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Abstract

Most video captioning models are designed to process
short video clips of few seconds and output text describing
low-level visual concepts (e.g., objects, scenes, atomic ac-
tions). However, most real-world videos last for minutes or
hours and have a complex hierarchical structure spanning
different temporal granularities. We propose Video ReCap,
a recursive video captioning model that can process video
inputs of dramatically different lengths (from 1 second to 2
hours) and output video captions at multiple hierarchy lev-
els. The recursive video-language architecture exploits the
synergy between different video hierarchies and can pro-
cess hour-long videos efficiently. We utilize a curriculum
learning training scheme to learn the hierarchical struc-
ture of videos, starting from clip-level captions describing
atomic actions, then focusing on segment-level descriptions,
and concluding with generating summaries for hour-long
videos. Furthermore, we introduce Ego4D-HCap dataset
by augmenting Ego4D with 8,267 manually collected long-
range video summaries. Our recursive model can flexibly
generate captions at different hierarchy levels while also
being useful for other complex video understanding tasks,
such as VideoQA on EgoSchema. Data, code, and mod-
els are publicly available at https://sites.google.
com/view/vidrecap.

1. Introduction
Many videos in the real world exhibit a hierarchical infor-
mation structure that spans human behaviors at different
temporal granularities (i.e., atomic actions, intermediate ac-
tivity steps, long-term goals, etc.). However, most modern
video captioning models ignore hierarchical video structure
and are specifically tailored for short video inputs, typically
limited to 5-15 seconds [3, 13, 21, 33, 37, 38, 42, 45, 49,
50, 56, 62]. These short-range captioning methods capture
atomic actions and low-level visual details, such as objects
and scenes. Moreover, these models are often prohibitively
resource-intensive when applied to longer videos, making
them ill-suited for understanding human activities occurring

over long periods (e.g., several hours) [27, 45, 50, 62].
In this paper, we investigate a hierarchical video caption-

ing task requiring generating captions at multiple hierarchy
levels given a long video input (e.g., several minutes to sev-
eral hours). Studies in psychology [8, 10, 15] and social
cognitive theories [4] have shown the inherent hierarchical
structures of human behavior, consisting of atomic actions
at the lowest level, intermediate steps in the middle and
overall goals/intents at the highest level of the hierarchy. In-
spired by these prior studies, we also assume three levels of
hierarchies for our video captioning task. At the most gran-
ular level, video captions describe individual frames or short
video clips of several seconds, focusing on low-level visual
elements such as objects, scenes, and atomic actions. As we
move up the hierarchy, the short-term captions coalesce into
medium-length video segment descriptions spanning activ-
ities extending beyond brief moments, such as the interme-
diate steps within broader activities (e.g., a single step in
a cooking recipe) or short segments or sequences within a
more extended storyline (e.g., a several minute-long scene
within a movie). Lastly, the top level of the hierarchy en-
capsulates the long-term human goals in the video, intricate
relationships between events and characters, and the overar-
ching purpose behind the video, which can be captured via
long-range video summaries (See Figure 1).

The task of hierarchical video captioning poses several
technical challenges. Firstly, it necessitates models capable
of handling vastly different input lengths, ranging from a
few seconds to several hours. This contrasts with most ex-
isting methods, designed for fixed video durations of up to a
few minutes. Secondly, long-range videos are highly redun-
dant, requiring the model to aggregate only essential infor-
mation while discarding unimportant visual cues. Thirdly,
another critical challenge is comprehending the hierarchical
structure in long videos and leveraging the synergy between
distinct hierarchies.

To address these technical challenges, we propose Video
ReCap, a model capable of processing videos of dramati-
cally different lengths where input time spans may differ by
up to three orders of magnitude (from a handful of seconds
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Figure 1. Hierarchical Video Captioning. We aim to generate hierarchical captions for a long-range video (e.g., several hours long) at
three temporal granularities. First, we generate short clip captions for each few seconds of the video focusing on atomic human actions.
Afterward, we produce medium-length segment descriptions for every few minutes of the video, capturing the intermediate steps within a
longer activity or a video segment within an extended storyline. Finally, our method generates a summary for a long-range video depicting
the overall intent and goals of the actors in the video.

to a few hours) and generating captions at multiple hier-
archy levels. Our model encompasses three key attributes
that empower its hierarchical video captioning capability.
Firstly, Video ReCap adopts a recursive video-language ar-
chitecture, allowing it to generate captions across distinct
hierarchical tiers. At the first level, the model generates
captions from features extracted from short video clips, typ-
ically lasting a few seconds. As we move up the hierar-
chy, the model uses sparsely sampled video features and
captions generated at the previous hierarchy level as in-
puts to produce video captions for the current hierarchy
level. Such a recursive design effectively leverages the syn-
ergy between different video hierarchies and allows us to
handle very long video inputs (e.g., up to 2 hours) effi-
ciently. Moreover, it facilitates our model to leverage the
powerful reasoning abilities of modern LLMs. Secondly,
we implement a curriculum learning scheme, commencing
with training on short video clip captions and progressively
incorporating data from higher-level hierarchies, namely
medium-length segment descriptions and long-range video
summaries. Such a hierarchical curriculum learning strat-
egy allows the model to gradually learn the hierarchical
structure of the video, starting from short low-level captions
to long high-level video summaries. Thirdly, to mitigate the
challenge of limited manually annotated hierarchical cap-
tioning data, we use LLMs to generate pseudo-summary
data spanning different temporal lengths and then use these
pseudo-annotations as additional data to train our model.

To evaluate Video ReCap, we introduce Ego4D-HCap
dataset, a new hierarchical video captioning benchmark that
contains long-range egocentric videos lasting up to several
hours with manually annotated captions at multiple hierar-
chical levels. To build Ego4D-HCap benchmark, we uti-
lize Ego4D [19], the largest publicly available long-range

egocentric video dataset, which provides time-stamped cap-
tions and video-segment summaries of up to 5 minutes. We
then augment the subset of Ego4D videos with manually
annotated 8,267 long-range video summaries, where each
video spans up to two hours. Consequently, the Ego4D-
HCap becomes a rich resource with three levels of hierar-
chical captions for long untrimmed egocentric videos, en-
compassing captions for short clips, intermediate descrip-
tions for few-minute video segments, and video-level sum-
maries for long video sequences.

Our results show that Video ReCap outperforms strong
prior video captioning baselines [28, 66] across all three
temporal hierarchies by a large margin. We also demon-
strate that Video ReCap can be effectively used for other
complex video understanding tasks, such as long-form
video question-answering on EgoSchema [34] where our
approach outperforms the previous best method by a sub-
stantial margin (+18.13%).

2. Related Works

Video Captioning Methods. Early works in video caption-
ing used template-based approaches [24, 26, 42, 48, 60].
Subsequently, these methods were replaced by deep learn-
ing methods built using CNN-RNN encoder-decoder archi-
tectures [7, 16, 36, 37, 46, 54, 55, 63]. The recent introduc-
tion of Transformer [17, 52] led to a plethora of transformer-
based video captioning methods [7, 21, 27, 37, 38, 45, 46,
50, 55, 62]. Though these approaches have shown great
success in short clip captioning, most are limited to short
videos of a few seconds and cannot generate captions span-
ning multiple temporal hierarchies for hour-long videos.

Video Captioning Datasets. Most existing video cap-
tioning datasets contain short video clip inputs (5-30 sec-
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onds) [12, 41, 57, 59]. There exist several datasets with
longer videos of 1-5 minutes [22, 25, 67], but the captions
of these datasets still focus on short-term visual concepts
(e.g., atomic actions, presence of objects, etc.). Instead, our
work aims to develop models and datasets for hierarchical
video captioning that spans multiple temporal granularity
levels ranging from short clip captions to long-range video
summaries. To do this, we introduce Ego4D-HCap dataset
by augmenting Ego4D with long-range video summaries of
hour-long videos. This leads to a hierarchical video caption-
ing dataset consisting of short clip captions, medium-range
segment descriptions, and long-range video summaries.
Hierarchical Video Understanding. Several recent
datasets include hierarchical activity annotations for proce-
dural videos [6, 44, 47, 51, 68]. However, these datasets
define a fixed taxonomy for the activity labels of each hi-
erarchy and focus on procedural activity recognition. In
contrast, we assume free-form natural language descrip-
tions for multiple levels to capture inherent hierarchical
structure in real-world videos (not limited to only instruc-
tional videos). Aside from the datasets, several meth-
ods [2, 29, 65] learn hierarchical feature embeddings for
several-minute-long videos (e.g., 5 minutes). In contrast,
our work focuses on generating free-form hierarchical cap-
tions for hour-long videos at multiple temporal scales.

3. Technical Approach
3.1. Problem Overview

Given a long, untrimmed video input, we aim to generate
textual captions at multiple hierarchy levels of the video.
Formally, as our inputs, we consider a long-range video se-
quence Vi = [I

(t)
i ]t=1,...,T comprised of T RGB frames,

denoted by I
(t)
i . Our goal is then to generate captions at

three distinct hierarchical levels: Y
(ℓ)
i = [y

(ℓ)
i,j ]j=1,...,|Y (ℓ)

i |

for ℓ = 1, 2, 3, where y
(ℓ)
i,j depicts a jth word in a caption i

for the hierarchy level l. Each hierarchy of captions is gen-
erated sequentially starting with the short-term video clip
captions, Y (1)

i , describing fine-grained actions and objects
occurring within few seconds intervals throughout the video
(e.g., a person picks up an apple in Figure 1). Afterward, the
model outputs medium-length segment descriptions Y

(2)
i ,

which capture intermediate steps or summaries unfolding
over a few minutes of the video (e.g., a person driving a
car and parking it in Figure 1). Finally, the model finishes
its generation with long-range video summaries Y (3)

i repre-
senting video content for the entire video input.

3.2. Recursive Video-Language Model

We now describe the Video ReCap model, which con-
tains three high-level components: a Video Encoder, Video-
Language Alignment, and a Recursive Text Decoder. We

illustrate our approach in Figure 2 and describe each com-
ponent below.

Video Encoder. First, we utilize an off-the-shelf video
encoder (e.g., TimeSformer [9]) to extract features from
a long-range video. Given a short video clip, the video
encoder outputs dense spacetime features. We divide the
entire video uniformly and extract a sequence of features
Xi = [xi,j ]j=1,...,|C|, where |C| is the number of video
clips, x ∈ RF×H×W×D is the spatiotemporal features of a
particular clip, F is the number of frames, H is the height,
W is the width, and D is the feature dimension. We use
dense spacetime features for short-clip captions so that the
model can identify low-level visual cues (i.e., objects and
atomic actions); for higher-level captions (e.g., segment de-
scriptions and video summaries), we use global features
(e.g., CLS features) to reduce the computational cost and
capture the global properties of long video inputs.

Video-Language Alignment. Next, we utilize a Video-
Language (VL) Alignment module which takes the video
features, Xi and the captions generated in the previous hier-
archy Y

(ℓ−1)
i as input and outputs a fixed number of embed-

dings Zi = [zi,j ]j=1,...,|Z|, where z ∈ RDz , |Z| is the num-
ber of embeddings, and Dz is the hidden dimension. The
objective of the alignment module is to map the video and
text features to the joint feature space so that the subsequent
text decoder can jointly process both features as in [28].
Moreover, this scheme enables us to compress a large num-
ber of video and text features (e.g., several thousand) into a
small set of embeddings (e.g., 256), dramatically reducing
the computational cost. In particular, we use a frozen pre-
trained language model (e.g., DistilBERT [43]) to learn a
fixed number of video embeddings from the video features
Xi by injecting trainable cross-attention layer inside each
transformer block of the LM. We also learn a fixed number
of text embeddings from the captions generated at the pre-
vious hierarchy Y

(ℓ−1)
i by using a similar frozen LM with

trainable cross-attention layers. Finally, we concatenate the
video and text embeddings to get the joint embeddings Zi,
which is used by the subsequent text decoder for generating
captions Y

(ℓ)
i . Note that the first hierarchy level (i.e., clip

caption) has no text features and uses only video embed-
dings as Zi.

Recursive Text Decoder. We use a pretrained language
model (e.g., GPT2 [40]) as our recursive text decoder for
generating captions at multiple hierarchy levels. The de-
coder takes the video-text embeddings Zi produced by the
video-language alignment module (described above) and
then generates captions Y ℓ

i for the hierarchy ℓ. Note that
we use captions generated at the previous hierarchy level
Y ℓ−1
i as one of the inputs (along with video features Xi),

which enables a recursive caption generation pipeline. Note
that for short-term caption generation (i.e., Y 1

i ), the textual
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Figure 2. The Video ReCap model. (Left) First, we generate captions for each short clip (e.g., a few seconds long) of the video using the
dense spatiotemporal features extracted by a pretrained video encoder (not shown in the figure). (Middle) Then Video ReCap produces
segment descriptions for every few minutes of the video using sparsely sampled features (e.g., CLS features) and the previously generated
clip captions belonging to a particular segment. (Right) Finally, Video ReCap generates the full video summary by utilizing sparsely
sampled CLS features from the entire video and the previously generated segment descriptions. The Video-Language (VL) Alignment
module maps the video and text features to a joint space so that the subsequent text decoder can jointly process them. Note: the yellow box
represents the first segment of the video in each of the three panels, zooming in from right to left.

feature set is initialized as empty (i.e., the base case of our
model’s recursion). Following prior works [1, 66], we in-
sert trainable cross-attention blocks inside each transformer
layer of our textual decoder and freeze the remaining layers.
The cross-attention layer attends to video-text embeddings
of the alignment module. Therefore, the proposed Video
ReCap models the likelihood of caption Y (ℓ) conditioned
on the video X and the captions generated at lower-level
hierarchy Y (ℓ−1) using the following training objective:

p(Y (ℓ)|X) =

K∏
k=1

p(y
(ℓ)
k |y(ℓ)<k, X, Y (ℓ−1)) (1)

Here, y(ℓ)k denotes the language token of the caption, y(ℓ)<k

is the set of preceding tokens, and Y (0) = ∅.

3.3. Hierarchical Curriculum Learning

Training a recursive video-language model is challenging
for several reasons. First, the model must process videos
of dramatically different input lengths (i.e., from a few sec-
onds to several hours). Second, there is a significant data
imbalance where short-term clip captions vastly outnumber
the number of video segment descriptions and long-range
summaries. Finally, exploiting the synergy between dif-
ferent hierarchy levels is crucial for generating meaningful
and contextually relevant captions. To overcome these chal-

Figure 3. Hierarchical Curriculum Learning. We gradually
learn the hierarchical structure of the video, starting from short
low-level captions to long high-level video summaries.

lenges, we draw motivation from classic studies of psychol-
ogy [4, 8, 10, 15], which show a hierarchical organization
of human perception of actions. Just as humans first per-
ceive atomic actions before grasping mid-level actions and
then infer goals from mid-level activities, our training strat-
egy unfolds in a similar hierarchical fashion. Specifically,
our training begins with samples from the lowest hierar-
chy level, namely clip captions. Subsequently, we train our
model with higher-level captions, e.g., medium-length seg-
ment descriptions and long-range video summaries. This
strategic progression allows the model to gradually under-
stand the intricate hierarchical structure inherent in videos
and maximize the synergy between all hierarchies. More-
over, this strategy effectively handles highly imbalanced
training data across different hierarchies. Figure 3 shows
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Figure 4. Large Language Model Supervision. Given short-
term ground truth captions, we use an LLM to generate pseudo-
ground truth annotations for medium-length segment descriptions
and long-range video summaries to augment our training data.

an overview of the proposed curriculum learning strategy.

3.4. Additional Supervision using Language Models

Collecting captioning annotations for hour-long videos is
time-consuming and costly. Thus, another critical chal-
lenge associated with hierarchical video captioning is the
scarcity of manually annotated hierarchical captioning data,
particularly for medium-length segment descriptions and
long-range video summaries. We leverage Large Language
Models (LLMs) to mitigate this issue. LLMs can effec-
tively incorporate information from text inputs of varying
lengths, which aligns perfectly with our objective of guid-
ing the video model to generate captions across multiple
hierarchies. Motivated by these insights, we use LLMs to
generate a large number of pseudo-caption annotations for
medium-length and long-range videos (i.e., our last two hi-
erarchies). The process involves two main steps. First,
given manually annotated hierarchical captions, we fine-
tune an LLM teacher to generate medium-length segment
descriptions and long-range video summaries from short-
term clip captions concatenated across varying temporal du-
rations. Afterward, we use such LLM-generated pseudo
ground truth caption data as additional training samples to
train Video ReCap (see Figure 4). Our experiments indi-
cate that such pseudo ground truth data generated by LLMs
effectively complements manually annotated data and sig-
nificantly improves our model’s captioning ability.

3.5. Implementation Details

We use TimeSformer [9] as our video encoder to extract fea-
tures that take an input clip of 4 RGB frames of 224× 224.
We use GPT2 [40] as our default text-decoder, with a hidden
dimension of 768 and 12 transformer blocks. We use Adam
optimizer [23] with a learning rate of 3−5 and a weight
decay of 0.01. Our training pipeline also utilized cosine
scheduling strategy [32]. Please refer to supplementary ma-
terials for additional implementation details.

4. Ego4D-HCap Dataset
We now describe our introduced Ego4D-HCap dataset, a hi-
erarchical video captioning dataset comprised of a three-tier
hierarchy of captions: short clip-level captions, medium-

Hierarchy Level # Samples Avg. Duration

Clip Caption 5.27M 0.96 sec
Segment Description 17.5K 2.87 min

Video Summary 8.3K 28.46 min

Table 1. Summary of Ego4D-HCap dataset.

length video segment descriptions, and long-range video-
level summaries. To construct Ego4D-HCap, we leverage
Ego4D [19], the largest publicly available egocentric video
dataset. Ego4D videos have several unique features, mak-
ing them ideal for the hierarchical video captioning task.
First, most videos in Ego4D are orders of magnitude longer
(e.g., several hours) than the traditional video captioning
datasets. Second, egocentric videos typically contain goal-
driven and human activities at different hierarchy levels.
Third, Ego4D videos capture human behaviors from vari-
ous scenarios such as cooking, gardening, assembly, etc.

While Ego4D comes with time-stamped atomic captions
and video-segment descriptions spanning up to 5 minutes,
it lacks video-level summaries for longer video durations.
To address this issue, we annotate a subset of 8,267 Ego4D
videos with long-range video summaries, each spanning up
to two hours. This enhancement provides a three-level hier-
archy of captions, making it a perfect resource for validat-
ing the effectiveness of our model on the hierarchical video
captioning task. In Table 1, we provide a detailed summary
of our introduced Ego4D-HCap subset. Please refer to our
supplementary materials for a more detailed analysis of the
Ego4D-HCap dataset.

Our proposed Ego4D-HCap dataset contains videos that
capture diverse scenarios in various contexts, such as house-
hold settings, outdoor environments, workplaces, leisure ac-
tivities, and more, totaling 127 distinct scenarios. The dis-
tribution of the most common 50 scenarios is illustrated in
Figure 5. The distribution of caption lengths for three hi-
erarchy levels in the Ego4D-HCap dataset is illustrated in
Figure 6. Notably, clip captions are generally shorter, aver-
aging 7.74 words per caption. In comparison, segment de-
scriptions display a medium length, averaging 15.79 words,
while video summaries are the longest, with an average of
25.59 words. Additionally, we observe that the maximum
length for a clip caption is 43 words, while segment descrip-
tions and video summaries can extend to 73 and 172 words,
respectively. Our supplementary materials include more de-
tails on the dataset and our annotation collection process.

5. Experimental Setup
5.1. Hierarchical Video Captioning Baselines

Hierarchical video captioning is a relatively unexplored
task, so there are no well-established baselines for com-
paring our work. Thus, we introduce the following video-
language baselines, which we extend for this task.
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Figure 5. Distribution of the most common 50 scenarios in Ego4D-HCap dataset.

Figure 6. Distribution of the lengths of three hierarchical captions of the Ego4D-HCap dataset.

• Zero-Shot Baselines:
1. BLIP2 [28]. A zero-shot baseline for short-term clip

captioning that utilizes a state-of-the-art image cap-
tioning model.

2. BLIP2 + GPT3.5 [11, 28]. A zero-shot text-based
baseline for video segment descriptions and long-
range video summaries. Given BLIP2-generated cap-
tions, it uses GPT3.5 to generate video segment de-
scriptions and long-range video summaries.

3. LaViLa + GPT3.5 [11, 66]. Similar to the above,
a zero-shot baseline for video segment and summary
generation using LaViLa captions fed into GPT3.5.

• Finetuned Baselines:
1. LaViLa + GPT2 [40, 66]. A fully-finetuned text-

based baseline that takes LaViLa-generated clip cap-
tions and finetunes a text-only GPT2 model for seg-
ment description and video summary generation while
keeping the underlying LaViLa model frozen.

2. LaViLa + FLAN-T5 [14, 66]. Similar to the above,
a fully-finetuned text-based baseline that uses FLAN-
T5 rather than GPT2 for segment description and video

summary generation.
3. LaViLa [66]. A video-based baseline, finetuned

end-to-end to generate short-term captions, medium-
length segment descriptions, and long-range video
summaries directly using video inputs. Note that this
baseline uses the same video encoder, text decoder,
and other experimental settings as our model.

5.2. Our Model Varients

1. Video ReCap. This variant of our model uses a shared
video encoder but separate text decoders and video-
language alignment modules to generate captions at dif-
ferent hierarchy levels (i.e., the weights across different
hierarchies are not shared). Due to the increased model
capacity of having specialized modules for each hierar-
chy, this variant typically produces the best performance.

2. Video ReCap-U. The unified variant using shared pa-
rameters across all hierarchies. Since it has a lot fewer
trainable parameters than the previous variant, it is more
efficient but performs slightly worse in certain settings.
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Model Visual
Encoder

Text
Decoder

Train
Params

Clip Caption
CIDEr ROUGE-L METEOR

Zero-Shot
BLIP2 [28] VIT-G FT5-XL 0 8.1 7.4 12.7
Finetuned

LaViLa [66] TSF-B GPT2 258M 88.56 47.64 28.03
Video ReCap TSF-B GPT2 339M 98.35 48.77 28.28

Video ReCap-U TSF-B GPT2 113M 92.67 47.90 28.08
(a) Results for short-range clip captioning.

Model Video
Encoder

Text
Decoder

Train
Params

Pseudo
Ann.

Segment Description Video Summary
C R M C R M

Zero-Shot
BLIP2 [28] + GPT3.5 [11] VIT-G FT5-XL 0 ✗ 5.68 16.87 13.47 11.13 22.41 12.10
LaVila [66] + GPT3.5 [11] TSF-B GPT2 0 ✗ 5.79 19.77 13.45 12.16 24.49 12.48

Finetuned
LaViLa [66] + GPT2 [40] TSF-B GPT2 336M ✗ 38.22 38.10 16.58 17.98 29.48 12.81

LaViLa [66] + FLANT5 [14] TSF-B FT5-XL 586M ✗ 39.13 38.77 16.88 20.12 30.06 13.17
LaViLa [66] TSF-B GPT2 258M ✗ 24.63 33.31 15.30 6.54 23.97 10.95
Video ReCap TSF-B GPT2 339M ✗ 41.74 39.04 18.21 28.06 32.27 14.26
Video ReCap TSF-B GPT2 339M ✓ 46.88 39.73 18.55 29.34 32.64 14.45

Video ReCap-U TSF-B GPT2 113M ✓ 45.60 39.33 18.17 31.06 33.32 14.16

(b) Results for medium-length segment description and long-range video summary generation.

Table 2. Main Results on the Ego4D-HCap dataset. All results are evaluated in standard CIDEr (C), ROUGE-L (R) and METEOR (M)
metrics. We observe several interesting trends. First, finetuned methods perform significantly better than the zero-shot baselines. Second,
the Video ReCap model achieves the best results in video captioning across all three hierarchies, surpassing strong prior baselines such as
LaViLa [66]. Third, using LLM-generated pseudo annotations leads to a significant boost in performance. Lastly, the unified variant of the
model produces competitive results while having a significantly smaller number of trainable parameters than our standard variant.

6. Results and Analysis

6.1. Hierarchical Video Captioning Results

In Table 2, we present our main results for hierarchical
video captioning. We use standard captioning metrics, in-
cluding CIDEr [53], ROUGE-L [30], and METEOR [5]
to evaluate our model on the hierarchical video captioning
task. Based on these results, we observe several interest-
ing trends. First, we note that zero-shot baselines (e.g.,
BLIP2 [28], BLIP2 + GPT3.5 [11], LaViLa + GPT3.5)
perform considerably worse than the fully finetuned ap-
proaches (e.g., LaViLa [66], LaViLa + GPT2 [40], LaV-
iLa + FLAN-T5 [14]), underscoring the significance of in-
domain learning on the Ego4D-HCap dataset. Second, we
observe that the best performing fully-finetuned text-based
baseline LaViLa + FLAN-T5 [14] falls short of our model
by 2.61% CIDEr on video segment description and 9.94%
CIDEr on video summary generation, despite using signif-
icantly more trainable parameters (586M vs 339M). This
indicates the benefits of using hierarchical video and text in-
puts rather than just text for video segment description and
long-range video summary generation. Third, we notice
that our best performing Video ReCap variant significantly
improves upon the strong LaViLa baseline on clip cap-
tioning for Ego4D [19], outperforming it by 9.79% CIDEr
while employing the same visual encoder, text decoder, and

training data as our model. We note that while LaViLa uses
a transformer resampler [1, 66], our model utilizes a Lan-
guage Model-based alignment module (see Section 3.2),
which we found very effective for this particular task.

We also note that the performance of LaViLa drops sig-
nificantly for segment description and video summary gen-
eration, indicating its inability to handle long-range videos.
In contrast, Video ReCap maintains strong performance
on these longer video inputs, outperforming LaViLa by
17.11% CIDEr on segment description and 21.52% CIDEr
on video summary generation. We also note that while
Video ReCap uses more training parameters than LaV-
iLa (258M vs. 339M), Video ReCap-U has significantly
fewer training parameters (113M) than LaViLa but still
outperforms LaViLa by substantial margins (+20.97% and
+24.50% in CIDEr for segment description and video sum-
mary generation respectively). This indicates that the per-
formance gain of our model comes from the recursive and
hierarchical design and not from the larger capacity of the
model. Our results also indicate that our model’s perfor-
mance can be further improved (5.14% CIDEr in segment
description and 1.28% CIDEr in video summary) by incor-
porating LLM-based supervision (see Section 3.4). Lastly,
the last two rows of Table 2 highlight the trade-off be-
tween the two variants of our model, i.e., Video ReCap
achieves the highest performance across two out of three
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Model
Input

Feature
Ego4D
Pretrain

QA
Acc

Random - ✗ 20.0
GPT3.5 [11] Question ✗ 19.57

FrozenBiLM [61] Video ✗ 26.9
VIOLET [18] Video ✗ 19.9

mPLUG-Owl [64] Video ✗ 31.1
InternVideo [58] Video ✗ 32.1

EgoVLP [31] Video ✓ 34.86
EgoVLPv2 [39] Video ✓ 34.12

LaViLa [66] + GPT3.5 [11] Captions ✓ 44.27
Video ReCap + GPT3.5 [11] Captions ✓ 46.03
Video ReCap + GPT3.5 [11] Hier. Captions ✓ 50.23

Table 3. Long-Range VideoQA on EgoSchema [34] Our ap-
proach achieves state-of-the-art results, outperforming the previ-
ous best method, InternVideo, by a substantial margin of 18.13%.
Furthermore, leveraging the hierarchical captions produced by our
model leads to 4.2% and 5.96% boost in performance compared to
short-clip captions generated by Video ReCap or LaViLa [66].

hierarchies, while the unified variant, Video ReCap-U, at-
tains the second-best performance with significantly fewer
trainable parameters.

6.2. Long-Range VideoQA on EgoSchema

In Table 3, we validate the effectiveness of our hierarchical
video model on the recently introduced long-range video
question-answering (VideoQA) EgoSchma dataset [34].
EgoSchema contains over 5K human-curated multiple-
choice question-answer pairs spanning 250 hours of real-
world videos, requiring hierarchical reasoning over long
videos. We use a simple two-stage approach to perform
VideoQA on EgoSchema. First, given long EgoSchema
video inputs, we generate hierarchical video captions like
before. Afterward, we feed our generated hierarchical video
captions as inputs to a text-only GPT3.5 [11] and prompt
it to answer a question about a given video in a zero-shot
manner. The simple framework performs very well on this
benchmark despite the simplicity. We first observe that
compared to the variant of our method that uses only short-
term captions as inputs to GPT3.5, the variant that uses hi-
erarchical video captions achieves a significant 4.2% boost
in performance. We also compare our method with a sim-
ilar baseline that uses LaViLa-generated short-term cap-
tions rather than our hierarchical video captions as inputs to
GPT3.5 and show that our approach outperforms this base-
line by 5.96%. This highlights the benefits of hierarchical
video cues for long-range videoQA. Our results also indi-
cate that our method outperforms the previous best model,
InternVideo [58] by a large margin of 18.13%, setting a new
state-of-the-art on this benchmark. We note, however, that
since InternVideo was never pretrained on Ego4D, the com-
parison with our approach might be somewhat unfair. Thus,

Input
Segment Description Video Summary

C R M C R M
Video 40.17 38.65 17.59 25.64 29.61 13.57
Text 40.10 38.02 17.41 23.23 29.17 13.31

Video + Text 41.74 39.04 18.21 28.06 32.27 14.26
Table 4. Video-Language Input Ablation. Using both sparse
video features and recursive text inputs leads to better performance
for both segment description and video summary generation.

Training Scheme
Segment Description Video Summary

C R M C R M
Init → Segment 36.81 38.70 17.17 - - -

Caption → Segment 41.74 39.04 18.21 - - -
Init → Video - - - 8.62 26.33 11.24

Caption → Video - - - 24.84 30.74 13.25
Caption → Segment → Video - - - 28.06 32.27 14.26

Table 5. Hierarchical Curriculum Learning. Using the pro-
posed curriculum learning scheme yields a performance boost of
+4.93% in segment description and +19.44% in long-range video
summary generation compared to training the model from GPT2
pretrained weights (Init).

in our comparisons, we also include two recent methods,
pretrained on Ego4D, EgoVLP [31] and EgoVLPv2 [39].
Note that for all evaluations, we removed all Ego4D videos
used by the EgoSchema benchmark from our training set to
avoid data leakage. Compared to EgoVLP and EgoVLP2,
our approach still achieves the best results, outperforming
these two baselines by a significant margin of 16%, indi-
cating the superiority of our method.

6.3. Ablation Studies

Ablation of Input Modalities. Our model utilizes both
video features and recursive text inputs (generated in the
previous hierarchy) for the segment descriptions and video
summaries. Note that we do not use any text inputs for
clip captions as they define the base case of our recursive
video model. Since we need to sparsely sample video fea-
tures to fit long-range videos into GPU memory, we hy-
pothesize that using text as an intermediate representation
should complement the sparse video features. In Table 4,
we compare our model with a non-recursive baseline (row
2), which only uses sparse video features and a recursive
baseline (row 3), which only uses recursive text features.
We observe that combining video and text inputs produces
a +1.57% boost relative to video-only and a +1.64% boost
compared to text-only baselines in CIDEr for segment de-
scription generation. Moreover, combining both inputs is
more important for long-range video summary generation,
where video+text inputs provide +2.42% and +4.83% gains
compared to video-only and text-only variants. These ex-
periments reveal that the recursive design of Video ReCap
that utilizes both video and text input modalities is crucial
for the hierarchical video captioning task.
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LLM Segment Description Video Summary
C R M C R M

GPT2 96.47 46.96 23.13 40.06 33.06 14.76
GPT2-L 104.30 47.68 23.15 43.18 33.86 15.00

FLAN-T5-S 95.61 46.16 22.30 43.27 34.19 14.69
FLAN-T5-L 125.67 50.61 26.06 52.08 36.99 19.93

(a) Training an LLM Teacher.

Pseudo
Ann.

Segment Description Video Summary
C R M C R M

✗ 41.74 39.04 18.21 28.06 32.27 14.26
✓ 46.88 39.73 18.55 29.34 32.64 14.45

(b) Supervision Using the best LLM Teacher (FLAN-T5-Large).

Table 6. Importance of LLM Supervision. Top: Given ground-
truth short-term captions concatenated across varying temporal
lengths, FLAN-T5-Large generates the highest quality pseudo-
annotations for segment description and long-range video sum-
mary annotations. Using this LLM Oracle, we produce 100K
pseudo-annotations for medium-length segment descriptions and
15K for long-range video summaries. Bottom: Combining LLM-
generated annotations with manual annotations during training
leads to a performance improvement of 5.14% CIDEr for segment
description and 1.28% CIDEr for the video summary.

Significance of Hierarchical Curriculum Learning.
Next, we investigate the significance of our hierarchical
curriculum learning scheme. Table 5 shows the impor-
tance of such a curriculum learning scheme. We observe
that if we directly train our model on the segment descrip-
tion from GPT2 pretrained initialization, performance drops
by a significant margin of 4.93% CIDEr. Moreover, the
performance drop is even more catastrophic (-19.44%) for
video summary generation without curriculum learning. Fi-
nally, we show that it is useful to progressively incorpo-
rate higher-level captions, starting from short-term captions,
then transitioning to medium-length segment descriptions,
and lastly, finishing with long-range video summaries. The
variant that progresses from short-term caption to long-
range video summary learning directly exhibits a 3.22%
drop in CIDEr performance.
Importance of LLM-Based Supervision. Finally, we
study the importance of LLM-based supervision for
medium-length segment descriptions and long-range video
summaries. In Table 6a, we show the performance of dif-
ferent LLM Teachers (e.g., GPT2 [40], and FLAN-T5 [14])
that we use to generate the pseudo ground truth data. We ob-
serve that FLAN-T5-Large achieves the best performance in
all metrics. Hence, we use FLAN-T5-Large as our Teacher
to generate pseudo-ground truth data for segment descrip-
tions and long-range video summaries. Specifically, we
produce 100K pseudo-annotations for segment descriptions
and 15K for video summaries. We combine these pseudo-
annotations with the manually annotated data and train our
model. Table 6b shows that utilizing supervision from
LLMs provides a substantial performance boost in both seg-

ment description (+5.14% CIDEr gain) and video summary
(+1.28% CIDEr improvement) generation performance.

6.4. Qualitative Results on Ego4D-HCap

In Figure 7, we present three instances of hierarchical cap-
tions generated by our model. It is evident that clip cap-
tions mostly describe atomic actions and objects, such as
‘C closes the tap’ (Figure 7 (a)) and ‘C pushes the trolley’
(Figure 7 (b)). In contrast, segment descriptions focus on
intermediate concepts within the video spanning longer du-
rations, i.e., ‘C was in the kitchen, washed utensils’ (Fig-
ure 7 (a)), and ‘C arranged the tent and interacted with a
woman’ (Figure 7 (c)). Moreover, video summaries aim to
encapsulate the overarching content and events of the video.
For example, ‘C went to the supermarket. C picked up fruits
vegetables, and interacted with other people. C bought gro-
ceries and paid at the cashier’ (Figure 7 (b)).

We also notice that while generating clip captions and
segment descriptions is relatively more straightforward,
generating video summaries is more challenging. For in-
stance, while the generated video summaries of Figure 7 (a)
and Figure 7 (b) are of good quality, the video summary of
Figure 7 (c) could be further improved. The video summary
of Figure 7 (c) fails to capture some important events of the
video and includes repeated words and phrases. These chal-
lenges highlight the complexity of summarizing content in
long-range videos. We anticipate that future advancements
and the use of our released data will contribute to the de-
velopment of more effective methods and models for this
demanding task.

7. Conclusions and Future Work
We introduce Video ReCap a recursive video captioning
model adept at producing hierarchical captions for videos
spanning diverse temporal granularities—from brief clip
captions to extensive hour-long summaries. The incorpo-
ration of a curriculum learning scheme inspired by hu-
man psychology and an LLM-based supervision strategy
enhances the model’s efficacy in tackling the hierarchical
video captioning problem. Beyond its primary focus, our
model’s hierarchical captions also proves advantageous for
long-range video question answering. Additionally, the cu-
rated Ego4D-HCap dataset will be released, intended to cat-
alyze ongoing progress in video understanding research.
Some promising future directions include real-time cap-
tion generation, interactive video understanding, and video-
based dialoguing.
Acknowledgements. We thank Feng Cheng, Yan-Bo Lin,
Ce Zhang, Yue Yang, and Soumitri Chattopadhyay for their
helpful discussions. Authors from UNC Chapel Hill were
supported by the NIH Award R01HD11107402, Sony Fac-
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(a)
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(c)

Figure 7. Qualitative Results on Ego4D-HCap . Generally, clip captions depict atomic actions and objects; segment descriptions focus
on intermediate concepts, and video summaries encapsulate the overall content and goals of the videos. While generating clip captions and
segment descriptions are often relatively easier tasks, developing a good video summary is often challenging. Our models perform well on
video summaries (a) and (b), but the generated video summary (c) could be further improved.
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Video ReCap: Recursive Captioning of Hour-Long Videos

Supplementary Material

Our supplementary materials contain Section S1: Ad-
ditional Implementation Details, Section S2: Ego4D-
HCap Data Collection Process, Section S3: Ego4D-
HCap Dataset Analysis, Section S4: Additional Quan-
titative Results, and Section S5: Qualitative Results on
EgoSchema.

S1. Additional Implementation Details

Figure S1 Shows the schematic diagram of the proposed
Video ReCap model.
Video Encoder. We employ the TimeSformer model [9] as
our video encoder. This model, consisting of 12 transformer
layers, is pretrained using a contrastive objective [66]. The
input to the encoder comprises 4 RGB frames of size
224× 224. To process the video, we divide it into 4-second
clips and extract features for each clip using the pretrained
video encoder. For clip caption, we utilize the dense spa-
tiotemporal features. This allows our model to capture fine-
grained details. However, we only use the CLS features for
segment description and video summary, allowing efficient
computation.
Video-Language Alignment. We utilize a pretrained lan-
guage model DistilBERT [43] as our Video-Language (VL)
Alignment module. It is a 6-layer transformer encoder
model, where we freeze the self-attention blocks and in-
sert a trainable cross-attention module inside each layer. It
takes video features output by the video encoder and cap-
tions generated at the previous hierarchy as inputs. Note
that there are no text inputs for clip captions. For segment
description, we extract clip captions at each 4 seconds of
the segment, and for video summary, we extract segment
descriptions at each 3 minutes of the video and pass them to
the VL alignment module along with corresponding video
features.
Text Decoder. We leverage a pretrained GPT2 [40]) as our
text decoder. It is a 12-layer transformer model, and we
insert a gated cross-attention block inside each transformer
layer. We train only the cross-attention modules and freeze
the rest of the model. Each cross-attention block contains a
cross-attention layer and a feed-forward layer, followed by
a tanh gating [20]. The tanh-gating is initialized with an ini-
tial value of zero so that the model’s output is the same as
the pre-trained LLM at the beginning. As the training pro-
gresses, the model gradually learns to attend to the video-
text embedding output by the VL-alignment module.
Training the Video ReCap Model. We follow a three-
stage training pipeline for the Video ReCap model. First, we
train our model 5 epoch using a batch size of 128 using clip

caption data, which only uses video features. Afterward, we
employ the trained model from the first stage to extract clip
captions within the videos at 4-second intervals. Then, dur-
ing the second stage, we train the model for 10 epochs using
a batch size of 32 using segment description samples, which
take as input both video features and text features (clip cap-
tions). Finally, in the third stage, we extract segment de-
scriptions every three minutes of the video using the trained
model of the second stage and further train the model for
10 epochs using a batch size of 32 using video summary
data. We use AdamW optimizer with optimizer [23] with
(β1, β2) = (0.9, 0.999) and weight decay 0.01. We use a
learning rate of 3−5 and a cosine scheduling strategy.
Training the Video ReCap-U Model. Training a unified
model that shares all parameters across three hierarchies
is more challenging. We employ a similar three-stage ap-
proach with some additional tricks. In particular, the first-
stage training is identical to the Video ReCap model. How-
ever, during the second stage, we train the Video ReCap-
U model using both clip captions and segment description
samples to prevent catastrophic forgetting of clip captions.
One particular challenge is that the clip captions and seg-
ment description data are quite different. While clip cap-
tions use dense spatiotemporal features, segment descrip-
tions utilize CLS features. Moreover, segment descriptions
use video and text features as inputs, while clip captions
only use video features. To overcome this challenge, we
employ an alternate batching pipeline, where we sample
a batch of clip captions and segment descriptions alterna-
tively during the training. Since we have a lot more clip
caption data (∼ 4M ) compared to segment descriptions
(100K including manually annotated and LLM-generated
pseudo annotations), we randomly sample 100K clip cap-
tions and only used those during the second stage of train-
ing. Finally, we train the model during the third stage using
samples from all three hierarchies using a similar alternate
batching approach. Since we have only ∼ 20K (includ-
ing manually annotated and LLM-generated pseudo anno-
tations) samples for video summaries, we randomly sample
20K clip captions and 20K segment descriptions and used
those along with video summaries during the third stage
of training. This strategy prevents catastrophic forgetting
of the model. It allows the training of the Video ReCap-
U model, which shares all parameters across hierarchies.
For Video ReCap-U, We use the same learning rate, batch
size, training epoch, optimizer, and scheduler for the Video
ReCap (See the previous paragraph).
Inference. During inference, we uniformly sample 4
frames from the corresponding clip and extract spatiotem-
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Figure S1. Model Architecture.

poral features using the video encoder to use as inputs to
generate clip captions. For segment description, we extract
CLS features and clip captions every 4 seconds of the seg-
ment and use them as inputs to generate segment descrip-
tions. Lastly, we extract segment descriptions at each 3
minutes of the video and use them along with pre-extracted
CLS features to generate video summaries. Note that clip
boundaries are not given during the inference of segment
descriptions, and segment boundaries are not given during
the inference of video summaries.

We will release our code, data, and pretrained models.

S2. Ego4D-HCap Data Collection Process

The Ego4D-HCap dataset was collected over the span of 2
months, from April 2023 to May 2023 and from September
2023 to October 2023. We recruited 91 specialized annota-
tors through CloudResearch1, a participant-sourcing com-
pany. All annotators are based in the United States and are
compensated at a rate of 9 dollars per hour, which is above
the national minimum wage.

We utilized Qualtrics and Google Drive to build our data
collection interface. Our interface began with an introduc-
tion to our project, guidelines for summarizing the videos,
and examples of good summaries. It then asked the an-
notators for their ConnectID and provided them a link to
the documents of videos assigned to them. Each document
would contain 10-25 videos for the annotators to summa-
rize, along with a prompt and a GIF summarizing the events
of each video. The last interfaces contain text boxes for
the annotators to put the text summaries for each video and
the annotator’s experience with the data collection interface.

1https://www.cloudresearch.com

We used the latter to improve upon the interface so that the
quality of the annotated summaries ultimately became bet-
ter. Figure S2 shows our data collection interface.

S2.1. Guidelines for Annotators

Overview. In this project, we aim to develop a model that
can automatically summarize long videos. Our model gen-
erates text captions for each video describing what happens
every 3 minutes. We need your help to summarize those
captions into a summary for the entire video. The total
length of a video can be between 10 and 100 minutes.
Captions.
1. You are given a list of captions for each video.
2. Each caption describes what is happening every 3 min-

utes.
3. C refers to a person in the provided captions.
4. The captions are generated using a machine learning

model, so sometimes, they can be out of order or inaccu-
rate. In that case, you can exclude the events or details
that do not make sense in the summary or refer to the
GIF provided under the captions.

5. The captions may also use different terms to refer to the
same thing. If only technical terms are used, then use
them in your summary. Otherwise, we prefer you to use
generic terms.

GIFs.
1. Since the videos are very long, we do not provide the full

video. Instead, you are also given a GIF for each video.
2. GIFs created by sparsely sampled frames from the video,

which is intended to help you better understand the over-
all contents of the video along with the captions.

Summaries.
1. The summary should be one paragraph long. Try to
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Figure S2. Data Collection Interface.

maintain a compression factor of 5, i.e., for every five
captions, you should summarize it in 1 sentence. How-
ever, each summary should be at least one sentence.

2. The summary should cover the setting, characters, and
events that take place in the order of the video.

3. Avoid using X, Y or other letters to refer to characters
other than C. Instead, use woman and man. Refer to
examples of good summaries on the next page.

4. The summary should not have an interpretation of the
characters’ personalities or qualities.

5. The summary should be logically coherent, unambigu-
ous, and understandable.

6. The summary should be grammatically correct.
7. Repetition of actions should have an underlying pur-

pose/pattern.

S2.2. Quality Control

To control the quality of the annotations, we pre-selected
annotators before moving them forward with the official
annotation task and manually reviewed the annotations.
Before the official annotation task, we paid 171 annota-
tors to complete a preliminary annotation task and selected
from this pool annotators who provided desirable annota-
tion quality. We minimized the chances of getting low-
quality annotations by pre-selecting high-quality annotators
and familiarizing them with an interface similar to the ac-
tual annotation task.

Another quality control method we utilized was to re-
view the annotations ourselves manually. For each annota-
tor, we randomly sampled half of the annotations they pro-
vided. We assessed their quality based on whether they fol-
lowed the expectations outlined in Section S2.1. If less than
half of the sampled annotations are of low quality, we would
provide annotator feedback and ask them to redo their anno-
tations. If the annotations were of better quality, we would

replace them with the initial annotation. Otherwise, we
would discard both versions and assign them to other an-
notators.

S2.3. De-identification Process

Due to the nature of the dataset and our task, our dataset
has already been de-identified. Since all of our videos are
sourced from Ego4D, they have undergone sensitive ob-
ject detection, false positive removal, fast negative correc-
tion, and image blurring [19]. They were not modified
during the dataset collection process, so the videos remain
de-identified. Our annotators are also anonymized, as we
recruited, managed, and corresponded with annotators on
CloudResearch. Aside from their ConnectID, which we
used to revise annotations, we did not collect any of the
annotators’ personal information.

S3. Ego4D-HCap Dataset Analysis

S3.1. Example Video Summaries.

Figure S3 Shows examples of annotated video summaries
of the Ego4D-HCap dataset. We observe that video sum-
maries are of various lengths and capture diverse scenarios,
places, and activities. Typically, each video is annotated
with multiple summaries. However, the figure shows only
one summary per video for clarity and conciseness.

S4. Additional Quantitative Results

Backbone Design. In this section, we ablate various as-
pects of our Video-Language Backbone design. First,
we validate the effectiveness of a Language Model-based
(LM) [43] Video-Language Alignment module rather than a
standard Transformer resampler used in prior works [1, 66].
Table S1 shows that an LM-based Alignment module per-
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LM
Alignment

Trainable
CA

Clip Caption Segment Description Video Summary
C R M C R M C R M

✗ ✓ 92.56 47.64 28.03 39.41 38.62 17.71 23.04 28.33 13.72
✓ ✗ 73.88 43.17 21.67 32.16 31.67 13.33 12.16 21.06 8.22
✓ ✓ 98.35 48.77 28.28 41.74 39.04 18.21 28.06 32.27 14.26

Table S1. Architecture Ablation. An LM-based [43] Video Language Alignment module provides significant performance gains com-
pared to the transformer-based resampler used in prior works [1, 66]. Adding trainable cross-attention layers inside the text decoder
performs much better than freezing the decoder.

forms significantly better than the standard transformer-
based resampler in all three hierarchies. Second, we in-
ject trainable cross-attention layers [1, 66] in the text de-
coder to incorporate video features. In contrast, several
prior works [28, 35] inject video features only in the in-
put layer while freezing the whole text decoder. Table S1
shows that using trainable cross-attention layers in the tex-
tual decoder performs significantly better than using video
features in the input layer alone across all three hierarchical
levels.

S5. Qualitative Results on EgoSchema
Figure S4 illustrates the qualitative outcomes of our
long-range video question answering experiment on the
EgoSchema [34] dataset. The approach, detailed in Sec-
tion 6.2, involves the generation of hierarchical captions
utilizing the Video ReCap model for videos. Subsequently,
these captions are presented to ChatGPT along with ques-
tions and answer choices as prompts, enabling the model to
select the correct answer. In Figure S4 (a) and Figure S4 (b),
it is evident that ChatGPT tends to choose incorrect answers
when provided solely with clip captions. However, the
model consistently makes correct choices in both scenar-
ios when supplemented with video summaries. This high-
lights the efficacy of our generated hierarchical captions in
enhancing the performance of long-range video question
answering tasks. Nevertheless, in certain instances, as de-
picted in Figure S4 (c), our approach encounters challenges
and fails to identify the correct answer.
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Figure S3. Examples of annotated video summaries of the Ego4D-HCap dataset. Due to space limitation and conciseness, we show
one frame for each 5 minutes of the video..
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(a)

(b)

(c)

Figure S4. Qualitative Results on EgoSchema. The baseline method that uses only short-range clip captions as input fails in examples
(a) and (b), where our approach succeeds by utilizing hierarchical captions (i.e., clip captions and video summaries). Both models fail in
Example (c).
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