) to B" 5 x Bg is nondegenerate.

DEFINITION 14. Define a group homomorphism x4 : @ x Q@ — K* by
X (15 @) = (Wi, wer ) (Wi, W),
where (1,9), (', ¢') € @ x Q, K* =K\ {0}.
LEMMA 15. If xy.6 = Xn',¢', then (n,¢) = (1, ¢').

PRrROOF. Let n = Z?:l nag, n = Z?:l oy, and ¢,¢" € Q, for j =1,---,n
we have

n n

Xn,6(0, ;) = <w;7’wj> = H<w£7wj>ma X (0, 05) = H<w£7wj>m'

i=1 i=1
Since Xy, = Xn',4’, We have

n

Xﬁ,¢(07 aj)
1= — < , Wi 771 771 a: i
i | GO | &
- HTRjz'(m—né)SSﬂ(m—ni),
i=1
which in turn gives (R — S)(n — n') = 0. Finally, Proposition [l yields n = /. A
similar argument leads to the conclusion ¢ = ¢'. ([

THEOREM 16. The Rosso form (—, =)y of U, s(g) is nondegenerate.

PROOF. Since the skew-pairing (—, —) has orthogonality for the grading, it
suffices to check the case when u € UZ,U°U[, if (u,v)y = 0 holds for all v €
U:HUOU;L, then v = 0.

Denote d,, = dim U}f. Let {uf,--- ,ugu} be a basis of U} and {vf,--- ,vfjﬂ}
be its dual basis in UZ, with respect to the Rosso form by Theorem I3, that is,
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(vf',uf)u = 645 Hence UZ,UUY = spang {vfwjweuf |1 <i<dy, 1< j<dy}

Notice that
<v;'jw:7w¢u?7 vgw;/w¢’u;’>U = <w;77 w¢’> <w;7/ ) w¢> <U5a ’U,;L> <S2 (’U;/)v uzj>
182
= 0 0u(rs 1)f(p’”)<w;,w¢/><w;,,,w¢>,
where p is the half sum of positive roots. Let u = Ziyj,n,cb

vpwpweruy, where 1 < k < dy, 1 <1< dy, n/,¢" € Q. Suppose (u,v)y = 0, we
have

.. v,/ H —
ki, jn,e0; WpWetly, U =

0= Z kk,l,n,¢(T$71)%(p’y) <w;7, w¢/><w;},,w¢>
7,¢
C1\Z(pw
= Erime(rsT) Py o (0, ¢,
7,¢

By Dedekind theorem, we have ki .4 = 0. so u = 0. 0

2.5. Harish-Chandra homomorphism. Let Z(U) be the centre of U, s(g).
It follows that Z(U) C Uy. Now we define an algebra homomorphism v : U —
UY as
'y*p(w;]wqb) = gfp(w;]wqb)w;’wqb.

Particularly, we have

P (wiwy t) = (risy )P Dwiw

DEFINITION 17. Denote & : Z(U) — U° as the restricted map v~ o | z(vys
v P Uy — U = U,

where ™ : Uy — U is the canonical projection. We call ¢ the Harish-Chandra
homomorphism of U.

Define a subalgebra Ub0 = Kw;]w_n and let the Weyl group W act on it
neq

/

o(wy,

woy) = w;(n)w,g(n), YVoeW, neqQ.

THEOREM 18. [2], B, [21] For types A,, B, and Gz, when rank n is even, the
Harish-Chandra homomorphism & : Z(U) — (UbO)W s an algebra isomorphism.

3. Harish-Chandra homomorphism ¢ is injective with even rank

LEMMA 19. For all A € AT, we have

(i) If oMwjwg) = 1, then n = ¢.

(ii) When rank n is even, then o™(w)wy) = 1 if and only if (n,¢) = (0,0).

PrOOF. (i) Fix n,¢ € Q, A € AT, and write them as n = > ny, ¢ =
i=1

n n
S i, A= > Ny, i, ¢ € Z, A € Q, and denote 1y, Po, Ao as their column
i=1 i=1



HARISH-CHANDRA THEOREM FOR TWO-PARAMETER QUANTUM GROUPS 11

vectors with respect to the basis {a;}, respectively. Then

(o} I

7,i=1

(1) 0Mwg) =

':ﬁ

<
Il
-

pRiXib; gSiiXid; _ pSLR a | b0 SXa

=1

<.

I

Similarly, we have o (w Mo BAa 13 SAa , then

) =
)=

1= oMwjwy) = TAZ (R"¢a+5Tna) | AL (ST¢a+R o)
It follows that
(2) RT(ba + STna =0,
(3) ST o + R0 = 0.
(4) (R = 5)"(¢a = 1a) = 0.

Then by Proposition ] we know that R — S is invertible, hence ¢ = 7.
(ii) Let ¢ =, then (@) yields
(R+85)"n, =0.
When n is even, n = 0 = ¢ holds since R + S is invertible by Proposition [7 0

THEOREM 20. The Harish-Chandra homomorphism & : Z(U) — U° is injective
when n = rank(g) is even.

ProOF. Consider the triangular decomposition of U = U~UU™ and set K =
@D,-o UZ,UU}. which is a two-sided ideal of Uy = U’ ® K and K = ker(r), the
following argument shows that when z € Z(U) and £(z) = 0, we will get z = 0.

Let z = >, co+ %, Where 2, € U—,U°U;. Fix a minimal root v € QT that
zy # 0, and choose bases {2;} and {yx} for spaces U], and U_

» respectively. Now
we write z, = Y, ; Uktk,%1, tg € UY. Then

0=e;2 — ze;

= Z (eizy — 2v€;) + (€2 — 2u€;)

y#V
=3 (eizy = zyei) + O (€ih — yrei) trazr + > vk (eitn iz — teimies) |
y#v k,l Kl

Since e;yr — yre; € U_(U . )U O only the second term in the equation falls in
U-

UCU.F, so it is forced to be 0, that is

Z (eiyr — yres) trawy = 0.
k.l

(v—a;)

Based on the triangular decomposition of U and the fact that {x;} is a set of basis
of U}, the equation Y, ejyrtiy = Y5 yreite, holds for each pair (I,i). Fix al
with a A € AT and take an element m = (3, yrtr,1) - vx ¢ L(\)x in the irreducible
module L(\), for each i we have

e;m = Zeiykfk,z “UN = Zykeitk,l <vy = 0.
k k
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This shows that m generates a proper submodule of L(\) which contradicts the
irreducibility of L()\), hence

0=m= Zyktk,z “Uy = Zyk-g’\(tk,l)w-
k k

Let v = kjag + -+ + kpa, € QT \ 0. Taking N = maz{k; | 1 < i < n}
and A = Np, we have (\, o)) > k;. By the fact that the map >, yro*(tg1) —
(3", yko™ (k1)) - vy is injective in [6], Theorem 2.12] and [40}, Corollary 38], we have
>k yko™(tiy) = 0. Then o*(tg,) = 0 for each k since {y)} is a basis of U_,,.

Now let try = >, s knowyws, kno € K. Since 0 Mtr,) = 0 and there are
only finitely many non-zero terms in tx; = 3, knowywe. Count the number of
non-zero terms by p. Taking m =1,2,---,p, we obtain

m
0=0"tes) = > _ A wywe) kn.o,
¢

whose coefficients o* (wywe) form a Vandermonde matrix. It follows from Lemma
that when n is even, for each A € AT we have p*(wjwy) = oMwiwy), <=
(n,¢) = (¢,¥). Hence all k,, , = 0, that is, tx; = 0. O

REMARK 21. The assumption on rank n to be even is a sufficient condition for
& to be injective. Note that in the case when rank n is odd, the proof of Propostion
5.2 (see p. 458, -line 3 [2]) for type A, really contains a gap, as was pointed out
in Remark 3.5 [30].

4. The image of the Harish-Chandra homomorphism ¢ with even rank

Define an algebra homomorphisms o™* from U to K as oM* = 0%*0*0 A\, u
€ A, where

Qo,u . w;w¢ — (Tsfl)(wr:b,u),

oM whwg oM whws).

LEMMA 22. Suppose n is even, then
(1) let u = wywe, 0,0 € Q. If oM (u) =1,V A\ p €A, then u = 1;
(2) if u € U satisfying o™*(u) = 0 for all A\, u € A, then u = 0.

PROOF. (1) Again, denote 1,, ¢, and A, as coordinates of 7, ¢ € @ and A
with respect to the basis {«;}, respectively. By 1 = o™#(u) = 0 (u)0%*(u) and the
formula () in the proof of Lemma [[9, we have

X(, AT(RT pa+5T00) AL (ST pa+RT 10
Q(wnw¢):7°°‘( PatS na) gra (87 dat R na)

M (wpwg) = (rs™ 1),
It follows that
(77 + ¢7 /1’) + )‘Z(RT(ZSQ + STT]Q) = 07
—(n+ 1) + AL(ST b + RTna) = 0.
Set A = 0, we have n+¢ = 0. Similarly, it leads to n = ¢ = 0, that is, u = w;wd, =1.
(2) Fixing a pair (7, ¢) € Q x @, one can define a character x, 4 on the group
A x A to be kg (A p) = 0™ (Whwg).-
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Let u= }_ kygwywe, kng € K. Then

(n:8)
0= M (u) = Z kmaﬁQ/\’M(W;}W@ = Z Fn,g i, (A, 1)
(n,9) (n,9)
Since characters {x, } are different from each other, we have k, 4 = 0, that is,
u = 0. 0

PROPOSITION 23. o®M#(u) = oM (07 (u)), foru e UY, 0 € W, A\, p € A.
PRrROOF. It is sufficient to check the case that u = w;w_,, and o = o; a simple
reflection. As we did earlier, use subscript « to denote ones column vectors with
respect to the basis {a;}. By Corollary [6] we have
oM(0; (W) = MW, (@ —oim)
— pra (BT (@i(m)a+8T (0i(=m)a) gAa (ST (7i(m)a+RT (0 (=)o)
e (B=8)Sina (AL (S—R)Zi na

= TAZ&T'(R*S)% S)\z,:EiT'(SfR)na
— (@i ONE (R natST (=m)a) 4(0i W) E (ST na+RT (=n)a)

cri()\),()(

= 0" M (wjw ) =0 u),

o™ (o™ () = 0" N0 (wpw—y))
= (Tsfl)(fl(n)nw”(*n)yu)
= (rs~ 1O = QO’“(w;w,n).
S0 (o1 (w) = "V () 0

Define a subalgebra (UY)" = {u € U | o(u) = u, Vo € W} and characters
Kot (A p) — g)‘*“(w;]wqb), on A x A for each (n,¢) € Q x Q. Further we define
Kot (A ) = 07 ) H (W) wy).

LEMMA 24. Suppose that rank n is even, 0 € W, A\, € A. If u € U° satisfies
that "N #(u) = o™ (u), then u € (U)W,

PROOF. Let u= Y ky¢w,ws € UY, then

(n:4)
> Fnoe™ (wiwg) = D kepo” M (wiwy),
(n.9) €¥)

hence we have an equation for characters:
D knoting = D keuht g
(n,) (C¥)

Comparing the two sides of the equation, for each k;, 4 # 0, there exists one ({,9) €
Q x Q, such that k, 4 = ”Z,w and k¢ .y = ky,¢. Then

O;wj( (n+¢,;)

Fins(0,0;5) = 0% (wywe) = (rs™")
= Hl{,qb(oa wj)
= 0" (wiwy) = (rs™")CHo=)
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yields n+ ¢ = ( + 1, and

TI; — Oy (

07 (whwe) = 07T (wiwy) = 0 Wewg)-

Since ¢ = ( + v — n, it follows that
0% (W) W_(y-0)) 0" (Wew—¢) = 07 Y (Weg)-
Rewrite the equation in the form of 7*s! =1, for i = 1,--- ,n, we have
(@i)a (R = 8)"(n=Ca+ef (R=8)"Ca+el ST(C+1)a =
(@i)a (S = R)T(n = C)a +&i (S—R) o + 6] RN (C+¥)a =0,
where g; is the i-th unit vector. Adding two equations, one has el (R+9)T ((+1)q

0, i=1,---,n. That is, (R+ S)7({ + ) = 0. Since n is even, det(R + S) # 0,
wehave(+¢=0=¢+77. Then

u= Z ko, —newnw_y € Uy
(m,—m)
Finally, by Lemma 23]
M (oM (w) = "NV (u) = oM (u), YApEAN oEW,
which yields u = o~ !(u) for all 0 € W. So u € (U)W O

THEOREM 25. Suppose rankn is even, then o TPH (£(2)) = 0" A HP11(E(2)), Vz €
Z(U), 0 € W, \,p € A. As a result, we have Im(§) C (UX)W

PROOF. Let z € Z(U) and p € A, take a A € A such that (A, o) > 0 for some
fixed i. Let vy, be the highest weight vector of the Verma module M (¢**). Then

2 O = 7(2) oA = O (T(2))on g = P (E(R))on e

Uxp =
That is, z acts on M(o**) by scalar g***#(£(z)). On the other hand, by [5l

Corollary 2.6] and [40l Property 37], let [m]; = % then we have

i

(ay)+1 (o) Dy — 573
ef; ! U = [()‘aai )+ 1] f; “ U p-

T — Si

Notice that

_ v — v — v — v
(r; (e )wi — 5, e )Wz/‘) TUNp = (7‘- e )QA’#(M‘) ] (e )Q)\’#(Wz{)) “UN e

K2 K3

Since r;(A’aiv)g’\’O(wi) =s; ~(val) oM (wh), it follows that

\%
ejfi(Ayai)+1'v>\”u207 .]:15 y 1y
Ao )+1 Aoy )+1
Zfi( a )+ oA = ﬂ_(z)fi( af )+ Ua
\4
= o7 O () £

K2

= g7 O (g(2)) fDT Ly Vze Z(U).

K3

Hence, z acts on M (o™*) by scalar g% A P)#(£(2)). we have

(5) OMPI(E(2)) = o7 TP (E(2)).



HARISH-CHANDRA THEOREM FOR TWO-PARAMETER QUANTUM GROUPS 15

In fact, equation (@) holds for any A € A. This is because if (A, ;) = —1, then
A+ p = oi(N + p) such that (@) holds. If (\,a)) < —1, let N = a;(A + p) — p,
then (X, )) > 0 such that (&) holds for \'. Relacing X with o;(A + p) — p into
the result that (Bl holds for A in this case. Finally, since (B holds for each o;, so it
holds for all ¢ € W, which implies that Im (§) C (U?)", by Lemma O

5. Central elements and the Harish-Chandra theorem

In this section, we will deal with arbitary rank.

5.1. The Harish-Chandra theorem. In what follows, we aim to prove that
the subspace (U2)" is in Im(¢).

LEMMA 26. Let z € U, then z € Z(U) if and only if ad;(z)z = e(x)z, V& € U.

PROOF. Suppose z € Z(U), then for all z € U, we have
ad;(x)z = Zx(l)zS(a:(g)) = sz(l)S(x(g)) =e(x)z.
(2) (2)

Conversely, if ad;(x)z = e(x)z holds for all z € U, then
wizw; t = ad;(w;)z = e(wi)z = 2.
Since for each generator e; and f; of U, s(g), we have
0=c(e;)z =adi(e;)z
=e;z +w;zS(e;) = ;2 — (wizwfl)ei =e;z — ze;,
0=c¢(fi)z=adi(fi)z
= 28(f;) + fizS(w}) = (—2fi + fiz)w] .
So z € Z(U). O

LEMMA 27. Given a bilinear form W : U:#XUJ‘ — K and a pair (n, ¢) € @xQ,
then there exists an element u € U__HUOUJ such that for any v € U}, y € UZ,

and (C,¥) € Q x Q,
(u, ywewya)y = (we, we) (wy, wy) ¥ (y, ).
PROOF. Let p € Q and {uf,--- ,ugu} be a basis of Uf, then take a dual
basis {v!', - - ,vfi‘u} in UZ,, with respect to (—, —). Take that
u = Z(rs‘l)_%(””’) W (vf, uf) vf wyweul,
0.
then u satisfies the identity in the lemma. O

DEFINITION 28. (1) Define a U-module structure on U* by
(- filw) = f(adi(S(x))v), VYzeU, feU"

Then we define a morphsim § : U — U*, u — (u,—)y. It follows that B is
an injective morphism of U-module since Rosso form is nondegenerate and ad-
mvariant.

(2) Let M be a finite-dimensional U-module. For each m € M, f € M*, define
the matriz coefficient by Cym € U, Cym(v) = f(v-m), Vv e U.
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THEOREM 29. Let M be a finite-dimensional U-module. Decompose M =
@D e Mr, where
My ={me M |w;-m= o w)m, w,-m=ow)m}.

If the weight set of M satisfies Wt(M) C Q, then for f € M*, m € M, there exists
a unique u € U such that

Ctm(v) = (u,v)y, Vwvel.

ProOF. We start by proving the existence of u. Since Cfy,, is linear with
respect to m € M, it is sufficient to check the case of m € M) for each A. Suppose
v is a monomial v = yw;w¢x, where z € U, y € UZ,, then for each f € M*, we
have

Crm(v) = Crm(ywywsr) = f(ywywer.m)
- @*”(w%w@f(y.x.m)
= <w;7, w—(>\+l/)><w3\+ua w¢>f(y.3:.m),
Since ¥ : (y,z) — f(y.x.m) is a bilinear form, by Lemma 27, there exists a unique
u,,, such that for all v € UZ, UUF, Cm(v) = (Upy, v)r holds.

More generally, let v € U with v = 37, ) v, where vy, € UZ,U°U,f. Since

M is finite-dimensional, there exists a finite set Q of pairs (i, v) € @ x @, such that

Crm(v) = Cf,m(z vul,), VveU.
(1,v)
Let u = E(M,U)EQ Upps then

<ua v>U = Z <uv e v,uv>U
(bsv), (! ") €Q

§ uu;u 'U,uu

(n,v)EQ
= D (ww)u = Cpum(v).
(p,v)EQ
Here the second row of the equations holds by Lemma (Il

LEMMA 30. Let (M, () be a weight module, where ¢ : U — End(M) and define
a linear map © : M — M by

m (rsil)f%(p’)‘)m, Vm e My, A€ A.
Then for all u € U, © o {(u) = ((S?(u)) 0 ©. That is,
O(u.m) = S*(u).0(m), Yme M.

Proor. It is sufficient to check it for the generators e;, f;. Notice that

(047. ;)

(Whw) =ay = (rs )% = (rs™1)

= (s )70 = (rs 1) E000
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which yields for any m € M),

H0N) (52 (e;).m)
(p, 1

(wz,wl> e;.m

S%(e;).0(m) = (rs™ 1)~
=(rs™!)”
=(rs™H)™ P A tai)e, .m = 0O(e;.m),

S2(£:).0(m) = S2(f;)(rs™")~F#N.m

= (W, wi)(rs™) TN fm

= (rs~ )" EPA=0) £ = O(f,.m).

N\m

This completes the proof. (I

PROPOSITION 31. For X\ € A", define a quantum trace ty € U* as ty(u) :=
tron(uO). If A € AT NQ, then ty € Im(B), and z := B~ (t\) € Z(U).

PrOOF. (1) Since B(u) = (u, =)y is injective and t\ = trp\) (=0 ©) € U*,
denote the dimension of L()) by d, take a basis {m;}%_, in L()\) and its dual basis
{fi}d_, in L(N\)*, we have

d

v@(ml) = Z f (’U @ mz Z ij ml) mjv

j=1
t)\( )—tI‘L()\ 1)0@ ZCf“ ml)

By Theorem 27 for each i = 1,--- ,d, there exists u; € U that realizes the matrix
coefficient by (u;, v)u = Cf, o(m,)(v). Write u = Zle U, then

It follows that ¢y € Im(g).
(2) Since U* has a U-module structure (z- f)(v) = f(adi(S(z))v), Vz e U, f €
U*, then for any z,u € U, we have

(S7H(x).ta) (u) = ta(ad;(z)u) = trp(y) (Zx(l)uS(I(g))G)
(x)

= trpoy (1) S(r2)02()) = tro (u ) S(@@)5%(2))6)
(x) (z)
e tI‘L()\) (’U,S(Z S(IE(l))I(z))@) = (L o 6)(:E) trL(k) (u@)
)
= (tog)(@)tx(u).
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Substituting S(x) for x above, we get x.tx = (voe)(x)ty, V x € U. Notice the fact
ty € Im 3, we define 2y := 87 1(¢)), then

z.tx = z.(B(22)) = (z.8)(2x) = Bladi(z)(21)),

(Loe)(@)tr = (roe)()B(zn) = B((¢ 0 €)(x)2x)-
Since f is injective, ad;(x)(zx) = (to€)(x)zx, V x € U. Therefore, by Lemma 28] it
follows that z) € Z(U). O

As described in Theorem 29 for each A € A, there is the unique simple
weight module L()) with the weight space decomposition @ __, L(\);. Define
d, = dim L(\), and set a basis {m]}%, for this weight space. Then L()) has
a basis {m7},; and L(A\)* has the canonical dual basis {f{}, ;. Since L()\) has
finite dimension, there exists a finite set 2 C Q x @ such that for any v € U =
U-U°U*,m € L(\), we have v-m = 37, ycq U, - T, Where vy, € UZ, UU,}.

THEOREM 32. For each A € AT (Q, the central element zy is
2y = Z Z Z e(PvTﬂ‘)tr(v”u“ o Pr)vl'wl, wrii ul,
TN peQt i,j

where {u d“ *, is a basis of U+ and {v' “1 is the dual basis of UZ,, with respect to
the Testrzctwn of (—,—) to U . X UL, and P. is the projector from L(X) to L(\).

PrOOF. We have shown that for any v € U,
trpy(vo©) Zf (v-©(m]) Zsz O(mr)

Firstly, we restrict v to any graded space U:#UOU;r and take a monomial
v = yw;wd,x, zeUfye UZ,,, then by Theorem 29 we have
Crio(mr) (v) = fHywwer - O(m]))
= 0" (wywg) f1(yx - ©(m]))
= (W W= (r0)) Wy, o) 1 (y2 - ©(m])).
Then by Lemma 27, put ¥(y,z) = fL(yx - ©(mI)), then we get an element

Igruz) _ Z(rs*)*%(”*’ﬁllf(vf,u;’) U;/w;ﬂwi(ﬂy)uy

2
_ § : —2(p,7+v) M -1
¢ f (UJ u -my ) U wT-‘erT-‘rljuJ )

so that (zl(,#), Yu = Cf;‘,(—)(m;)(v), for any v € UZ,U°U,f.
Further, we add up all the elements labeled by the finite set £ and write z(7) =
Y e zl(,T#l), then
(™D )y = Cromn(v), YveUl.
Finally, since z) = Z 271 we get the expression

(dv,dy)

A=Y Y S e ) bt

TSN =1 (1) €Q (4,5)=(1,1)
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Since {m]}%7, and {f},,; are dual to each other, when v # u the component

in zl(,TMl) = 0. Also, we can simplify the expression of z) by projectors P,, then

Z)\—Z Z Z - 7f(p7+“) tr(vuy o Pr) vfw;_‘_uw;&uu?.

TSApeEQRt 4,

This completes the proof. (I

THEOREM 33. Suppose rank n is odd, there is one extra invertible central gen-
erator z, := [[1_, (wiw!)¥ in U, s(g) (which doesn’t survive in U,(g)), where the
vector v* is given in Proposition []

Proor. It suffices to show z, commutes with generators e; and f;.

n n n
o
Zx€j = H wiw J ez = €; H I I aﬂa
j=1 j=1 j=1

Z(r ) (4,9)—(3,9))v;
z(r )(R+S = iz,
zfi = fi( [T (ww))) T (agias;’
j=1 j:l
= fzu(rs)” (BAS)" — o
This completes the proof. (I

PROPOSITION 34. When rank n is odd, the central element z. is a fized point
of the Harish-Chandra homomorphism &, and &(z,) = z. ¢ (U2)W
PROOF. The first statement is proved directly as follow.

n n
&(z) = ([ ] o ((wjw))™
=1 ij=1

= (rs)? Zhim (BHSivj o — 5

<
~—
~—
W
*
|
—
—
@
<
@
\./
*
\
[
\./

Since U, , is also a Q-bigraded Hopf algebra [27] where e; € (Ur,s)(ai,o), fi €
(Ur,s)(0,-ar)» WiswWi € (Urs)(ai,—a;)- Thus all generators w;w_, of UbO have the
same bigrade (0,0), they can not generate an element graded by (n, —n),n € Q\ 0,

(I

which leads to the second statement.

THEOREM 35. If rank n is even, then the Harish-Chandra homomorphism & :
Z(UT s(9)) — (UO) is an algebra isomorphism. If rank n is odd, we have Im(&) 2

PRrROOF. Firstly by Theorem B2, for each zy, A € AT N Q, we have

2 = Z(Tsil)f%(p”“) dim(L() u)wp,w—pi-
HSA
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Therefore, by definition in section 2.5, we have

€)= 7" = D (rs™) T M dim(L(N),) 0 (W)W e w—p
pn<A

= Z dim(L w_u

pn<A

Notice that {£(zx) | A € AT NQ} CImé C (U)V in Theorem It is sufficient
to show (U)W C Im(¢). Since for each n € Q, there exists a unique ¢ € W such
that o(n) € At NQ, it is clear that the elements

aV |w| Z wkw )\ | | Zw NW—a(\)> /\GAJFQQ
oceW

form a basis of (U)W

It only remains to prove that av(\) € Im(€). By induction on the height of A, if
A =0, then av(\) =1 € Im(§). Assume that A > 0, by the fact that dim(L(\),) =
dim(L(A)y(y)), Vo € W and dim(L(A)x) = 1, we have

Z dim(L Yw! W g

HE<A

= Wav) + W] S dim(LO),) av(p).
n<, pEATNQ

By the induction hypothesis, we get
1 .
av(\) = W{(z)\) - Z dim(L(X),) av(p) € Imé.
n<, pEATNQ
Therefore,
(U)" = spang {av(}) | A € AT N Q} C Im(€).

When rank n is even, combining Theorem [25] we have that £ is isomorphic to
its image. When rank n is odd, we have (U?)" ® K]z, 2;'] € Im(€) by Theorem
and Proposition 34 0

2. Alternative approach to central elements. Similar to [47], we can
also construct central elements by taking quantum partial trace.

PROPOSITION 36. Let A\ € AT and ¢ : U, s(g) — End(L(\)) be the weight
representation. If there is an operator I' € U, 4(g) ® End(L(\)) such that

o (iId®@QA(z) = (id® A(x) o', Vae U s(g),
then the element ¢ = tray(T'(1 ® ©)) € Z(U, s(g))-

PrOOF. It is enough to check this element commutes with all generators of
U. In convenience we view the operator (id ® ()A(x) as A(x), and write I' =
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YorTa) ®T (g . Since [T, A(wEh] =0, and S?(u)© = Ou, ¥ u € U, we have

0= tr2([T, A(wih)] - (1 ® OwFh))

= ZF(l)wjtl & tr(l—‘(z)wiile)wfl) — ngﬂr(l) ® tl‘(w;tll—‘@)@wfl)
r

= ZF(l)wjtl & tr(F(Q)@) — ngﬂl—‘(l) & tr(F(Q)@)
r

= Z F(l ® tl“( (2)9)
= [tf2( (1®6)),w;"] = [e,w; ],

Similarly, we have [¢,w/™"] = 0.

To prove [c, e;] = 0, we have to check [c, e;w; '] = 0,
0 = tro([T, A(el )] (1® 6w,))
= tro([T, eiw; * @ w; b 4+ 1@ ejw; (1 ® Ow;))
= trQ(F(eiwi_l) RO0+T(1®e0)
— (eiw; ' @w;HT (1 ® Ow;) — (1 @ e;w; HT(1 ® Ow;))
=tra(T(1®0)(eiw; ' ®1) +T(1 ®€;0)
—(eiw; '@ 1M1 ®0) —T(1 ® Ouiew; ')
= [tra(T(1 ® ©)), e;w; 1] = [c, esw; .

The fifth equation holds since @wieiwi_l = wiS’Q(ei)wi_le) = ¢;0.
Similarly, we have [c, f;] = 0. O

6. Centre of UT,S(g) of weight lattice type

In this section, we will add some group-like elements to U, s(g) to get the
two-parameter quantum group (u]ns(g) of weight lattice type.

DEFINITION 37. The algebra U, 4(g) of the so-called weight lattice form of

Uy s(9), is the unital associative algebra generated by elements e;, fi, w,f_f,il, w,’mil
(i =1,---,n) over K. Set w; = [[|L, we, ", wj = [[j_, wh, ™, the generators
satisfy the following relations:
+1 +1 +1 41 -1
(X1,A) wz wﬁﬂj wﬁﬂj wr?, We, Wt =1 = W, Wi, s
(X2,A) lee]w rl ,m)s—(md)ej’ A zm = p—{4@e) wm)fj7
/1 i:9) g0y @i) o . Iof 1 — i:J) g—(J,@i) f.
wl ejwist=r —(@i,j) g(J,@ >6J7 wl, fjwist = p(@id) g— (@ >fJ7
wlfw
(X3) [el,f-] = 51] e

(X4) (adie;)'=<i(e;) =0,  (ady fi)' 7 (f;) =0, (i #).

Here U, 4(g) naturally extends the Hopf structure of Uy 4(g) (elements Weo, » Weg,
are group-likes).
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PROPOSITION 38. There exists a unique skew-dual pairing ( —, — ) : B'xB — K
of the Hopf subalgebra B and B’ satisfying
1 .
<fi7€j>:6ij 3 1<’L,]<TL,
S; — Ty
<W‘{wi7wwj'> = T<Wi)Wj>5_<wj7Wi>u 1<i4,5<n,
<wz{ilawj71> = <wz{ilawj>7l = <wz/'awj>:F15 1< t,J < n,

and all other pairs of generators are 0.

COROLLARY 39. For any A1, A2 € A, we have (W) ,wy,) = rirAz) g= (A2 M),

It is obvious that U, s is a Hopf subalgebra of (u]ns, and these two Hopf alge-
bras have the same category of the weight modules, namely O;’S. Notice that our

approach to the Harish-Chandra isomorphism of U is exactly the same as in the

previous sections, so it is sufficient to show that the lemmas and properties affected
by the extension still hold.

LEMMA 40. The Rosso form (—, =) defined as in Definition[I1lis non-degenerate
on U.

PROOF. The only difference with Theorem [I4lis the character. Define a group
homomorphism x,¢ : A x A = K* by

Xﬁ;d’(”v w) = <w;77wu><w1/ﬁw¢>-
Parallel to Lemma [I5, we only need to prove that if x, ¢ = Xu ¢/, then (n,¢) =
(', ¢).
Let n =30 mia;, 0 =3 nia, for j =1,--- ,n, we have
1= 7xn’¢(0’wj) = ﬁ@;’, w >77i*77§ = ﬁ ﬁ<w’. w >ij(77i*77§)
“ a0y LEee) =1L L G

— k=1 ijRm(m‘*né)SZ?,kzl * S (ni—nj)
b

which leads to C~7(R—S)(n—n') = 0 and yields n = 7/. A similar argument leads
to ¢ =¢'. O

v

LEMMA 41. When rank n is even, the Harish-Chandra homomorphism £ :
Z(U) — U° is injective .

PRrOOF. It is sufficient to show Lemma holds in (?, that is for all A € AT
and n, ¢ € A, one has

(1) It QA(w’wqb) =1, then 77 = ¢.

(2) When n is even, then ¢*(wjwy) = 1 if and only if (9, ¢) = (0,0).

Notice that here n = Z Ny, ¢ = Z dia, N\ = Z i, 1m0, A € Q, and

=1 =1 =1
the proof of Lemma [19]is independent of where the coefficients are taken from, it

follows that these two propositions also hold true. O

The same reason can be used to show that Lemmas E2124 27 still hold in U,
which leads to Theorem 28] that is Im(£) C (Ubo)w, where Ubo = P, cp Kwjw_.
Parallel to Proposition BI] and Theorem B2 there are enough group-like elements
to define all zy € U,V A € A*. Finally by the fact that (U?)" has a basis
{av(A\) | A € AT}, repeating the proof of Theorem [BE] one gets:
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THEOREM 42. The Harish-Chandra homomorphism € : Z(U, 4(g)) — (
an isomorphism of algebms when rank n is even. In particular, for each A

Z dim(L Y W=y

n<\

When rank n is odd, Im(§) 2 (UbO)W ® Klzs, 2.1

o)"
€ AT,

Now we are able to construct the character map to study the centre Z(U, 4(g)).
PROPOSITION 43. Let K (U, 5) = GT(O;’S)Q@ZK, then the character map Ch, g :
KU, s) — (UbO)W is an isomorphism of algebras with

Ch, s([V Z dim(V,) o’ W= vV e O;’S.
n<A

PROOF. Since (V@ W), =@, Va® W,y still holds in OF?, it is clear that
Ch, , is a homomorphism of algebras. Next, if Ch, s([V]) = Ch, 4([W]) for some
V,W € O}*, then

peIL(V) vell(W)
where II(V) is the weight set of V. Since wj,w_,, with u € A are linear independent,

we have dim(V,) = dim(W,,) for any u, i.e., [V] = [W]. Finally, for any A\ € AT,
we have Ch, s([L(A)]) = £(zy). Parallel to the proof of Theorem BBl Ch,. , is also
surjective. O

In [27], one of us and Pei have studied the deformation theory of the repre-
sentations of two-parameter quantum groups U, s(g), where (’);’S is defined as the
category of finite-dimensional weight modules (of type 1) of U, 4(g), and proved
that

THEOREM 44. Assume that rs~' = ¢2, there is an equivalence as braided tensor
categories that

s o B4~
0y ~05% ~ 0F,
where O? is the category of the finite-dimensional weight modules (of type 1) of the

quantum group U,(g), and the equivalence takes L(X\) € (’)? to a deformed weight
module in Op° which is just L(\) defined in Lemma[3.

Combining the results in [20], [10]:

THEOREM 45. The K(U,) := Gr(0%) ®z K, the Grothendieck ring (over K)
of the category Oq of the quantum group U 7(9), is a polynomial algebra. More
precisely, let {w;}1 | be the set of fundamental weights of g, then

Z(Uq) = K(Uy) = K[[L(w1)], -+, [L(wn)] ]
with Theorem 44, we arrive at the following

THEOREM 46. The algebra K (U,.s) = Gr(0}°) ®z K is a polynomial algebra.
When rank n is even, the centre of the extended two-parameter quantum group
U,.«(g) is a polynomial algebra Z(U, ) = Klzm,,- - , Zw,]. When rank n is odd,
the centre Z(Uys) D Klzm,, -+ 2w,] @ K[za, 27 1].



24

N.H. HU AND H.Y. WANG

REMARK 47. When n = rank(g) is odd, we still cannot claim if the centre of

Urs(g) or Uy () is equal to K|z, -, 2w, ] @ K|z., 25Y] or not. It remains an
open question.

[1]
2]
3]
[4]
[5]
[6]
7]
(8]
[9]
(10]
(11]

(12]

(13]
[14]
(15]
[16]
(17]
(18]
(19]
20]
(21]
(22]
23]

[24]
25]

[26]

References

X. Bai and N. Hu, Two-parameter quantum groups of exceptional type E-series and convex
PBW-type basis, Algebra Colloq. 15 (4) (2008), 619-636.

G. Benkart, S.J. Kang and K.H. Lee, On the centre of two-parameter quantum groups, Proc.
Roy. Soc. Edinb. Sec. A 136 (3) (2006), 445-472.

G. Benkart and S. Witherspoon, A Hopf structure for down-up algebras, Math. Zeit. 238 (3)
(2001), 523-553.

—, Two-parameter quantum groups and Drinfel’d doubles, Algebras and Rep. Theory 7 (3)
(2004), 261-286.

N. Bergeron, Y. Gao and N. Hu, Drinfel’d doubles and Lusztig’s symmetries of two-parameter
quantum groups, J. Algebra, 301 (1) (2006), 378-405.

—, Representations of two-parameter quantum orthogonal groups and symplectic groups, in:
AMS/IP Stud. Adv. Math., 39, Amer. Math. Soc., Providence, RI, 2007, 1-21.

R. W. Carter, Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathe-
matics, 96. Cambridge University Press, Cambridge, 2005.

Z. Chang and Y. Wang, Central extensions of generalized orthosymplectic Lie seralgebras,
Sci. China Math. 60 (2), 223-260.

X. Chen, N. Hu, and X. Wang, Convex PBW-type Lyndon bases and restricted two-parameter
quantum group of type Fy, Acta. Math. Sin.-Eng. Ser. 39 (2023), 1053-1084.

Y. Dai, Ezplicit generators of the centre of the quantum group, Commun. Math. Stat. 11
(2023), 541-562.

Y. Dai and Y. Zhang, Ezxplicit generators and relations for the centre of the quantum group,
ArXiv: 2102.07407.

C. De Concini and V. G. Kac, Representations of quantum groups at roots of 1, Operator
algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989),
471-506, Progr. Math., vol. 92, Birkhduser Boston, Boston, MA, 1990.

C. De Concini, V. G. Kac and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5
(1) (1992), 151-189.

—, Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (2) (1993),
405-427.

—, Some quantum analogues of solvable Lie groups, Geometry and analysis (Bombay, 1992),
41-65, Tata Inst. Fund. Res., Bombay, 1995.

C. De Concini and C. Procesi, Quantum groups. in D-modules, representation theory, and
quantum groups, Lecture Notes in Math. 1565, Springer, Berlin, 1993.

J. Ding and P. Etingof, Center of a quantum affine algebra at the critical level, Math. Res.
Lett. (1) 4 (1994), 469-480.

V. G. Drinfeld, Quantum groups, In: Proceedings of International Congress of Mathemati-
cans, Providence: Amer Math Soc , 1986, 798-820.

J. Duan, On the center of two-parameter quantum group Ur s(sos), Master’s thesis, East
China Normal University, 2009.

P. I. Etingof, Central elements for quantum affine algebras and affine Macdonald’s operators,
Math. Research Lett. (2) (1995), 611-628.

S. Gan, On the center of two-parameter quantum group Uy s(G2), Master’s thesis, East China
Normal University, 2010.

M. D. Gould, R. B. Zhang and A. J. Bracken, Generalized Gel’fand invariants and charac-
teristic identities for quantum groups, J. Math. Phys. 32 (9) (1991), 2298-2303.

L. D. Faddeev, N. Y. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and Lie
algebras, In: Algebraic Analysis, vol. 1, 129-139, Academic Press, Boston, MA, 1988.

J. Hu and Y. Zhang, Quantum double of Ug((sl2)<?) , J. Algebra 317 (1) (2007), 87-110.
N. Hu, Quantum divided power algebra, q-derivatives, and some new quantum groups, J.
Algebra 232 (2) (2000), 507-540.

N. Hu and Y. Pei, Notes on two-parameter groups (I), Sci. in China, Ser. A. 51 (6) (2008),
1101-1110.



27)
(28]

[29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]

[37]
(38]

(39]
[40]
[41]
(42]
[43]
[44]

[45]

[46]

[47]

HARISH-CHANDRA THEOREM FOR TWO-PARAMETER QUANTUM GROUPS 25

—, Notes on two-parameter groups (II), Comm. in Algebra 40 (9) (2012), 3202-3220.

N. Hu, M. Rosso and H. Zhang, Two-parameter quantum affine algebra Urys(gln), Drinfel’d
realization and quantum affine Lyndon basis, Comm. Math. Phys. 278 (2) (2008), 453-486.
N. Hu and Q. Shi, Two-parameter Quantum group of exceptional type G2 and Lusztig’s
symmetries, Pacific J. Math. 230 (2007), 327-345.

N. Hu and Y. Shi, On the centre of two-parameter quantum groups U s(g) for type B, with
n even, J. Geom. Phys. 86 (2014), 422-433.

N. Hu and X. Wang, Conver PBW-type Lyndon basis and restricted two-parameter quantum
groups of type Gz, Pacific J. of Math. 241 (2) (2009), 243-273.

—, Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type
B, J. Geom. Phys. 60 (3) (2010), 430-453.

J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Math., 6, Amer. Math.
Soc, Providence, RI, 1996.

M. Jimbo, A g-difference anologue of U(g) and the Yang-Baxter equation, Lett. Math. Phys.
10 (1986), 63-69.

A. Joseph and G. Letzter, Local finiteness of the adjoint action for quantized enveloping
algebras, Journal of Algebra 153 (1992), 289-318.

L. Li, L. Xia and Y. Zhang, On the center of the quantized enveloping algebra of a simple
Lie algebra, ArXiv: 1607.00802.

—, On The Centers of quantum groups of Ay type, Sci. China Math. 61 (2) (2018), 287-294.
F. Liu, N. Hu and N. Jing, Quantum supergroup Uy s(osp(1,2)), scasimir operators, and
Dickson polynomials, J. Algebra Appl. 23 (1) (2024), No. 2450003, 18 pages.

Y. Luo, Y. Wang and Y. Ye, On the Harish-Chandra homomorphism for quantum superal-
gebras, Comm. Math. Phys. 393 (3) (2022), 1483-1527.

Y. Pei, N. Hu and M. Rosso, Multi-parameter quantum groups and quantum shuffles (I),
Contemp. Math., 506, A. M. S., Providence, RI, 2010, 145-171.

N. Yu. Reshetikhin, Quasitriangular Hopf algebras and invariants of links, Algebra i Analiz,
vol. 1, issue 2 (1989), 169-188.

N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Central extensions of quantum current
groups, Lett. Math. Phys. 19 (1990), 133-142.

M. Rosso, Analogues de la forme de Killing et du théoréme d’Harish-Chandra pour les
groupes quantiques, Annales scientifiques de ’E.N.S. 4e série, 23 (3) (1990), 445-467.

T. Tanisaki, Harish-Chandra isomorphisms for quantum algebras, Commun. Math. Phys.
127 (1990), 555-571.

T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for
quantum algebras, Infinite analysis, Part A, B (Kyoto, 1991), 941-961, Adv. Ser. Math. Phys.,
16, World Sci. Publ., River Edge, NJ, 1992.

V.G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathe-
matics, 18, Walter de Gruyter & Co., Berlin, x+588 pp., 1994.

R. B. Zhang, M. D. Gould and A. J. Bracken, Quantum group invariants and link polynomials,
Commun. Math. Phys. 137 (1991), 13-27.

SCHOOL OF MATHEMATICAL SCIENCES, MOE KEY LABORATORY OF MATHEMATICS AND EN-

GINEERING APPLICATIONS & SHANGHAI KEY LABORATORY OF PMMP, EAST CHINA NORMAL UNI-
VERSITY, SHANGHAI 200241, CHINA

FEmail address: nhhu@math.ecnu.edu.cn

SCHOOL OF MATHEMATICAL SCIENCES, MOE KEY LABORATORY OF MATHEMATICS AND EN-

GINEERING APPLICATIONS & SHANGHAI KEY LABORATORY OF PMMP, EAST CHINA NORMAL UNI-
VERSITY, SHANGHAI 200241, CHINA

Email address: 52265500001@stu.ecnu.edu.cn



	1. Introduction
	2. Preliminaries
	3. Harish-Chandra homomorphism  is injective with even rank
	4. The image of the Harish-Chandra homomorphism  with even rank
	5. Central elements and the Harish-Chandra theorem
	6. Centre of r,s(g) of weight lattice type
	References

