
ar
X

iv
:2

40
2.

13
42

9v
1

 [
cs

.D
B

]
 2

0
Fe

b
20

24

Everything You Always Wanted to Know About Storage Compressibility of

Pre-Trained ML Models but Were Afraid to Ask

Zhaoyuan Su1, Ammar Ahmed2, Zirui Wang1, Ali Anwar2, Yue Cheng1
1University of Virginia, 2University of Minnesota

ABSTRACT

As the number of pre-trained machine learning (ML) models is

growing exponentially, data reduction tools are not catching up.

Existing data reduction techniques are not specifically designed

for pre-trained model (PTM) dataset files. This is largely due to a

lack of understanding of the patterns and characteristics of these

datasets, especially those relevant to data reduction and compress-

ibility.

This paper presents the first, exhaustive analysis to date of PTM

datasets on storage compressibility. Our analysis spans different

types of data reduction and compression techniques, from hash-

based data deduplication, data similarity detection, to dictionary-

coding compression. Our analysis explores these techniques at three

data granularity levels, frommodel layers, model chunks, to model

parameters. We draw new observations that indicate that modern

data reduction tools are not effective when handling PTM datasets.

There is a pressing need for new compression methods that take

into account PTMs’ data characteristics for effective storage reduc-

tion.

Motivated by our findings, we design Elf, a simple yet effec-

tive, error-bounded, lossy floating-point compression method. Elf

transforms floating-point parameters in such a way that the com-

mon exponent field of the transformed parameters can be com-

pletely eliminated to save storage space. We develop Elves, a com-

pression framework that integrates Elf along with several other

data reduction methods. Elves uses the most effective method to

compress PTMs that exhibit different patterns. Evaluation shows

that Elves achieves an overall compression ratio of 1.52×, which is

1.31×, 1.32× and 1.29× higher than a general-purpose compressor

(zstd), an error-bounded lossy compressor (SZ3), and the uniform

model quantization, respectively, with negligible model accuracy

loss.

1 INTRODUCTION

As artificial intelligence (AI) and machine learning (ML) continue

to evolve at a fast pace, a plethora of diverse models are being

created and refined. These models reveal several emerging trends.

First, the sheer number of pre-trained models (PTMs) is skyrocket-

ing. These models are pre-trained to achieve a desirable accuracy

for numerous tasks. PTMs are further reused to build task-specific

models, which are fine-tuned with expertise [46, 52]. Typically,

PTM datasets are persistently stored and managed in the format of

files by model registry services such as Hugging Face [3] and Ten-

sorFlow Hub [8] to facilitate model sharing. For example, Hugging

Face hosts over 450 PTMs (1,486.72 TB in size) as of December 31,

2023, and this number has been growing exponentially, as shown

in Figure 1.

Figure 1: Increasing trend of model count (left .) and ag-

gregate storage size (right .) of Hugging Face. “Elves Com-

pressed Size” or “Elf Compressed Size” represents the storage trend

after Elves alone or Elf alone is applied to Hugging Face’s PTM stor-

age.

Second, the exponential growth of training datasets and the vast

range of problem domains lead to more complex model architec-

tures, enriched features, a significant rise in the number of param-

eters, and as a result, increasingly large model sizes [4, 57]. As of

the fourth quarter of 2023, stored PTM datasets in Hugging Face

have already exceeded 1,400 TB (Figure 1) and the need for stor-

age is projected to continue in the foreseeable future. These trends

impose huge storage requirements for MLOps to store PTMs.

The extensive storage requirements associated with large pre-

trained ML models could theoretically be alleviated through data

reduction techniques. These techniques include general-purpose

lossless compression algorithms [1, 11], data deduplication meth-

ods for enterprise storage systems [23, 68], and floating-point com-

pression algorithms for scientific datasets [9, 66], time series (TS)

datasets [14, 33, 38, 48], and data lakes [32]. However, these strate-

gies are not effective when dealing with PTM datasets becasue:

(1) none of existing techniques are aware of the data patterns of

PTMs; and (2) there is a lack of understanding in those patterns, es-

pecially those relevant to data reduction and storage compressibility.

Model pruning and quantization techniques [18, 27, 34], on the

other hand, are typically used for reducing the memory and com-

putational requirements during training or inference, posingmany

constraints and challenges in model integrity, usability, and accu-

racy when applied to PTM storage reduction.

To fill this gap, we present, to the best of our knowledge, the

first comprehensive study of a large, real-world dataset of PTMs

collected from Hugging Face on PTM storage compressibility. Our

analysis seeks comprehensiveness in three dimensions.

• Scale. We collected a total of 8, 238 PTMs from Hugging Face,

which include over 75 files and occupy around 13 TB storage

capacity. We performed the analysis on file formats, file storage

footprint, and model sizes under different model categories.

• Data reduction techniques. We sampled a representative set

of 900 models from our large-scale dataset and performed an

1

http://arxiv.org/abs/2402.13429v1

Zhaoyuan Su1 , Ammar Ahmed2, Zirui Wang1 , Ali Anwar2, Yue Cheng1

in-depth, what-if analysis of various widely used data reduc-

tion techniques. We first studied hash-based deduplication at

the model layer level and chunk level. Then, we proceeded with

data similarity detection to see whether model layers or model

chunks are highly similar. Finally, we examine the dictionary

coding compression technique at the parameter level.

• Data granularity. Our analysis explored the aforementioned

techniques at three data granularity levels: model layers, model

data chunks, and model parameters.

Our multifaceted analysis induces the following observations.

• Real-world PTMs are large and deep. Our analysis shows

that 65.97% of the 8, 238 models fall within the size range be-

tween 100 MB and 1,000 MB. 45.83% of models have 150-250

layers.

• Parameters of these models are highly concentrated. The

main contents of PTMs, model parameters, are predominantly

floating-point values, and most of these floating-point parame-

ters are float32. Across all 900 sampled models, 98.91% of all

parameters fall within the range of (−1, 1).

• Most model layers and chunks are non-duplicate, nor are

they similar. Our analysis reveals that duplicate layers consti-

tute a mere 5.72% of the overall storage footprint. These layers

are found across all different model categories, with a signifi-

cantly higher duplication ratio in layers composed of integer-

typed parameters as opposed to floating-point parameters. Our

data similarity detection algorithm uncovers that only 7.98% of

all 512 B model data chunks bear any resemblance to each other.

• A majority of models exhibit modest-to-high parameter

redundancy.About 48.94% of models have at least 50% of their

parameters repeated at least once. However, widely used general-

purpose dictionary coding compressors are generally not effec-

tive due to the limited length of floating-point parameters and

the long distance between duplicate parameters. Nonetheless,

dictionary coding is effective for 11.56% of models, where over

99% of their parameters are duplicated.

A high-level ramification of many of these observations is a

previously undisclosed insight: PTM storage compression is very chal-

lenging and existing techniques are generally ineffective due to the

randomness of PTMs. There is a need for new compression methods

that account for PTMs’ data characteristics in order to extract most

of the compressibility from the datasets.

This paper makes the following contributions.

• We conduct the first, exhaustive study of the storage compress-

ibility of real-world pre-trained ML model datasets and make

key observations that motivate the design of new compression

methods for PTM storage.

• We propose Elf (Exponent-Less Float-point encoding), a new,

error-bounded, lossy floating-point compression method moti-

vated by the observations from our analysis. The idea of Elf is

simple yet effective: since most parameters in PTMs are within

(−1, 1), Elf maps all parameters ∈ (−1, 1) to [1, 2) so that the

common exponent field 0b01111111 can be completely eliminated

to save storage space. Elf is easily parallelizable and has fast

compression and decompression speed.

• We develop Elves, an offline compression framework for effi-

cient PTM storage. Elves incorporatesElf alongwith hash-based

deduplication, length-distance dictionary coding, and a general-

purpose lossless compressor. Our hybrid approach collectively

compresses PTM datasets that exhibit different data patterns.

• We develop a validation framework that generates random in-

puts to validate the accuracy of Elves-decompressed models at

scale.

• Experimental results show that: (1) Elves achieves the highest

compression ratio (1.52) for our collected dataset compared to a

wide range of 11 compression methodswith negligible model ac-

curacy loss; and (2) in terms of compression and decompression

speed, Elf outperforms all the 13 selected baseline methods.

A CR of 1.52 might not appear remarkable if viewed in isolation.

However, this result is significant compared with the state-of-the-

art compressionmethods, a factor of 1.29× improvement compared

to the best baseline compressor zfp. A 34% reduction in storage will

translate to a cost reduction of hundreds of TBs of storage hard-

ware: if we apply Elves (or Elf) to Hugging Face’s PTM storage,

it could have saved 509 TB (369 TB) of storage by end of 2023 Q4

as shown in Figure 1. The saved storage also means a potential

improvement in datacenter TCOs, encompassing benefits such as

reduced cooling, lower energy usage, and decreased carbon foot-

print [2].

2 RELATED WORK

Model Pruning and Quantization. There is a large body of re-

search focusing on reducing the memory and computational

requirement of ML models for online tasks such as model serv-

ing [19–21, 24–26, 28, 35, 62, 64].

• Why pruning may not be ideal for PTM storage reduc-

tion: Pruning removes insignificant layers or connections in the

model, resulting in a smaller representation of the samemodel [26].

Thus, pruning impacts the integrity of the stored PTM datasets.

Pruning can be generally categorized into twomain types: struc-

tured pruning [13, 56] and unstructured pruning [24, 37, 54].

Structured pruning may remove entire channels, filters, or lay-

ers, leading to significant model size reduction. However, struc-

tured pruning impacts the integrity of PTMs: (1) from a model

provider perspective (e.g., Hugging Face), such irreversible changes

are often not acceptable to those who share PTM datasets via

model registries; (2) these changes to model structures may af-

fect subsequent MLOps operations, for instance, applying mod-

els to new datasets or tasks relying on models’ original struc-

tures. To end this, we include unstructured pruning, specifically

global magnitude pruning [24] as a baseline in Section 7.

• Why quantization may not be ideal for PTM storage re-

duction: Quantization [21, 25, 31, 62, 64] involves representing

the parameters and activations of a model using fewer bits than

the original data type representations, for example, converting

float32 to float16, int8. Quantization may lead to exceeding in-

formation loss, and ultimately, model accuracy loss [63]. Quan-

tizationmethods can be generally categorized into quantization-

aware training [47], dynamic quantization [39], and post-training

quantization [44, 62, 64]. The first two are typically applied dur-

ing training and inference, and are not directly applicable to

PTM storage, since the storage phase does not involve any train-

ing and inference processes. For post-training quantizationmeth-

ods, the most popular approach currently involves converting

2

Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask

high-precision parameters (e.g., float32) to lower-precision for-

mats (e.g., float16, int8, or 4-bit or 3-bit representation). How-

ever, mapping virtually infinite, continuous values to a set of dis-

crete values introduces non-negligible quantization errors. These

errors accumulate through the neural network, potentially lead-

ing to a significant deviation from the original model. Further-

more, quantized models cannot use re-training or fine-tuning to

“regain” the information loss for PTM storage, which further af-

fects the models’ accuracy, consequently diminishing their over-

all usability.

Elf is fundamentally different from pruning and quantization.

Elf supports both compression and decompression, thus, is capa-

ble of preserving model structures and recovering model parame-

ters to their original data type, though with bounded loss. In con-

trast, pruning and quantization are one-way processes, meaning

that once a model has undergone pruning and quantization, it can-

not be fully recovered to its original state due to lack of decompres-

sion. That is, quantization and pruning have irreversible effects on

model information, therefore hindering any subsequent operations

on PTMs, such as fine-tuning. Due to these drawbacks, these two

techniques do not serve as ideal solutions for reducing the storage

requirement of persistently-archived PTMs [3, 8].

Data Reduction and Compression. Large-scale enterprise and

cloud storage systems often rely on data deduplication [23, 60, 68]

and delta compression [12, 40, 65] to reduce storage costs, as these

data—documents, source code, binary executables, webpage objects,

and more—typically show high duplication rates or are highly sim-

ilar. General-purpose lossless compressors can reduce file sizes by

identifying redundant information and representing them in amore

compact form [1, 7, 11, 69]. However, these data reduction tech-

niques are not designed to handle floating-point-based datasets,

which renders them largely ineffective for PTM datasets. Floating-

point compression techniques for TS datasets [14, 16, 33, 38, 48]

exploit the temporal data patterns and redundancies of TS data

and use delta compression or XOR operations on successive val-

ues to eliminate redundant information or resulting XOR’ed zeros

for space savings. Columnar storage formats [32, 55] are designed

to compress large column datasets efficiently in data lakes by utiliz-

ing data-reduction and compression techniques, such as dictionary

encoding, bit packing, and novel floating-point encoding. Lossy

floating-point compression methods for scientific datasets (e.g., vi-

sualizations), such as SZ3 [66] and zfp [9], encode floating-point

values by leveraging correlations among values. However, these

floating-point compressors are not effective when it comes to PTM

datasets since model parameters are cluttered, making it impossi-

ble to extract correlations or patterns.

3 DATASET OVERVIEW

Full Dataset. We have downloaded pre-trained ML models from

a total of 8, 238 Hugging Face repositories as of October 20, 2022.

These repositories include 75, 871 files, accounting for around 13.2 TB

of storage space. .json files represent the largest proportion, com-

prising approximately 42.5% of all files, as .json files are predomi-

nantly used as configuration files, e.g., “config.json”. .bin files ac-

count for 16.5% of all files and primarily contain the binary data of

models. Regarding the size distribution of different file formats, it

Table 1: Distribution of model categories (full dataset). NLP:

natural language processing. CV: computer vision. RL: reinforcement

learning. Uninformed: models with no category tag information.

Category Count (%) Total Size in GB (%)

NLP 6,220 (75.5%) 7,661.22 (78.82%)

Audio 430 (5.22%) 466.79 (4.8%)

Multimodal 394 (4.78%) 358.6 (3.69%)

CV 195 (2.37%) 134.62 (1.39%)

RL 1 (0.01%) 0.0062 (0.0001%)

Uninformed 998 (12.12%) 1,098.5 (11.3%)

Overall 8,238 (100%) 9,719.73 (100%)

Table 2: Distribution of model categories (sampled dataset).

Category Count (%) Total Size in GB (%)

NLP 300 (33.33%) 170.85 (29.67%)

Audio 150 (16.67%) 154.30 (26.79%)

Multimodal 150 (16.67%) 97.81 (16.99%)

CV 150 (16.67%) 58.74 (10.20%)

Uninformed 150 (16.67%) 94.18 (16.35%)

Overall 900 (100%) 575.88 (100%)

is evident that the .bin files, which store PTMs, occupy the largest

portion (71.9%) of the storage footprint. We obtained category tag

information from each model repository. Based on this tag infor-

mation, we categorized all collected models into six categories as

shown in Table 1. Out of all the 8, 238 models, 75.5% are NLP mod-

els, consuming 78.82% of the storage size, while only 2.37% of mod-

els are from the CV category. This distribution, albeit surprising, is

understandable considering the increasing popularity of language

models and generative AIs [5, 17] and their considerable size rela-

tive to other ML model types [45].

Sampled Dataset.We observe from the full dataset that .bin files

that store the binary data of PTMs predominantly occupy the stor-

age footprint, therefore, we focus on examining the characteristics

and compressibility of these binary data throughout the rest of the

paper. To do so, we use smaller samples of the full dataset that

can fit within the storage capacity of typical storage server ma-

chines. The sampled dataset features a more balanced distribution

of model categories to avoid bias (Table 2). This dataset includes

150 models each from the Audio, Multimodal, CV, and Uniformed

categories. The NLP category contains 300 models, reflecting its

prominence and prevalence in current applications. Unless stated

otherwise, the rest of the paper will be focused on the 900-model,

sampled dataset.

4 ANALYSIS: SIZES AND CONTENTS

This section presents ourmodel size and content analysis that aims

to answer the following research questions (RQs):

• RQ1: What are the sizes of PTMs in different categories?

• RQ2: What are the layer counts and sizes in these models?

• RQ3: What types of data (parameters) are stored in these mod-

els?

Model Sizes. We first analyze model sizes. Figure 2 shows that

the size distributions for different model categories exhibit similar

trends. Specifically, 64.78% of models fall within the size range be-

tween 100 MB and 1,024 MB, with an additional 25.22% surpassing

3

Zhaoyuan Su1 , Ammar Ahmed2, Zirui Wang1 , Ali Anwar2, Yue Cheng1

10−2 10−1 100 101 102 103 104
Model Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

nlp
audio
multimodal
c
uninformed
all

Figure 2: Model size distribution of the

sampled dataset.

0 200 400 600 800 1000 1200
Layer Count

0.0

0.2

0.4

0.6

0.8

1.0

CD
F nlp

audio
multimodal
cv
uninformed
all

Figure 3: Model layer number CDF for

different categories.

10−5 10−3 10−1 101 103
Layer Size

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

3 KB

4 KB

2.25 MB
4 MB

nlp
a dio
m ltimodal
cv
 ninformed
all

Figure 4: Model layer size CDF for differ-

ent categories.

−3 −2 −1 0 1 2 3
Parameter Value

0.0

0.5

1.0

De
ns

ity
 /
Pr
ob

ab
ilit

y

PDF
CDF

Figure 5: Parameter value distribution.

the 1 GB threshold. Counting all models, the {50%-ile, 75%-ile, 90%-

ile} are {433 MB, 1,036 MB, 1,281 MB}, highlighting the substantial

file size footprint characteristic of PTMs.

Model Layers. We extracted the layer information of all the 900

models in the sampled dataset and reported the layer count and

layer size statistics in Figure 3-4. We make the following observa-

tions: (1) Around 75% of models have over 200 layers, likely be-

cause most models need a deep structure to capture complex fea-

ture information (Figure 3). (2) Across all categories, a majority

of audio models are deep, with 70% having more than 400 layers

(Figure 3). (3) As shown in Figure 4, layer sizes exhibit a step-like

distribution, with 57.84% of layer sizes concentrated around the

scale of 3 KB, 4 KB, 2.25 MB, and 4 MB.

Table 3: Model layer data type distribution. Others include

float64, uint8, and int64.

Layer Type Count (%) Total Sz in GB (%) Avg Para # Avg Sz in MB

float32 240,966 (96.95%) 557.84 (96.87%) 621,421 2.37

float16 4,018 (1.62%) 14.51 (2.52%) 1,939,421 3.70

others 3,561 (1.43%) 3.53 (0.61%) 595,181 1.02

Overall 248,545 (100%) 575.88 (100%) 642,352 2.37

Model Data Types. Next, we examine the data types of the sam-

pled model dataset. We find that all parameters within an individ-

ual layer are of the same data type. Thus, we break down all model

layers by data types and report the statistics of layer data types

in Table 3. Most layers are of float32 type with around 97% in

both count and storage footprint. Layers of type float16 and others

make up 2.52%, and 0.61% of the total storage space, respectively.

Model Parameters. We then analyze the distribution of param-

eter values. As shown in Figure 5, 98.91% of all parameters fall

within the range of (−1, 1), with 50.50% in the interval (−1, 0] and

48.41% in the interval (0, 1).

Implications

• Real-world, pre-trainedML models are considerably large in size.

The rapidly increasing number of ML models poses significant

challenges to MLOps for storing and managing the exponentially

increasing volume of model datasets.

• These models typically contain a massive number of layers, po-

tentially providing intriguing opportunities for data reduction us-

ing layer-based (or chunk-based) deduplication techniques and/or

similarity-based delta compression techniques.

• Parameter values are concentrated within a narrow range of

(−1, 1), implying potential opportunities for the application of

compression/encoding methods [1, 9, 16, 48, 66, 69]. These com-

pression methods use a combination of techniques including pre-

diction [36, 66], XOR-based zero encoding [16, 48], and error-

encoding [67] to compress floating-point model datasets.

5 ANALYSIS: COMPRESSIBILITY

In this section, we present our two-dimensional, what-if analysis

of model data reduction and compressibility. Along the data granu-

larity dimension, our analysis explores the potential data reduction

yield at three different levels: model layers, data chunks, and indi-

vidual parameters. Along the data reduction and compression tech-

nique dimension, we consider three widely used techniques: hash-

based deduplication [23], similarity-based delta compression [65],

and distance-encoding [69]. Note that data reduction techniques in-

tegrated within storage systems are closely tied to the specific sys-

tems. It is difficult to directly extract these techniques and compare

them in our analysis. As such, we implemented several representa-

tive techniques for analysis and comparison purposes. Specifically,

our analysis aims to answer the following RQs:

• RQ1: Does duplication exist among model layers or model data

chunks? If so, would data deduplication help in reducing the

model data storage footprint?

• RQ2: Are there any model layers or chunks that are highly sim-

ilar?

• RQ3: What is the repetition pattern of model parameters? If

parameter-level repetition exists, how can this redundancy be

eliminated or mitigated?
Table 4: Model layer duplication statistics based on data

types. The percentages in Columns 3 and 5 represent the proportion

of the total count and total size under that row.

Layer Type Count Dup % Total Sz in GB Dup Sz in GB (%)

float32 240,966 8.35% 557.84 30.14 (5.40%)

float16 4,018 3.61% 14.51 0.14 (0.96%)

float64 199 0% 0.81 0 (0%)

uint8 1,597 99.81% 1.75 1.74 (99.43%)

int64 1,765 96.77% 0.97 0.94 (96.91%)

Overall 248,545 9.48% 575.88 32.96 (5.72%)

5.1 Model Layer- and Chunk-level Duplication

DoesDuplication Exist amongModel Layers?Hash-based data

deduplicationmethod partitions the target dataset into fine-grained

4

Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask

chunks, computes the hash values (i.e., fingerprints) of all data

chunks, scans the partitioned dataset, and performs deduplication

by removing duplicate chunks with identical fingerprints to save

storage space. To understand if there is any duplication among

model layers, we scanned the 900 models in the sampled dataset to

compute the layer fingerprints. Our results are discouraging. The

analysis reveals that a mere 5.72% of the total storage footprint

for model layers is accounted for by duplication (see Table 4). For

float32-typed layers, duplicate layers only occupy 30.14 GB out of

a total of 557.84 GB. Although layers of type uint8 and int64 are

largely duplicate, their overall fraction is negligible.

Table 5: Distribution of duplicate chunks based on data type.

Columns 3 and 4 display the size of duplicate chunks using fixed-size

chunking (FSC) of 4 KB and 512 B, and Column 5 indicates the to-

tal size of duplicate chunks determined by content-defined chunking

(CDC) with chunk sizes ranging from 128 B to 128 KB.

Data Type Total Sz (GB)
Size of Duplicates in GB (%)

4 KB (FSC) 512 B (FSC) CDC

float32 557.84 40.35 (7.23%) 42.92 (7.69%) 44.50 (8.16%)

float16 14.51 0.14 (0.96%) 0.14 (0.96%) 0.15 (1.03%)

float64 0.81 0 (0%) 0 (0%) 0 (0%)

uint8 1.75 1.74 (99.43%) 1.74 (99.43%) 1.74 (99.43%)

int64 0.97 0.94 (96.91%) 0.96 (98.97%) 0.96 (98.97%)

Overall 575.88 43.17 (7.50%) 45.76 (7.95%) 47.35 (8.22%)

Does Duplication Exist among Model Chunks? Next, we con-

duct chunk-based duplication analysis based on fixed-size chunk-

ing (FSC) and content-defined chunking (CDC) [50] approaches at

chunk granularity. Table 5 shows the results. With FSC, chunks

of 512 B exhibit a higher duplication ratio across the majority of

data types compared to chunks of 4 KB. We utilized FastCDC [59],

a widely used, state-of-the-art, gear-based CDC method, on our

dataset.We find that the size of the duplicates detected by FastCDC

is 47.35 GB, accounting for 8.22% of the total dataset size. This is

9.68% and 3.47% higher than FSC with a chunk size of 4 KB and

512 B, respectively. Nevertheless, both the FSC and CDC duplication

analysis shows similarly negative results, indicating that hash-based

data deduplication might not effectively reduce the storage size of

PTM datasets.

5.2 Model Layer- and Chunk-level Similarity

Wenext studywhether PTMs contain data that is similar but not ex-

actly identical. In storage systems, delta compression often comple-

ments deduplication as a data reduction technique in order to elimi-

nate redundancy among non-duplicate yet highly similar chunks [12,

40, 60]. For example, if chunk �2 is similar to a base chunk �1, a

delta compressor will only store the differences, i.e., the delta, and

the mapping between �2 and �1, by removing the redundant data

for improved storage efficiency.

How to Detect Data Chunk Similarity? Widely used data sim-

ilarity (resemblance) detection methods compute “super features”

(SFs) [15, 49] based on the Rabin fingerprints [51]1 of data chunks

and use the computed SFs to detect similar chunks. For example,

Finesse [65], a state-of-the-art method, works as follows. (1) The

1Rabin fingerprints compute a group of hash values using a sliding window that slides
from the start to the end of the data chunk. The size of the sliding window is config-
urable and is set to 48 bytes as per [65].

base and target data chunks, �1 and �2, are partitioned into four

sub-chunks each, and a group of hash values based on Rabin fin-

gerprints are computed for all eight sub-chunks. (2) For both �1

and �2, three SFs are constructed. The first SF is constituted by

using the largest hash values from each of its four sub-chunks, the

second SF from the second largest hash values from the four sub-

chunks, and the third SF from the third largest hash values from

the four sub-chunks. (3) A hash value based on SFs for �1 and �2

is computed. If the hash value of�1’s SFs is the same as that of �2,

it indicates that �1 and �2 are highly similar.

Table 6: Similarity ratios for different granularities. Similar-

ity ratio is defined as the size of similar layers/chunks divided by the

total size. (Note that the true similarity ratios are lower than reported

in this table as the entire sampled dataset includes duplicate data.)

Data Type Total Sz (GB)
Size of Similar Data in GB (%)

Layer 4 KB 512 B

float32 557.84 30.17 (5.41%) 40.39 (7.24%) 43.12 (7.73%)

float16 14.51 0.14 (0.96%) 0.14 (0.96%) 0.14 (0.96%)

float64 0.81 0 (0%) 0 (0%) 0 (0%)

uint8 1.75 1.74 (99.43%) 1.74 (99.43%) 1.74 (99.43%)

int64 0.97 0.94 (96.91%) 0.95 (97.94%) 0.96 (98.97%)

Overall 575.88 32.99 (5.73%) 43.22 (7.51%) 45.96 (7.98%)

Are Model Layers or Chunks Highly Similar? Methods like

Finesse introduce significant computational overhead. To explore

the potential of delta compression, we designed and implemented

a simple and efficient data similarity detection algorithm that ap-

proximates Finesse. Our approximation algorithm samples a pa-

rameter for every # parameters from each model layer or model

chunk, with# setting to 32 in this method, computes the hashes of

sampled parameters, and compares the hashes of two layers/chunks.

Compared to Finesse which uses a sliding window to compute SF

hashes, our algorithm reduces computational requirements by us-

ing sampling and a sliding window of 1. A side effect of the ap-

proximation is a potentially higher false positive rate, where two

layers/chunks with sparse similarities might be inaccurately de-

tected as highly similar. However, as shown in Table 6, the similar-

ity ratios for model layers and 4 KB/512 B chunks remain remark-

ably low. For example, for the entire dataset, only 7.98% of 512 B

blocks are identified as similar. These negative results suggest that

similarity-based delta compression will not be effective for reducing

the storage footprint of PTMs.

5.3 Model Parameter-level Duplication

What is the Repetition Pattern of Model Parameters? Recall

we have shown in §4 that the values of model parameters are con-

centrated within a small range of (−1, 1). Going one step deeper,

we study the repetition pattern of individual parameters by count-

ing the duplication ratio of parameters for each individual model

from our sampled dataset. Here the parameter duplication ratio

for a model is defined as the fraction of repetitive parameters. Fig-

ure 6 shows that 48.94% of models exhibit a parameter duplication

ratio of over 50%, meaning that these models have at least half of

their parameters duplicated at least once. Interestingly, 11.56% of

models have over 99% duplicated parameters. The high duplication

ratios imply potential opportunities for utilizing general-purpose

compression methods to reduce parameter redundancies.

5

Zhaoyuan Su1 , Ammar Ahmed2, Zirui Wang1 , Ali Anwar2, Yue Cheng1

0.0 0.2 0.4 0.6 0.8 1.0
Parameter Duplication Ratio

0.00

0.25

0.50

0.75

1.00

CD
F

Figure 6: The parameter du-

plication ratio of all 900

models. Each data point in

the CDF curve represents a

model’s duplication ratio.

0.0 0.2 0.4 0.6
Storage Saving Ratio

0.00

0.25

0.50

0.75

1.00

CD
F

Theoretical
Practical

Figure 7: Storage saving ra-

tios (% storage space saved)

by practical DE (with over-

head included) and theoreti-

cal DE (without overhead).

Will Off-the-Shelf Dictionary CodingWork? The high param-

eter duplication ratio motivates us to conduct a what-if analysis to

study the feasibility of existing compression methods in reducing

the parameter-level redundancy. We first explore a compression

technique that is commonly used in today’s general-purpose com-

pressors, called dictionary coding [53]. Dictionary coding works

by using an external macro scheme, i.e., a separately stored dic-

tionary data structure, to maintain a mapping between duplicated

sequence patterns, e.g., text strings, and codes that locate the se-

quences. Given the high duplication ratio of PTMdatasets, it seems

that this might work. However, we found that, while most models

have duplicate parameters, the absolute amount of unique dupli-

cate parameters, i.e., the working set size of duplicate parameters,

in a model can be enormous, which makes the space complexity

of the dictionary extremely large. Worse, the average repetition

frequency for all duplicate parameters is on the lower end. For ex-

ample, in our dataset, 34.35% of models have over 60% of parame-

ter duplicates; however, these duplicate parameters have an aver-

age repetition frequency of around 12, with a total unique parame-

ter count exceeding 6.8 billion. This implies that at least 33 bits in

the length code would be required to encode the whole dictionary.

Given this, dictionary coding offers no data reduction benefit for

PTM datasets.

We then consider amore efficient dictionary coding variant.With-

out external macros, this method encodes duplicate sequence pat-

terns in pointers. A pointer is a length-distance (�, !) pair [53, 69],

where the “distance”� tells the compressor (and the decompressor)

how far back to look for the start of the repeated sequence, and the

“length” ! tells the compressor how many characters make up the

repeated sequence. Real-world implementations such as LZ77 [69]

typically use a sliding window to provide a dynamic dictionary of

duplicate sequences that can be referred back to.

This general-purpose compression method can be more space-

efficient to store a short pointer that refers to an earlier occur-

rence of a string than to store the whole string again, especially

if the string itself is long and/or repeated frequently. This method

typically works well for text-based datasets [1, 10]. Dealing with

floating-point datasets such as PTM datasets, however, becomes

challenging due to the following reasons. (1) Unlike string-based

text datasets where duplicate sequences can be long, a duplicate

model parameter is short, e.g., the most common data type in PTM

datasets—float32-typed parameters (Table 3)—are only 4 bytes long.

While the good news, in our case, is that the length value can

P0, P1, P2, P1000000, PN-1[]… …Original parameter array

Distinct parameter array

Distance bitmap

P0, P1, P2, P1000000, PN-1[]… …duplicate duplicate

0, 0, 0, 1 L D, 1 L D []… …

Flag bit Distinct

parameter

L bits of D (5 bits)

Duplicate

parameter

0b10100 = 20 bits

D bits (variable length) 0b11110100001001000000 = 1,000,000

C
o

m
p

re
ss

e
d

d
a

ta
 f

o
rm

a
t

Duplicate

parameter

Figure 8: An example of distance-encoding compression. L:

length. D: distance. The distinct parameter array does not store dupli-

cate parameters marked in dashed-line, shady boxes. In this example,

%1000000 duplicates with %0. Therefore, DE toggles %1000000’s flag bit

as 1 and adds a length-distance pair (!, �). The 5-bit ! field encodes

20, indicating that the bit length for � is 20 bits. � encodes a deci-

mal value of 1, 000, 000, meaning that this duplicate refers back to a

parameter that is 1, 000, 000 float32 parameters ahead.

be omitted if we target float32-typed parameters only, simply be-

cause float32 parameters are of fixed length; the bad news is that

the limited length of duplicate parameters puts a hard constraint

on the potential gain in storage reduction. (2) Duplicate parame-

ters are sparsely distributed within a model, requiring a large slid-

ing window size and relatively long distance values. In a common

implementation, the distance values might be represented as 16-

bit integers, which can encode a distance of at most 216 = 65, 536.

Unfortunately, in most models, the distance between two adjacent

duplicate parameters is longer than that we observed from our

dataset. Of course, this problem can be addressed by using longer

distance values. However, the longer the distance value, the less

data reduction gain the compressor would achieve. In theory, we

need to control the distance value length to be shorter than 4 bytes

(232) in order to receive gains.

How to Minimize Model Parameter Redundancy? To verify

whether length-distance dictionary coding is effective, we designed

and implemented an efficient length-distance-based compression

method and data format, which we call distance-encoding (DE),

targeting float32-typed and float64-typed model parameters. Our

DE method stores a compressed model parameter file into two log-

ically decoupled arrays: a distinct parameter array that is used to

store duplicated and unique, and non-duplicate parameters and a

distance bitmap that is used to store metadata to keep track of the

pointers for duplicate parameters. Figure 8 gives an example of the

data format. To compress, our DE compressor takes a linear pass of

the model dataset. DE stores distinct parameters as is in the dis-

tinct parameter array and records a flag bit of 0 in the distance

bitmap. DE skips a duplicate parameter in the distinct parameter

array and records a flag bit of 1 followed by an (!,�) pair in the dis-

tance bitmap. ! is a fixed-length, 5-bit field, which records the bit

length of the next field, distance� , so that the decompressor knows

how many bits to read in order to decode� . The 5 bits in ! can en-

code a distance of at most 231 if all five bits are used (25 − 1 = 31).

As such, the � field can have variable length, ranging from 1 to

31 bits. Note that the fields of flag bit and ! bits introduce storage

overhead.

6

Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask

We evaluated DE on our 900-model dataset. Figure 7 plots the

storage saving ratios achieved by: (1) a theoretical compressorwith-

out adding the flag bit and !-field overhead, representing a best-

case baseline, and (2) a practical compressor that includes the ex-

tra overhead. DE, in theory, can achieve at least 10% storage sav-

ings for 83.67% of 900 models. However, this comes with the cat-

astrophic consequence of being not decompressible due to the ab-

sence of metadata. Taking into account the extra metadata over-

head, DE’s efficacy decreases dramatically—it can only provide the

same space savings for 13.22% of themodels, which corresponds to

the vertical curve at the top-right corner of Figure 6. But the good

news is that the average storage saving ratio for these models is

remarkable, at about 33%. This is because these models have over

99% of parameters duplicated, representing a best-case scenario for

DE to be effective. This mixed result suggests that general-purpose

length-distance-based compressionmethods can achieve a reasonably

high compression ratio only if model parameters are highly dupli-

cated.

Implications

• The effects of hash-based data deduplication approaches are

double-edged. First, duplicate layers in our sampled dataset make

up only 5.72% of the storage size. Both the FSC-based and CDC-

based deduplication see very limited duplication ratio. We thus ex-

pect hash-based data deduplication approaches to be generally in-

effective in reducing storage costs. Second, a much higher level of

layer duplication exists in the integer-typed model layers, suggest-

ing a potential avenue for future research. Overall, the effectiveness

of data deduplication for PTM datasets appears to be minimal.

• Our approximation data similarity detection algorithm reveals

that only 7.98% of all 512 B model chunks, including duplicate

chunks, bear resemblance to each other. This result suggests that

there is limited similarity within PTM datasets that could be lever-

aged by delta compression techniques.

• Model parameter-level duplication is virtually universal—with

all 900 models in our dataset having duplicate parameters. How-

ever, this does not imply that widely used, general-purpose com-

pression algorithms, such as length-distance-based dictionary cod-

ing, will be effective for PTMs. Two main reasons contribute to such

lack of compressibility. First, the unit of the duplicate sequence—

floating point numbers—is short and most duplicate parameters

repeat infrequently. Second, the distance between duplicate param-

eters is typically long, requiring lengthy bits to encode the distance.

On a positive note, though, 11.56% of models have over 99% dupli-

cated parameters, and therefore, could benefit from high storage

savings by using general-purpose compressors.

6 ELF AND ELVES DESIGN

In this section, we first introduce a new, error-bound, lossy floating-

point compression method Elf (Exponent-Less Float-point encod-

ing), motivated by the observations from§4 and §5.We then present

a compression framework namedElves, which integrates twomain

compression methods, Elf (§6.1) and DE (§5.3), along with several

other data reduction methods, to compress pre-trained ML model

datasets. Elf compresses models that primarily consist of floating-

point parameters that fall within the range of (−1, 1), while DE

targets models that have a significant proportion of out-of-range

parameters. These two methods complement each other, thereby

maximizing overall storage efficiency.

6.1 The Elf Compression Algorithm

Two key observations motivate the design of Elf. (1) Recall we

have observed in §4 that around 99% parameters in our model

dataset fall within the range of (−1, 1). (2) Take the single-precision

floating-point (float32) format as an example: In accordance with

IEEE 754 Standard [30], a float32 value ? is stored with 32 bi-

nary bits, where 1 bit is for the sign B , 8 bits for the exponent ®4 =

〈41, 42, 43, . . . , 48〉, and 23 bits for themantissa ®< = 〈<1,<2,<3, . . . ,<23〉

(there is a default bit, 0b1, which is hidden on the most significant

side of the 23-bit mantissa), as shown in Figure 9 (top). ?’s value

satisfies:
? = (−1)B × 24−127 × (1.<1<2 . . .<23)2

= (−1)B × 24−127 × (1 +

23∑

8=1

<8 × 2−8)
(1)

where 4 is the decimal value of ®42. Equation 1 decides that, for all

? where ? ∈ [1, 2), the binary representation of ? has the same ex-

ponent bits 0b01111111 with a decimal representation of 127. This

is because, when B is 0 and 4 is 0b01111111 (which equals 127 in

decimal), the value of the exponent field of 4 − 127 = 127− 127 = 0.

This means that this float32 parameter is positive and its value is

(−1)0 × 1 × (1.<1<2 . . .<23)2 ∈ [1, 2).

Elf is based on these two observations. The main idea of Elf

is to map all floating-point parameters ? where ? ∈ (−1, 1) to ?′

where ?′ ∈ [1, 2), so that the common exponent field 0b01111111,

in case of float32, can be eliminated in order to save storage cost.

Figure 9 illustrates Elf’s compression and decompression using

simple float32 examples.

Compression. A sequential version of Elf scans model parame-

ters linearly, and for each floating-point parameter ? where ? ∈

(−1, 1), the Elf compression performs the following three steps:

(1) Record the sign bit B of ? for later use in Step (3).

(2) Convert ? where ? ∈ (−1, 1) to ?′ where ?′ ∈ [1, 2).

(3) Remove the exponent bits ®4 of ?′, concatenate the 23-bit

®< of ?′ after the recorded sign bit B , and append the 24-bit

compressed parameter 2? to the end of the bit array file.

Decompression. The decompression process of a sequential ver-

sion of Elf reads the compressed bit array file and restores all 24-

bit compressed parameters sequentially. To restore a 24-bit unit 2?

to ? , the Elf decompression performs the following three steps:

(1) Record the first bit B (sign bit) of 2? for later use in Step

(3), and take the next 23 bits as the mantissa to restore an

intermediate representation ?′.

(2) Set the sign bit of ?′ with 0b0 and insert the exponent bits

0b01111111 between the sign bit and the 23-bit mantissa ®<

of ?′ to restore ?′ so that ?′ ∈ [1, 2).

(3) Construct a new intermediary ?′′ where ?′′ = ?′ − 1 ∈

[0, 1), and apply the recorded sign bit B to ?′′ to restore the

original parameter ? where ? ∈ (−1, 1).

Generality and Storage Savings. Elf can be applied to all three

types of floating-point values: float32, float16, and float64, al-

though the storage efficiency varies depending on the data type.

7

Zhaoyuan Su1 , Ammar Ahmed2, Zirui Wang1 , Ali Anwar2, Yue Cheng1

1 01111111 00011001010010001010101

e
1
e
2
e
3

e
8… m

1
m

2
m

3 … m
23

Mantissa (23 bits)

Exponent (8 bits)

Sign (1 bit)

Less significantMore significant

Record sign s of p

p’ = |p|+1

0 01111100 00100001111110110100111

0 01111111 00100100001111110110101

Remove e, apply s 0 01111111 00100100001111110110101removed

float32 format

Record sign s of p

p’ = |p|+1

1 01111011 10010100100010101001110

0 01111111 00011001010010001010101

Remove e, apply s 1 01111111 00011001010010001010101removed

… …

…
000100100001111110110101

100011001010010001010101ELF bit array

0 01111111 00100100001111110110101

Insert e -> p’ 0 01111111 00100100001111110110101

Record sign s of cp

0 01111100 00100001111110110101000Apply s to (p’ - 1)

Insert e -> p’

Record sign s of cp

Apply s to (p’ - 1)

0 01111111 00011001010010001010101

1 01111011 10010100100010101010000

C
o
m
p
re
ss

D
e
c
o
m
p
re
ss

p = 0.1415926069021…

p = -0.0987650007009…

p’ = 1.1415926218032…

p’ = 1.0987650156021…

p’ = 1.1415926218032!

p’ = 1.0987650156021…

p = 0.1415926218032…

p = -0.0987650156021…

s

24 bits

24 bits

Figure 9: IEEE 754 Standard float32 format and examples of

the Elf compression process marked using blue arrows and

the decompression process marked using red arrows. Take

parameter ? = 0.1415926069021 . . . (binarymachine representation)

as an example, the compression process follows: transform ? to the

intermediate value ?′ = 1.1415926218032 . . . ; take the sign bit of

? and the 23-bit mantissa of ?′ to construct the 24-bit compressed

parameter 2? , and finally, append it to Elf’s binary bit array. The

decompression process is the inverse of the compression process.

The storage savings of Elf come entirely from the removal of 4

from the binary representation of each floating-point model param-

eter. For float32 data, Elf can yield a 25% (832) reduction in storage

space. For float16 and float64, the storage savings are 31.25% (516)

and 17.19% (1164), respectively. According to Table 3, over 99% of pa-

rameters of our PTM dataset are composed of float32 or float16,

making these datasets particularly well-suited for Elf’s utility.

Parallelizability and Performance. Elf is easily parallelizable

as it is embarrassingly parallel via data parallelism: a PTM dataset

can be divided into chunks and each chunk can be compressed

independently using a thread or a CPU core. Similarly, Elf’s de-

compression process can be easily parallelized using data parallel

as well. This property guarantees Elf’s superior compression and

decompression speed, which we evaluate in §7.3.

Compression Loss. Since Elf involves data transformation and

encoding for all floating-point parameters that fall within (−1, 1),

this transforming process introduces bounded errors and the er-

ror bound varies depending on the data type. Before giving Elf’s

error bound, we briefly discuss the process of floating-point addi-

tion. The exponents of the two numbers are compared to deter-

mine the larger exponent. The number with the smaller exponent

is then shifted right by this difference in exponents so that both

numbers have the same exponent. Then the mantissas of the two

numbers (after shifting) are aligned by aligning the decimal points

and added together using binary addition. Lastly, the result is nor-

malized and rounded to ensure the result fits within the specified

precision.

In Elf, when a float32 ? ∈ (−1, 1) transforms to ?′ ∈ [1, 2),

there is no information loss when obtaining ?’s absolute value |? |.

Then for 1 + |? |, the exponent 4 of |? | needs to be shifted right (by

adding the difference of 127− 4) so that the exponents of |? | and 1

equal. This operation results in a right shift of the mantissa of |? |.

After aligning and adding the mantissas of |? | and 1, the result is

normalized and rounded, and this process is where the error occurs.

In other words, only the information from |? | ∈ [0, 1) captured

by the first 23 bits of its mantissa is retained in ?′ ∈ [1, 2), after

that the less significant bits are rounded and discarded. Therefore,

the maximum error introduced by Elf for float32 parameters is

5.96046448×10−8, or 2−24. Similarly, the error bound is 4.8828125×

10−4 or 2−11 for float16 and 1.110223× 10−16 or 2−53 for float64,

respectively.

Storage Overhead. Elf stores out-of-range, non-compressible pa-

rameters ? ∉ (−1, 1) separately and uses an external table to keep

track of the positions of these parameters. This extra storage over-

head might outweigh the storage reduction obtained from Elf’s

transformation and encoding, especially if the percentage of these

out-of-range parameters is considerable. We address this problem

using a hybrid approach, Elves, which will be described in §6.2.

6.2 The Elves Compression Framework

Wepresent the design of our offline compression framework Elves.

Elves incorporates the insights of Elf and a series of data reduc-

tion methods that we have explored in §5. Potential use case of

Elves is to run Elves as a background process to scan all the PTM

datasets that have already been written to storage [41, 58] and se-

lect the most effective methods for data reduction.

Figure 10 depicts the stages of Elves. In Stage 1 , Elves per-

forms a scan over the entire PTM file dataset to compute the fin-

gerprint of each model layer (§5.1). The fingerprint is computed

based on the content of the layer by using a cryptographic hash

function and is stored in a table that maps the layer ID to its fin-

gerprint. When a new layer is encountered, its fingerprint is com-

puted and compared with the fingerprints of existing layers in the

table. If a matching fingerprint is found in the table, Elves detects

that this layer is a duplicate, and instead of storing the layer again,

a reference to the existing layer (stored as a separate layer file) is

recorded. If no match is found, the new layer is unique, and it is

stored along with its fingerprint. By the end of this stage, Elves

stores all duplicate layers exactly once (intermediate output 1a in

Figure 10) and continues to compress the rest of non-duplicate lay-

ers (intermediate output 1b) in next stages.

Non-duplicate layers are flattened to 1-dimensional (1-D) arrays

of parameters of different floating-point types, which are streamed

to our DE (distance-encoding) compressor (see §5.3 for the detailed

description of theDE compression) in Stage 2a and Elf for exponent-

less floating-point encoding (§6.1) in Stage 2b for parameter-level

compression. Elves applies both DE and Elf to intermediate data

1b and chooses the compressor that provides a higher CR. The

rationale is that, for models that have a substantial proportion of

parameters ? ∉ (−1, 1), Elf might not be beneficial as it needs

8

Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask

Hash-based

Layer Deduplication

 Distance Encoding

(DE)

 Exponent-Less FP

Encoding (ELF)

Distinct Para Arrays

+ Distance Bitmaps

Exponent-Less Bitstrings +

Non-compressible Para Arrays

1-D Parameter

Arrays

Structure MetadataPre-Trained

Model Files

1

1a
1b

1c

2a

2b

3

Compressed

Dup Layer Files

Compressed

Model Files
Non-FP Layers

G
e
n

e
ra

l-
P

u
rp

o
se

C
o

m
p

re
ss

o
r

Duplicate Layers

Figure 10: The Elves workflow. Boxes with solid lines represent the stages of Elves, and boxes with dashed lines denote intermediate data.

to keep track of these non-compressible parameters, which intro-

duces extra storage overhead. Thus, for thesemodels, Elves opts to

use DE over Elf, or the other way around, depending on which is

more effective. Elves then deletes the intermediate files generated

by the less effective compressor. In Stage 3 , the outputs of DE

or Elf, together with the duplicate layers (the intermediate output

1a), model structure metadata files, and non-floating-point model

layers (the intermediate output 1c) are further compressed by a

general-purpose lossless compressor Zstandard (zstd) [11].

The decompression process for Elves is the inverse of the com-

pression process. (1) Compressed files are decompressed by zstd

to restore model structure metadata, non-floating-point layer files,

duplicate layers, and DE-compressed / Elf-compressed intermedi-

ate files. (2) DE-compressed / Elf-compressed intermediate files

are decompressed by Elves to obtain the 1-D parameter arrays.

(3) Layers of the original models are recovered based on the model

structuremetadata. For each layer, there are three possibilities: (8) a

duplicate layer will be retrieved from the corresponding decom-

pressed duplicate layer file referenced by its fingerprint; (88) a floating-

point layer will be restored from the 1-D array, based on the model

structure specified by the model structure metadata; (888) a non-

floating-point layer will be restored from the non-floating-point

layer file. Upon completing these steps, the model dataset is de-

compressed.

7 EVALUATION
Setup and Dataset.We performed all of our tests on a server with

56 Intel(R) Xeon(R) Gold 6330 CPU cores and 256 GB memory run-

ning Ubuntu 20.04 with a kernel version of 5.4.0. Our evaluation

is focused on our sampled dataset of 900 real-world pre-trained

ML models (§3) collected from Hugging Face. The total size of the

binary format of the models that we tested is 575.88 GB.

Baselines and Configurations. We selected a total of 11 repre-

sentative compressors divided into four categories.

• General-purpose lossless compressors: Gzip [1] and zstd [11].

Both are based on LZ77 [69]. They operate at the binary byte

level and look for repetitive patterns among the bytes. We tested

zstd’s compression levels from 3 (default) to 19 (highest com-

pression ratio). We found that all configurations led to the same

compression ratio, but level 19 had extremely slow compression

speed. Thus, we chose to use a compression level of 3 for zstd.

• Time series and data lake compressors: Sprintz [14], Buff [38],

Chimp [33] and Gorilla [48] for TS datasets, and BTRBLOCKS [32]

for data lakes. Sprintz uses a lookup table to predict each value

based on preceding entries and encodes the delta between pre-

dicted and original values for better compression. Buff divides

the sign, exponent, and mantissa, and tailors the storage scheme

based on the specific bounds and precision requirements of the

dataset. Chimp and Gorilla exploit the TS predictability, XOR

successive valueswith previous ones, and compress away redun-

dant zeros. BTRBLOCKS uses Pseudodecimal Encoding to convert

float64 into two integers, significant digits with the sign and the

exponent, to save storage. We used the default settings that their

GitHub repositories specified for Sprintz, Chimp, and Gorilla,

and matched the delta precision of Buff with the error bound

of Elf. For BTRBLOCKSwe used the single-column configuration

given by its examples.

• Error-bounded, lossy compressors for floating-point, scientific

datasets: SZ3 [66] and zfp [9]. SZ3 is a modular, error-bounded

lossy compression framework for scientific datasets. SZ3 uses

Lorenzo predictor [29] and regression predictor [36] to predict

next parameters. SZ3 relies on the quantizer [67] to enable er-

ror control for prediction. zfp is designed for multidimensional

numerical datasets. zfp uses transform to reduce the dynamic

range of the floating-point data and then quantizes the trans-

formed data. Since integer-typed and boolean-typed layers in

PTMs might be involved in mission-critical functionality, such

as input layers, where no information loss is allowed, we tested

SZ3 and zfp on floating-point layers of all models only. The er-

ror bound for SZ3 and zfp were set to match the error bound of

Elf (see the compression loss paragraph in §6.1).

• Model pruning and quantizationmethods: globalmagnitude prun-

ing (Global MP) [24], and Gaussian and outliers uniform quan-

tization (GOUQ) based on GOBO [62]. Global MP prunes pa-

rameters based on their magnitude while preserving the orig-

inal model structure. Its parameter error can be controlled by

a threshold. GOUQ is modified from GOBO, one of the cutting-

edge quantizationmethods for speeding upNLP inference. GOUQ

categorizes parameters into a “Gaussian” (G) and an “Outliers”

(O) group. Parameters that fall into the O group are stored in

their original format (e.g., float32), while parameters of the G

group are quantized to a small set of representative values for

space saving. GOUQ reduces the errors introduced by GOBO by

increasing the number of representatives in the G group, which

introduces a tradeoff in storage saving and model accuracy. We

set the error bound of these two methods to align with the max-

imum error potentially introduced by Elf.

Goals. Our evaluation aims to answer the following questions:

• HowdoesElves compare to other baseline compressors in terms

of compression ratio (§7.1)?

• Howdoes each stage of Elves contribute to storage saving (§7.2)?

• What is the compression and decompression speed of Elf (§7.3)?

• What is the impact of the lossiness of error-bounded Elf on the

model accuracy (§7.4)?

9

Zhaoyuan Su1 , Ammar Ahmed2, Zirui Wang1 , Ali Anwar2, Yue Cheng1

1 2 3 4 5
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Gzip

zstd
Chimp
Gorilla
Sprintz
Buff

btrblocks
SZ3
zfp
Global MP
GOUQ
ELVES

Figure 11: Compression ratio compar-

ison of different compressors for the

600-model dataset. Each data point in a

curve is the CR of a model.

Max Avg Median Min Overall
Compression Measurement

0

1

2

3

4

5

Co
m

pr
es

sio
n

Ra
tio

Gzip
zstd
Chimp
Gorilla
Sprintz
Buff

btrblocks
SZ3
zfp
Global MP
GOUQ
ELVES

Figure 12: Compression ratio break-

down. Overall CR: the aggregate size of the

original, uncompressed dataset divided by

that of the compressed dataset.

1 2 3 4 5
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

HD
HD+DE
HD+ELF
HD+DE+ELF
HD+DE+ELF+zstd

Stage 0.0

0.5

1.0

1.5

2.0

Ov
er

al
l C

om
pr

es
sio

n
Ra

tio

HD

HD+
DE

HD+
ELF

HD+
DE+
ELF

HD+
DE+
ELF+zstd

Figure 13: Compression ratio CDF (left) and

the cumulative fraction of overall compres-

sion ratio (right) for different Elves setups.

7.1 Comparison with Baselines

First, we compare the 11 baseline methods with Elves. Figure 11

and 12 show the compression ratio (CR)2 statistics.

General-Purpose Compressors. As Figure 11 shows, Gzip and

zstd perform almost the same, with an overall CR of 1.16×. zstd

outperforms Gzip slightly on maximum CR (see Figure 12). Both

of them are able to reduce the model file sizes for almost all mod-

els, with around 72% of models having file sizes reduced by 10%

(a CR of 1.1×). The modest data reduction is due to that general-

purpose compressors like Gzip and zstd are not specifically opti-

mized for compressing floating-point datasets. However, it is note-

worthy that for about 11% of models, Gzip and zstd still achieve a

good CR of 1.5×. This is because these models have nearly 100%

parameter-level duplication, a pattern that can be exploited by dic-

tionary coding.

State-of-the-Art, Encoding-based, Floating-Point Compres-

sors. TS data compressors perform poorly on our PTM dataset.

Sprintz, Chimp, and Gorilla yield a CR of less than one for 98.54%,

74.77%, and 75.23% of models, respectively. This result indicates

that they actually increased the file sizes of most models after com-

pression. Approximately 82% of models can save an average of 5%

storage space with Buff, but poor CR is achieved for about 11% of

the models with a minimum CR of 0.78×. The ineffectiveness of

the above TS compressors is due to the significant differences in

the data patterns found in TS datasets and PTM datasets. In TS

data, two notable characteristics are often observed: (1) the preci-

sion of the data may be relatively low, and (2) there is typically a

predictable trend or correlation among adjacent values. Sprintz em-

ploys a prediction schemewith a lookup table to record and encode

the difference between predictions and real values into more com-

pact forms. And Buff decomposes bounded low-precision floats

intomore compressible components, and encodes themwith shorter

representation than the original. Both Chimp and Gorilla leverage

the correlation pattern of successive values by applying XOR oper-

ations to them and eliminating the resulting XOR’ed zeros to save

storage costs. In PTM datasets, however, these features no longer

exist, and adjacent parameters are randomly different. In terms of

the overall CR, Sprintz, Buff, Chimp, and Gorilla achieve 0.96×,

1.03×, 1.02×, and 1.03× for the entire dataset, respectively.

2CR is defined as the ratio between the size of the original, uncompressed dataset and
the size of the compressed dataset. The higher, the better.

The columnar compressor, BTRBLOCKS, yields an overall CR of

1.12. Specifically, it exhibits a CR of precisely 1.0 for 74.67% of the

models, indicating its ineffectiveness for PTM datasets. Further-

more, BTRBLOCKS attains a CR of 1.1 or less for 80.11% of the mod-

els; and a mere 18.56% of PTMs achieving a CR of 1.3 or higher,

with the maximum CR at 3.65×. The reason is that the Pseudodec-

imal Encoding algorithm is more effective on the floating points

with fixed, low precision—take 3.25 for example, BTRBLOCKS en-

codes 3.25 as (+325, 2), where 325 × 10−2. However, most if not

all parameters of PTMs exhibit a higher degree of precision (e.g.,

1.0389173), rendering the encoding scheme of BTRBLOCKS ineffec-

tive.

State-of-the-Art,Error-Bound, LossyCompressors. SZ3 achieves

aCR of 1.1× for 76.78% ofmodels, which is slightly higher than that

of Gzip and zstd, since SZ3 is a prediction-based compressor that is

specifically designed and optimized for floating-point-based scien-

tific datasets, which exhibit relatively “smooth” data patterns. But

for PTMs that contain mostly trend-cluttered parameters, SZ3 re-

quires a larger overhead to store points that fall outside the range

that can be encoded through quantization and predictions. zfp gen-

erally performs better than the other baselines, with a CR ranging

from1.1× to 1.3× for 93.78% ofmodels. But it produces aCR greater

than 1.3× on only 3% of the models. zfp achieves an overall CR of

1.18× for the entire dataset, which is marginally elevated than that

of zstd due to a lack of parameter correlations in model datasets.

Model Pruning and Quantization Methods. The storage sav-

ings achieved by Global MP on the PTM dataset are negligible. A

significant majority, 98.11%, of PTMs exhibit a CR between 1.0×

and 1.05×, with an overall CR of 1.02×, suggesting the limited ef-

ficacy of Global MP in this context. To ensure the model integrity,

Global MP preserves the original model structure by exploiting a

bit string consisting of 0 and 1 indicating whether a parameter is

removed or retained, which introduces a storage overhead. Fur-

thermore, to prevent significant accuracy loss from pruning, even

without re-training or fine-tuning, the magnitude threshold must

be kept relatively low, which means only a minor portion of the

model parameters are eligible for pruning, leading to modest com-

pression results. The quantization method, GOUQ, slightly outper-

forms Global MP, achieving a CR ranging from 1.15× to 1.19× for

97.51% of the models, with an overall CR of 1.18×. However, 1.22%

10

Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask

of themodels exhibit a CR below 1, attributed to a considerable pro-

portion of parameters being classified as outliers; and the overhead

caused by the bit table distinguishing parameters as either Gauss-

ian or outliers, surpasses the storage savings achieved from param-

eter mapping to representative values. Similarly, to ensure the ac-

curacy of quantized models, parameter errors introduced during

the quantization are strictly controlled.

Comparing with Elves. Figure 11 shows a big margin between

Elves and the baselines, because Elves’ hybrid approach is de-

signed based on the data characteristics of PTM datasets. Specif-

ically, Elves achieves 28.81%, 47.57%, and 28.81% higher overall

CR than zfp (the best in the error-bounded, lossy compressor set),

Gorilla (the best in the TS data compressor set) and GOUQ (the

best in the model quantization and pruning set), respectively, as

shown in Figure 12.

7.2 Evaluating Elves Stages

One way to understand the differences among hash-based layer

deduplication (HD), distance-encoding (DE) compression, and Elf

is to view the effectiveness of Elves’ individual stages in terms of

CR. The CR distribution and cumulative improvement of overall

CR are depicted in Figure 13.

HD (Hash-based Deduplication). In this test we only enabled

Stage 1 of Elves (Figure 10). While for most models the storage

savings from HD are quite limited due to a low duplication ratio

and small sizes of duplicate layers, around 5.33% of models exhibit

a substantial level (CR ≥ 2) of data reduction, with a CR of up

to 5.21×. We anticipate that as the number of PTMs in real-world

production environments continues to increase (Figure 1), the pro-

portion of duplicate layers among models will also grow. This, in

turn, will likely amplify the effectiveness of HD.

HD + DE (Distance-Encoding). In this test we enabled Stage 1

and 2a of Elves. Figure 13 (left) shows that DE results in a CR of

1.5× and more for about 11% of more models due to the fact that

these models have close to 100% of their parameters duplicated.

Enabling DE atop HD improves the overall CR for all models by

6.55% (the right subfigure of Figure 13).

HD + Elf (Exponent-Less Floating-Point Encoding). Then,

we enabled Stage 1 HD and 2b Elf. Elf is generally effective for

floating-point models. Elf has a significant CR boost: for over 87%

of models where HD yields close-to-zero CRs, enabling Elf achieves

an average CR of 1.35×, and improves the overall CR by 31.32%.

HD +DE + Elf.Next, we combined Stage 1 , 2a and 2b together.

The compression strategies used by DE and Elf capitalize on dif-

ferent data patterns of the PTMs, rendering them complementary

for some PTMs. As shown in the left subfigure of Figure 13, Elf

guarantees an effective CR for a broad range of PTMs, while DE

achieves better CRs on a small set of selected models. Integrat-

ing the three approaches yields enhancements in compression ef-

ficiency, surpassing HD+DE and HD+Elf by 27.06% and 3.11% re-

spectively, as shown in the right subfigure of Figure 13.

HD + DE + Elf + zstd (Zstandard). Finally, by enabling Stage

3 zstd to compress all intermediate data generated by previous

stages, we observe an additional CR improvement of 8.69%.

0.9 1.0 1.1 1.2 1.3 1.4
Compression Ratio

0

600

1200

1800

2400

3000

Co
m
pr
es
sio

n
Th

ro
ug

hp
ut
 (M

B/
s)

zstd

Chimp
Sprintz

Buff SZ3 zfp
Global MP

ELF

GOUQ
pigz

SZx
Gzip

Gorilla
btrblocks

better

Figure 14: CR vs. compres-

sion throughput.

0.9 1.0 1.1 1.2 1.3 1.4
Compression Ratio

0

200

400

600

800

1000

De
co
m
pr
es
sio

n
Th

ro
ug

hp
ut
 (M

B/
s)

Gzip

zstd

Chimp
Gorilla

Sprintz

Buff

btrblocks

SZ3 zfp

Global MP

ELF

GOUQ
pigz

SZx

better

Figure 15: CR vs. decompres-

sion throughput.

In summary, our ablation test demonstrates that: (1) Elf has the

greatest impact on reducing dataset sizes compared to other tech-

niques, accounting for 65.46% of the end-to-end, overall CR im-

provement enabled by all stages. (2) Elves’ hybrid design is aware

of the diverse data patterns of PTMs. Elves effectively tailors the

best compression method when compressing models with differ-

ent patterns, yielding an overall CR of 1.52× for the whole dataset.

Moreover, 99% of models (891 of 900) see a CR of over 1.35×, and

24.44% of them achieve a CR ≥ 1.5× with the highest CR of 5.21×.

7.3 Evaluating Elf Performance

We have implemented the core compression and decompression al-

gorithm of Elf using C++ and pthread. Next, we compare the com-

pression and decompression speed of Elfwith 13 baselines. To en-

sure the best throughput performance, we enabled multi-threading

configuration for those baselines with data parallelism support:

zstd, pigz (parallel Gzip) [6], BTRBLOCKS, and SZx [61].

Figure 14 and 15 show the results. The throughput was calcu-

lated using the ratio of the aggregate size of the whole dataset and

the total compression (or decompression) time. Note that, since

we target storage compression and decompression, our through-

put metric includes the I/O time each method took for reading

files from the disk and writing files to the disk. We used a 1.6TB

Intel Optane DC P5800X SSD, which provides a sequential read

(write) throughput of 4.2 GB/s (938 MB/s). This is to ensure that

the compression and decompression processes are not bottlenecked

by the disk I/O. From Figure 14 and 15 we can see that Elf signifi-

cantly outperforms all other baselines in compression throughput,

and also has the fastest decompression speed among all ten com-

pressors. By using all the available 56 CPUs, Elf achieves an av-

erage compression (decompression) throughput of 2,170.56 MB/s

(653.58 MB/s), respectively. zstd with multi-thread setting using

all 56 CPUs is still 3.6× (1.89×) slower in compression (decompres-

sion) speed, compared to Elf. While BTRBLOCKS exhibits a com-

parable decompression throughput with Elf, Elf achieves a com-

pression throughput that is 35.29× greater than BTRBLOCKS’s.With

a single thread, Elf achieves a compression and decompression

throughput of 121.68MB/s and 135.02MB/s, respectively, still com-

petitive compared to baselines such as Gzip, Buff, zfp, Chimp, and

Gorrila. The strong performance results indicate that Elf can serve

as a practically useful tool for PTM storage compression.

7.4 Quantifying Impact on Model Accuracy

This section evaluates the impact of Elf on model accuracy using

two methods: fuzz-testing-inspired validation (§7.4.1) and bench-

mark validation (§7.4.2).

11

Zhaoyuan Su1 , Ammar Ahmed2, Zirui Wang1 , Ali Anwar2, Yue Cheng1

7.4.1 Fuzz-Testing-Inspired Validation. Elf introduces bounded er-

rors for floating-point parameters during compression. We evalu-

ated the impact of Elf on model accuracy using a dataset compris-

ing 300 out of 900 models from 9 different tasks, ranging from im-

age classification to text generation, across three model categories.

We quantify the impact of compression on model accuracy us-

ing a metric called accuracy degradation (AD) for a given task and

dataset, which is defined as follows:

AD =

∑#
8=1 Δ�8

#
=

∑#
8=1

∑"
9=1 2><?0A4 ($8, 9, $

′
8, 9)

·"
(2)

where Δ�8 represents the difference between the original model

and the decompressed model for the same task and under the same

dataset. # is the total number of models tested this time. $ is the

output of the original model and$
′
is the output of the model after

decompression. Each model, original or decompressed, generates

an output tensor that consists of " float numbers. We use " to

define the size of the output and use a function 2><?0A4 () to com-

pare the outputs of two models under a defined output precision.

In the case of the fuzz-testing validation, we compare each bit of

two floats. Here is how we make the comparison: for a tensor with

an output length of 1,000, we compare the float numbers at the

corresponding positions of the two tensors. If the floats are consis-

tent within all digits, we consider the two model outputs to be the

same, and 2><?0A4 () outputs 0; otherwise, it outputs 1. If 999 out

of 1,000 floats are the same, then we obtain an AD of 0.1%.

Testing Methodology. Our methodology for evaluating the accu-

racy degradation of themodel is inspired by fuzz testing [22, 42, 43].

In fuzz testing, random inputs are generated and then fed to a pro-

gram to verify the correctness of the program. Here, we generate

random inputs for each model and compare the output generated

by the original and compressed model on these inputs. We used

AD to evaluate all the models except the text-generation task since

this kind of model has search algorithms based on randomness to

generate non-repeated text for the same prompt fed to the model

multiple times. The non-deterministic nature of the model’s out-

put makes it challenging to evaluate and compare the accuracy, as

the output of both decompressed and original models may likely

differ (in subtle ways) for the same input. Thus, we modified our

2><?0A4 () to adapt this situation. Now, 2><?0A4 () will calculate

the cosine similarity of the embeddings and attention weights gen-

erated by the model, and if the cosine similarity of the embeddings

is exactly 1, it outputs 0 else 1. Cosine similarity for output {Oi, Oj}

from two models is defined as: �B8< ($8, $ 9) =
Oi ·Oj

‖Oi ‖ ‖Oj ‖
.

The input for NLP-based models is generated from selected Uni-

code character ranges that include characters from various lan-

guages. This is done to evaluate the models not trained in Latin-

based languages. We also did the same for speech recognition, as

some of the models are trained in many different languages. If an

NLP model does not support a non-Latin-based Unicode sequence,

then the input is changed to a sequence of Latin-based characters.

Text-to-text (T2T) generation is a taskwhere a text is fed to amodel

that outputs a text. The difference between text generation and

T2T generation is that a text generation model behaves like a chat-

bot where, for a given prompt, the model outputs the information

Table 7: Accuracy degradation of different model task cate-

gories. % in Column 2 represent the proportion of all tested models.

Model Task (Category) Count (%) Accuracy Degradation

Image Classification (CV) 69 (23.00%) 0.87%

Text Generation (NLP) 68 (22.67%) 0%

Text Classification (NLP) 60 (20.00%) 0%

Token Classification (NLP) 30 (10.00%) 0%

Translation (NLP) 25 (8.33%) 0.4%

Question Answering (NLP) 24 (8.00%) 0%

Audio Classification (Audio) 9 (3.00%) 0%

Summarization (NLP) 9 (3.00%) 1.11%

Speech Recognition (Audio) 6 (2.00%) 0%

Overall 300 (100%) 0.27%

it is trained on. While T2T generation works as a multi-modal ar-

chitecture that can perform various tasks like question answering,

translation and summarization, etc. To fuzz test an image classifi-

cation model, we generated an image based on random noise, fed

it to the network, and compared the top : labels predicted by the

original model. Some models for classification tasks and fill-mask

predict top: labels for a given input.Wewant to compare all the la-

bels predicted by each label, and for these types of tasks, we define

our 2><?0A4 () function as let.: be the set of top: labels predicted

by model<. We compare the output of these models and outputs

0 if and only if .:> − .:
>′

= ∅ where .:> , .
:
2 are top : labels that are

output by two models.

Some of the models hosted on Hugging Face were missing infor-

mation about the tokenizer they used when training the model. To

circumvent this issue, we manually set the tokenizer of the model

to either XLM or BERT. XLM is used for themodels that are trained

on languages other than English as it has a huge vocabulary dic-

tionary to tokenize various tokens from different languages.

Validation Results. Even with a rigorous definition to compare

the outputs of decompressed models and their original versions,

we were able to achieve an AD of 0% (0% indicates that every de-

compressed model for the given task generates the exact same out-

put as its original version) for 6 out of the 9 tasks and < 1.2% for re-

maining tasks, leading to an overall accuracy degradation of 0.27%

(Table 7).

7.4.2 Benchmark Validation. While our large-scale fuzz-testing based

accuracy validation in §7.4.1 covers a broad set of 300 models, stan-

dard benchmark datasets offer a more comprehensive way of val-

idating the model accuracy. We conducted benchmark tests on a

total of 9 tasks across 4 domains. Table 8 shows the results. We

see that Elves is the only method that achieves both an overall

accuracy degradation close to zero (0.07%) and a high CR. This re-

sult demonstrates that Elves has negligible influence on the per-

formance of models and all outputs generated using decompressed

models are almost identical to those generated by the original mod-

els.

8 CONCLUSION

This paper dissects the data characteristics of real-world pre-trained

MLmodel datasets and studies their compressibility along different

12

Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask

Table 8: Accuracy degradation of all loss compression frame-

works with the benchmark datasets. Benchmark validation has

been evaluated on a total of 46 models across 9 tasks in 4 domains.

The error bound of Elves is denoted with 4 . All tested baselines and

their abbreviations are as follows: SZ3, zfp, Global MP (mp), Global

MP with 2× error bound (mp2e), GOUQ (gouq), GOUQ with 2× error

bound (gouq2e), and half-precision quantization (half). The overall

AD is averaged across all tasks for a particular compression method,

while the overall CR is calculated by dividing the combined size of

the original models by the total size of the compressed models.

Domain Task(# of tested model) Dataset
Accuracy Degradation

Elves SZ3 zfp mp mp2e gouq gouq2e half

CV

image classification(4)
mini_imagenet 0.2% 0.3% 0.2% 0.1% 0.2% 0.4% 1.1% 65.0%

cifar100 0.2% 0.3% 0.1% 0.2% 0.2% 0.4% 1.2% 48.4%

object detection(4)
detection-datasets/coco 0.1% 0.2% 0.2% 0.1% 0.2% 0.2% 0.2% 1.6%

cppe-5 0.2% 0.3% 0.2% 0.2% 0.3% 0.2% 0.3% 2.6%

image segmentation(6)
scene_parse_150 0.2% 0.6% 0.4% 0.1% 0.2% 0.2% 0.8% 38.6%

sidewalk-semantic 0.3% 1.4% 0.5% 0.2% 0.3% 0.2% 0.7% 35.1%

Multimodal

feature extraction(7)
Open-Orca/OpenOrca 0.1% 0.2% 0.1% 0.1% 0.1% 0.2% 0.3% 18.1%

imdb-movie-reviews 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.5% 24.5%

image-to-text(4)
conceptual_captions 0% 0% 0% 0% 0% 0% 0% 0%

red_caps 0% 0% 0% 0% 0% 0% 0% 0%

Audio speech recognition(5)
librispeech_asr_dummy 0% 0% 0% 0% 0% 0% 0% 0%

lj_speech 0% 0% 0% 0% 0% 0% 0% 0%

NLP

sentiment classification(7)
glue-sst2 0% 0% 0% 0% 0% 0% 0% 0%

imdb 0% 0% 0% 0% 0% 0% 0% 0%

sentence similarity(5)
glue-stsb 0% 0% 0% 0% 0.1% 0.1% 0.2% 3.6%

paws-x 0% 0% 0% 0% 0.1% 0.1% 0.2% 4.2%

Fill-mask(4)
wikitext 0% 0% 0% 0% 0.1% 0.1% 0.1% 0.1%

ptb_text_only 0% 0% 0% 0% 0.1% 0.1% 0.1% 0.1%

Overall AD 0.07% 0.18% 0.1% 0.06% 0.22% 0.13% 0.32% 13.44%

(Overall CR) (1.52) (1.16) (1.18) (1.00) (1.01) (1.18) (1.20) (1.99)

dimensions. Our analysis considers different representative data re-

duction and compression techniques and spans three data granu-

larities, including model layers, model chunks, and model parame-

ters. Through our comprehensive analysis, we find that PTMdataset

compression is challenging, and that existing data reduction and

compression techniques are generally ineffective for reducing the

storage size of PTM datasets. Based on the observations, we have

proposed Elf, a simple and effective, error-bounded, lossy floating-

point compression algorithm and developed Elves, a compression

framework that integrates Elf and several other techniques. Elves

achieves an overall compression ratio of 1.45×, which is up to 1.3×

higher than state-of-the-art lossy floating-point compressors, while

introducing close to zero model accuracy loss. We hope that our

study will provide valuable insights into the design, implementa-

tion, and optimization of data reduction techniques and systems

for efficient storage of PTM datasets.

13

Zhaoyuan Su1 , Ammar Ahmed2, Zirui Wang1 , Ali Anwar2, Yue Cheng1

REFERENCES
[1] [n.d.]. gzip. https://www.gzip.org/.
[2] [n.d.]. How Much Energy Do Data Centers Really Use? .

https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-
really-use/.

[3] [n.d.]. Hugging Face: The AI community building the future.
https://huggingface.co/.

[4] [n.d.]. Introducing LLaMA:A foundational, 65-billion-parameter large language
model. https://ai.meta.com/blog/large-language-model-llama-meta-ai/.

[5] [n.d.]. OpenAI: Pioneering research on the path to AGI.
https://openai.com/research/overview.

[6] [n.d.]. pigz: A parallel implementation of gzip for modern multi-processor,
multi-core machines. https://zlib.net/pigz/.

[7] [n.d.]. Snappy, a fast compressor/decompressor.
https://github.com/google/snappy.

[8] [n.d.]. TensorFlow Hub. https://www.tensorflow.org/hub.
[9] [n.d.]. zfp. https://computing.llnl.gov/projects/zfp.
[10] [n.d.]. zip. https://www.iana.org/assignments/media-types/application/zip.
[11] [n.d.]. Zstandard. https://facebook.github.io/zstd/.
[12] 2012. Delta Compressed and Deduplicated Storage Using Stream-Informed Lo-

cality. In 4th USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage 12). USENIX Association, Boston, MA.

[13] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. 2017. Structured pruning
of deep convolutional neural networks. ACM Journal on Emerging Technologies
in Computing Systems (JETC) 13, 3 (2017), 1–18.

[14] Davis Blalock, Samuel Madden, and John Guttag. 2018. Sprintz: Time series
compression for the internet of things. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 1–23.

[15] A.Z. Broder. 1997. On the resemblance and containment of documents. In Pro-
ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).
21–29. https://doi.org/10.1109/SEQUEN.1997.666900

[16] Martin Burtscher and Paruj Ratanaworabhan. 2007. High Throughput Compres-
sion of Double-Precision Floating-Point Data. In 2007 Data Compression Confer-
ence (DCC’07). 293–302. https://doi.org/10.1109/DCC.2007.44

[17] Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao
Sun. 2023. A Comprehensive Survey of AI-Generated Content (AIGC): A His-
tory of Generative AI from GAN to ChatGPT. arXiv:2303.04226 [cs.AI]

[18] Xuepeng Chang, Huihui Pan, Weiyang Lin, and Huijun Gao. 2021. A mixed-
pruning based framework for embedded convolutional neural network acceler-
ation. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 4 (2021),
1706–1715.

[19] Wenlin Chen, JamesWilson, Stephen Tyree, KilianWeinberger, and Yixin Chen.
2015. Compressing neural networks with the hashing trick. In International
conference on machine learning. PMLR, 2285–2294.

[20] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
2014. Exploiting Linear Structure within Convolutional Networks for Efficient
Evaluation. In Proceedings of the 27th International Conference on Neural Infor-
mation Processing Systems - Volume 1 (Montreal, Canada) (NIPS’14). MIT Press,
Cambridge, MA, USA, 1269–1277.

[21] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair,Misha Smelyanskiy, and Mu-
rali Annavaram. 2022. {Check-N-Run}: A checkpointing system for training
deep learning recommendation models. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22). 929–943.

[22] Justin Forrester and Barton Miller. 2000. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. In 4th USENIX Windows
Systems Symposium (4th USENIX Windows Systems Symposium). USENIX Asso-
ciation, Seattle, WA.

[23] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia, Yucheng
Zhang, and Yujuan Tan. 2015. Design Tradeoffs for Data Deduplication Per-
formance in Backup Workloads. In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15). USENIX Association, Santa Clara, CA, 331–344.
https://www.usenix.org/conference/fast15/technical-sessions/presentation/fu

[24] Manas Gupta, Efe Camci, Vishandi Rudy Keneta, Abhishek Vaidyanathan,
Ritwik Kanodia, Chuan-Sheng Foo, Wu Min, and Lin Jie. 2022. Is complexity
required for neural network pruning? a case study on global magnitude prun-
ing. arXiv preprint arXiv:2209.14624 (2022).

[25] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149 (2015).

[26] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume
1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1135–1143.

[27] BenjaminHawks, JavierDuarte, Nicholas J Fraser,Alessandro Pappalardo, Nhan
Tran, and Yaman Umuroglu. 2021. Ps and qs: Quantization-aware pruning for
efficient low latency neural network inference. Frontiers in Artificial Intelligence

4 (2021), 676564.
[28] Tianxing He, Yuchen Fan, Yanmin Qian, Tian Tan, and Kai Yu. 2014. Reshaping

deep neural network for fast decoding by node-pruning. In 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 245–249.

[29] L Ibarria, P Lindstrom, J Rossignac, and A Szymczak. 2003. Out-of-core Com-
pression and Decompression of Large n-dimensional Scalar Fields. 22, 3 (2 2003).
https://doi.org/10.1111/1467-8659.00681

[30] William Kahan. 1996. IEEE Standard 754 for Binary Floating-Point Arithmetic.
Lecture Notes on the Status of IEEE 754 (1996).

[31] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv:1806.08342 [cs.LG]

[32] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proceedings
of the ACM on Management of Data 1, 2 (2023), 1–26.

[33] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis.
2022. Chimp: Efficient Lossless Floating Point Compression for Time
Series Databases. Proc. VLDB Endow. 15, 11 (jul 2022), 3058–3070.
https://doi.org/10.14778/3551793.3551852

[34] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.
Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403.

[35] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.
Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403.

[36] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo,
Zizhong Chen, and Franck Cappello. 2018. Error-Controlled Lossy Com-
pression Optimized for High Compression Ratios of Scientific Datasets.
In 2018 IEEE International Conference on Big Data (Big Data). 438–447.
https://doi.org/10.1109/BigData.2018.8622520

[37] Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. 2023. Can Un-
structured Pruning Reduce the Depth in Deep Neural Networks?. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 1402–1406.

[38] Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J Elmore. 2021. Decom-
posed bounded floats for fast compression and queries. Proceedings of the VLDB
Endowment 14, 11 (2021), 2586–2598.

[39] Zhenhua Liu, Yunhe Wang, Kai Han, Siwei Ma, and Wen Gao. 2022. Instance-
aware dynamic neural network quantization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 12434–12443.

[40] Dirk Meister and André Brinkmann. 2009. Multi-Level Comparison of Data
Deduplication in a Backup Scenario. In Proceedings of SYSTOR 2009: The Is-
raeli Experimental Systems Conference (Haifa, Israel) (SYSTOR ’09). Associa-
tion for Computing Machinery, New York, NY, USA, Article 8, 12 pages.
https://doi.org/10.1145/1534530.1534541

[41] Dutch T. Meyer and William J. Bolosky. 2011. A Study of Prac-
tical Deduplication. In 9th USENIX Conference on File and Stor-
age Technologies (FAST 11). USENIX Association, San Jose, CA.
https://www.usenix.org/conference/fast11/study-practical-deduplication

[42] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (dec 1990), 32–44.
https://doi.org/10.1145/96267.96279

[43] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekandanda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. 1995. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and services. Technical Report.
University of Wisconsin-Madison Department of Computer Sciences.

[44] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Ban-
ner, Alex M Bronstein, and Avi Mendelson. 2021. Loss aware post-training quan-
tization. Machine Learning 110, 11-12 (2021), 3245–3262.

[45] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[46] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instructions with human feedback.
arXiv:2203.02155 [cs.CL]

[47] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. 2018. Value-aware quantization
for training and inference of neural networks. In Proceedings of the European
Conference on Computer Vision (ECCV). 580–595.

[48] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang,
Justin Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, in-
Memory Time Series Database. Proc. VLDB Endow. 8, 12 (aug 2015), 1816–1827.
https://doi.org/10.14778/2824032.2824078

[49] University of Massachusetts Purushottam Kulkarni, Fred Douglis, Jason LaVoie,
and John M. Tracey. 2004. Redundancy Elimination Within Large Collections
of Files. In 2004 USENIX Annual Technical Conference (USENIX ATC 04). USENIX
Association, Boston, MA.

[50] Sean Quinlan and Sean Dorward. 2002. Venti: A new approach to archival data
storage. In Conference on file and storage technologies (FAST 02).

14

https://www.gzip.org/
https://huggingface.co/
https://ai.meta.com/blog/large-language-model-llama-meta-ai/
https://openai.com/research/overview
https://zlib.net/pigz/
https://github.com/google/snappy
https://www.tensorflow.org/hub
https://computing.llnl.gov/projects/zfp
https://www.iana.org/assignments/media-types/application/zip
https://facebook.github.io/zstd/
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/DCC.2007.44
https://arxiv.org/abs/2303.04226
https://www.usenix.org/conference/fast15/technical-sessions/presentation/fu
https://doi.org/10.1111/1467-8659.00681
https://arxiv.org/abs/1806.08342
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.1109/BigData.2018.8622520
https://doi.org/10.1145/1534530.1534541
https://www.usenix.org/conference/fast11/study-practical-deduplication
https://doi.org/10.1145/96267.96279
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://doi.org/10.14778/2824032.2824078

Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask

[51] Michael O. Rabin. 1981. Fingerprinting by random polynomials. Note: Harvard
Aiken Computational Laboratory TR-15-81.

[52] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

[53] James A. Storer and Thomas G. Szymanski. 1982. Data Compres-
sion via Textual Substitution. J. ACM 29, 4 (oct 1982), 928–951.
https://doi.org/10.1145/322344.322346

[54] Saeed Vahidian,MahdiMorafah, and Bill Lin. 2021. Personalized federated learn-
ing by structured and unstructured pruning under data heterogeneity. In 2021
IEEE 41st international conference on distributed computing systems workshops
(ICDCSW). IEEE, 27–34.

[55] Deepak Vohra and Deepak Vohra. 2016. Apache parquet. Practical Hadoop
Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools (2016),
325–335.

[56] ZihengWang, JeremyWohlwend, and Tao Lei. 2019. Structured pruning of large
language models. arXiv preprint arXiv:1910.04732 (2019).

[57] BigScience Workshop and Scao et al. 2023. BLOOM: A 176B-Parameter Open-
Access Multilingual Language Model. arXiv:2211.05100 [cs.CL]

[58] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu,
Yucheng Zhang, and Yukun Zhou. 2016. A Comprehensive Study of the Past,
Present, and Future of Data Deduplication. Proc. IEEE 104, 9 (2016), 1681–1710.
https://doi.org/10.1109/JPROC.2016.2571298

[59] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing Liu,
and Yucheng Zhang. 2016. {FastCDC}: A fast and efficient {Content-Defined}
chunking approach for data deduplication. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). 101–114.

[60] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, and Gregory R. Ganger. 2017.
Online Deduplication for Databases. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD
’17). Association for Computing Machinery, New York, NY, USA, 1355–1368.
https://doi.org/10.1145/3035918.3035938

[61] Xiaodong Yu, Sheng Di, Kai Zhao, Jiannan Tian, Dingwen Tao, Xin Liang, and
Franck Cappello. 2022. Ultrafast Error-Bounded Lossy Compression for Sci-
entific Datasets. In Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing (Minneapolis, MN, USA) (HPDC
’22). Association for Computing Machinery, New York, NY, USA, 159–171.
https://doi.org/10.1145/3502181.3531473

[62] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
Gobo: Quantizing attention-based nlp models for low latency and energy ef-
ficient inference. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 811–824.

[63] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding,
Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan
Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Peng Zhang, Yuxiao Dong,
and Jie Tang. 2022. GLM-130B: An Open Bilingual Pre-trained Model.
arXiv:2210.02414 [cs.CL]

[64] Shuyu Zhang, Donglei Wu, Haoyu Jin, Xiangyu Zou, Wen Xia, and Xiaojia
Huang. 2021. QD-Compressor: a Quantization-based Delta Compression Frame-
work for Deep Neural Networks. In 2021 IEEE 39th International Conference on
Computer Design (ICCD). IEEE, 542–550.

[65] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang, Yu Hua, and Qiang Wang.
2019. Finesse: Fine-Grained Feature Locality based Fast Resemblance Detection
for Post-Deduplication Delta Compression. In 17th USENIX Conference on File
and Storage Technologies (FAST 19). USENIX Association, Boston, MA, 121–128.
https://www.usenix.org/conference/fast19/presentation/zhang

[66] Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot, Zizhong
Chen, and Franck Cappello. 2021. Optimizing Error-Bounded Lossy Com-
pression for Scientific Data by Dynamic Spline Interpolation. In 2021
IEEE 37th International Conference on Data Engineering (ICDE). 1643–1654.
https://doi.org/10.1109/ICDE51399.2021.00145

[67] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen,
and Franck Cappello. 2020. Significantly Improving Lossy Compres-
sion for HPC Datasets with Second-Order Prediction and Parameter Op-
timization. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC
’20). Association for Computing Machinery, New York, NY, USA, 89–100.
https://doi.org/10.1145/3369583.3392688

[68] Benjamin Zhu, Kai Li, and Hugo Patterson. 2008. Avoiding the Disk Bottleneck
in the Data Domain Deduplication File System. In 6th USENIX Conference on File
and Storage Technologies (FAST 08). USENIX Association, San Jose, CA.

[69] J. Ziv and A. Lempel. 1977. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory 23, 3 (1977), 337–343.
https://doi.org/10.1109/TIT.1977.1055714

15

https://doi.org/10.1145/322344.322346
https://arxiv.org/abs/2211.05100
https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1145/3035918.3035938
https://doi.org/10.1145/3502181.3531473
https://arxiv.org/abs/2210.02414
https://www.usenix.org/conference/fast19/presentation/zhang
https://doi.org/10.1109/ICDE51399.2021.00145
https://doi.org/10.1145/3369583.3392688
https://doi.org/10.1109/TIT.1977.1055714

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset Overview
	4 Analysis: Sizes and Contents
	5 Analysis: Compressibility
	5.1 Model Layer- and Chunk-level Duplication
	5.2 Model Layer- and Chunk-level Similarity
	5.3 Model Parameter-level Duplication

	6 Elf and Elves Design
	6.1 The Elf Compression Algorithm
	6.2 The Elves Compression Framework

	7 Evaluation
	7.1 Comparison with Baselines
	7.2 Evaluating Elves Stages
	7.3 Evaluating Elf Performance
	7.4 Quantifying Impact on Model Accuracy

	8 Conclusion
	References

