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Probabilistic automatic complexity of finite strings

Kenneth Gill *

Abstract. We introduce a new complexity measure for finite strings using probabilistic finite-

state automata (PFAs), in the same spirit as existing notions employing DFAs and NFAs, and

explore its properties. The PFA complexity AP (x) is the least number of states of a PFA for

which x is the most likely string of its length to be accepted. The variant AP,δ(x) adds a real-

valued parameter δ specifying a lower bound on the gap in acceptance probabilities between x and

other strings. We relate AP to the DFA and NFA complexities, obtain a complete classification of

binary strings with AP = 2, and prove AP,δ(x) is computable for every x and for cofinitely many

δ (depending on x). Finally, we discuss several other variations on AP with a view to obtaining

additional desirable properties.

Keywords: probabilistic automaton, finite-state automaton, automatic complexity, iterated func-

tion system, computable metric space, algorithmic information theory

1. Introduction

Informally, the Kolmogorov complexity of a finite string w is the size of the smallest Turing machine

which outputs w given no input. As a function, it is well-known to be noncomputable, and moreover

only defined up to an additive constant. These drawbacks have motivated several authors to define

complexity measures based on models of computation less powerful than the Turing machine, such

as context-free grammars [2, 3]. In 2001, Shallit and Wang introduced one such measure using de-

terministic finite-state automata (DFAs), defining AD(w) to be the number of states of the smallest

DFA for which w is the only string of its length to be accepted [4]. This measure is computable,
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well-defined, and there is a polynomial-time algorithm to recover w from a witness for AD(w). Later

in 2013, Hyde defined a similar measure replacing DFAs with nondeterministic finite-state automata

(NFAs) [5, 6]. AN shares the advantages of AD over Kolmogorov complexity while additionally mak-

ing AN (w) = AN (←−w ), where←−w is the reversal of w, and avoiding “dead states” (nonaccepting states

with no out-transitions) often present among witnesses for AD merely to satisfy the requirement of

determinism. The study of AN has been continued by Kjos-Hanssen, see e.g. [7, 8, 9, 10], as well as

the recent book [11].

Inspired by the aforementioned work, we investigate what happens when deterministic or nonde-

terministic machines are replaced by probabilistic ones (PFAs), wherein each state transition occurs

with some probability and each word w is assigned a probability of acceptance ρM (w) by the PFA M .

We view M as describing w if w uniquely maximizes ρM among all strings of the same length. This

property can be phrased in terms of the so-called gap function, which measures how likely w is to be

accepted by M compared to other strings:

Definition 1.1. The gap function of M is the map from Σ∗ to [−1, 1] given by

gapM (w) = min{ ρM (w) − ρM (z) : |z| = |w| and z 6= w }.

All words are presumed to be drawn from some finite alphabet Σ fixed in advance. This function

is positive iff w is more likely than any other string of the same length to be accepted, and so we define

the PFA complexity to be the least number of states needed for this to happen:

Definition 1.2. The probabilistic automatic complexity (PFA complexity) of w is

AP (w) = min{ k : there is a k-state PFA M such that gapM (w) > 0 }.

This definition is probably the one most directly analogous to the definitions of AD and AN . Our

main result about AP is the following complete classification of binary strings with complexity 2,

which arguably helps vindicate the above definition by showing that AP does appear to capture some

intuitive structural properties.

Theorem 1.3. For a binary string w, AP (w) = 2 if and only if w is of the form

injm, injmi, in(ji)m, or inj(ij)m

for some n,m ≥ 0, where i, j ∈ {0, 1}.

One can compare this to the fact that AN (w) = 2 if and only if w = ijn, inj, or (ij)n [5, p. 18].

Indeed, AN is unbounded on strings of the form injm, which gives us

Corollary 1.4. The quantity AN (w) −AP (w) may be arbitrarily large among binary w.

On the other hand, while the DFA and NFA complexities are computable simply by virtue of

there being only finitely many DFAs and NFAs of a given number of states over a given alphabet, the

computability of AP is not at all evident from the definition, and remains open at the time of writing.

It follows from Theorem 4.1 that in passing to AP , we once more lose the property that the complexity
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of a string equals that of its reversal. And there are nonconstant strings w such that AP (w) is witnessed

by a PFA with dead states, as with AD. (There is no w such that AP (w) must be witnessed by such

a PFA, though, because ρM (w) is continuous in the transition probabilities of M and one can always

perturb these probabilities so that all are positive.)

Another natural concern with AP is that M can witness AP (w) while ρM (w) is not very high, or

not much different from ρM (z) for other strings z of the same length. Is M really a good representation

of w if it can only slightly distinguish w from other strings? What if all potential witnesses M have

this property? We attempt to define our way out of this problem by introducing a real-valued parameter

giving a lower bound on the gap between probabilities:

Definition 1.5. The probabilistic automatic complexity of w with gap δ ∈ [0, 1) is1

AP,δ(w) = min{ k : there is a k-state PFA M such that gapM (w) > δ }.

Thus AP,0(w) = AP (w). It turns out that AP,δ(w) is computable for all w and almost all δ 6= 0,

which is the other main result of this paper.

Theorem 1.6. For any finite alphabet Σ, the function (δ, w) 7→ AP,δ(w) is

• Continuous everywhere on [0, 1) × Σ∗ except on a countably infinite set which can be enumer-

ated by a single algorithm;

• Computable on (0, 1) ×Σ∗ where it is continuous.

In particular, for every w, AP,δ(w) is computable for all but at most AD(w)− 2 many values of δ, and

is continuous at δ = 0.

The reader should note that this theorem makes no positive or negative claim about computability

at δ = 0.

AP,δ has another philosophically attractive feature which we now describe. Suppose one is given

an automaton M as a “black box”, that is, with no information whatsoever about its inner workings.

All one can do is run it with some input string, and check whether it accepts or rejects the string.

Suppose further that an experimenter wishes to test whether this automaton witnesses an upper bound

for AP (w) for some string w. Then the experimenter needs not only to check whether each z ∈ Σ|w| is

accepted, but whether or not it will be accepted with a lower bound λ on its probability of acceptance,

for each λ in turn. (This would enable them to decide if there is some particular w, λ with ρM (w) > λ
but ρM (z) < λ whenever |z| = |w| and z 6= w. In other words, they would estimate a lower bound

on gapM (w).) The experimenter can only accomplish this by running the machine repeatedly on each

input w to get some sense of the expected value of ρM (w), up to some acceptable margin of error ε.

In his original paper introducing PFAs, Rabin [12] discusses a similar endeavor in the context of

establishing experimentally that w is in a given stochastic language, where a language is stochastic if

it is of the form {w ∈ Σ∗ : ρM (w) > λ } for some PFA M and λ ∈ [0, 1], called the cut-point. As

1This is a slightly different definition from that originally given by the author in [1], which required gapM (w) ≥ δ rather

than >. The author has come to feel that the present definition is more natural. Only minor amendments to the proofs of

results involving AP,δ were needed as a result of this change.
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he points out, the law of large numbers implies that as long as ρM (w) 6= λ, there is a finite number

N = N(w, ε) such that running N trials, counting the number s of successes, and comparing s/N
with λ will correctly determine if ρM (w) > λ with probability 1−ε. But, as he goes on to say, finding

N(w, ε) would depend on knowing ρM (w) in the first place.

Rabin’s solution is to only consider cut-points λ which are isolated for M , that is, such that

|ρM (w) − λ| ≥ δ for all w ∈ Σ∗ and some δ > 0. If one wants to run the above experiment to

test if ρM (w) > λ when λ is isolated, then the number of trials N needed to determine this within

margin of error ε now only depends on δ and ε, regardless of M . Knowledge of ρM (w) is not needed.

Of course, this is not a solution from a practical point of view if no such cut-point is given at the outset,

because now the experimenter would need to determine if λ is isolated for M and (if so) a lower bound

for its degree of isolation δ. The problem of determining if a given rational cut-point is isolated for a

given PFA is known to be Σ0
2-complete [13, Theorem 1].

But—back to our black-box experiment—if one specifies δ at the outset and looks for a witness

for an upper bound on AP,δ(w) rather than AP (w), the problem disappears and we still get that N
depends only on δ and ε, with both of these parameters now being chosen by the experimenter. To

see why, let a single trial consist of running every word of length |w| through the machine M once. If

s(w,N) is the number of acceptances of w in N trials, then there is a function N = N(δ, ε) such that

for each z ∈ Σ|w|, one correctly concludes with probability at least 1 − ε′ that ρM (w) − ρM (z) > δ
given [s(w,N) − s(z,N)]/N > δ, assuming ρM (w) − ρM (z) 6= δ. Here ε′ is chosen small enough

that (1 − ε′)|Σ||w|
> 1 − ε. Since acceptances or rejections of words are presumed to be independent

events, it follows that after N(δ, ε) trials, one correctly concludes with probability at least 1 − ε that

gapM (w) > δ.

This paper establishes several basic properties of AP and AP,δ and hopefully justifies their study

as having intrinsic interest, but many avenues of investigation are left unexplored. This is in part due

to both AP and AP,δ proving somewhat combinatorially difficult to reason with, aside from a few

of our results which follow quickly from straightforward matrix calculations. In particular there is

nothing we can say about the asymptotic behavior of either quantity: no example is known at the

time of writing which even suggests AP can be greater than 3. Indeed, the original motivation behind

proving the classification theorem (Theorem 4.1) was to show that AP is not constant. Then the most

fundamental question we leave unanswered is probably

Question 1.7. Is AP unbounded? If not, what is its maximum value? Similarly when restricted to a

given finite alphabet, and similarly for AP,δ.

Remark 1.8. Probabilistic finite automata were independently introduced in 1963 by Michael Rabin

and J. W. Carlyle [12, 14]. Carlyle’s stochastic sequential machines are transducers with both input

and output behavior, while Rabin’s PFAs—which are sometimes also called stochastic acceptors—can

only accept an input string with some probability. The present work focuses only on PFAs as defined

by Rabin, although Carlyle-style machines have found wide applicability in machine learning and

pattern recognition; see [15] for a modern survey. A notion of transducer complexity of finite strings

has also been studied [16], but the approach taken there is most directly analogous to that of the

Kolmogorov complexity rather than AD . We leave the probabilistic analogue for future work. There

is, however, an idea related to AP which has been studied for transducers in the machine learning
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literature. Given a probabilistic finite-state transducer T , x is called the most probable string or

consensus string of T if it is generated by T with maximal probability among all strings, not just

among those with the same length [15]. One might ask if this notion should be adapted to PFAs,

defining the complexity of x instead as the smallest size (in some sense) of a PFA accepting x with

unique highest probability among all strings. But we will see in the proof of Theorem 4.2 (Section 4.2)

that a single PFA can simultaneously witness AP (x) for every one of an infinite family of strings x of

similar structure. This ability arguably lends AP a descriptive advantage over a notion resulting from

viewing a PFA as only describing its most probable string.

The structure of the rest of the paper is as follows. After collecting some formal definitions in the

next section, we state a few preliminary results in Section 3, including Proposition 3.1 relating AP

and AP,δ to AD and AN . Here we also discuss a few examples of the calculation of AP and AP,δ.

Section 4, which takes up over half of the paper, consists entirely of the proof of Theorem 4.1. This

proof exploits a correspondence between PFAs and iterated function systems outlined in Section 4.1.

Section 5 is devoted to the proof of Theorem 5.1, which involves techniques from computable analysis.

Finally, in Section 6 we discuss several further variations on AP with an eye to mitigating its potential

flaws as a complexity measure.

2. Preliminaries

Let Σ∗ be the set of finite strings over the finite alphabet Σ. Write xay for the concatenation of the

strings x and y.

Definition 2.1. A probabilistic finite-state automaton (PFA) is an abstract machine specified by a

tuple M = (S,Σ, P, ~π, ~η), where

• S = { s1, . . . , sn } is the set of states;

• Σ is a finite alphabet;

• P is a set of n×n right-stochastic matrices {Pσ :σ ∈ Σ } describing the transition probabilities.

For each σ ∈ Σ, (Pσ)ij is the probability of going from si to sj when letter σ is read;

• ~π is a row vector of length n giving a probability distribution on initial states, so ~πj is the

probability of the machine starting in state sj ; and

• ~η is a column vector of length n giving the list of accepting states, so ~ηi is 1 if si is accepting

and is 0 otherwise.

When Σ is not important, we will frequently omit its mention, and likewise we usually identify S
with the set {1, . . . , n} for some n. Thus we often specify a PFA by giving only ~π, ~η, and the matrices

Pσ. If all entries of ~π and each Pσ are rational numbers, then we refer to M as rational. A PFA can

also be represented as a digraph, with edges labeled by transition probabilities. For example, Figure 1
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s1
(1)

s2

s3

0 (1); 1 (.5)

1 (.5)

1 (1)

0 (1)

0 (1); 1 (.5)

1 (.5
)

Figure 1: An example of a PFA. Numbers in parentheses are transition probabilities, so that the PFA

starts in state s1 with probability 1. s3 is the unique accepting state.

depicts the PFA over the alphabet {0, 1} with

P0 =







0 0 1

1 0 0

1 0 0






, P1 =







.5 0 .5

0 1 0

.5 .5 0






, ~π = (1, 0, 0), ~η =







0

0

1






.

Definition 2.2. If M is a PFA and x = x1x2 · · · xℓ is a string, let

PM (x) = Px1
Px2
· · ·Pxℓ

.

Then the acceptance probability of x with respect to M is

ρM (x) = ~πPM (x)~η.

If M is understood from context we may simply write ρ(x), and similarly gap(x).
One can view a DFA as the special case of a PFA in which ~π is a coordinate vector and all Pσs

are permutation matrices. An NFA is then a slight relaxation of a DFA where ~π may be any zero-one

vector and each Pσ may be any zero-one matrix. Of course, DFAs and NFAs are usually represented

as digraphs, but it is convenient for us to think of them via their transition matrices since we will

manipulate them directly alongside PFAs. The precise definitions of the DFA and NFA complexities

are as follows:

Definition 2.3. (Shallit and Wang [4])

The deterministic automatic complexity of a finite string x is

AD(x) = min{k : there is a k-state DFA accepting x

uniquely among strings of length |x|}.

In other words, thinking of a witnessing DFA M as a PFA, this says gapM (x) = 1, or equivalently

gapM (x) > 0 since the gap function takes only the values 0 and 1 when M is deterministic. It follows

immediately that AP (x) ≤ AD(x) for all x.
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Definition 2.4. (Hyde [5])

The nondeterministic automatic complexity of x is

AN (x) = min{k : there is a k-state NFA accepting x

and with a unique accepting path of length |x|}.

Every DFA witnessing AD(x) is an NFA that accepts x with a unique accepting path of length |x|
(by virtue of its determinism), so AN (x) ≤ AD(x) for all x.

For the reader’s convenience, we repeat here the definitions of the gap function, AP , and AP,δ

from the introduction.

Definition 2.5. The gap function of the PFA M is the map from Σ∗ to [−1, 1] given by

gapM (w) = min{ ρM (w) − ρM (z) : |z| = |w| and z 6= w }.

The probabilistic automatic complexity of w with gap δ ∈ [0, 1) is

AP,δ(w) = min{ k : there is a k-state PFA M such that gapM (w) > δ }.

The probabilistic automatic complexity of w is then

AP (w) = AP,0(w).

3. First results on AP

In this section we establish a few basic properties of AP and AP,δ, beginning by relating them to AD

and AN :

Proposition 3.1. (i) For any x, AP (x) ≤ AN (x) + 1.

(ii) AP (x) ≤ AP,δ(x) ≤ AD(x) for all x and δ ∈ [0, 1). For every x, there is a δ′ > 0 such that

AP,δ(x) = AP (x) for all δ ∈ [0, δ′).

Proof:

(i) Let M = (S,Σ, P, ~π, ~η) be an NFA witnessing AN (x). Uniqueness of M ’s accepting path for

x means in particular that ~π is a coordinate vector. Then define a PFA M ′ = (S′,Σ, P ′, ~π′, ~η
′
)

as follows. Let S′ = S ∪ {s}, where s is a new state not occurring in S, to be listed after

all other states. Let ~π′ = [~π|0] and ~η
′
= [~η|0], where [~a|~b] denotes the concatenation of the

vectors ~a and ~b. Write Xi for the ith row of any matrix X (i ≥ 1). For each σ ∈ Σ, let P ′
σ

be built as follows from Pσ: if P i
σ has at least one nonzero entry, let (P ′

σ)
i = [P i

σ|0]/(
∑

P i
σ).

Otherwise, let (P ′
σ)

i = [P i
σ|1] = (0, . . . , 0, 1). Finally, if |S| = k, then append a new row

(P ′
σ)

k+1 = (0, . . . , 0, 1) (this corresponds to the new state s).

Then M ′ still has a unique accepting path of length |x|; in particular, x is the only string of

length |x| with ρM ′(x) positive. Therefore M ′ witnesses an upper bound for AP (x).
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s1 s2 s3 s4

0 0

0 01

1

1

Figure 2: An NFA witnessing that AN (0001101) = 4.

(ii) If δ < δ′ then AP,δ(x) ≤ AP,δ′(x), and if M is a DFA witnessing AD(x) then gapM (x) =
1. This gives the first statement. For the second statement, one can for example pick δ′ =
gapM (x)/2 for any witness M for AP (x).

⊓⊔

Corollary 3.2. For all x, AP (x) ≤ ⌊|x| /2⌋+ 2.

Proof:

Hyde showed in [5, Theorem 3.1] that AN (x) ≤ ⌊|x| /2⌋+1, so the bound immediately follows from

the proposition. ⊓⊔

The procedure described in the first part of Proposition 3.1 demonstrates that if AN (x) is witnessed

by an NFA such that every state has at least one out-transition for every letter, then AP (x) ≤ AN (x)
(because there are no rows of all zeros in the transition matrices, and the “dead state” s need not be

added).

As an example of this construction, according to Bjørn Kjos-Hanssen’s website,2 AN (0001101) =
4 via the NFA depicted in Figure 2. Here s1 is both the initial and accepting state. In matrix form, this

NFA can be represented as

P0 =













0 1 0 0

0 0 1 0

0 1 0 1

0 0 0 0













, P1 =













0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 1













, ~π = (1, 0, 0, 0), ~η =













1

0

0

0













.

To transform this into a PFA, we need to add a fifth state due to the rows of zeros, and from the

construction we get

P ′
0 =

















0 1 0 0 0

0 0 1 0 0

0 1/2 0 1/2 0

0 0 0 0 1

0 0 0 0 1

















, P ′
1 =

















0 0 0 0 1

1 0 0 0 0

0 0 0 0 1

0 0 1/2 1/2 0

0 0 0 0 1

















, ~π′ = (1, 0, 0, 0, 0), ~η
′
=

















1

0

0

0

0

















.

2https://math.hawaii.edu/wordpress/bjoern/complexity-of-0001101/

https://math.hawaii.edu/wordpress/bjoern/complexity-of-0001101/
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There are strings for which the inequality in Proposition 3.1(i) is strict—indeed no nonconstant strings

are presently known for which AP (x) is equal to the maximum possible value AN (x) + 1. For

example, x = 0110 has AN (x) = 3, but AP (x) = 2 by Theorem 4.1, as witnessed by the PFA with

P0 =

(

0 1

1/2 1/2

)

, P1 =

(

1/2 1/2

0 1

)

, ~π = (1, 0), ~η =

(

1

0

)

. (1)

In fact, direct computations have shown that all binary strings x of length 9 or less have AP (x) ≤
3, whereas many such strings have AN (x) = 4 or 5. However, unlike with AN , there are no strings x
with AP (x) = 1, because by the requirement for matrices to be row-stochastic and for the initial state

distribution to be given by a probability vector, a PFA with one state must either accept all words with

probability 1 or fail to accept any word. The only strings with AN (x) = 1 are the constant strings

x = an, and we have AP (a
n) = 2 by Theorem 4.1.

So far we have not mentioned any examples involving AP,δ. Experimentally, it would appear

that one has to make the value of δ quite low in order to get small values of AP,δ, for all but very

short strings. This makes intuitive sense in view of the proof of Theorem 4.2, and more generally the

phenomenon of stability of a contractive iterated function system: all orbits converge to the attractor,

and correspondingly acceptance probabilities will tend to cluster together for longer strings. As an

example, if M is the PFA given in (1), then it follows from the proof of Theorem 4.2 that M witnesses

AP (01
m0) = 2 for all m, and one can calculate that gapM (0110) = 1/16, gapM (0130) = 1/32,

gapM (0140) = 1/64, ...

It does not seem very easy to simultaneously make δ large and AP,δ small even for short strings.

One can get a gap of 7/16 for 0110 by using the 3-state PFA

P0 =







0 0 1

1/4 3/4 0

1 0 0






, P1 =







0 3/4 1/4

1 0 0

0 1 0






, ~π = (1, 0, 0), ~η =







0

0

1






.

But among 2-state PFAs, the highest gap the author could find while still performing a feasible brute-

force search was around 1/6. At the time of writing, the highest gap known for 0110 among 2-state

PFAs is approximately 0.1775, via

P0 =

(

0.16748 0.83252

0.99 0.01

)

, P1 =

(

0.66116 0.33884

0 1

)

, ~π = (1, 0), ~η =

(

1

0

)

.

This was found by numerical experimentation refining the result of a search of a set of roughly 850,000

2-state PFAs that turned up only one having gap greater than 1/6 (it was approximately 0.1719).

Among the same set of PFAs, the largest gap found for 0130 was approximately 0.1178.

The next result should be compared with the facts that AD(xyz) ≥ AD(y) and AN (xyz) ≥
AN (y) for any strings x, y, z. (See [10, Lemma 12] and [5, Theorem 2.4]. The statement for AN can

be derived from AN (xy) ≥ AN (x) and the invariance of AN under string reversal.)

Proposition 3.3. For all strings x, y and all δ ∈ [0, 1), we have AP,δ(xy) ≥ AP,δ(y).
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Proof:

Given δ, let M = (S,Σ, P, ~π, ~η) witness AP,δ(xy). Let M ′ = (S,Σ, P, ~π′, ~η) be a PFA with the same

configuration as M except for its initial state distribution, which is now ~π′ = ~πPM (x). Since PM (x)
is a stochastic matrix, ~π′ is still a probability vector. By definition, PM (xw) = PM (x)PM (w) for

all strings w, so we have ρM ′(w) = ρM (xw) and consequently gapM ′(w) = gapM (xw) for all w.

Hence M ′ witnesses an upper bound for AP,δ(y): if not then there is a w 6= y, |w| = |y|, such that

ρM ′(w) = ρM (xw) is at least ρM ′(y) = ρM (xy), a contradiction. ⊓⊔

One property of AN which motivated its introduction, as mentioned above, is that AN (x) =
AN (←−x ), where←−x is the reversal of x:

←−x = xn · · · x2x1 if x = x1x2 · · · xn.

By Theorem 4.1, the class of strings x with AP (x) = 2 is not closed under reversal, so AP does

not share this property. In Section 6 we will take up the question of how one might recover the property

by modifying AP . Equality of AP (x) and AP (
←−x ) is possible in at least some cases:

Proposition 3.4. If AP (x) is witnessed by a PFA M = (S,Σ, P, ~π, ~η) such that each Pσ ∈ P is

doubly stochastic, and such that all nonzero entries of ~π are equal, then AP (
←−x ) = AP (x). If M

witnesses AP,δ(x) and one can additionally take ~π and ~η to have the same number of nonzero entries,

then AP,δ(
←−x ) = AP,δ(x).

Proof:

The idea is more or less the content of Exercise A.2.8 of Chapter 3 of [17]. Define the PFA M ′ =
(S,Σ, P ′, ~π′, ~η

′
) by P ′

σ = P T
σ for each σ ∈ Σ and ~π′ = ~η T /s, where s =

∑

~η. If each entry of ~π is

either 0 or 1/n (for some n ≥ 1), then let ~η
′
= n~πT .

Intuitively, M ′ represents the automaton obtained by operating M in reverse. We have PM ′(←−x ) =
PM (x)T , so

ρM ′(←−x ) = (~ηT /s)PM ′(←−x )(n~πT ) = ns−1 (~πPM (x)~η)T

= ns−1 (ρM (x))T = ns−1ρM (x).

The same calculation shows ρM ′(←−y ) = ns−1ρM (y) for all y, so if ρM (x) > ρM (y), then

ρM ′(←−x ) > ρM ′(←−y ). Therefore M ′ witnesses AP (
←−x ) ≤ AP (x) since M ′ and M have the same

number of states. The opposite inequality follows by symmetry, so AP (
←−x ) = AP (x).

If ~π and ~η have the same number of nonzero entries, then n = s, and so ρM ′(←−y ) = ρM (y) for all

y ∈ Σ∗. Hence gapM ′(←−x ) = gapM (x) and the second statement follows. ⊓⊔

As a corollary of this fact together with Theorem 4.1 below, for most binary strings x such that

AP (x) = 2, the latter cannot be witnessed by a PFA as in the proposition.

4. Classification of binary strings with AP = 2

This section is devoted to proving the following theorem, restated from the introduction for the reader’s

convenience:
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Theorem 4.1. For a binary string w, AP (w) = 2 if and only if w is of the form

injm, injmi, in(ji)m, or inj(ij)m

for some n,m ≥ 0, where i, j ∈ {0, 1}.
This set of strings is significantly larger than the set of binary strings with NFA complexity 2. As

classified in [5], the strings with AN (w) = 2 consist exactly of

(ij)m, imj, and ijm

for all m. All that can be generally said about AN (injm), for instance, is that it is no more than

min{n,m} + 1 [5, Example 4.1]; indeed it is unbounded by the proof of Corollary 4.16 (for which

see Section 4.4).

The proof of Theorem 4.1 will occupy a substantial portion of the rest of the paper, and we split it

into two halves, the forward and reverse directions:

Theorem 4.2. For a binary string w, if AP (w) = 2, then w is of the form

injm, injmi, in(ji)m, or inj(ij)m for some n,m ≥ 0.

Theorem 4.3. The values of AP (i
njm), AP (i

njmi), AP (i
n(ji)m), and AP (i

nj(ij)m) are equal to 2
for all n,m ≥ 0.

The proof depends on a connection between PFAs and iterated function systems, and we begin by

giving the details of this connection in Section 4.1. Then we prove Theorem 4.2 in Section 4.2 and

Theorem 4.3 in Section 4.3, ending by collecting some corollaries and further questions in Section 4.4.

4.1. The iterated function system approach

An iterated function system (IFS) on a compact metric space X is a dynamical system consisting of

a finite set of continuous maps f1, . . . , fn on X, viewed as inducing a semigroup action on X under

composition. If X is Rn or a compact subset of it, and the maps fi are affine maps, then the IFS is

called affine. It is well-known that the attractors of many contractive IFSs are fractals, and the use of

affine IFSs for efficient representation of fractal images has been studied [18, 19, 20].

Our interest in IFSs is, for present purposes, limited to the fact that one may obtain an IFS through

the acceptance probability function of a PFA, and in doing so shed light on the family of strings whose

complexity the PFA witnesses. Connections between IFSs and PFAs are already known: Culik and

Dube [21, 19] in effect use PFAs as one method of generating fractal images, as an alternative to

directly employing IFSs. They also introduce probabilistic affine automata, a generalization of PFAs

in which each input letter corresponds to an affine map to be applied with some probability. (See [22]

for a more recent study of this idea.)

Kocić and Simoncelli in [23] demonstrated a correspondence between IFSs given by a set of

stochastic matrices and affine IFSs on lower-dimensional simplices. We present this correspondence

in a more elementary formulation adapted to PFAs, showing that the PFA’s acceptance probability

function descends to the IFS in a natural fashion. Let M = (S,Σ, P, ~π, ~η) be a PFA with k states. If
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there are 0 or k accepting states, then ρM is identically 0 or 1, respectively, so assume without loss

of generality that there are between 1 and k − 1 accepting states. By permuting the states of M (and

hence the rows and columns of ~π, ~η, and each Pσ), we may assume that the kth state is not accepting.

Recall that if |w| = n, then ρM (w) = ~πPM (w)~η, where PM (w) =
∏n

i=1 Pwn−i
. This just means

that ρM (w) is a sum of up to k − 1 elements of the row vector ~πPM (w). We can think of each

multiplication by a Pσ as updating the state distribution ~π, and of ~π itself as representing the state

distribution ~π(λ) after reading the empty string λ. Then let

~π(w) =

(

p1(w), p2(w), . . . , pk−1(w), 1 −
∑

i<k

pi(w)

)

= ~π(λ)PM (w)

be the state distribution after reading a string w. Now, the last component of ~π(waσ) only depends on

its first k − 1 components together with the first k − 1 columns of Pσ . Since the kth state of M is not

accepting, ρM (waσ) thus depends only on the first k − 1 components of ~π(w), and if we only care

about recovering ρM then we can drop the kth component from ~π(w) without losing any information.

So, let ~ai be the ith row of Pσ truncated to its first k − 1 entries, let ~y(w) = ~π(w) ↾ (k − 1), and

let ~1m,n be the m× n matrix of all 1s. Also let U be Pσ with its last row and column deleted (so the

rows of U are the vectors ~ai for i < k). Then for any σ ∈ Σ,

~y(waσ) = ~y(w)U +
(

1−
∑

~y(w)
)

~ak = ~ak + ~y(w)
(

U −~1k−1,1~ak

)

.

~y(w) is an element of the (k − 1)-dimensional unit simplex Sk−1, so we identify w 7→ ~π(waσ)
with the map fσ : Sk−1 → Sk−1 that sends ~x to ~ak + ~xB, where B = U − ~1k−1,1~ak. Note that the

entries of B may be negative. Multiplication by Pσ thus corresponds to composition by fσ. If we give

the IFS consisting of the functions fσ the starting vector ~x0 = (p1(λ), p2(λ), . . . , pk−1(λ)), then we

have

ρM (w) =
∑

{

(fwn ◦ fwn−1
◦ · · · ◦ fw0

(~x0))i : the ith state of M is accepting
}

, (2)

where ~vi here denotes the ith component of the vector ~v and where w = w0w1 · · ·wn. Hence for any

k-state PFA M there is an affine IFS on Sk−1 whose iterations exactly recover the function ρM in the

above fashion.

In the other direction, suppose we are given a finite set of affine maps fσ : ~x 7→ ~a+ ~xB on Sk−1,

where ~a and B depend on σ, along with a starting vector ~x0 = (p1, . . . , pk−1). We build a PFA M as

follows. Let Ã and B̃ be the k × k matrices given by Ã = ~1k,1

(

~a 1−
∑

~a
)

and

B̃ =

(

~1k−1,1

0

)

(

B −B~1k−1,1

)

=













B

−
∑

i<k B1,i

...

−
∑

i<k Bk−1,i

~0 0













.

Then let

Pσ = Ã+ B̃ and ~π = ~π(λ) =
(

~x0 1−
∑

~x0

)

∈ Rk.



K. Gill / Probabilistic automatic complexity 13

Also define ~π(w) for any w as before. Then Pσ is stochastic: first, each row clearly sums to 1 as

the row sums of Ã and B̃ are all 1 and 0, respectively. If ~ei is the ith standard basis vector in Rk−1,

then fσ(~ei) is the sum of ~a and the ith row of B, i.e., the upper left (k − 1) × (k − 1) submatrix of

Pσ. From ~a = fσ(~0) ∈ Sk−1 and fσ(~ei) ∈ Sk−1 it follows that each entry of Ã+ B̃ is in [0, 1].
One can check that ~π(λ)Pσ ↾ (k − 1) = ~a + ~x0B = fσ(~x0). Inductively we have that ~π(waσ) ↾

(k − 1) = fσ(~x) if ~x = ~π(λ)PM (w). Now, the data we have so far does not uniquely specify a PFA

M = ({1, . . . , k},Σ, {Pσ}, ~π, ~η), because nothing about the vector of accepting states ~η is implied

by the IFS we started with except that the kth state should not be accepting. Thus the same IFS

can be made to correspond to any PFA M having the ~π and matrices Pσ given above, and such that

the last state is not accepting. The equation (2) holds for any such M and w, which completes the

correspondence.

Since we will only apply this correspondence to two-state automata in the present work, we sep-

arately outline this case for clarity. Given a two-state PFA M , write ~π as (p, 1 − p). Assume by

permuting the states that ~η = (1, 0)T . For each σ ∈ Σ, write

Pσ =

(

aσ + bσ 1− aσ − bσ

aσ 1− aσ

)

, (3)

where bσ is allowed to be negative. Then for each w ∈ Σ∗, we have

ρ(waσ) =
(

ρ(w) 1− ρ(w)
)

(

aσ + bσ 1− aσ − bσ

aσ 1− aσ

)(

1

0

)

= aσ + bσρ(w).

We can thus associate with Pσ the “incremental probability function”

fσ(x) = aσ + bσx

mapping [0, 1] into itself. Viewing p as ρ(λ), we obtain the IFS (fσ)σ∈Σ with starting value x0 = p
such that for any word w = w1w2 . . . wn,

ρ(w) = fwn ◦ fwn−1
◦ · · · ◦ fw1

(x0). (4)

In the other direction, starting from an IFS given by affine maps fσ on [0, 1] together with x0,

setting ~π = (x0, 1 − x0) and defining the matrices Pσ as in (3) produces a PFA whose acceptance

probability function satisfies (4).

The set of w such that an upper bound for AP (w) is witnessed by M is exactly the set of w
describing a sequence of compositions maximizing the value along the orbit of x0 under this IFS. This

idea will be exploited heavily throughout the following section.

4.2. Proof of Theorem 4.2

We will establish that any two-state PFA over a binary alphabet must witness the complexity of only

strings in one of the forms given in the theorem, i.e.,

injm, injmi, in(ji)m, or inj(ij)m,
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if it witnesses anything at all. If i = j, of course, these strings are constant and so trivially have

complexity 2. Permuting the underlying alphabet does not change the complexity of a string, as it

corresponds merely to permuting the maps fσ of the IFS (or equivalently the transition matrices Pσ

of the original PFA). Therefore, any statement in this section about a string should be understood to

apply equally well to its bit-flip (i.e., the result of permuting 0 and 1), by switching the roles of f0 and

f1.

Assume we are given a two-state PFA represented by the IFS

f0(x) = a+ bx and f1(x) = c+ dx

with starting value x0 ∈ [0, 1], where f0 and f1 map [0, 1] into itself. We use the word “orbit” to

mean any forward orbit of x0 under the semigroup action generated by f0 and f1, that is, the orbit

of x0 under some particular sequence of compositions of f0 and f1. We always omit parentheses

when composing functions, so that e.g. f2
0x = f0(f0(x)). For brevity, we describe a probability as

n-maximal (n-minimal) if it is maximal (minimal) among the probabilities of strings of length n. We

also refer to an n-maximal (n-minimal) probability as simply an n-maximum (n-minimum). If n is

clear from context, we may call such a probability maximal (minimal) or a maximum (minimum). We

say the IFS witnesses a string w if it witnesses that AP (w) = 2, i.e., ρ(w) is maximal. The following

elementary observations will be useful throughout:

• For i ∈ {0, 1}, if fi is not the line y = x, then fi has a unique fixed point in [0, 1], towards which

it contracts with rate equal to the absolute value of its slope. The case y = x will be dispensed

with in Lemma 4.4, and we can assume elsewhere that neither f0 nor f1 is the identity map. We

will use r0 and r1 to denote the fixed points of f0 and f1, respectively. By abuse of notation, r0
and r1 refer either to the x-coordinates of these points or to the actual points in [0, 1]2. It will

be clear which is meant from the context. We have r0 = a/(1 − b) and r1 = c/(1− d).

• If fi has positive slope, then it maps [0, ri) into itself and (ri, 1] into itself. If it has negative

slope, it maps [0, ri) into (ri, 1] and vice versa. (If its slope is 0, of course, it sends every point

to ri.)

• If a probability x is n-maximal, then x is either the image of an (n − 1)-maximum under a

map of positive slope, or the image of an (n − 1)-minimum under a map of negative slope.

Hence we need only consider the maximum and minimum probabilities of each length in order

to determine the maximal-probability strings.

• Suppose f0 and f1 intersect at the single point (ix, iy) ∈ [0, 1]2, and that the maximum or

minimum probability of some length turns out to equal ix. (We always assume the maps do not

coincide, since no strings can be witnessed if they do.) Then no further probabilities in the same

orbit can be unique (since f0ix = f1ix). In this case, no further strings are witnessed if their

probabilities are in the same orbit as ix. We assume for simplicity that this does not happen in

the arguments that follow. This does not lose any generality, because if ix happens to be attained

as the maximal or minimal probability in some orbit, then nothing changes about the behavior

of the IFS except for the lack of uniqueness of the subsequent maxima and minima.
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For clarity, we separate the argument into several progressively more complicated cases based on

the signs of b and d. First we quickly dispense with some easy ones: if both f0 and f1 are constant, the

PFA witnesses either 0n or 1n for all n, depending on which line is higher. If one map is the identity,

or more generally if f0 and f1 commute, no strings can be witnessed beyond constant strings, because

the only determining factor of ρ(w) is the number of 0s and 1s in w.

The following lemma collects various facts which will be useful for the rest of the proof.

Lemma 4.4. Let f0 = a+ bx and f1 = c+ dx be maps from the unit interval into itself. Assume by

convention that a < c and that the maps intersect at the unique point (ix, iy) ∈ [0, 1]2. Taken together,

these imply in particular that b > d, and we will always assume a < c and b > d.

(a) If neither map is the identity, then either both maps fix ix or neither does. We always assume

neither map is the identity from this point on, as well as that the maps do not coincide.

(b) Both maps fix ix, i.e., iy = ix, iff r0 = r1 = ix iff f0f1 = f1f0.

(c) Both maps decrease ix, i.e., iy < ix, iff r0 < r1 < ix iff f0f1 < f1f0 iff f0f
2
1 < f2

1 f0.

(d) Both maps increase ix, i.e., iy > ix, iff r0 > r1 > ix iff f1f0 < f0f1 iff f2
1 f0 < f0f

2
1 .

(e) If f0 and f1 both have negative slopes, and if neither fixes ix, then |r0 − r1| < |r1 − ix|.

(f) Suppose f0 and f1 both have negative slopes. If both maps decrease ix, then if x ∈ [r0, ix), every

orbit of x remains inside [0, ix). If both maps increase ix, then if x ∈ (ix, r0], every orbit of x
remains inside (ix, 1].

Proof:

(a) r0 and r1 are the intersections of f0 and f1, respectively, with y = x. If (say) r0 = ix, then

(ix, ix) also lies on y = x and is in the range of f1, therefore r1 = ix too.

(b) The first equivalence is obvious by definition. Notice f0f1x = a + bc + bdx and f1f0x =
c+ ad+ bdx. Then

f0f1 = f1f0 ⇐⇒ a+ bc = c+ ad ⇐⇒ a/(1− b) = c/(1 − d),

i.e., f0f1 = f1f0 iff r0 = r1, and this happens iff they both equal ix since r0 and r1 both lie on

the line y = x.

(c) Both r0 and r1 are less than ix in this case, because the maps contract towards their fixed points,

so if fix < x then x > ri. We have ix = (c − a)/(b − d) and iy = (bc − ad)/(b − d).
Remembering that our assumptions imply b > d no matter the sign of each, and observing that

neither b nor d equals 1, we have ix > iy iff

c− a

b− d
>

bc− ad

b− d
⇐⇒ c− a > bc− ad ⇐⇒ c(1 − b) > a(1− d)

⇐⇒
c

1− d
>

a

1− b
⇐⇒ r1 > r0.
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Since r1 > r0 ⇐⇒ c+ad > a+ bc ⇐⇒ f1f0 > f0f1, this completes the second equivalence.

For the third, note f0f
2
1x = a+ b(c+ cd+ d2x) and f2

1 f0x = c+ cd+ d2(a+ bx). Then

f0f
2
1x < f2

1f0x ⇐⇒ a+ bc+ bcd+ bd2x < c+ cd+ ad2 + bd2x

⇐⇒ d(bc − ad) < (c− a)− c(b− d) ⇐⇒ c+ d
bc− ad

b− d
<

c− a

b− d

⇐⇒ c+ diy < ix ⇐⇒ f1iy < ix ⇐⇒ f2
1 ix < ix.

The last inequality holds iff r1 < ix (as f2
1 contracts ix towards its fixed point r1), which happens

iff ix > iy by the first equivalence.

(d) This follows by swapping “>” with “<” everywhere in the argument for part (c).

(e) By writing c = r1(1 − d), one can rearrange the formula iy = c + dix to obtain d = (iy −
r1)/(ix − r1). Since |d| ≤ 1, this implies |iy − r1| ≤ |ix − r1|. We will finish the proof by

showing that when b < 0, then in fact ix > iy iff iy < r0 and ix < iy iff iy > r0. That is,

depending on whether both maps decrease or increase ix, we have either iy < r0 < r1 < ix or

iy > r0 > r1 > ix. Then

|iy − r1| = |iy − r0|+ |r0 − r1| > |r0 − r1| ,

and one gets |r0 − r1| < |iy − r1| ≤ |ix − r1|.

So, iy < r0 if and only if

bc− ad

b− d
<

a

1− b
⇐⇒ (bc− ad)(1 − b) < a(b− d) ⇐⇒ bc− b2c+ abd < ab

⇐⇒ bc(1 − b) < ab(1− d) ⇐⇒ c(1 − b) > a(1− d) ⇐⇒
c

1− d
>

a

1− b
,

i.e., if and only if r1 > r0, which is equivalent to ix > iy. (The change from < to > in the second

line is because b < 0.) It is clear that one can switch “<” and “>” everywhere in this argument

to obtain that iy > r0 iff ix < iy , and the proof is complete.

(f) For the first claim, by assumption iy < ix and so r0 < r1 < ix. Since f0ix = f1ix, we have

f0f1ix = f0f0ix, which is less than ix. This implies that r01, the fixed point of f0f1, is also

less than ix: if f0f1 decreases the value of a point, then that point must be above r01. As f0f1
contracts to r01, we have that f0f1x < ix whenever x < ix. In other words, if ρ(w) < ix, then

ρ(wa10) < ix too. The analogous statement holds for f1f0, i.e., ρ(w) < ix implies ρ(wa01) <
ix. Finally, since |r0 − r1| < |r1 − ix| by part (e), f1 always sends points in [r0, ix) to points

below ix (and of course the same statement is clearly true for f0). This is clear if x ∈ [r1, ix).
If x ∈ [r0, r1), then |f1x− r1| < |x− r1| < |r0 − r1| < |ix − r1|, so f1x is closer to r1 than

ix is, and must be less than ix. Overall, then, we have that once an orbit enters [r0, ix), it stays

below ix. The second claim can be proven by switching “<” and “>” everywhere in the above

argument.

⊓⊔
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r0 r1 ix

f0

f1

(a) Both maps decrease ix

ix r1 r0

f0

f1

(b) Both maps increase ix

Figure 3: Subcases for f0, f1 with positive slope (Case 2)

Now begins the main body of the proof of Theorem 4.2. It is split into four cases: the maps do

not intersect, they intersect and have positive slope, they intersect and have negative slope, and they

intersect with one having positive and the other having negative slope. The last three cases are each

split into two further subcases, based on whether the maps increase or decrease ix.

Case 1: f0 and f1 do not intersect in [0, 1]. Suppose without loss of generality that f1x > f0x for all

x ∈ [0, 1], so that a < c. If both maps have positive slope, it follows that ρ(1n) is maximal for all

n. If both have negative slope, then appending 0 to a maximal probability always leads to a minimal

probability, and appending 1 to a minimal probability always leads to a maximal probability. Therefore

(01)n and 1(01)n are witnessed for all n, as f0x0 < f1x0. If f1 has positive and f0 has negative slope,

1n is witnessed for all n; note the ranges of f0 and f1 cannot overlap here. And if f1 has negative and

f0 positive slope, then 0n1 is witnessed for all n: a minimum can only be reached by adding all 0s,

again because the ranges are disjoint, and since f0f1x < f1f0x for all x (Lemma 4.4(c)), appending

10 to a string always gives a lower probability than appending 01 does.

Strings witnessed in this case: 1n, (01)n, 1(01)n, 0n1.

From now on, assume that a < c, that f0 and f1 intersect at the point (ix, iy) ∈ [0, 1]2, and that the

maps do not commute. By Lemma 4.4, this implies that r0, r1, and ix are distinct. Assuming a < c is

no loss of generality, because we are working only up to permuting f0 and f1, and a < c is required

for the maps to intersect within the unit interval. As noted in the lemma, this also implies b > d in

every case.

Case 2: both f0 and f1 have nonnegative slopes. Specifically, assume a, b, c ≥ 0 and d > 0 (the

case b = d = 0 is trivial). There are then two possible subcases of this case, which are illustrated in

Figure 3:

(a) Both f0 and f1 decrease ix. Then we must have r0 < r1 < ix, and 0n01m is witnessed for all m,

where n0 ≥ 0 is least such that fn0

0 x0 < ix (taking f0
0 to be the identity map). This is because



18 K. Gill / Probabilistic automatic complexity

f0x > f1x for x > ix, but iterating it will eventually cause the value to drop below ix, and from

that point on, f1 > f0. If x0 < ix then we have f1 > f0 from the start.

(b) Both f0 and f1 increase ix. Then ix < r1 < r0, and 1n00m is witnessed for all m, where n0 ≥ 0
is least such that fn0

1 x0 > ix. The reasoning is exactly analogous to that in (a).

Strings witnessed in the above case: 1n, 0n1m, 1n0m.

Case 3: both f0 and f1 have negative slopes. The special case b = 0 and d < 0 is discussed under

Case 4 below, so assume b and d are both strictly negative here. Recall that having negative slopes

means each fi “flips x over” ri: if x < ri, then fix > ri, and vice versa. If we start an orbit with a

maximal probability of its length, then the orbit can only lead to maximal probabilities for odd-length

strings (and this is the only way to witness odd-length strings). This is accomplished by extending a

string on even lengths in order to achieve a minimal probability. For the same reason, if we start an

orbit with a minimal probability, then only even-length strings may have maximal probabilities in that

orbit. The two essentially different cases for the configuration of f0 and f1 are shown in Figure 4.

(a) Both f0 and f1 decrease ix. Then r0 < r1 < ix. Recall that by Lemma 4.4(f), once an orbit enters

[r0, ix), it stays below ix forever.

Suppose x0 > ix and we start an orbit with the maximal-probability string 0. Then ρ(0) < ix, and

ρ(02) is minimal. If ρ(02) > ix, then ρ(03) is maximal, since f0 > f1 above ix. Every (2ℓ + 1)-
maximal probability is an image of a 2ℓ-minimal probability, so as long as ρ(02ℓ) > ix, we have

that ρ(02ℓ+1) is maximal and ρ(02ℓ+2) is minimal. Let n0 be least such that ρ(02n0) < ix. Once

this happens, since ρ(02n0) is minimal and f0 < f1 below ix, ρ(02n01) is maximal.

ρ(02n0) is between r0 and ix, so we know that its future orbit will always stay below ix by Lemma 4.4(f).

This means that a maximum is always reached by appending 1 to a minimum, and a minimum is

always reached by appending 0 to a maximum. Hence, among odd-length strings with length greater

than 2n0 + 1, we witness 02n01(01)m for all m ≥ 0.

Next, say x0 > ix and we start our orbit with the minimal-probability string 1. Then ρ(11) is

maximal. If ρ(11) > ix, then ρ(13) is minimal and ρ(14) is maximal. So we initially witness 12ℓ for

ℓ ≤ n0, where n0 is least such that ρ(12n0) < ix. Among longer strings, we then witness 12n0(01)m

for all m. To see this, one argues in a similar way as when x0 < ix, since f1f0x < ix when

x ∈ [r0, ix). The only difference is that once ρ(12n0) < ix, the (2n0 + 1)-minimal probability is

attained by ρ(12n00), as f0x < f1x for x < ix. Then appending a 1 gives the (2n0 + 2)-maximum

ρ(12n001), and we continue appending 01 to keep the min-max pattern going and get (2n0 + 2k)-
maximal probabilities for all k. This concludes the subcase x0 > ix.

Finally, suppose x0 < ix. This is analogous to the case x0 > ix, but with even-odd parity swapped

everywhere. In fact, we only need consider the case x0 < r0, because when x0 ∈ [r0, ix), we know

that all orbits stay below ix, so for such x0 we witness (10)m and 0(10)m for all m ≥ 0.

Now, if x0 < r0 and we start with the maximal-probability string 1, we at first witness 12ℓ+1 among

odd-length strings, as long as ρ(12ℓ+1) > ix. If n0 is least such that ρ(12n0+1) < ix, then we witness

12n0+1 and subsequently 12n0+1(01)m for all m ≥ 1. This is because once ρ(12n0+1) < ix, then the
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r0 r1 ix

f0

f1

(a) Both maps decrease ix

ix r1r0

f1

f0

(b) Both maps increase ix

Figure 4: Subcases for f0, f1 with negative slope (Case 3)

(2n0 + 2)-minimum is ρ(12n0+10), followed by the (2n0 + 3)-maximum ρ(12n0+101), and contin-

uing to append 01 keeps the min-max pattern going. Starting instead with the minimal-probability

0, we witness 02ℓ+2 among even-length strings as long as ρ(02ℓ+1) > ix. If n0 is least such that

ρ(02n0+1) < ix, then ρ(02n0+1) is minimal but ρ(02n0+2) is not maximal. Therefore ρ(02n0+11)
must be maximal, and we witness 02n0+11(01)m for all m ≥ 0. The pattern of appending 01 can be

repeated forever to obtain maximal probabilities because ρ(02n0+11) ∈ [r0, ix) and applying f1f0
will always stay below ix, where f0 is minimal and f1 is maximal.

Strings witnessed in the above case: 02m, 12m+1, 02n1(01)m, 12n(01)m, 02n+11(01)m.

(b) Both f0 and f1 increase ix. Then ix < r1 < r0. By Lemma 4.4(f), once an orbit enters (ix, r0], it

stays above ix.

Let x0 < ix. By starting with the maximal ρ(1), we have that ρ(12ℓ+1) is maximal as long as

ρ(12ℓ) < ix. (Note that ρ(12ℓ+1) is always greater than r1 and hence also ix.) If n0 is least such

that ρ(12n0) > ix, then ρ(12n0) is 2n0-minimal but ρ(12n0+1) is not (2n0 + 1)-maximal. Therefore

ρ(12n00) is (2n0 + 1)-maximal, and since ρ(12n0) ∈ (ix, r0], we have that ρ(12n00(10)m) remains

above ix for all m ≥ 0 and is therefore maximal. By starting instead with the minimal ρ(0), we have

that ρ(02ℓ+2) is maximal as long as ρ(02ℓ) < ix. If n0 is least such that ρ(02n0) > ix, then ρ(02n0)
is 2n0-maximal but ρ(02n0+1) is not (2n0 + 1)-minimal, since f0 > f1 for x > ix. Therefore

ρ(02n01) is minimal, and because ρ(02n0) ∈ (ix, r0], its future orbits stay above ix and we have

ρ(02n0(10)m) maximal for all m ≥ 0.

If x0 ∈ (ix, r0], then we witness (10)m and 0(10)m for all m ≥ 0, as in case (a) when x0 ∈ [r0, ix).
If x0 > r0 and we start with the maximal ρ(0), then ρ(02ℓ+3) is maximal and ρ(02ℓ+2) is minimal as

long as ρ(02ℓ+1) < ix. If n0 is least such that ρ(02n0+1) > ix, then ρ(02n0+1) is (2n0+1)-maximal

but ρ(02n0+2) is not (2n0 + 2)-minimal. Instead, ρ(02n0+11) is (2n0 + 2)-minimal, and since
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ρ(02n0+1) ∈ (ix, r0], all future orbits stay above ix, where f0 > f1. Therefore ρ(02n0+1(10)m) is

maximal for all m ≥ 0. If instead we start with the minimal ρ(1), then ρ(12ℓ+2) is maximal as long

as ρ(12ℓ+1) < ix. If n0 is least such that ρ(12n0+1) > ix, then ρ(12n0+1) is (2n0 + 1)-minimal but

ρ(12n0+2) < ρ(12n0+10), which is now (2n0 + 2)-maximal. Since ρ(12n0+1) ∈ (ix, r0], all of its

future orbits stay above ix, and thus ρ(12n0+10(10)m) is maximal for all m ≥ 0.

Strings witnessed in the above case: 12m+1, 12n0(10)m, 02n+1(10)m, 12n+10(10)m.

Case 4: f0 has positive slope and f1 has negative slope. The basic possibilities are illustrated in

Figure 5.

(a) Both f0 and f1 decrease ix. Lemma 4.4 implies that this is equivalent to f1f0x > f0f1x for all x,

so that appending 01 always gives a higher probability than appending 10 would to the same string.

Assume for now that b > 0; we will treat the special case b = 0 below. The general pattern when

x0 > ix will follow from the next three claims:

Claim 4.5. There is an n0 such that ρ(12n0+1) ≥ ρ(12n0−102).

Proof:

The map f1 contracts to r1, which is greater than r0. Therefore ρ(12n+1) ≥ r0 for some n. If that

is the case, then either ρ(12n−1) ≤ r0 and so is ρ(12n−102), or if ρ(12n−1) ≥ r0, then appending 02

to 12n−1 decreases the probability towards r0 while appending 12 increases it towards r1. ⊓⊔

From now on, take n0 to be the least value as in the previous claim. If x0 > ix, then 0 is 1-maximal,

and it follows that n0 ≥ 1. If ρ(12n0+1) = ρ(12n0−102), then both are minimal, so no further strings

will be witnessed as there are no longer unique minima or maxima of any greater length. Hence

without loss of generality assume the inequality is strict. The second and third claims will apply to

the case n0 > 1; the case n0 = 1 is handled separately afterwards.

Claim 4.6. If n0 > 1, then for all 1 ≤ ℓ ≤ n0, we have:

(α) ρ(12ℓ) is 2ℓ-maximal,

(β) ρ(12ℓ−10) is 2ℓ-minimal,

(γ) ρ(12ℓ−101) is (2ℓ+ 1)-maximal, and

(δ) if ℓ < n0, then ρ(12ℓ+1) is (2ℓ+ 1)-minimal.

Proof:

By induction on ℓ. For ℓ = 1, because ρ(0) > ρ(1), the only possible 2-maxima are ρ(00) and ρ(11).
If we have ρ(11) < ρ(00), then because f1x < f1y iff x > y for any x, y, also f3

1x0 > f1f
2
0x0. But

from f0f1 < f1f0 it follows that f1f
2
0x0 > f0f1f0x0 > f2

0 f1x0 = ρ(102), as f0x < f0y iff x < y
for any x, y. (The latter is due to f0 having positive slope.) Therefore ρ(13) > ρ(102), or in other

words n0 = 1. Since we are assuming n0 > 1, this is a contradiction, hence ρ(00) < ρ(11) and the

latter is 2-maximal, which establishes the base case of (α).
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(a) Both maps decrease ix
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(b) Both maps increase ix

Figure 5: Subcases for f0 with positive and f1 with negative slope (Case 4)

Next, because f1f0 > f0f1, we have ρ(01) > ρ(10). The latter is less than ρ(00): ρ(1) < ρ(0), so

if ρ(1) < r0 then ρ(10) < r0 < ρ(00). If ρ(1) ≥ r0, then appending a 0 moves ρ(10) closer to r0
than ρ(00) is, i.e., makes it smaller than ρ(00). This implies (β) holds for ℓ = 1. Then (γ) follows

if (α) and (β) hold for any ℓ: the only possible candidates for a (2ℓ + 1)-maximum are ρ(12ℓ0)
and ρ(12ℓ−101), i.e., the image of the 2ℓ-maximum under f0 and the image of the 2ℓ-minimum

under f1. But ρ(12ℓ0) < ρ(12ℓ−101) since f0f1 < f1f0. For (δ), suppose (α) and (β) are true

for ℓ and ℓ < n0. Then only ρ(12ℓ−102) or ρ(12ℓ+1) could possibly be minima, since they are the

images of the 2ℓ-minimum under f0 and the 2ℓ-maximum under f1, respectively. And we have

ρ(12ℓ+1) < ρ(12ℓ−102) because ℓ < n0.

Now suppose all four items hold for some given ℓ < n0. Then if (α) and (β) hold for ℓ + 1, so

does (γ) by the above argument, and if ℓ + 1 < n0 then additionally (δ) holds for ℓ + 1. Hence,

for the inductive step, it only remains to establish that (α) and (β) hold for ℓ+ 1. For (α), because

a (2ℓ + 2)-maximum is either the image under f1 of a (2ℓ + 1)-minimum or the image under f0 of

a (2ℓ + 1)-maximum, the only possible (2ℓ + 2)-maxima are ρ(12ℓ+11) and ρ(12ℓ−1010). But we

have ρ(12ℓ−1010) < ρ(12ℓ−1001) because f0f1 < f1f0, so ρ(12ℓ−1010) is not maximal. Finally,

for (β), ρ(12ℓ+10) is (2ℓ+ 2)-minimal because the only other possible candidate for a minimum is

ρ(12ℓ−1011), and ρ(12ℓ+10) is less than ρ(12ℓ−1011). The latter follows by Lemma 4.4, as ix > iy if

and only if f0f
2
1 < f2

1f0, so that appending 110 always results in a lower probability than appending

011 to the same string. ⊓⊔

Claim 4.7. If n0 > 1, then ρ(12n0−10m) is (2n0 − 1 + m)-minimal, and hence ρ(12n0−10m1) is

(2n0 +m)-maximal, for all m ≥ 0.

Proof:

The cases m = 0 and m = 1 are covered by taking ℓ = n0 − 1 and ℓ = n0 in the previous
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claim. If ρ(12n0−10m) is (2n0− 1+m)-minimal, and ρ(12n0−10m−11) is (2n0− 1+m)-maximal,

then only ρ(12n0−10m0) or ρ(12n0−10m−111) could be (2n0 + m)-minimal. But f0f
2
1 < f2

1f0
implies ρ(12n0−10m−2110) < ρ(12n0−10m−111), so the latter is not minimal. Finally, this implies

ρ(12n0−10m+11) is (2n0 + m + 1)-maximal: the only other possibility is ρ(12n0−10m−110), and

this is less than ρ(12n0−10m+11) because f0f1 < f1f0. ⊓⊔

Now suppose n0 = 1. We saw in the proof of Claim 4.6 above that ρ(11) < ρ(00) implies n0 = 1,

but a priori both ρ(11) < ρ(00) and ρ(00) < ρ(11) are possible when n0 = 1. Note that ρ(10) is

always minimal, however. The possible 3-minima are ρ(13) (if ρ(11) is maximal), ρ(021) (if ρ(00)
is maximal), and ρ(102) (in either case). But ρ(13) > ρ(120) by n0 = 1 and ρ(021) > ρ(102)
because f1f

2
0 > f2

0f1, as observed in the base case of Claim 4.6. Hence ρ(102) is always the 3-

minimum when n0 = 1. We now split into two final subcases to finish the argument when x0 > ix
and n0 = 1. First, assume ρ(00) < ρ(11), so ρ(11) is maximal. For any m ≥ 2, if ρ(10m−11)
is maximal and ρ(10m) is minimal, the next maximum is ρ(10m1) since the other possibility is

ρ(10m−110), which is of the form f0f1y for some y, and f0f1y < f1f0y. And in this case the next

minimum is ρ(10m+1), because the other option is ρ(10m−112), which is of the form f2
1 f0y hence

greater than f0f
2
1 y. So by induction ρ(10m1) is witnessed for all m if ρ(11) is maximal.

The remaining subcase of x0 > ix is n0 = 1 and ρ(11) < ρ(00). In general, it may be that ρ(0ℓ−1)
is maximal for finitely many ℓ ≥ 3, but this cannot be the case for all ℓ (as we assume b < 1)

because ρ(0ℓ) decreases to r0 as ℓ increases, while some probabilities of every length will be greater

than r1. Suppose ρ(0ℓ−1) is maximal and (by induction) ρ(10ℓ−2) is minimal, for ℓ ≥ 3. Then

either ρ(0ℓ) or ρ(10ℓ−21) is ℓ-maximal, and ρ(10ℓ−1) is always ℓ-minimal (by the same argument

as in the last paragraph). If ρ(10ℓ−21) is maximal, then the argument in Claim 4.7 takes over from

length ℓ+ 1 onwards. If ρ(0ℓ) is maximal, then ρ(10ℓ) is (ℓ+ 1)-minimal because the other option

is ρ(0ℓ1) > ρ(0ℓ−110). The argument then repeats for ℓ+ 1, and so on, meaning we witness 0ℓ for

finitely many ℓ and then 10m1 for all large enough m.

This completes the argument when x0 > ix. If instead x0 < ix, then something similar happens, but

with even-odd parities switched. We state without detailed proofs the three claims (corresponding

to those above) that will finish the argument here, as their proofs follow in the same way mutatis

mutandis. First, there is a least n0 such that ρ(12n0+2) > ρ(12n002). The case n0 = 0 is separate

and exactly analogous to the case n0 = 1 when x0 > ix: if n0 = 0 then ρ(11) > ρ(00), so ρ(00) is

minimal, ρ(01) is maximal, and in general we have 0m minimal and 0m−11 maximal for all m ≥ 2.

So assume n0 > 0 from now on.

The second claim is that when n0 > 0 and x0 < ix, for all 1 ≤ ℓ ≤ n0, ρ(12ℓ−201) is 2ℓ-maximal;

ρ(12ℓ) is 2ℓ-minimal; ρ(12ℓ+1) is (2ℓ + 1)-maximal; and ρ(12ℓ0) is (2ℓ + 1)-minimal. Both the

base case and the inductive step work very similarly as before (here, ρ(11) being minimal relies on

n0 > 0). The only possible (2ℓ+2)-maxima are ρ(12ℓ01) and ρ(12ℓ+10); the only possible (2ℓ+2)-
minima are ρ(12ℓ+2) and ρ(12ℓ02); the only possible (2ℓ+ 3)-maxima are ρ(12ℓ+3) and ρ(12ℓ010);
and the only possible (2ℓ + 3)-minima are ρ(12ℓ+20) and ρ(12ℓ−2012). All the alternatives listed

can be dispensed with using f0f1 < f1f0, f0f
2
1 < f2

1 f0, and ℓ < n0. (The latter is only needed to

show the claim holds for ℓ+ 1 given it holds for ℓ, and so it does hold for ℓ = n0 as stated.)
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The third and last claim needed is that when n0 > 0 and x0 < ix, for all m ≥ 1, we have ρ(12n00m)
minimal and ρ(12n00m−11) maximal. The case m = 1 follows by taking ℓ = n0 in the previous

claim. The inductive step is again very similar to Claim 4.7 for x0 > ix, since the other possible

minimum is ρ(12n00m−112), which is of the form f2
1 f0y and hence not minimal since it is greater

than f0f
2
1 y. The other possible maximum is ρ(12n00m−110), of the form f0f1y, which is less than

f1f0y and hence not maximal.

To finish the argument for Case 4(a), we dispense with the special case when b = 0, i.e., when f0
is constant. (The subcase where instead f1 is constant was dealt with in Case 2.) Here r0 = a, and

ρ(wa01) = f1a for all strings w. If x0 > ix, then proceeding as above, we see that after applying f1
some number of times, if n is least such that ρ(12n+1) ≥ a, then it is not possible for the probability

of any string with length greater than 2n to exceed f1a. This means that maximal probabilities cease

to be unique at length 2n+1, and only finitely many strings can be witnessed. The same holds when

x0 < ix, but now the maxima cease to be unique after ρ(12n) ≥ a.

Strings witnessed in the above case: 12n−10m1, 12n0m1, 0m, 0m1.

(b) Both f0 and f1 increase ix. This is equivalent to f0f1x > f1f0x for all x, so that appending 10
always gives a higher probability than appending 01. It is also equivalent to f0f

2
1x > f2

1 f0x for

all x (see Lemma 4.4). As before, we put off the special case b = 0 for later, and assume for the

moment that b > 0.

First, say that x0 < ix. Here we need to split into slightly different subcases than we did in (a). Since

ρ(0) < ρ(1), the 2-maximum is always ρ(10) because the only other option is ρ(01) < ρ(10). The

possible 2-minima are ρ(00) and ρ(11), and both ρ(00) < ρ(11) and ρ(11) < ρ(00) are possible.

Suppose first that ρ(00) < ρ(11). It may be that ρ(0ℓ) is minimal for finitely many ℓ, but eventually

this is no longer the case since ρ(0ℓ) increases to r0 while some other probabilities always stay

below r1. Suppose that for some ℓ ≥ 2, ρ(0ℓ) is minimal and ρ(10ℓ−1) is maximal. The possible

(ℓ + 1)-maxima are ρ(10ℓ) and ρ(0ℓ1), but the latter is of the form f1f0y for some y, which is less

than f0f1y and so not maximal. The possible (ℓ + 1)-minima are ρ(0ℓ+1) and ρ(10ℓ−11). Either

may be the case in general, and if ρ(0ℓ+1) is minimal then the argument repeats for length ℓ + 1:

now ρ(10ℓ) is maximal. For large enough ℓ, that is no longer the case, and for such an ℓ we have

ρ(10ℓ−1) maximal and ρ(10ℓ−21) minimal. Once that happens, the (ℓ+1)-maximum is ρ(10ℓ) since

ρ(10ℓ−212) is of the form f2
1f0y for some y, which is less than f0f

2
1 y. The (ℓ + 1)-minimum is

ρ(10ℓ−11) since the other option is ρ(10ℓ−210), which is of the form f0f1y, and this is greater than

f1f0y. It follows by induction that we witness 10m for all m ≥ 0 in this case.

For the rest of the argument for x0 < ix, we assume instead that ρ(11) < ρ(00). The argument

follows from a series of three claims, much like in part (a). First, there is a least n0 such that

ρ(12n0−102) > ρ(12n0+1). Then n0 ≥ 1. The case n0 = 1 requires special treatment, which

we outline before proceeding further. We have ρ(11) minimal and ρ(10) maximal. Since ρ(13) <
ρ(102) when n0 = 1, the 3-maximum is ρ(102), and the 3-minimum is ρ(101) because the other

option ρ(120) is greater than ρ(012). Inductively, if for m ≥ 2 we have ρ(10m) maximal and

ρ(10m−11) minimal, then the (m+ 2)-maximum is ρ(10m+1) since the other option, ρ(10m−112),
is of the form f2

1 f0y, which is less than f0f
2
1 y and so not maximal. And the (m + 2)-minimum is
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ρ(10m1) since the other option is ρ(10m−110), which is of the form f0f1y, which is greater than

f1f0y and so not minimal. It follows that we witness 10m for all m ≥ 0 in this subcase.

Now assume n0 > 1 as well as ρ(11) < ρ(00). The second claim to complete the proof is that

for any 1 ≤ ℓ ≤ n0, we have that ρ(12ℓ−10) is 2ℓ-maximal; ρ(12ℓ) is 2ℓ-minimal; if ℓ < n0, then

ρ(12ℓ+1) is (2ℓ + 1)-maximal; and ρ(12ℓ−101) is (2ℓ + 1)-minimal. The induction argument goes

exactly as in Claim 4.6 from case (a) where x0 > ix, except switching the roles of “maximal”

and “minimal” everywhere as well as switching the roles of (firstly) f0f1 and f1f0, and (secondly)

f0f
2
1 and f2

1 f0. This is because we now have f1f0 < f0f1 and f2
1 f0 < f0f

2
1 by Lemma 4.4. The

third claim, which completes the picture, is that ρ(12n0−10m) is maximal and ρ(12n0−10m−11) is

minimal for all m ≥ 0. The cases m = 0 and m = 1 follow from taking ℓ = n0 − 1 and ℓ = n0 in

the second claim. For m = 2, the (2n0 + 1)-minimum is ρ(12n0−101) by the second claim again,

and the (2n0 + 1)-maximum is ρ(12n0−102) because the other option is ρ(12n0+1), and this is the

lesser value by definition of n0. The induction can be carried out from here using f2
1 f0 < f0f

2
1 and

f1f0 < f0f1, finishing the proof for x0 < ix.

Now suppose x0 > ix. The proof of this case is split into three claims, as usual. First, there is a least

n0 such that ρ(12n0+2) ≤ ρ(12n002). As before, we first need to consider the case n0 = 0 separately,

but fortunately this is equivalent to ρ(11) < ρ(00) so there is no need for a third subcase as with

the x0 < ix argument. If n0 = 0, then ρ(00) is maximal since ρ(1) < ρ(0), and ρ(01) is minimal

by f1f0 < f0f1. In general, suppose for any m ≥ 2 that ρ(0m) is m-maximal and ρ(0m−11) is

m-minimal. Then ρ(0m+1) is (m + 1)-maximal since the other option is ρ(0m−112), which is of

the form f2
1 f0y, which is less than f0f

2
1y and so not maximal. And ρ(0m1) is (m + 1)-minimal

since the other option ρ(0m−110) is of the form f0f1y, which is greater than f1f0y and hence not

minimal. It follows by induction that 0m is witnessed in this subcase for all m ≥ 1.

Assume from now on that instead n0 > 0. The second claim we need to finish the proof is that for

1 ≤ ℓ ≤ n0, ρ(12ℓ) is 2ℓ-maximal; ρ(12ℓ−201) is 2ℓ-minimal; ρ(12ℓ0) is (2ℓ + 1)-maximal; and

ρ(12ℓ+1) is (2ℓ+ 1)-minimal. The base case here uses n0 > 0 to show ρ(11) is maximal. The third

claim is that ρ(12n00m) is maximal and ρ(12n00m−11) is minimal for all m ≥ 2. Here, for m = 2,

we have ρ(12n002) maximal since by definition of n0, ρ(12n0+2) cannot be. And f0f1 > f1f0
implies that ρ(12n001) is minimal rather than ρ(12n0+10). The inductive steps of both claims can

be shown in a straightforward way using f1f0 < f0f1, f2
1f0 < f0f

2
1 , and in the first statement of

the second claim, ℓ < n0. (The latter is used only to show the second claim holds for ℓ+ 1 given it

holds for ℓ, so it does hold for ℓ = n0 as stated.)

Finally, suppose b = 0. As in Case 4(a), only finitely many strings can be witnessed. We have

again that r0 = a and ρ(wa01) = f1a for all strings w. If x0 < ix, and n is large enough that

ρ(12n+1) ≤ a, then no longer string can have probability greater than f1a, and this value is never

attained uniquely. If x0 > ix, and n is large enough that ρ(12n) ≤ a, the same conclusion holds.

Therefore at most finitely many constant strings can be witnessed, and nothing else. This completes

the proof of Case 4(b) and of Theorem 4.2.

Strings witnessed in the above case: 12n−10m, 12n0m.



K. Gill / Probabilistic automatic complexity 25

4.3. Proof of Theorem 4.3

We show that for every string w listed in Theorem 4.1, there is an IFS (f0, f1, x0) which falls into

the subcase of the proof of Theorem 4.2 which would lead to w being witnessed. This results in

a case breakdown into the following seven subfamilies of strings, listed here with the subcases of

Theorem 4.2 which they employ:

• 0n1m for a given n and all m – Case 2(a), Proposition 4.8;

• 12n0m1 for a given n and all m – Case 4(a), Proposition 4.9;

• 12n−10m1 for a given n and all m – Case 4(a), Proposition 4.10;

• 12n(01)m for a given n and all m – Case 3(a), Proposition 4.11;

• 12n+1(01)m for a given n and all m – Case 3(a), Proposition 4.12;

• 12n+10(10)m for a given n and all m – Case 3(b), Proposition 4.13;

• 02n1(01)m for a given n and all m – Case 3(a), Proposition 4.14.

The proofs all follow the same basic strategy, which goes roughly as follows. Given n, derive an

inequality equivalent to the condition from the relevant subcase of the proof of Theorem 4.2 which

results in strings with prefixes of length n being witnessed. This translates to a requirement that

x0 be chosen inside a certain interval depending on n and the coefficients of the IFS. For any fixed

n, a, b, c, d, finitely many of these intervals will overlap [0, 1], and the set of such intervals is closed

downward in n: for any ℓ ≤ n, if n’s interval overlaps [0, 1], so does ℓ’s. Derive an inequality

n < f(a, b, c, d) for some function f which is equivalent to n’s interval overlapping [0, 1]. Treat three

out of a, b, c, d as functions of the fourth and show that f →∞ as the fourth number tends to 1 or−1,

depending on the subcase. This finishes the proof since it shows that for infinitely many n, one can

choose a, b, c, d to satisfy n < f , and this suffices.

Although all seven subcases follow this outline, the particularities are different enough to warrant

separate treatments, albeit with some details omitted.

Proposition 4.8. AP (0
n1m) = 2 for all n,m ≥ 0.

Proof:

Let n ≥ 1 be given (the case n = 0 is trivial). The IFS (f0, f1, x0) witnesses 0n1m for all m if

in Case 2(a) of the proof of Theorem 4.2 with x0 > ix, and if n is least such that fn
0 x0 < ix, i.e.,

fn
0 x0 < ix < fn−1

0 x0. Take f0 = bx for b < 1 and f1 = c (so a = d = 0). Then fn
0 x0 = bnx0, and

our condition becomes

bnx0 < ix < bn−1x0 or equivalently
ix

bn−1
< x0 <

ix
bn

.

Since b < 1, we have ix/b
n > ix for all n ≥ 1. In order to choose x0 to witness 0n1m for our given

n, we need ix/b
n−1 < 1, or equivalently

log ix
log b

+ 1 > n.
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By increasing b arbitrarily close to 1, and setting c = b/2 from b, we can make log ix/ log b larger than

any given n, so that it is possible to choose x0 ∈ (ix, 1) in order for exactly 0n1m to be witnessed for

all m ≥ 0. ⊓⊔

Proposition 4.9. AP (1
2n0m1) = 2 for all n,m ≥ 0.

Proof:

Let n ≥ 1 be given (n = 0 is covered by the previous proposition). The IFS (f0, f1, x0) witnesses

12n0m1 for all m ≥ 0 if in Case 4(a) of the proof of Theorem 4.2—that is, b > 0 > d and both maps

decrease ix—if x0 < ix, and if n is least such that

f2n+2
1 x0 > f2

0 f
2n
1 x0.

Thinking of the LHS here as f2
1f

2n
1 x0, this inequality is equivalent to

a+ ab+ b2f2n
1 x0 < c+ cd+ d2f2n

1 x0 ⇐⇒ F :=
f2
0 0− f2

1 0

d2 − b2
< f2n

1 x. (5)

If n is supposed to be the least number making F < f2n
1 x0, then we would like f

2(n−1)
1 x0 < F <

f2n
1 x0. Note that for any x and n, we have

fn
1 x = c

n−1
∑

i=0

di + dnx = c ·
1− dn

1− d
+ dnx = r1(1− dn) + dnx,

and an analogous formula for fn
0 x. Then

f
2(n−1)
1 x0 < F ⇐⇒ r1(1− d2(n−1)) + d2(n−1)x0 < F ⇐⇒ x0 < r1 −

r1 − F

d2(n−1)
,

and on the other hand

F < f2n
1 x0 ⇐⇒ x0 > r1 −

r1 − F

d2n

by a similar calculation. Now, in our situation it will always be the case that F < r1 = c/(1 − d),
because

f2
00− f2

1 0

d2 − b2
<

c

1− d
⇐⇒ a(1− d+ b− bd) < c(1 − b2) ⇐⇒

a

1− b
<

c

1− d
,

i.e., r0 < r1. As long as we choose a, b, c, d to make r0 < r1, then, we have F < r1. We also need

F > 0, but this will be guaranteed by f
2(n−1)
1 x0 < F since the latter LHS is nonnegative for every

n ≥ 1 and x0.

Overall, then, the IFS witnesses 12n0m1 when we can pick x0 such that

x0 ∈

(

r1 −
r1 − F

d2n
, r1 −

r1 − F

d2(n−1)

)

, (6)
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a nonempty interval since d2n < d2(n−1) and r1 − F > 0. Both endpoints of this interval are less

than ix if r0 < r1, since r0 < r1 iff r1 < ix, and so choosing such an x0 automatically fulfills the

requirement that x0 < ix.

We also need (for a given n) to be able to pick x0 > 0, so at least the right endpoint in (6) should

be positive. For any n.

r1 −
r1 − F

d2(n−1)
> 0 ⇐⇒ d2(n−1) > 1−

F

r1
⇐⇒ (n− 1) log d2 > log

(

1−
F

r1

)

⇐⇒ n < 1 +
log(1− F/r1)

log d2
.

For arbitrarily large n to be possible, the last RHS must be able to grow arbitrarily large depending on

a, b, c, d. To accomplish this we can treat d as a variable and make c a function of d (so that F and r1
are as well), then require that

lim
d→−1+

log(1− F/r1)

log d2
=∞. (7)

We need c to be a function of d because c must be greater than |d| for all d > −1 if we are to have

c + d > 0, so c will necessarily approach 1 in the limit. Of course we also need to make sure the

logarithm in the numerator is defined for all d > −1. If so, then together with the fact that the right

endpoint of (6) is always less than ix, we will have that for every n ≥ 1 there is a choice of a, b, c, d, x0
making (f0, f1, x0) witness 12n0m1 for all m.

So, to sum up thus far, we want to choose numbers a, b and a continuous function c(d) to satisfy

the requirements that |d| < c(d) < 1, a < 1− b, r0 < r1, ix < 1, iy > 0, and the limit condition (7)

holds. Because we are taking the limit as d → −1+, we may as well only bother asking for the other

requirements to hold in the limit, too. This simplifies things considerably: since c → 1 as d → −1,

we have r1 → 1/2. Then for r0 < r1 to hold in the limit, it is enough to make r0 = a/(1− b) < 1/2,

or in other words 2a < 1 − b. This condition also guarantees a < 1 − b and hence a + b ∈ [0, 1].
Furthermore, since c(d) will eventually be greater than any fixed a < 1, a < c is satisfied in the limit.

That c+ d ∈ [0, 1] is implied by the requirement that |d| < c(d) < 1.

Only two conditions remain to be checked. Firstly, (7) holds if 1 − F/r1 stays strictly between

0 and 1 as d → −1+: on the one hand, 0 < 1 − F/r1 iff F < r1, which as we saw is equivalent to

r0 < r1. On the other hand, 1 − F/r1 < 1 iff both F and r1 are positive, and both of those happen

in the limit as noted above. Finally, we need to check that the lines intersect in [0, 1]2. But since

f1(x)→ 1− x as d→ −1, if we make sure to take a, b > 0, then f1 will eventually intersect any line

that stays inside [0, 1]2. Hence iy > 0 and ix < 1 hold in the limit, and we are done. ⊓⊔

The proofs of all but one of the remaining cases are very similar to the above, and we will give

a somewhat more streamlined presentation from here on out. The most complicated subcase we save

for last (Proposition 4.14).

Proposition 4.10. AP (1
2n−10m1) = 2 for all n ≥ 1, m ≥ 0.

Proof:

If n ≥ 1 is given, then (f0, f1, x0) witnesses 12n−10m1 for all m ≥ 0 if in Case 4(a) of the proof of
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Theorem 4.2 (mixed slopes) with x0 > ix and n least such that

f2n+1
1 x0 > f2

0 f
2n−1
1 x0. (8)

As before, we will pick a, b > 0 constants and c a continuous function of d so that as d → −1+, it is

always possible to choose x0 making the above happen for any given n. Now, (8) is equivalent to

f2n−3
1 x0 < E < f2n−1

1 x0 where E =
a(1 + b)− c(1 + d)

d2 − b2
, (9)

and the inequality in (9) is equivalent to

x0 ∈

(

r1 +
r1 − E

|d|2n−3 , r1 +
r1 − E

|d|2n−1

)

. (10)

For arbitrarily large n to be possible, we want to pick a, b, c, d so that this interval intersects (ix, 1),
so a suitable x0 can be chosen. The left endpoint in (10) can be made less than 1 for arbitrarily large

n if, in particular,

lim
d→−1+

log
r1 − E

1− r1
log d2

+
3

2
=∞. (11)

And the right endpoint in (10) is greater than ix, for a given n, iff

log
r1 − E

ix − r1
log d2

+
1

2
> n. (12)

Note that in the limit, E approaches r0 (as long as b < 1). Hence as long as r0 < r1 in the limit, then

eventually r1 > E. If we arrange things so ix stays below 1, then,

r1 − E

ix − r1
>

r1 − E

1− r1
.

Also notice that we can take r1−E
ix−r1

< 1 in the limit since this is equivalent to 2r1 < ix + E, which

in the limit is guaranteed if 2a + b < 1, as may be checked with a little algebra. Assume that a, b
are positive with 2a + b < 1. Then since log is increasing, if (11) holds, the LHS of (12) will also

approach ∞. This implies that whenever n is such that the left endpoint of (10) is less than 1, for all

n′ ≤ n it is possible to choose x0 ∈ (ix, 1) in order to witness 12n
′−10m1.

So, let c(d) be a continuous function with |d| < c(d) < 1 for all d > −1, and let a, b > 0 be

such that 2a + b < 1. This immediately implies a + b, c + d ∈ [0, 1] for all d. Since r1 → 1/2 as

d → −1, we have r0 < r1 in the limit since r0 = a/(1 − b) < 1/2. We also need E > 0, which is

guaranteed as d → −1 since E approaches r0 > 0. Since c → 1 and d → −1, eventually c > a as

required. Because f1(x) → 1 − x as d → −1, c + dx will eventually intersect a + bx in [0, 1]2, so

that 0 < iy < ix < 1. It only remains to check (11). But we already observed that

r1 − E

1 − r1
<

r1 − E

ix − r1
< 1

as d → −1, and r1−E
1−r1

> 0 iff r1 > E, which also holds in the limit. Therefore the logarithm in the

numerator approaches a finite negative number, while log d2 approaches 0 from below. ⊓⊔
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Proposition 4.11. AP (1
2n(01)m) = 2 for all n,m ≥ 0.

Proof:

For a given n, we witness 12n(01)m if in Case 3(a) of the proof of Theorem 4.2 (both slopes negative),

with x0 > ix and n least such that

f2n
1 x0 < ix. (13)

We will pick numbers a > 0, b < 0, and a continuous function c(d) so that as d → −1+, we have

a + b, c + d ∈ [0, 1], a < c, b > d, r0 < r1, and the lines a + bx and c + dx intersecting in [0, 1]2.

If a, b /∈ {0,±1}, then the last condition is automatically met as d → −1 since f1 → 1 − x and this

intersects any line in [0, 1]2. The conditions a < c and b > d are also automatically met as d → −1.

At the same time, we must (given n) be able to pick

x0 ∈

(

r1 +
ix − r1
d2(n−1)

, r1 +
ix − r1
d2n

)

(14)

so that f2n
1 x0 < ix < f

2(n−1)
1 x0. We need this interval to intersect (ix, 1) for arbitrarily large n, for

suitable choices of a, b, c, d. That the right endpoint is always greater than ix, for any n, follows from

d2n < 1, since then ix−r1
d2n

> ix − r1. For the left endpoint to be less than 1 for arbitrarily large n we

need

lim
d→−1+

log
ix − r1
1− r1

log d2
=∞. (15)

Pick a > 0 > b with

−b < a <
1− b

2
. (16)

Also let c(d) be a continuous function with |d| < c(d) < 1 for all d > −1. This immediately gives

c + d ∈ [0, 1], and (16) implies a+ b ∈ [0, 1] too. Next, since r1 → 1/2 as d → −1 and (16) makes

r0 = a/(1 − b) < 1/2, we have r0 < r1 in the limit. Finally, to satisfy (15), we want ix−r1
1−r1

to be

strictly between 0 and 1 in the limit. This quantity is automatically positive since ix > r1 and 1 > r1
(both in the limit, again). And because (16) implies ix →

1−a
b+1 < 1 as d → −1, the fraction is also

less than 1 in the limit. This completes the proof. ⊓⊔

Proposition 4.12. AP (1
2n+1(01)m) = 2 for all n,m ≥ 0.

Proof:

Given n, take the IFS to be in Case 3(a) of the proof of Theorem 4.2 (both slopes negative) with

x0 < r0 and n such that

f2n+1
1 x0 < ix < f2n−1

1 x0. (17)

This is equivalent to

x0 ∈

(

r1 −
ix − r1

|d|2n+1 , r1 −
ix − r1

|d|2n−1

)

. (18)

Since

r1 −
ix − r1

|d|2n+1 < r0 ⇐⇒ |d|2n+1 <
ix − r1
r1 − r0
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and the last fraction is greater than 1 by Lemma 4.4(e) while the LHS is less than 1, we have that the

left endpoint of (18) is always less than r0 for all n ≥ 0. In order to make the right endpoint of (18)

greater than 0 for arbitrarily large n (for suitable choice of a, b, c, d), so that an x0 ∈ (0, r0) may be

chosen to make the IFS witness exactly 12n+1(01)m, we can arrange for

lim
d→−1+

log(ix/r1 − 1)

log d2
=∞. (19)

As usual, pick constants a, b /∈ {0,±1}, a > 0 > b, and a continuous function c(d) such that

|d| < c(d) < 1 for all d > −1 (so c + d ∈ [0, 1]). To satisfy (19), we want 0 < ix/r1 − 1 < 1 in the

limit, or equivalently r1 < ix < 2r1. Since ix converges to (1 − a)/(b + 1) and r1 → 1/2, this can

achieved (along with a+ b ∈ [0, 1]) by making −b < a < 1−b
2 . This implies that a < c and b > d are

met in the limit, and again since f1 → 1 − x we will eventually have (ix, iy) ∈ [0, 1]2. And r0 < r1
follows from r1 < ix. ⊓⊔

Proposition 4.13. AP (1
2n+10(10)m) = 2 for all n,m ≥ 0.

Proof:

For this, given n, we take the IFS to be in Case 3(b) of the proof of Theorem 4.2, so that both maps

have negative slope and increase ix. We want x0 > r0 and n to be such that

f2n−1
1 x0 < ix < f2n+1

1 x0.

This is equivalent to

x0 ∈

(

r1 +
r1 − ix

|d|2n−1 , r1 +
r1 − ix

|d|2n+1

)

. (20)

Remember that in the present case we have ix < r1 < r0. We will pick a > 0 > b with

1− b

2
< a < 1, (21)

and pick c(d) a continuous function with |d| < c(d) < 1 for all d > −1. Then if we take d→ −1, we

have r1 → 1/2 and r0 > 1/2 by choice of a and b, so that r1 < r0 in the limit. Also a+b, c+d ∈ [0, 1],
a < c, and b > d hold in the limit; and as before, a+ bx eventually intersects c + dx in [0, 1]2 since

c + dx → 1 − x. Now we just need to make sure we can always pick an x0 ∈ (r0, 1) for arbitrarily

large n as d→ −1. We have

r1 +
r1 − ix

|d|2n+1 > r0 ⇐⇒
r1 − ix
r0 − r1

> |d|2n+1 .

Since the RHS here is less than 1 and the LHS is greater than 1 (by Lemma 4.4(e) again), this always

happens for any n. To make the left endpoint of (20) less than 1 for any given n, so that suitable

a, b, c, d, x0 may be chosen to witness the desired string, it suffices to ensure that

lim
d→−1+

log
r1 − ix
1− r1

log d2
=∞. (22)
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Thus we want 0 < r1−ix
1−r1

< 1 in the limit, or equivalently 2r1 − 1 < ix < r1. Since r1 → 1/2, in the

limit the latter inequality becomes

0 <
1− a

b+ 1
<

1

2
,

which is equivalent to (21). ⊓⊔

Now we arrive at the final and most complex subcase of Theorem 4.3 to prove. The extra difficulty

arises because, basically, we will need to take both b and d to −1 while both a and c go to 1. This

makes it harder to make certain properties hold “in the limit” as in the previous subcases, and also

results in a limit condition in which the limit converges to log 0
0 . Slightly more delicate handling is

needed to get around these problems.

Proposition 4.14. AP (0
2n1(01)m) = 2 for all n,m ≥ 0.

Proof:

Let n be given. The IFS (f0, f1, x0) witnesses 02n1(01)m for all m if in Case 3(a) of the proof of

Theorem 4.2 (where both maps have negative slope and both decrease ix), when x0 > ix and when n
is least such that f2n

0 x0 < ix, i.e.,

f2n
0 x0 < ix < f

2(n−1)
0 x0,

or equivalently (after rearranging)

x0 ∈

(

r0 +
ix − r0
b2n−2

, r0 +
ix − r0
b2n

)

. (23)

If we can pick a, b, c, d to make r0 < ix, then this interval is nonempty with positive endpoints. For

this n and a, b, c, d, it is possible to choose x0 to witness the desired family of strings iff the left

endpoint is less than 1 and the right endpoint is greater than ix. First,

r0 +
ix − r0
b2n

> ix ⇐⇒ 1 > b2n,

which is true for all n ≥ 1, so if an x0 can be chosen above ix for a given n then a suitable x0 can also

be chosen for any n′ ≤ n. And we can choose x0 < 1 iff

r0 +
ix − r0
b2n−2

< 1 ⇐⇒
ix − r0
1− r0

< b2n−2 ⇐⇒
log

ix − r0
1− r0

log b2
+ 1 > n.

This is possible to achieve for any given n if we can make

lim
b→−1+

log
ix − r0
1− r0

log b2
=∞. (24)

Altogether this means that if r0 + (ix − r0)/b
2n < 1 for some n and a fixed choice of a, b, c, d, then

it is possible for every 1 ≤ n′ ≤ n to pick a suitable value of x0 > ix making (f0, f1, x0) witness the
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strings 02n
′
1(01)m for every m ≥ 0. Hence the proof will be complete if we can choose a, c, and d

as functions of b such that such that (24) holds and such that the IFS remains in Case 3(a) of the proof

of Theorem 4.2 for all b > −1. Actually, for technical reasons it will be simpler for now to choose

r0 as a function of b and then let a(b) = (1 − b)r0(b). This is not a problem because b is never 1, so

r0(b) = a(b)/(1 − b) is always well-defined. We will ultimately see that the requirements we impose

on r0(b) do not contradict the behavior of a(b).
We proceed by deriving necessary conditions on r0, c, d to satisfy each requirement, and showing

along the way that each new condition is compatible with all the preceding ones. This will imply that

functions r0, c, d satisfying all of them do indeed exist. Our first requirements, which we will take as

“atomic” in that they will not reduce to other requirements, are that

(1− b)r0(b) < 1 and |b| < |d(b)| < c(b) < 1 (25)

for all b > −1 (with b, d negative). The second of these immediately implies c + d ∈ [0, 1]. To

guarantee a+ b ∈ [0, 1], first note that a+ b = r0(1− b)+ b < 1 iff r0 < 1, and this follows from the

first atomic requirement. Then a+ b > 0 iff

r0 > −b/(1− b), (26)

a new requirement. Actually, (26) will turn out to be a consequence of ix, iy ∈ [0, 1], or in other words

of f0 and f1 intersecting in [0, 1]2. We need the latter to happen anyway, so let us now find a sufficient

condition for it. Rewriting ix and iy in terms of r0 produces

ix =
c− r0(1− b)

b− d
and iy =

bc− r0(1− b)d

b− d
.

If iy < ix, or equivalently r0 < r1, then it suffices to make iy > 0 and ix < 1. We will see how to

ensure r0 < r1 in a moment. One can check that

iy > 0 ⇐⇒ r0 >
bc

d(1− b)
and ix < 1 ⇐⇒ r0 >

c+ d− b

1− b
. (27)

Since c + d > 0, we have c+d−b
1−b

> −b
1−b

, so that satisfying (27) would automatically result in (26)

being satisfied too. Thus (26) is redundant. Next, some more algebra shows that

bc

d(1− b)
<

c+ d− b

1− b
⇐⇒ b > d,

an atomic requirement. Hence the first condition in (27) is implied by the second as long as (25) holds,

so is also redundant. Then we will have a+ b > 0, iy > 0, and ix < 1 if we can choose r0 so that

c+ d− b

1− b
< r0 <

c

1− d
= r1. (28)

The latter guarantees that iy < ix so that we stay in Case 3(a) of the proof of Theorem 4.2, and also

subsumes the second condition in (27), so if (28) holds then (27) is fully redundant. Now, the interval

in (28) is nonempty because

c+ d− b

1− b
<

c

1− d
⇐⇒ (c+ d− b)(1− d) < c(1− b) ⇐⇒ (c− 1 + d)(b− d) < 0,
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which follows from the second requirement in (25): b − d > 0 since b > d, and c − 1 + d < 0 since

|d| < c < 1. So (25) makes it possible to choose r0 to satisfy (28), and together (25) and (28) are

enough to ensure we stay in Case 3(a).

It remains to show that the limit requirement (24) is consistent with (25) and (28). We will take r0,

c, and d to be continuously differentiable functions of b. log b2 approaches 0 from below as b→ −1+,

so in order for the limit to reach +∞, one needs the logarithm in the numerator to stay negative. For

this, one wants to maintain

0 <
ix − r0
1− r0

< 1

in the limit, and for this quantity to stay strictly below 1 at b = −1. Now, d(b) → −1+ as b → −1+

since d is always less than b, and c(b)→ 1. Then after yet more algebra, we have that

ix − r0
1− r0

=
c− r0(1− d)

(b− d)(1 − r0)
→

0

0
as b→ −1.

An application of L’Hôpital’s Rule shows that the limit is equal to

lim
b→−1+

c′ − r′0(1− d) + r0d
′

(1− r0)(1− d′)− r′0(b− d)
=

2c′(−1)− 4r′0(−1) + d′(−1)

1− d′(−1)
. (29)

(The calculation follows since r′0, c′, and d′ are bounded everywhere by assumption, and r0 → 1/2.)

Since d decreases to−1 as b decreases to−1, d′(−1) ≥ 0, and we will need d′(−1) 6= 1 for (29) to be

well-defined. If we take 0 < d′(−1) < 1, then the denominator of the limit in (29) is positive. Hence

the limit in (24) will tend to
−∞

0−
= +∞, as needed, if

0 <
2c′(−1) − 4r′0(−1) + d′(−1)

1− d′(−1)
< 1. (30)

If L(b) = c+d−b
1−b

is the lower bound in (28), then one can calculate

L′(−1) =
2c′(−1) + 2d′(−1)− 1

4
, r′0(−1) =

2a′(−1) + 1

4
,

and r′1(−1) =
2c′(−1) + d′(−1)

4
.

Using these expressions we see that (30) is equivalent to

L′(−1) < r′0(−1) < r′1(−1). (31)

Our final objective is to show (31) is consistent with the other requirements (25) and (28), which

will complete the proof since that means (24), (25), and (28) can all be satisfied simultaneously.

Actually, under the above assumption that 0 < d′(−1) < 1, and up to possibly perturbing r0, c, and d,

(31) is equivalent to (28) holding in the limit. This follows because for any continuously differentiable

functions f(x), g(x) having the same limit as x→ C+, where C is some constant, then for any ε > 0,

f(x) > g(x) on (C,C + ε) iff f ′(x) > g′(x) on (C,C + ε). Then since L, r0, and r1 all tend
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to 1/2 as b → −1, we have that (28) holding in a right neighborhood of b = −1 is equivalent to

L′ < r′0 < r′1 holding in the same neighborhood. By smoothly perturbing r0, c, and d if necessary, as

long as 0 < d′(−1) < 1 is maintained, we can ensure strict inequality between the derivatives holds

at b = −1, i.e., that (31) holds. (A bit more formally, one could say that these strict inequalities are all

open conditions in the C1 topology.) Thus (31) implies (28) holds near b = −1, and conversely, (28)

implies that r0, c, and d may be taken to satisfy (31) and hence (24). In particular, (31) and (25) are

also consistent with each other.

So to sum up, there are continuously differentiable functions r0(b), c(b), and d(b) (and conse-

quently a(b) = (1 − b)r0(b)) satisfying (25), (28), and 0 < d′(−1) < 1. We have established that all

of this suffices to be able to choose, given any n, values of x0 and b which result in the IFS (f0, f1, x0)
witnessing the strings 02n1(01)m for all m ≥ 0. This finishes the proof of the final subcase of Theo-

rem 4.3, and at last the proof of Theorem 4.1 is complete. ⊓⊔

4.4. Further remarks

The proof of Theorem 4.3 appears to explicitly rely on the use of IFSs over a two-letter alphabet, and

a priori does not extend to show that, e.g., AP (0
n1n) = 2 may be witnessed by an IFS over {0, 1, 2},

for which another map f2 must be specified. However, if one defines f0x = a+ bx and f1x = c+ dx
as in any of the proofs in the last section, and lets fjx = a+c

2 + b+d
2 x for all other j ∈ Σ, then fjx is

strictly between f0x and f1x except at x = ix, and so a string containing a j can have neither minimal

nor maximal probability. Hence AP (w) = 2 over a two-letter Σ implies that AP (w) = 2 over any

Σ′ ⊃ Σ.

Theorem 4.1 immediately implies that the set of binary strings with AP = 2 is a regular language.

More particularly, the proof of Theorem 4.2 has the following consequence, which is somewhat in-

triguing given that stochastic languages—which are defined by fixed probability thresholds (the cut-

point)—are not generally regular, or even recursively enumerable, although Rabin did show that a

stochastic language defined by an isolated cut-point is regular [12].

Corollary 4.15. For every two-state PFA M over a binary alphabet, the language of strings whose

complexity is witnessed by M is regular.

Proof:

By the proof of Theorem 4.2, given M , the set of strings W witnessed by M consists of one of the

following plus at most finitely many other strings:

• nothing,

• 0n for all n,

• 0n1m for some n and all m,

• 0n(10)m for some n and all m,

• 0n1(01)m for some n and all m,

• 1n(01)m for some n and all m,
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• 1n0(10)m for some n and all m,

• 1n0m1 for some n and all m, or

• the set of bit-flips of any one of the above.

In all cases, for all but finitely many w, we have w ∈ W if and only if w begins with a fixed prefix

and ends with a repeated pattern of length 1 or 2, possibly followed by a single extra digit. Each case

can be described by a regular expression. ⊓⊔

Another consequence of the classification is that we can save an arbitrarily high number of states

by switching from NFAs to PFAs to describe a given string:

Corollary 4.16. The quantity AN (w)−AP (w) may be arbitrarily large among binary w.

Proof:

The statement follows if we can show AN (0n1n) is unbounded in n,3 since AP (0
n1n) = 2 for all n

by Theorem 4.1. Suppose AN (0n1n) ≤ K for all n and some constant K . For any w, AN (w) can

be witnessed by an NFA whose unique accepting path of length |w| uses every edge. Hence by the

pigeonhole principle, there is some NFA M with at most K states such that for infinitely many n,

there is a unique path of length 2n which accepts 0n1n and uses every edge of M . We show this is

impossible. First, if the digraph of M has fewer than two distinct cycles, then at most one string of the

form 0n1n is accepted. Then we can assume there are distinct cycles of lengths a and b, respectively.

For any string w accepted by M , the portion of w which was read while traversing these cycles has

length ℓ = ax + by for some x, y ∈ N. If such an ℓ is greater than 2ab − a − b, then there are at

least two different pairs of natural numbers (x, y) and (x′, y′) with ax + by = ax′ + by′ = ℓ (see,

e.g., [4, Lemma 11]). In terms of M , this means for all large enough m such that M accepts a word

of length m with a path that uses both cycles, there are at least two distinct accepting paths of length

m—corresponding to traversing the cycles x and y times on the one hand, and x′ and y′ times on

the other hand. In particular, the accepting path for 0n1n uses both cycles for infinitely many n such

that AN (0n1n) is witnessed by M , and so for all but finitely many of these n, there are two different

accepting paths of length 2n, a contradiction. ⊓⊔

Of course, the 2-state PFA describing 0n1n may have to be somewhat complicated, a problem we

briefly return to in Section 6 below.

As remarked earlier, no evidence has yet appeared to suggest that AP is unbounded, or even that

any string has complexity greater than 3. All binary strings of length 9 or less have complexity either 2
or 3, and witnesses with three states have been found for a number of longer strings as well. Therefore,

we may pose the following questions, the first being restated from the introduction:

Question 1.7. Is AP unbounded? If not, what is its maximum value? Similarly when restricted to a

given finite alphabet, and similarly for AP,δ.

3[4, Theorem 12] establishes that AD(0n1n) ≥
√
n−1 for all n, but the proof does not quite go through for NFAs. Probably

a similar explicit lower bound on AN can be found.
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Question 4.17. What is a tight upper bound for AP (w) as a function of |w|?

Lastly, one may call a string random for a measure of complexity if its complexity is the maximum

possible for its length. For example, a string is random for Kolmogorov complexity if its complexity

is equal to its length, up to an additive constant not depending on the string. For AN , the string w is

random if AN (w) = ⌊|w| /2⌋ + 1, and this is known to be tight (except over a binary alphabet; see

[10, Theorem 9] and [9]). But without a general asymptotic upper bound, it is unclear what strings

could be considered random for AP , and so we ask:

Question 4.18. Is there a suitable notion of a string being random with respect to AP ? If so, then

asymptotically, how many strings are random in this sense?

5. Computability of AP,δ

One of the primary motivations for the introduction of AD was its computability, in contrast with

Kolmogorov complexity. Computability would of course be a desirable property of AP as well. One

can at least show that the relation AP (w) ≤ n is c.e.: any witness for AP (w) ≤ n can be arbitrarily

well approximated by a rational witness, since ρA(w) is continuous in the entries of A, and to continue

witnessing gap(w) > 0 one only needs to make sure that the probabilities of the finitely many other

strings of length |w| do not stray too far. Rational PFAs can be computably enumerated, clearly. When

representing rationals as pairs of natural numbers, the exact value of the acceptance probability of any

word can be computed in finite time, and the relations <, >, and = are all decidable for any numbers

resulting from such a computation. Therefore, if a witness for AP (w) ≤ n exists, it will be found in

finite time. Whether AP (w) ≥ n is also a c.e. relation remains open.

On the other hand, the question of the computability of AP,δ(w) is completely settled apart from

the case δ = 0:

Theorem 5.1. For any finite alphabet Σ, the function (δ, w) 7→ AP,δ(w) is

• Continuous everywhere on [0, 1) × Σ∗ except on a countably infinite set which can be enumer-

ated by a single algorithm;

• Computable on (0, 1) ×Σ∗ where it is continuous.

In particular, for every w, AP,δ(w) is computable for all but at most AD(w)− 2 many values of δ, and

is continuous at δ = 0.

The proof of this theorem uses some machinery from computable analysis, and we introduce the

needed background in the next subsection. For reasons that will become apparent after the proof is

complete, it does not extend in any obvious way to a proof that AP is computable. Indeed, AP may

well not be computable, but it is still not clear what tools one might use to show that, as the usual proof

of the noncomputability of Kolmogorov complexity by a version of Berry’s paradox is not obviously

adaptable to PFAs. Alternatively, one could view the calculation of AP (w) as the decision problem

which asks, given w and k, whether there is a k-state PFA M such that gapM (w) > 0. The hope

would then be to find a reduction to this problem from a problem known to be undecidable. Many
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such decision problems have been studied in the theory of PFAs; the interested reader may consult the

survey [24] for some important examples.

5.1. Preliminaries from computable analysis

We follow the approach of [25]. For a separable metric space (X, d), suppose we are given an enu-

meration α : N → X of a dense subset of X. Fix some enumeration (qi)i∈N of Q. Then we say X is

a computable metric space if d : X ×X → R is computable when restricted to the range of α, in the

sense that the set

{ (i, j, n,m) ∈ N4 :qi < d(α(n), α(m)) < qj }

is c.e. The function α gives rise to a canonical computable enumeration of a basis for the topology on

X, namely

〈i, j〉 7→ Bqj(α(i)),

where Bq(x) is the open ball of radius q centered at x ∈ X. We will from now on refer to the sets in

this canonical enumeration as basic open balls. We may refer to a procedure as “outputting an open

ball” or “listing open balls” when we really mean that it produces an index 〈i, j〉 for a basic open ball,

or a list of such indices.

A name for a point x ∈ X is a list NX
x (in any order) of all basic open balls in X containing

x. If (X, dX ) and (Y, dY ) are two computable metric spaces, a function f : X → Y is computable

if there is a Turing functional which sends NX
x to NY

f(x) for all x ∈ X. A Cauchy name for a

point x is a sequence (xn) ⊂ D converging to x such that for all n, d(xn, xn+1) < 2−n. One can

compute a Cauchy name for x from NX
x by first finding a subsequence of basic open balls listed in

NX
x with exponentially decreasing radii, then taking their centers. Conversely, one can compute a

name NX
x from a Cauchy name: if (xn) is a Cauchy name for x and Bq(y) is any basic open ball, then

d(x, y) < q iff d(xn, y) < q − 2−n for some n, and the latter will be witnessed in finite time since by

assumption d(xn, y) is computable in the sense given above. Neither algorithm depends on x, and so

if f is computable in the above sense, then there is also a uniform computable procedure mapping a

Cauchy name for x to a Cauchy name for f(x) for all x. Every computable function is continuous.

The real line R is a computable metric space with the usual Euclidean metric, taking D = Q.

A computable real number is a number having a computable Cauchy name, viewed as an element of

Baire space. If f, g : X → R are computable functions, then so are f + g, f − g, fg, max{f, g}, and

min{f, g}. In particular, by taking both f and g to be the identity map on R, we get that the function

(x, y) 7→ max{x, y} is computable. If given x 6= y, one can also decide in finite time from their

Cauchy names which is larger.

A computable metric space X is computably compact if there is a computable function which

outputs a finite open cover of X by basic open balls of radius at most 2−n, given input n. If f : X → R

is computable and X is computably compact, then supx∈X f(x) and infx∈X f(x) are computable

numbers, and this is uniform in f (identifying f with an index for an oracle Turing machine mapping

x 7→ f(x)).
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5.2. Proof of Theorem 5.1

For any k ≥ 2, let Ak denote the space of k-state PFAs over a fixed finite alphabet Σ, where we

identify Σ with {0, . . . , b− 1}. To be precise, define

Ak =
{

(~π, P0, P1, . . . , Pb−1, ~η) : ~π ∈ [0, 1]k is a probability vector,

each Pσ is a k × k stochastic matrix, and ~η ∈ {0, 1}k
}

⊂ [0, 1]2k+bk2 .

If A ∈ Ak, write the components of A as ~πA, PA
0 , . . . , PA

b−1, and ~ηA. Also write MA for the

vector (~πA, PA
0 , . . . , PA

b−1). We give Ak the uniform (maximum) distance d(·, ·), i.e., that induced

from the product topology on [0, 1]2k+bk2 . (The euclidean distance would work just as well.) Then

Ak is a computably compact metric space. There are several easy ways to see this, but we give a

direct proof for convenience. Let Qk be the set of rational k-state PFAs, that is, the set of A ∈ Ak

such that all entries of MA are rational, given as quotients of natural numbers. Clearly Qk has a

computable enumeration and is dense in Ak, and d(A,B) is computable for any A,B ∈ Qk, hence

Ak is a computable metric space. Then for any fixed n, one can enumerate all A ∈ Qk such that every

entry of MA is equal to j2−n−1 for some j ∈ {0, . . . , 2n+1}. The set of B2−n(A) for all such A is a

finite open cover of Ak by basic open balls of radius at most 2−n, so Ak is computably compact by

definition.

Recall that for any PFA A and w ∈ Σ∗, we have defined

gapA(w) = min{ ρA(w) − ρA(z) : z ∈ Σ|w| \ {w} }.

The function (A,w) 7→ ρA(w) is computable, because it is a polynomial in the entries of A resulting

from multiplication of ~πA, ~ηA, and the matrices PA
σ in an order determined by w. Therefore (A,w) 7→

gapA(w) is the minimum of finitely many computable functions and hence itself computable, as is

A 7→ gapA(w) for any fixed w.

Define γk(w) = maxA∈Ak
gapA(w). Then for each k and w, γk(w) is a computable real number,

because it is equal to the supremum of the computable function A 7→ gapA(w) over the computably

compact space Ak. And since the procedure to compute gapA(w) is uniform in w, the function

(k,w) 7→ γk(w) is computable. Finally, let

E = { (γk(w), w) :2 ≤ k ≤ AD(w)− 1, w ∈ Σ∗, 0 < γk(w) < 1 } ⊂ (0, 1) × Σ∗.

This will turn out to be exactly the set of discontinuities of AP,δ(w), and it can clearly be enumerated

by a single algorithm by definition. Proposition 3.1(ii) implies that AP,δ(w) is continuous at (0, w)
for all w. Continuity on the remainder of the complement of E will follow from the computability

argument below.

That E is countably infinite is a consequence of the following fact of potential independent interest,

whose proof establishes that in some sense, a 2-state PFA giving a gap of 1 to even a single word (with

more than three letters) behaves much like a DFA as far as AP is concerned.

Lemma 5.2. For any w with |w| ≥ 4, γ2(w) = 1 iff w is constant.
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Proof:

The right-to-left implication is immediate, since then AD(w) = 2. For the other direction, assume for

sake of contradiction that w is nonconstant, and that γ2(w) = 1 is witnessed by the IFS with starting

value x0 and maps fjx = aj + bjx for each letter j ∈ Σ. Then ρ(w) = 1 and ρ(y) = 0 for every

other y of length |w|, and if w = zai where i ∈ Σ, then in particular fiρ(z) = 1 and fjρ(z) = 0 for

all j 6= i. Now, if the range of fi omits the value 0, then ρ(in) > 0 for all n, regardless of the value of

x0. Then either w is constant or gap(w) < 1, a contradiction, and we may thus assume the range of fi
includes both 0 and 1. By drawing a picture, one sees that only fix = x and fix = 1−x are possible.

If fix is the identity then only constant strings may be witnessed, so we can assume that fix = 1− x.

If fix = 1 − x, then ρ(z) = f−1
i (1) = 0, so fj0 = 0 and thus fjx = bjx for all j 6= i. We

can take bj < 1, as otherwise fj is the identity map and only constant strings can be witnessed. If

bj = 0 for some j, so that fj ≡ 0, then every string ending in ji has probability 1, thus maximal

probabilities are nonunique starting at length 3, a contradiction. Then 0 < bj < 1 for all j 6= i, and

this means once an orbit leaves {0, 1} it can never return to either value. In particular, x0 ∈ {0, 1}.
If x0 = 0, then for all n ≥ 1 we have ρ(ji2n−1) = ρ((ji)2n) = 1 among even-length strings and

ρ(i2n+1) = ρ(j2i2n−1) = 1 among odd-length strings. If x0 = 1, then for all n ≥ 1 we have

ρ(i2n) = ρ(ij2n−2i) = 1 among even-length strings and ρ(ij2n−1i) = ρ(iji2n−1) = 1 among odd-

length strings. Either way, uniqueness of maxima is lost starting at length at most 4, so gap(w) < 1
and by contradiction the proof is complete. ⊓⊔

There are infinitely many nonconstant w with |w| ≥ 4 and AP (w) = 2, of course, by Theorem 4.1.

For such w, the lemma implies that 0 < γ2(w) < 1, so that (γ2(w), w) ∈ E and in particular E is

infinite.

We now show that AP,δ(w) is discontinuous on E and computable on the complement of E,

minus the points with δ = 0. Endow Σ∗ with the discrete topology in its standard metrization, i.e.,

d(x, y) = 1 iff x 6= y. Then we give [0, 1) × Σ∗ the product metric, that is, d ((α, x), (β, y)) =
max{|α− β| , dΣ∗(x, y)}. The codomain N of AP,δ(w) also has the discrete topology as a subset of R.

Now, AP,δ(w) is continuous at (δ, w) iff for all ε > 0 there is an η > 0 such that d ((δ, w) − (δ′, w′)) <
η implies

∣

∣AP,δ′(w)−AP,δ(w)
∣

∣ < ε—so that actually |δ − δ′| < η implies AP,δ′(w) = AP,δ(w)
(since Σ∗ and N both have the discrete topology). If δ = γk(w) for some k and w, then by definition

of γk there is no δ′ < δ such that AP,δ′(w) = AP,δ(w), because there is a k-state PFA having a gap

greater than δ′ for w but not one having a gap greater than δ. Hence AP,δ(w) is discontinuous at every

point of E.

Finally, let (δ, w) /∈ E be given with δ 6= 0. Under these hypotheses, for any k ≥ 2, we have

δ > γk(w) if and only if AP,δ(w) > k, because in this case there is no A ∈ Ak exhibiting the required

gap. Conversely, δ < γk(w) if and only if AP,δ(w) ≤ k. To compute AP,δ(w), then, decide for each

k = 2, 3, . . . , AD(w) whether δ or γk(w) is greater. The least k such that δ < γk(w) is exactly equal

to AP,δ(w). It is clear that this procedure does not depend on δ or w, and the proof of Theorem 5.1 is

complete.
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5.3. Remarks

It is worth drawing attention to the fact that if one picks any AD(w) − 1 distinct values of δ, then the

computation of AP,δ(w) is guaranteed to converge for at least one of these δs. However, this does not

allow one to extend the above argument to show that AP = AP,0 is computable, because γk(w) = 0
for all k < AP (w) and the argument does not work if δ = γk(w). (In other words, δ = 0 will never be

a value for which the algorithm we have given can work, unless AP (w) = 2.) One would have to find

the least k such that γk(w) > 0 and compute AP,δ(w) for any 0 < δ < γk(w) (for that k). In general,

identifying the least positive element of a finite set of computable real numbers is undecidable.

The function (k,w) 7→ γk(w) seems to be of interest in and of itself, as we briefly discuss in

the following section. We have 0 ≤ γ2(w) ≤ γ3(w) ≤ · · · ≤ γAD(w)(w) = 1, with γk(w) = 0
if and only if k < AP (w). The number γk(w) is never negative since one can always make a PFA

accepting every word with the same probability by setting all transition matrices to the identity matrix.

Furthermore, Proposition 3.3 implies γk(z) ≥ γk(wz) for all w, z, and k. This comes close to

justifying the empirical observation made in Section 3 that gaps tend to decrease for longer words. A

result to the effect that γk(w) ≥ γk(wz) would put the observation on fully rigorous ground.

6. Other approaches to probabilistic complexity

6.1. Relaxing the definition of a PFA

We saw earlier that AP shares the property of AD that the complexity of a string is not necessarily

equal to that of its reversal. In addition, as noted in the introduction, there are strings whose PFA

complexity is known to be witnessed by a PFA with dead states. One might try to solve these problems

by relaxing the definition of a PFA to directly generalize an NFA (rather than a DFA). NFAS are

allowed to have rows of all zeros in their transition matrices, and also have the property that different

out-transitions from the same state and for the same letter are not weighted differently—they are

simply all possible. The same applies to the initial states.

To directly translate these properties to a generalization of a PFA, one would need to require that all

nonzero entries of ~π are equal, and that all nonzero entries of all the matrices Pσ are equal to the same

number (which may result in the row sums being different). One can see that the proof of the first part

of Proposition 3.4 can be recovered for the class of such automata, so that if ÃP is the corresponding

complexity notion then ÃP (
←−x ) = ÃP (x) for all x (and moreover ÃP (x) ≤ AN (x)). However, this is

not a very natural class of automata to consider and it is certainly not a direct generalization of a PFA.

Instead of trying to design a specific class of automata in an attempt to recover properties of AN ,

it might make more sense to define a unified complexity notion which takes as parameter a family of

automata and study its properties in general. In [26], Turakainen introduced generalized (probabilistic)

finite automata (GPFAs), which are finite-state automata whose operation is described as follows:

• The initial state of the machine is an arbitrary real row vector.

• Transitions between states are described by multiplication of arbitrary real square matrices.

• The final state of the machine is again an arbitrary real column vector.
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So GPFAs are like PFAs except that the entries of ~π, ~η, and each Pσ can be any real numbers. Tu-

rakainen proved the remarkable fact that GPFAs have in a sense the same descriptive power as PFAs: if

one also allows a cut-point in the context of a GPFA to be any real number, then the class of languages

accepted by GPFAs is exactly the class of stochastic languages.

This suggests that it is not too unreasonable to throw the gates open and consider a version of AP

that allows any GPFA. Let G be the set of all GPFAs. For any family F ⊆ G , let Fk be the set of

members of F having k states. Then define the F -automatic complexity of a word x ∈ Σ∗ to be

AF (x) = min{ k :∃F ∈ Fk such that gapF (x) > 0 }.

For example, AP as defined before coincides with AP if P ⊂ G is the set of all PFAs. One can

also define AF ,δ for any δ ≥ 0 by analogy with AP,δ. We have that for all x,

AE (x) ≤ AF (x) whenever E ⊇ F ,

so that in particular AG (x) ≤ AF (x) for every F and x. We have not investigated AF in general,

and it is unclear how coarse of a measurement it might be. As a motivating question, we could ask

Question 6.1. Is AG (x) ≤ 2 for all binary strings x?

It is at least true that AG ,δ(x) = AG ,δ(
←−x ) for all x and δ ≥ 0, since the proof of Proposition 3.4

works for any GPFA—one can simply make ~π′ = ~η, ~η
′
= ~π, and P ′

σ = P T
σ with no rescaling

needed. Together with Proposition 3.3, whose proof goes through verbatim for AG ,δ, this implies that

AG ,δ(xyz) ≥ AG ,δ(y) for all x, y, and z, like AD and AN .

A potentially helpful observation here is that the ability to have unbounded real entries does not

really confer any advantage as far as the complexity of individual strings is concerned. For any GPFA

M , if C is the largest absolute value of any entry of ~πM , ~ηM , and the matrices PM
σ , then one could

divide all these matrices and vectors by C to obtain a GPFA M ′ with entries in [−1, 1] such that

ρM (x) < ρM (y) ⇐⇒ ρM ′(x) < ρM ′(y)

whenever |x| = |y|. Hence if S is the set of GPFAs whose entries are all in [−1, 1], we have

AS (x) = AG (x) for all x. In addition, the direct analogue of Theorem 5.1 holds for AS ,δ, because

Sk is now a computably compact metric space for each k, unlike Gk.

One advantage of AP that appears to be immediately lost in passing to AG or AS is the dimension

reduction of the IFS approach, and the dynamical analysis made more tractable by it. Since the

correspondence between PFAs and IFSs relies explicitly on the transition matrices being stochastic,

perhaps one could allow only generalized stochastic transition matrices, with any real entries permitted

as long as each row sums to 1. This notion would for example allow us to describe 0100 in two states

via

P0 =

(

−1 2

1/2 1/2

)

, P1 =

(

1/2 1/2

1 0

)

, ~π = (0, 1), ~η =

(

1

0

)

,

whereas AP (0100) = 3, so strictly greater compression is achieved. This automaton is equivalent

to the IFS with f0(x) = 1
2 −

3
2x, f1(x) = 1 − 1

2x, and x0 = 0. (Other strings with AP = 3
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which have complexity 2 according to this notion include 01000, 01011, and 01100.) Unfortunately,

uniformly rescaling the transition matrices as with S no longer works here, so the set of allowed

transition probabilities is unbounded and we lose computability of the analogue of AP,δ, i.e., the proof

of Theorem 5.1 cannot be recovered.

6.2. Gap structure function

We saw in the proof of Theorem 5.1 that the function γk(w) mapping w to the maximum value of

gapM (w) among all k-state M is computable. It could be interesting to study γk(w) as a parametrized

complexity measure in itself. Intuitively, w 7→ γk(w) measures how well w is described by the model

class of k-state PFAs—the widest margin of probability by which w can be recognized by any such

PFA. This relates γk(w) at least philosophically to the Kolmogorov structure function, which measures

the minimal size of a set of strings containing w which can be described by a Turing machine of size

at most k, and hence captures in a sense how well w can be singled out by such machines. Similar

functions have also been considered by Kjos-Hanssen [8], who introduced both a structure function

and a dual structure function for the NFA complexity. His dual structure function has the desirable

feature, he points out, of a simple domain and complicated range, rather than the other way around as

for his regular structure function for AN . This is even more true for γk(w) in contrast with its dual

AP,δ(w), especially if one is interested in computability.

6.3. Least number of bits of a witness

Heuristically it appears that witnesses for the PFA complexity of many strings are relatively compli-

cated; this certainly seems to be the case for most strings with AP = 2, as pointed out below. If one is

interested solely in compression, it might make the most sense to measure the complexity of w as the

least number of bits required to describe an M having gapM (w) > 0, or perhaps gapM (w) > δ for

a parameter δ. One potential drawback of this approach is that it is not obvious whether this measure

is computable, although this depends on the precise definition used. The least number of bits also de-

pends on the choice of encoding, and so this measure would only be defined up to an additive constant,

like the Kolmogorov complexity. Not only that, but it could well be that the simplest PFAs achieving

a positive gap are very often DFAs, and in that case one could argue it is hardly a satisfying notion of

PFA complexity.

6.4. Measure of the set of witnesses

We conclude by mentioning one more idea for modifying AP and AP,δ, with the aim of refining the

numerical measurement itself. In the proof of for example Proposition 4.8, we saw that although

all strings 0n1m have complexity 2, as n increases, x0 must be chosen in a narrower and narrower

range in order for the IFS to witness 0n1m. The coefficient b must also be made arbitrarily close

(but not equal) to 1. Something similar is true of the other subcases of the proof of Theorem 4.3.

Thus it is in a sense more complicated to witness the complexity of a string the longer its prefix

is. So, we could introduce a real-valued complexity measure that accounts for that difference as

follows. Let µ be a Borel probability measure with full support on Ak, the space of k-state PFAs. Let
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Gk(x) = gap•(x)
−1((0, 1]) be the set of k-state witnesses for AP (x) ≤ k, and let

Aµ(x) = AP (x) + 1− µ(Gk(x)).

We can also let Gk
δ (x) = gap•(x)

−1((δ, 1]) and define

Aµ,δ(x) = AP,δ(x) + 1− µ(Gk
δ (x)).

Since gap is a computable function on a computably compact metric space, Gk(x) and Gk
δ (x) are

c.e. open, meaning the indices of all basic open balls contained in each of them can be computably

enumerated. In particular, all these sets have positive µ-measure if nonempty. Thus Aµ(x) assigns x a

value strictly between AP (x) and AP (x)+1, and Aµ,δ(x) is strictly between AP,δ(x) and AP,δ(x)+1.

Moreover, in at least the case of binary strings with AP (x) = 2, if x is a string such as 0n101 which

can only be witnessed by a PFA that also witnesses 0n1(01)m for all m, then those strings receive

exactly the same value of Aµ as x does. This makes sense, because these extensions of x in a sense

do not require any further effort to find a witness. The latter observation holds for any measure µ. The

goal in defining Aµ (or Aµ,δ) would then be to find a suitable µ which gives sets like Gk(x) (or Gk
δ (x))

large measure for strings like x = (01)n which are easy to witness, while giving smaller measure to

Gk(x) (or Gk
δ (x)) for strings whose witnessing automata require a more precise configuration.

As with most of our proposed notions of probabilistic complexity, it is hardly clear from the

definition if Aµ,δ is computable, let alone Aµ, even if the measure µ is required to be computable and

if δ /∈ E (where E is as in Section 5.2). We close by asking

Question 6.2. If µ is a computable Borel probability measure on Ak with full support, is (δ, x) 7→
Aµ,δ(x) necessarily computable on ((0, 1) \ E) ×A−1

P (k)? If not, what would be a natural choice of

µ to make it computable?

Question 6.3. How should the definitions of Aµ and Aµ,δ account for the fact that lower-complexity

strings are also witnessed by members of Ak? How should one deal with the likely problem of the

sets Gk(x) generally having high measure when AP (x) < k, which would make Aµ clustered near

k + 1 among strings having AP (x) = k?
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