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ABSTRACT

Table Question-Answering involves both understanding the natural language query and grounding it
in the context of the input table to extract the relevant information. In this context, many methods
have highlighted the benefits of intermediate pre-training from SQL queries. However, while most
approaches aim at generating final answers from inputs directly, we claim that there is better to do
with SQL queries during training. By learning to imitate a restricted portion of SQL-like algebraic
operations, we show that their execution flow provides intermediate supervision steps that allow
increased generalization and structural reasoning compared with classical approaches of the field.
Our study bridges the gap between semantic parsing and direct answering methods and provides
useful insights regarding what types of operations should be predicted by a generative architecture or
be preferably executed by an external algorithm.

Keywords Table · Question Answering · Semantic Parsing

1 Introduction

The field of Table Question Answering (QA), which encompasses complex content manipulation tasks like projection,
sorting, grouping, and aggregation, presents considerable challenges for Natural Language Processing (NLP). Its
complexity and growing relevance across diverse sectors, from business to academic research, have attracted widespread
attention. This domain has evolved quickly with the rise of Pretrained Language Models (PLMs), but this field remains
challenging for current models Jin et al. [2022].

Former studies focused on Semantic Parsing (SP) techniques tailored for well-structured and clean table data, as
highlighted in Shi et al. [2020]. However, real-world scenarios often involve heterogeneous resources, for example
combining both numerical and textual content in some cells, like in WikiTableQuestions Pasupat and Liang [2015].
Among the proposed solutions, Liu et al. [2021] tried to generate directly the answer and therefore bypass the generation
of logical forms. Despite this advantage, these methods exhibit limitations, particularly when executing numerical
operations (e.g. computing a mean, counting). To cope with this, a natural solution is to propose hybrids that stand as
intermediary solutions between semantic parsing and direct generation. For instance, Herzig et al. [2020], Zhou et al.
[2022a] have combined basic table selection methods (e.g. selecting rows and columns, or cells) before computing
aggregations or performing basic numerical operations. However, they often fail to address intricate queries necessitating
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Date Games Yards Team

1983 16 1,808 Los Angels
Rams

1984 16 2,105 Los Angels
Rams

Career 146 13,256

1993 4 91 Atlanta
Falcons

...

Question : The player's career spanned less than 20
years ?

Answer : True

Answer : 1993
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Figure 1: Overview of the different approaches for Table QA and their limits (a-c), along with our proposition (d)

the synthesis of diverse table views and interactions because of the limited expressivity of their underlying algebra.
In this work, we propose to study the continuum between semantic parsing-based and direct generative methods, to
leverage the strengths of both. Going beyond previous works, we propose a novel framework that facilitates reasoning
over heterogeneous table resources. This framework relies on the definition of an algebra over tables inspired by
relational algebra. Based on this algebra, each question in natural language and its corresponding table can be translated
into a computational graph. By varying a cut-off criterion that specifies which part of the graph should be computed
directly by the model (i.e. direct generation) and which one should be computed outside of it (i.e. semantic parsing), we
can study different trade-offs and their effect in terms of effectiveness.

Beyond a stronger interpretation of the user query in the context of the table compared to semantic parsing-based (SP)
methods, our framework addresses the common execution challenges associated with SP methods, which require clean
tables to allow full SQL execution. Our approach predicts operators with associated "clean" operands from the input,
thanks to the generation ability of the Transformer architectures.

To learn our model, we leverage a pre-training procedure Pruksachatkun et al. [2020], Geva et al. [2020], Yu et al.
[2020] that helps neural architectures to manipulate tabular data, before dealing with complex Table QA tasks, by first
learning to generate from SQL queries rather than from natural language. We then perform experiments showing that
our model performs as well as state-of-the-art models relying on much more sophisticated training procedures. More
importantly, we show that for some intermediate cut-off levels, our approach allows us to better generalize and is more
robust compared to direct answer methods, which are usually limited in their structural reasoning capacities.

2 Related Work

2.1 Table Question Answering Architectures

Table question answering is a very active field with many recent developments. This ranges from specifically designed
transformer architectures, with sparse Eisenschlos et al. [2021] or biased Golchin and Surdeanu [2023] attention
matrices that capture table structures, or specialized table embeddings as in TUTA Wang et al. [2021], to large Language
Modelds (LLMs) that leverage in-context learning to deal with table structures Chen [2022], Cheng et al. [2022],
Wang et al. [2024]. While our study, orthogonal to these directions, could be applied in the context of any family of
architectures including LLMs, e.g. fine-tuned using low-rank adaptation Hu et al. [2021], Dettmers et al. [2024], we
chose to build on compact architectures, based on reasonably-sized pre-trained language models (PLMs) such as BERT
or BART, as considered in popular recent works TAPEX Liu et al. [2021] or OmniTab Jiang et al. [2022]. Beyond
scalability, such architectures, which do not require specific prompt design that could bias conclusions, offer easier
comparison opportunities.1 Finally, we believe that our developed approach, which consists of predicting and using

1We also note that it has recently been shown in a broader context that LLMs are usually contaminated by evaluation benchmarks
Golchin and Surdeanu [2023], which could alter the results of our study.
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external programs as tools when generating answers, e.g. in the vein of Toolformer Schick et al. [2024], are still fully
valuable in the context of LLMs, providing increased inference speed and stability. Our work is a step into showing
how tools can be used with structured data like tables, which can be transferred to LLMs in future works.

In the following, we focus on differences between table question answering approaches regarding their output strategies,
which is more strongly related to the study of this paper.

2.2 Output Strategies in Table QA

Table Question-Answering models can be distinguished on their answer generation, which is either a formula operating
on the table (semantic parsing) or a direct answer (direct generation), or a hybrid of both.

Semantic Parsing Semantic parsing aims to transform natural language into executable queries, primarily SQL.
Sketch-based models decomposed SQL query construction by breaking down and classifying query components,
enhancing structured SQL generation Jin et al. [2022]. Generation-based methods like RAT-SQL Wang et al. [2019]
directly produce SQL queries using an encoder-decoder architecture that considers both the question and the table
context for generation. Under weak supervision, Min et al. [2019] optimize the probability of the correct answers over a
set of possible latent representations,

facilitating the model’s ability to infer correct responses without explicit answer mappings. Another stategy is to use
reinforcement learning where the execution result is used as rewards to train models Zhong et al. [2017]. Despite SQL’s
effectiveness in QA over tables Shi et al. [2020], its limitations with non-database tables and question translation are a
major drawback. Our approach seeks to transcend these bounds by introducing a logical form independent of the table
during execution.

Direct Answer Generation In contrast to semantic parsing, direct answer generation produces final answers,
bypassing the step of converting questions into formulas. This directly addresses the limitations of SQL-based systems,
enabling the processing of various table formats. For instance, Mueller et al. [2019] use a GNN-based encoder to
encode the table structure and a decoder to output the answers conditioned on the graph and the query. An additional
benefit of this method is its compatibility with advanced data augmentation techniques Eisenschlos et al. [2020]. This
includes transformations from SQL to its result as in TAPEX Liu et al. [2021], or from Excel formula to its execution as
in FORTAP Cheng et al. [2021]. However, a notable challenge for transformers in this domain is handling numerical
reasoning queries effectively Zhou et al. [2022b].

Hybrid Methods Hybrid methods extract pertinent tokens from tables to create responses, typically employing an
aggregator to associate with and route these tokens to a specifically designed executor. TAGOP Zhu et al. [2021] uses
sequence tagging for extracting relevant cells and a classifier for assembling them into coherent symbolic reasoning
programs. TAPAS Herzig et al. [2020] employs a classifier layer at the end of a BERT-like encoder for selecting content
from tables and determining the aggregation operation to apply to it. These methods have good numerical abilities, but
however, unlike other output strategies, they have limited expressiveness and struggle with complex multi-aggregation
queries Herzig et al. [2020]. Our proposed supervision using intermediate logical form addresses this issue by enabling
complex multi-aggregation representations.

3 Model

The goal of Table QA is to find the answer A given a natural language question q posed on a table T . In this section, we
first describe the algebra that we use to represent an SQL query. We then describe how to translate formulas using this
algebra into different sequences that depend among other things on the desired level of granularity.

3.1 Tabular algebra

In this section, we describe the algebra, inspired by the relational one Codd [1970], that we use to represent any
operation on tables.

Structures Table Question Answering is the task of finding an answer A from a table T ∈ T , where T =(
(xr,c)c=1...NT

col

)
r=1...NT

row

is a matrix of values xr,c, which can be numbers or strings. Differently from relational

algebra, we view tabular data as a sequence of tuples which we suppose to be ordered. A table can have a header, which
corresponds to a sequence of column names c1 . . . cNT

col
. When no header is given, each ci corresponds to the column

3
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Operation Function Definition Parameters Description
Projection P : T → T J = {ci}i∈1...k Extracts k columns from a table T,

specified by their names J ⊆ hT .
Comparison C : T ∪ G × T → B c ∈ {>,<, ..} Compares T1 ∈ T ∪ G with T2 ∈ T using c.

T2 either has the same number of rows as T1

or only 1 that is broadcast to fit T1.
Having H : G ×B → G - Selects from G where B is true,

with NB
rows = NG

rows.
Group By GB : T → G J = {ci}i∈1...k Groups elements in T with equal

values from columns in J ⊆ hT .
Aggregation A : T ∪ G → T f ∈ {sum, avg, ..} Aggregates T using function f .
Operator OP : T × T → T o ∈ {+,−, ∗, ..} Performs the term-wise operation o on

two tables T1 ∈ T and T2 ∈ T .
Order By OB : T → T d ∈ {asc, desc} Orders table T by criterion with direction d.
Limit L : T → T k ∈ N Selects top k elements from T .
Selection S : T ×B → T - Selects from T where B is true,

with NB
rows = NT

rows.

Table 1: Algebra to manipulate tabular data. See section 3.1 for notations.

index, and hT = {ci}
NT

col
i=1 stands as the set of column names from T . Views on the original table, that correspond to

results from algebraic operations, are also considered as table T ∈ T .

Classically, tables only include atomic values. To cope with set aggregations (i.e., involving a group-by operation),
we also manipulate group-by tables G ∈ G, where G =

(
(gr,c)c=1...NG

col

)
r=1...NG

row

, with each component gr,c

corresponding to a set of values. We also note columns boolean matrices as B = (br,1))r=1...NB
row

, with br,1 ∈ {0, 1}.

Operators Table 1 describes the different operators that we use to manipulate tables T or group-by tables G, whose
behavior can be conditioned on parameters (e.g. “order by” can be ascending or descending). These operators follow
roughly standard relational algebra operators and cover a broad range of SQL queries. A notable difference with
classical relational algebra, which was dictated by the fact we want to further decompose operations for analysis
purposes, is the fact that the selection operation simply corresponds to a filter given a column of boolean values
produced by a separated comparison operator and that the order of tuples is used for comparisons (e.g. >, <) and
operations (e.g. +, -).

Translating from SQL to our algebra is straightforward. We rely on the SQLGlot library2 to obtain a parse tree from
any SQL query. This parse tree is then translated into a computational graph. Each node n of this graph is denoted
as ϕ (xn, [n1, . . . , nK ]) where xn is either a table in T , a group-by table in G or an operator in O (an operator is
both the operation, e.g. "limit", and its parameters, e.g. k). In the case of operators, n1, . . . , nK correspond to the
arguments of the operators, i.e. other nodes in the computation graph corresponding to its operands, and xn(.) the
application of the operator on the corresponding list of child nodes. By abuse of notation, in the following we note
n = ϕ (xn, [n1, . . . , nK ]) ∈ X , with X a given set, to denote xn ∈ X .

3.2 Partial Execution of the computational graph

Now that we have defined the data and the algebra, we can present how this can be leveraged to produce various
representations. For this, we rely on a graph transduction function v operating recursively on any node n of the graph.
That is, given a set of operators O∗ we allow to be executed, v(n) = ϕ(xn(v(n1), . . . , v(nK))) if xn ∈ O∗ ∧ ∀i ∈
1 . . .K, v(ni) ∈ T ∪ G, and v(n) = n otherwise.

In other words, we execute from any leaf to the root of the computational tree every allowed operation in O∗ until
execution is blocked (because xn not in O∗ or one of its dependencies cannot be executed).

The computation graph can hence be partially executed through this transformation v, allowing for flexible handling of
SQL operations, by applying v on the root node.

2https://github.com/tobymao/sqlglot
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3.3 Linearizing the Graph

As the computational graph must be generated sequentially, we need to define how to transform it into a sequence
of tokens, i.e. how to linearize it. To do so, we use a linearization function that we denote l, which takes a node
n = ϕ (xn, n1, . . . , nK) in input and returns a sequence of tokens.

In the case of tables (i.e., when xn ∈ T ∪ G), we use a simple markup where we separate rows with the symbol “|” and
columns with a comma “,”. In the case of operators, i.e. xn ∈ O, the linearization l corresponds to the name of the
operator followed by its parameters. For instance, the sequence LIMIT 1 corresponds to the limit operator with 1 as its
parameter.

For operator nodes, we define various linearization schemes depending on the order (pre- or post-order) and the usage
of aliases to avoid duplicating the same information (the graph is a directed acyclic graph, but there can be different
paths between two nodes since results might be re-used).

Pre-order vs post-order We can either use a pre-order linearization scheme where the operator appears before its
operands: lpre(n) = l(xn)⊕⊕i(|| ⊕ lpre(ni)) or a post-order one: lpost(n) = ⊕i(|| ⊕ lpost(ni))⊕ || ⊕ l(xn). In both
cases, ’||’denotes a separator token and ⊕ concatenation.

Using aliases In the above linearizations, re-used results will be linearized several times. This happens frequently
with queries with some aggregation. The problem is that this can result in longer sequences, which in turn might be
harder to generate. To tame this problem, we associate each node with a given alias the first time it is linearized (e.g.
N13) and use this reference instead of its linearization in subsequent occurrences (see appendix A.1.1 for details).

Finally, tables are linearized either before or after the operators. After some preliminary experiments, we chose this to
make the grammar of the sequence more regular for a transformer (not mixing operators and content).

4 Experiments

4.1 Dataset and Evaluation Metrics

In our experiments, we used the WikiTableQuestions (WTQ) dataset Pasupat and Liang [2015], the only dataset that
fulfills all predefined criteria for our study: It is characterized by its provision of complex numerical reasoning questions,
tables with missing information, mixed cell types (e.g. text and numbers), and availability of SQL supervision. The
SQL annotations supplied by SQuALL Shi et al. [2020] enable the coverage of approximately 80% of the questions
from the WTQ, in the training and validation sets only.

Results are reported using the Denotation Accuracy (DA) metric as our primary evaluation criterion. DA checks if the
execution of the predicted answer is equal to the target answer. When the answer is a list of results, DA disregards the
order (i.e. set equality). We decomposed this metric into two categories: the Strict Denotation Accuracy (SDA), which
is the traditional one used, and the Flexible Denotation Accuracy (FDA), which compares results after removing units
(years, $, kg, etc.). The choice to employ both SDA and FDA stems from our dependence on external tools’ APIs for
execution. As a result, our execution outcomes are unit-less, and using SDA would hide the improvements brought
by our model – note that we could extend our method to generate an arbitrary sentence containing the result in future
works.

4.2 Inputs and outputs

The query encoding is straightforward but table encoding presents a challenge due to its inherent structure. We follow
TAPEX and OmniTAB Liu et al. [2021], Jiang et al. [2022], and represent the transformed table as T ∗ = [HEAD], c1,
..., cN , [ROW], 1, r1, [ROW], 2, r2, ..., rM . The tokens [HEAD] and [ROW] delimit the table’s header and row sections,
respectively, with subsequent numbers indicating row indices. Additionally, we use a vertical bar | to delineate headers
or cells in separate columns. We then concatenate the query with the linearized table as the input of the encoder.

Outputs in our model correspond to linearized computational graphs. We considered 42 experimental conditions. First,
we use one of the following seven sets of operators as O∗: (P) Only projection operators; (+C) P with comparison
operators; (+S) +C with selection operators; (+GB+H) +S with group-by and having; (+A) +GB+H with aggregations;
(+OP) +A with operators; (Full) with all operators, i.e. as TAPEX Liu et al. [2021]. Second, we used six possible
linearizations: pre-order, post-order, and pre/post-order-alias-start/end. Examples of different linearizations, with
different partial executions, are given in the appendix A.1, tables 7, 8, 9 and 10.

5
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Table 2: Comparison of Model Performance
Model SDA FDA

Fine-Tuned BART-like Models
TABERT Yin et al. [2020] 52.3 -
MATE Eisenschlos et al. [2021] 51.5 -
TableFormer Yang et al. [2022] 52.6 -
GRAPPA Yu et al. [2020] 52.7 -
DoT Krichene et al. [2021] 54.0 -
REASTAP Zhao et al. [2022] 58.6 -
TaCube Zhou et al. [2022b] 60.8 -
TAPAS Herzig et al. [2020] 48.8 50.2
TAPEX Liu et al. [2021] 55.5 57.9
OmniTab Jiang et al. [2022] 61.8 62.1

Prompt-based LLMs
ChatGPT Cheng et al. [2022] 43.3 -
Codex Ye et al. [2023] 47.6 -
StructGPT Cheng et al. [2022] 48.4 -
Codex-COT Chen [2022] 48.8 -
Binder Cheng et al. [2022] 64.6 -
LEVER Cheng et al. [2022] 65.8 -
DATER Cheng et al. [2022] 65.9 -
Chain-of-Table Wang et al. [2024] 67.3 -

Semantic parsing on test with cleaned tables
SQuALL Shi et al. [2020] 50.4 54.3

Semantic parsing on test tables
SQuALL Shi et al. [2020] 23.2 27.2

Our models
+P+C+S 59.0 61.4
Ensemble 63.3 66.3

4.3 Training pipeline

Our training methodology employs a standard sequence-to-sequence (seq-2-seq) framework, with BART as the backbone
architecture Lewis et al. [2019]. We use the TAPEX Liu et al. [2021] checkpoint to initialize our parameters and
follow the proposed pre-training procedure, as preliminary experiments have shown improved results. Following
TAPEX Liu et al. [2021], this process is divided into two distinct stages where we maximize the likelihood of the
linearized relational formula (section 3.1): (i) We pre-train the model to translate SQL queries into our logical form.
This step is crucial for adapting the model to understand the structure and semantics of SQL queries in the context of
our logical representation; (ii) we fine-tune our model using natural language questions instead of SQL. Our additional
hyper-parameters only correspond the choice of operators in O∗ from the validation set, as discussed below.

4.4 Overall performance

In this section, we compare our model with the state-of-the-art ones, on the test split of the WTQ Dataset. Results are
shown in Table 2, distinguishing between those employing fine-tuning techniques from BART-like architectures and
those considering in-context learning of LLMs, using specific prompting strategies. We report SDA as well as FDA for
the model for which we reproduced the results. We report in table 2 the results of the best-performing set of operators
we experimented, namely O∗ = {P,C, S}, as well as our ensemble model that leverages various granularities O∗.

We can first note that prompting approaches based on LLMs, including the cutting-edge chain-of-thought method Wei
et al. [2022], demonstrate superior performance without necessitating model adaptation. At the other end of the
spectrum, the semantic parsing baseline SQuALL does not perform well, especially if tables are not manually cleaned
up (dropping from 54.3 to 27.2 for FDA), while other methods do not require this costly cleaning step. Our models
showcase notable achievements, with our best one (selected on the validation set) reaching an FDA of 61.4%. This is
comparable to OmniTab which relies on sophisticated data augmentation techniques. We can even increase to 66.3%
when leveraging ensemble methods (see section 4.7). We also show later that besides obtaining state-of-the-art results
(for similarly sized architectures), our models are also more robust.

6
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Table 3: Performance (FDA) of models on the validation set, grouping results per type of query, for the models based
on pre-order linearization (no alias). The column ALL reports FDA averaged over validation queries. Best results are in
bold.

Model Projection (ALL) Comparison Selection Group By Order By Aggregation Operator Limit σ

# 500 367 363 30 151 206 75 153
Tapas 52.6 51.8 52.3 16.7 53.0 43.7 30.7 52.3 13.5
Tapex 55.2 55.9 56.5 50.0 60.9 38.8 44.0 60.8 7.9
Omnitab 58.8 59.7 59.8 56.7 61.6 47.1 45.3 60.8 6.4
P 44.6 40.9 41.3 40.0 49.7 43.7 28.0 49.0 6.8
+C 51.6 50.1 50.7 23.3 48.3 50.0 38.7 47.7 9.7
+S 58.6 58.0 58.4 40.0 58.3 52.4 52.0 57.5 6.4
+GB+H 57.8 57.8 58.4 23.3 57.0 49.5 49.3 56.2 11.8
+OB 57.6 57.5 57.8 53.3 58.9 51.5 50.7 58.2 3.3
+A 58.0 57.8 58.4 56.7 62.2 47.1 49.3 61.4 5.4
+OP 56.6 57.8 58.4 50.0 60.3 46.1 42.7 60.1 6.8

Table 4: Using validation data – the row # contains the number of matching queries (see Section 4.5)

Model Projection (ALL) Comparison Selection Group By Order By Aggregation Operator Limit σ

Tapas 42.6 41.7 42.2 16.7 38.4 37.9 18.7 37.9 10.6
Tapex 43.4 43.0 43.5 43.3 44.4 35.4 29.3 44.4 5.5
Omnitab 45.4 44.7 44.9 36.7 42.4 39.3 30.7 42.5 5.1
P 43.2 39.8 40.2 36.7 45.0 44.2 28.0 44.4 5.7
+C 49.0 46.3 46.8 23.3 45.7 48.5 38.7 45.1 8.5
+S 53.6 51.0 51.2 40.0 49.0 51.9 50.7 48.4 4.2
+GB+H 51.6 49.6 50.1 23.3 45.0 49.5 48.0 44.4 9.2
+OB 50.6 50.7 51.2 40.0 43.7 48.1 46.7 43.1 4.1
+A 47.2 46.0 46.6 50.0 45.7 41.8 40.0 45.1 3.1
+OP 47.8 47.7 48.2 50.0 45.7 43.2 30.7 45.8 6.1

Table 5: Using validation data with random permutations of each column (see Section 4.8)

4.5 Sensitivity over questions types

In table 4, we show the performance for different query types, distinguished by whether they contain operators such as
Projection, Comparison, Selection, Group By, Order By, Aggregation, Operator, and Limit. Note that queries containing
a group-by are limited (30), and hence results reported in this column should be taken with care.

Among existing models, Omnitab has the strongest performance, showing the importance of its data augmentation
techniques compared to Tapex, especially for complex operators such as group by and operators. Tapas does perform
worse on these query types, which shows the limits of its aggregation methodology based on column/row selection.

Among our models, PCS exhibits the best overall performance (as on the test set), thanks to its robust handling of
query types. Surprisingly, it however performs worse on group-by queries compared to models that include GB in
O∗. We suppose that this might be due to the variance due to the limited number of queries of that type. Finally, our
model exhibits a pattern where simpler operators (projection, comparison, selection) are better handled when generated
directly, while others (order by, aggregation, operators) do benefit from being executed externally.

Finally, table 6 presents the performance of models with respect to the complexity of the query, as measured by the
number of operators in the original computational graph. OmniTab and our models (especially +GB+H) demonstrate
resilience with relatively stable performance across operation ranges. Tapex and Tapas, however, show a decline in
performance as complexity increases, with Tapas notably struggling in the 8+ operation category showing the limit of
extractive methods.

4.6 Comparing linearization methods

In figure 2, we show the impact of the linearization on the performance of the models. We can first observe that
differences between our model variants decrease as most of the computational graph is executed, which was expected.
Contrary to our expectations, however, using aliases has a negative impact, especially when they are more used (+P to
+P+C+S), which shows that having too many aliases is problematic when generating a relational formula. When using
aliases, putting the tables after the operators did somehow improve the results. We think that these results might change
with better training procedures (e.g. data augmentation with perturbations): we observed that models using aliases were

7
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Figure 2: Evolution of FDA (test set) for different model variants.

more robust, but their overall performance was nevertheless below that of non-aliases ones. Finally, we observe that
there is a granularity level (+P+C+S) that achieves the best performance, corresponding to cases where only basic table
selection is performed; moreover, this level is less prone to overfitting as discussed in Section 4.8.

4.7 Ensembling

Figure 3 illustrates the results that we obtained using different ensembling combinations. The ensemble prediction is
given by a majority vote. In case of ties, we use the validation FDA to weights the votes. We experimented with two
ensembling settings: going from semantic parsing models to full execution, or in the opposite direction, i.e. from full
execution to semantic parsing.

First, performance improves whatever the ensembling method. This improvement can be explained with the analysis
presented in Table 5, where we analyzed the performance depending on the operators composing the computational
graph. While certain models excel in specific types of operations, others may show superiority in different areas. Such
diversity among the models is important for ensembling.

4.8 Sensitivity over table column cells perturbations

Transformers architecture can easily overfit, especially in the case of a dataset like WTQ. To measure the importance of
overfitting, we use the validation set (since the test set has no associated SQL queries) and perform random perturbations,
i.e. we permute rows within each column. To avoid problems relative to the maximum length of the input, we ensure
those perturbations only affect the parts present in the input of the transformer – all models would have been affected,
and this would have reduced the sensibility of our measures.

Results are shown in table 5 using a pre-order (no alias) linearization (our best linearization method). We observe that
perturbation strongly affects even the best-performing approaches, as OmniTAB performance lowers from 58.8 to 45.4
(-13.4), Tapex from 55.2 to 43.4 (-11.8), and Tapas from 52.6 to 42.6 (-10.0). Our models are much less impacted. For
instance, our best-performing approach (PCS) decreases its performance from 58.6 to 53.6 (-5.0), and beats the best

Table 6: Performance (FDA) with respect to the number of operators
Model 1-4 4-8 8+
Tapex 65.5 44.3 55.2
Tapas 66.5 49.0 32.4
Omnitab 65.0 54.2 55.2
+P 53.2 42.2 32.4
+C 61.1 46.4 42.9
+S 67.0 53.7 51.4
+GB+H 67.5 49.5 54.3
+OB 63.6 52.6 55.2
+A 65.0 53.1 57.1
+OP 63.1 50.0 56.2
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Figure 3: Evolution of FDA (test set) depending on the number of model variations in the ensemble. We either add
models to the ensemble starting from the left (green) or the right (blue).

baseline, Omnitab, by a large margin (53.6 vs 45.4), showing that data augmentation is less effective in preventing
overfitting than generating formulas combining content and relational operators.

Among our models, we note that the lesser the amount of executed parts in the computation graph, the lower the
decrease. As some models were initially more performant than others, we can note that the "P+C+S" model is the most
effective one, with an average FDA of 53.6. Finally, we can see that the impact on some operators (e.g. group by, limit,
comparisons) is even higher for models where most or all of the computational graph is executed.

5 Conclusion

We explored the realm between semantic parsing and direct output generation for table QA, showing that PLMs can
leverage an appropriate level of granularity where basic table manipulations (cleaning, selection) can be handled by the
transformer itself while higher-level operations (e.g. aggregation, arithmetic) are better handled by dedicated tools.
We showed that a model, appropriately trained, achieves a high performance compared to state-of-the-art, and that,
more importantly, most PLMs baselines are prone to overfitting (by using a simple permutation of table cells), while
our method is much less affected and beats the best baseline, OmniTab, by a wide margin. Future works will include
more sophisticated training procedures, a sparse attention mechanism to cope with long tables such as LLMs, and more
in-depth error analysis.

6 Limitations & Risks

Our models have not been trained with data augmentation, which would help them to make them more robust – even if
other models could benefit from it (e.g. Tapex or Tapas), we hypothesize that it would have an even bigger impact on
our model (The best baseline, OmniTab, was already trained with augmented data). Experimenting with more datasets
would also have strengthened our results. However, as for all works on Table QA, WikiTableQuestion is still a resource
of reference.

We did not compare thoroughly our results with LLMs but did report the results from the original papers. However, the
gap between the best-performing LLMs and our model is not that high, showing the potential benefit of using partially
executed formulas. Future works could include the fine-tuning of LLMs with our proposed supervision.

Risks involved in this research are similar to those incoming from any NLP research, as an automatic understanding
of data can be used maliciously, e.g. leaking confidential information from tables. However, this work focuses on an
exploratory study of learning abilities, which is dedicated to the scientific community only.
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A Appendix

A.1 Linearization

A.1.1 Using aliases

In the case of pre-order, we denote the alias for node n with αn and use the following linearization:

lpre(n) =


l(xn)⊕i αni

⊕ αn ⊕i l
c
pre(ni)

if x ∈ O
∅ else

(1)

where ∅ denotes the empty sequence and lc is either empty – if the operator has already been linearized – or ||⊕ lpre(ni)
if not. Note that the order of linearization is important, but to avoid more complicated notations we do not make it
explicit here.
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O∗ Logical Form Graph

{P}

Limit 1 || OB desc || GB || WHERE || newtongrange | ..
| fauldhouse || IN ’fauldhouse’, ’newtongrange’ || new-
tongrange | .. | fauldhouse || WHERE || newtongrange|
.. | fauldhouse || IN ’fauldhouse’, ’newtongrange’ || new-
tongrange| .. | fauldhouse || COUNT || GB || WHERE ||
newtongrange| .. | fauldhouse || in ’fauldhouse’, ’newton-
grange’ || newtongrange| .. | fauldhouse || WHERE || 1 | .. |
7 || IN ’fauldhouse’, ’newtongrange’ || newtongrange | .. |
fauldhouse ||

{P, C}

Limit 1 || OB desc || GB || WHERE || newtongrange | .. |
fauldhouse || t | f | .. | t | t || WHERE || newtongrange| .. |
fauldhouse || t | f | .. | t | t || COUNT || GB || WHERE ||
newtongrange| .. | fauldhouse || t | f | .. | t | t || WHERE || 1
| .. | 7 || t | f | .. | t | t ||

{P, C, S}

Limit 1 || OB desc || GB || newtongrange | fauldhouse |
fauldhouse || newtongrange | fauldhouse | fauldhouse ||
COUNT || GB || newtongrange | fauldhouse | fauldhouse ||
1 | 2 | 7 ||

{P, C, S, GB,
H}

Limit 1 || OB desc || fauldhouse„ fauldhouse | newton-
grange || COUNT || 2„ 7 | 1 ||

{P, C, S, GB,
H, OB}

Limit 1 || OB desc || fauldhouse„ fauldhouse | newton-
grange || COUNT || 2„ 7 | 1 ||

{P, C, S, GB,
H, OB, A} Limit 1 || fauldhouse„ fauldhouse | newtongrange ||

Full fauldhouse

Table 7: Example of Pre-order linearization for the query "SELECT East Region FROM w WHERE East Region
in (’fauldhouse’, ’newtongrange’) GROUP BY East Region ORDER BY COUNT ( id ) DESC LIMIT 1" Natural
Language question ="’which team has made the roll of honour more times in the east region south division: fauldhouse
or newtongrange ?’"
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O∗ Logical Form Graph

{P}

newtongrange | .. | fauldhouse || IN ’fauldhouse’, ’newton-
grange’ || 1 | .. | 7 || WHERE || newtongrange| .. | fauld-
house || in ’fauldhouse’, ’newtongrange’ || newtongrange|
.. | fauldhouse || WHERE || GB || COUNT || newtongrange|
.. | fauldhouse || IN ’fauldhouse’, ’newtongrange’ || new-
tongrange| .. | fauldhouse || WHERE || newtongrange | .. |
fauldhouse || IN ’fauldhouse’, ’newtongrange’ || newton-
grange | .. | fauldhouse || WHERE || GB || OB desc || Limit
1 ||

{P, C}

t | f | .. | t | t || 1 | .. | 7 || WHERE || t | f | .. | t | t ||
newtongrange| .. | fauldhouse || WHERE || GB || COUNT
|| t | f | .. | t | t || newtongrange| .. | fauldhouse || WHERE ||
t | f | .. | t | t || newtongrange | .. | fauldhouse || WHERE ||
GB || OB desc || Limit 1 ||

{P, C, S}

1 | 2 | 7 || newtongrange | fauldhouse | fauldhouse || GB
|| COUNT || newtongrange | fauldhouse | fauldhouse ||
newtongrange | fauldhouse | fauldhouse || GB || OB desc ||
Limit 1 ||

{P, C, S, GB,
H}

2„ 7 | 1 || COUNT || fauldhouse„ fauldhouse | newton-
grange || OB desc ||Limit 1 ||

{P, C, S, GB,
H, OB}

2„ 7 | 1 || COUNT || fauldhouse„ fauldhouse | newton-
grange || OB desc ||Limit 1 ||

{P, C, S, GB,
H, OB, A} fauldhouse„ fauldhouse | newtongrange || Limit 1 ||

Full fauldhouse

Table 8: Example of Post-order linearization for the query : "SELECT East Region FROM w WHERE East Region
in (’fauldhouse’, ’newtongrange’) GROUP BY East Region ORDER BY COUNT ( id ) DESC LIMIT 1". Natural
Language question ="’which team has made the roll of honour more times in the east region south division: fauldhouse
or newtongrange ?’"
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O∗ Logical Form Graph

{P}

N10 Limit 1 N8 || N8 ob desc N12 N22 || N12 gb N7
N16 || N7 WHERE N24 N6 || N24 in ’fauldhouse united’,
’newtongrange star’ N6 || N16 WHERE N24 N6 || N22
COUNT N34 || N34 GB N7 N26 || N26 WHERE N24 N33
||| N6 newtongrange star| ... | fauldhouse united || N33 1| 2|
... | 7 ||

{P, C}

N22 Limit 1 N10 || N10 OB desc N14 N13 || N14 GB N1
N2 || N1 WHERE N8 N32 || N2 WHERE N8 N32 || N13
count N11 || N11 GB N1 N12 || N12 WHERE N8 N15
||| N32 newtongrange star| fauldhouse united| ..| dalkeith
thistle| fauldhouse united || N8 t| .. | t || N15 1 | .. | 6| ||

{P, C, S}
N11 Limit 1 N31 || N31 OB desc N29 N3 || N29 GB N4
N4 || N3 COUNT N6 || N6 GB N4 N5 ||| N4 newtongrange
star| fauldhouse united| fauldhouse united || N5 1| 2| 7 ||

{P, C, S, GB,
H}

N35 Limit 1 N38 || N38 OB desc N29 N27 || N27 COUNT
N3 ||| N29 fauldhouse united„ fauldhouse united| newton-
grange sta || N3 2„ 7| 1 ||

{P, C, S, GB,
H, OB}

N22 Limit 1 N32 || N32 OB desc N36 N23 || N23 COUNT
N38 ||| N36 fauldhouse united„ fauldhouse united| newton-
grange star || N38 2„ 7| 1 ||

{P, C, S, GB,
H, OB, A}

N37 Limit 1 N36 ||| N36 fauldhouse united„ fauldhouse
united| newtongrange star ||

Full fauldhouse

Table 9: Example of pre-order with alias (tables at the end) linearization for query : "SELECT East Region FROM w
WHERE East Region in (’fauldhouse’, ’newtongrange’) GROUP BY East Region ORDER BY COUNT ( id ) DESC
LIMIT 1" Natural Language question ="’which team has made the roll of honour more times in the east region south
division: fauldhouse or newtongrange ?’"
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O∗ Logical Form Graph

{P}

N24 newtongrange star| ..| fauldhouse united || N1 1| 2| ..|
7 ||| N3 Limit 1 N17 || N17 OB desc N10 N5 || N10 GB
N11 N35 || N11 WHERE N4 N24 || N4 in ’fauldhouse
united’, ’newtongrange star’ N24 || N35 WHERE N4 N24
|| N5 COUNT N7 || N7 GB N11 N12 || N12 WHERE N4
N1 ||

{P, C}

N12 newtongrange star| .. | fauldhouse united || N16 t| t| ..
| f| t || N27 1| .. | 7 ||| N28 Limit 1 N38 || N38 OB desc N5
N24 || N5 GB N13 N18 || N13 WHERE N16 N12 || N18
WHERE N16 N12 || N24 COUNT N7 || N7 GB N13 N8 ||
N8 WHERE N16 N27 ||

{P, C, S}
N22 newtongrange star| .. | fauldhouse united || N10 1| .. |
7 ||| N16 Limit 1 N4 || N4 OB desc N2 N29 || N2 GB N22
N22 || N29 COUNT N30 || N30 GB N22 N10 ||

{P, C, S, GB,
H}

N17 fauldhouse united„ fauldhouse united| newtongrange
star || N10 2„ 7| 1 ||| N37 Limit 1 N12 || N12 OB desc N17
N21 || N21 COUNT N10 ||

{P, C, S, GB,
H, OB}

N25 fauldhouse united„ fauldhouse united| newtongrange
star || N22 2„ 7| 1 ||| N2 Limit 1 N8 ||N8 OB desc N25 N24
|| N24 COUNT N22 ||

{P, C, S, GB,
H, OB, A}

N12 fauldhouse united„ fauldhouse united| newtongrange
star |||N10 Limit 1 N12 ||

Full fauldhouse

Table 10: Example of Pre-order alias (tables at the start) linearization with alias for "SELECT East Region FROM w
WHERE East Region in (’fauldhouse’, ’newtongrange’) GROUP BY East Region ORDER BY COUNT ( id ) DESC
LIMIT 1", where natural Language question ="’which team has made the roll of honour more times in the east region
south division: fauldhouse or newtongrange ?’"
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