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Abstract

Topological swirling spin textures, such as skyrmions and merons, have recently

attracted much attention as a unique building block for high-density magnetic infor-

mation devices. The controlled transformation among different types of such quasi-

particles is an important challenge, while it was previously achieved only in a few non-

centrosymmetric systems characterized by Dzyaloshinskii-Moriya interaction. Here,

we report an experimental discovery of multi-step topological transitions among a va-

riety of meron and skyrmion crystal states in a centrosymmetric magnet GdRu2Ge2.

By performing the detailed magnetic structure analysis based on resonant X-ray and

neutron scattering experiments as well as electron transport measurements, we have

found that this compound hosts periodic lattice of elliptic skyrmions, meron/anti-

meron pairs, and circular skyrmions as a function of external magnetic field. The

diameter of these objects is as small as 2.7 nm, which is almost two orders of magni-

tude smaller than typical non-centrosymmetric magnets. Such an intricate manner of

topological magnetic transitions are well reproduced by a theoretical model consider-

ing the competition between RKKY interactions at inequivalent wave vectors. The

present findings demonstrate that even a simple centrosymmetric magnet with com-

peting interactions can be a promising material platform to realize a richer variety of

nanometric magnetic quasi-particles with distinctive symmetry and topology, whose

stability may be tunable by various external stimuli.
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Topological swirling textures, such as skyrmions, merons, and hopfions, have recently

been explored in various condensed matter systems with broken space-inversion symmetry

(such as magnets[1–5], ferroelectrics[6], and chiral liquid crystals[7–9]). These objects and

their molecule-like clusters[10, 11] often appear in the form of isolated particles and periodic

lattice. They can be a source of rich emergent phenomena, and better understanding of their

formation mechanism and unique response to external stimuli is one of the central issues in

material science.

Recently, skyrmions in magnetic materials (Fig. 1b) have attracted attention as a po-

tential candidate of high-density information carrier, because of their small size and unique

electric controllability[1–3, 12–15]. Magnetic skyrmions are characterized by the topological

charge defined as

Nsk =
1

4π

∫
n ·

(
∂n

∂x
× ∂n

∂y

)
dxdy, (1)

which represents how many times the spin directions wrap a sphere. n(r) = m(r)/|m(r)|
is the unit vector along the local magnetic moment m(r), and the integral is taken over

a selected two-dimensional area. In general, skyrmion, anti-skyrmion, meron, and anti-

meron represent the spin texture m(r) characterized by Nsk = −1,+1,−1/2 and +1/2,

respectively[2, 4, 5]. Figures 1b and c schematically illustrate skyrmion and anti-skyrmion

spin textures, accompanied with vortex and anti-vortex type arrangement of in-plane spin

components, respectively. In both cases, m(r) at the core (edge) region is anti-parallel

(parallel) to the out-of-plane external magnetic field B. On the other hand, (anti)meron

corresponds to half (anti)skyrmion, and they often appear in the form of molecule-like

pair[11, 16]. The examples of (anti)meron spin textures are shown in Figs. 1d-g. (See

Supplementary Note V for the detailed description of merons and anti-merons.)

Magnetic skyrmions were originally discovered in a series of non-centrosymmetric com-

pounds, where Dzyaloshinskii-Moriya (DM) interaction plays a crucial role in the skyrmion

formation[12, 14, 15]. In the zero-field state, these compounds commonly host helical spin

order characterized by a single magnetic modulation vector Q. The application of mod-

erate amplitude of external magnetic field B induces a skyrmion lattice state, which can

be approximately described by the superposition of multiple spin helices modulated along

different orientations (i.e. multi-Q state)[14]. Their spin swirling manner is governed by the

symmetry of DM interaction[12], and skyrmion (Figs. 1b) and anti-skyrmion (Figs. 1c) spin

textures are usually stabilized in the system with chiral[14, 15, 17, 18] and D2d/S4[19, 20]

3



crystal symmetries, respectively. In this mechanism, a typical skyrmion diameter is in the

order of several tens to hundreds nanometer.

On the other hand, recent theoretical studies have suggested that skyrmions can

be stabilized even without inversion symmetry breaking, owing to different microscopic

mechanisms[21–27]. In particular, extremely small diameter (less than 3 nm) of skyrmions

have been discovered in a few centrosymmetric rare-earth intermetallic compounds, such as

hexagonal Gd2PdSi3[28] and tetragonal GdRu2Si2[29]. For the latter centrosymmetric sys-

tems, it has been proposed that itinerant-electron-mediated interactions play an important

role, while their detailed skyrmion formation mechanism is still in controversy[28–35].

Here, one of the key challenges is the identification of a general strategy to realize a richer

variety of magnetic quasi-particles in such systems. So far, most of the reported materials

host only a circular skyrmion phase in equilibrium[12], and other types of magnetic quasi-

particles have rarely been explored experimentally. Only recently, B-induced transition

between the square meron lattice and hexagonal skyrmion lattice states was discovered

in a non-centrosymmetric DM magnet Co8Zn9Mn3[4], while it is rather exceptional. The

controlled transformation among different types of solitonic spin textures may lead to the

multiple-valued memory function[3], and further search of novel materials and mechanisms

to realize a wider variety of exotic magnetic quasi-particles is highly anticipated.

In this study, we report the experimental discovery of multi-step topological transi-

tions among elliptic skyrmion, meron/anti-meron pair, and circular skyrmion phases in

a centrosymmetric magnet GdRu2Ge2. Our detailed theoretical analysis has revealed that

such an intricate manner of magnetic transitions are well reproduced by considering the

competition between RKKY interactions at inequivalent wave vectors QA = (q, 0, 0) and

QB = (q/2, q/2, 0). The present findings demonstrate that even a simple centrosymmetric

compound with competing interactions can be a promising material platform to realize a

richer variety of nanometric magnetic quasi-particles with distinctive symmetry and topol-

ogy, whose stability may be tunable by various external stimuli.

Our target material GdRu2Ge2 is characterized by ThCr2Si2-type crystal structure of

centrosymmetric tetragonal space group I4/mmm, as shown in Fig. 1a. It consists of alter-

nate stacking of square lattice Gd layers and Ru2Ge2 layers, and the magnetism is governed

by Gd3+ (S = 7/2, L = 0) ions with an approximately isotropic magnetic moment. Accord-

ing to a previous magnetization measurement[36], this compound shows several magnetic
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transitions in B ∥ [001], while the detailed magnetic structure in each phase and associated

electron transport properties yet remain to be clarified.

Figures 1j and k show the magnetic-field dependence of magnetization M , longitudinal

resistivity ρxx and Hall resistivity ρyx measured at 6 K for B ∥ [001]. The magnetization

profile shows three distinctive intermediate steps at 1.0 T, 1.2 T and 1.35 T, as well as

several additional kinks, before reaching the saturated ferromagnetic (FM) state with M ≈
7 µB/Gd3+ above 4.5 T. They represent the successive metamagnetic phase transitions

among Phases I, II, III, IV, V, VI and the FM state[36]. Corresponding anomalies are also

observed in the ρxx and ρyx profiles. In particular, peak-like enhancements of ρyx can be

identified in Phases II and IV. In general, Hall resistivity ρyx can be described[2, 37, 38] as

ρyx = ρNyx + ρAyx + ρTyx = R0B +RsM + PR0Bem, (2)

where ρNyx and ρAyx are the normal Hall term proportional to B and anomalous Hall term

proportional toM , respectively (R0 and Rs are the coefficients for the respective terms). The

third term ρTyx represents the topological Hall effect, which is allowed to appear for nontrivial

spin textures with Nsk ̸= 0. When conduction electrons pass through such a topological spin

texture, they are expected to obtain an additional quantum-mechanical Berry phase and

feel a fictitious emergent magnetic field Bem in proportion to the topological charge density.

It leads to the appearance of topological Hall term ρTyx proportional to Bem (P represents

the spin polarization ratio of conduction electrons)[2, 37, 39]. As detailed in Supplementary

Note X, our analysis suggests that the observed Hall profile cannot be simply explained by

ρNyx and ρAyx, and the peak-like enhancements of ρyx in Phases II and IV probably originate

from ρTyx. It implies the appearance of topological spin textures with Nsk ̸= 0 in these

phases. We have also performed similar measurements at various temperatures. The result

is summarized as a B-T magnetic phase diagram for B ∥ [001] shown in Figs. 1h and i.

Here, the magnetic phase boundaries are determined based on the magnetization data, and

the background color indicates the value of Hall resistivity ρyx. It evidences the strong

correlation between the magnetism and electrical transport properties, and also confirms

the clear enhancements of ρyx in Phases II and IV.

To investigate the magnetic structure in each phase, we first performed neutron scattering

experiments at 6 K for various amplitude of B ∥ [001], and measured intensity profiles

around reciprocal lattice points (−1, 1, 0) and (0,−1,−1) as detailed in Supplementary Fig.
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8 and Supplementary Note VII. We found that all magnetic phases except the FM phase are

characterized by an in-plane magnetic modulation vector Q ∼ (q, 0, 0) or (0, q, 0). In Phases

II, III, and IV, additional magnetic peaks approximately indexed as Q ∼ (q/2, q/2, 0) or

(−q/2, q/2, 0) are also observed. In general, the multi-Q magnetic order characterized by

multiple fundamental modulation vectors Qν and Qν′ is allowed to induce the higher order

reflections Qν ± Qν′ [29, 40], and the neutron scattering pattern in Supplementary Fig. 8

implies the multi-Q character of Phases II, III and IV.

Next, these magnetic satellite peaks are investigated in more detail by means of resonant

X-ray (RXS) scattering. The energy of the incident X-ray beam is tuned to the Gd-L2

absorption edge. The positions of magnetic reflections for Phases I, II, III, IV and V observed

in the RXS measurement are schematically illustrated in Figs. 2o-s. We focused on satellite

reflections near the reciprocal lattice points of (4, 2, 0) and (4, 0, 0), and performed two types

of line scans A and B corresponding to the green and blue arrows in Fig. 2o, respectively,

as discussed below.

The (4 + δ, 2, 0) line profile (i.e. line scan A) measured at B = 0 (Phase I) is shown

in Fig. 2e. A sharp reflection peak suggests that Phase I is characterized by a magnetic

modulation vector QA = (q, 0, 0) with q ∼ 0.213. Measurements along the same line were

also performed for various amplitudes of B ∥ [001], and the obtained line profiles for Phases

II, III, IV and V are indicated in Figs. 2f-i. On the basis of these data, the magnetic-field

dependence of the wave number q and integrated intensity of (4+q, 2, 0) magnetic reflection,

as well as magnetization M , are plotted in Figs. 2b-d. We have found that the magnetic

phase transitions characterized by step-like magnetization anomalies are accompanied by

abrupt changes in q-value and scattering intensity. Notably, the magnetic reflection on the

line A splits into two peaks with distinctive q-values q1 and q2 (q1 < q2) in Phases II and III

(Figs. 2f and g).

To investigate the possible multi-Q character in each phase, the (4-τ , -q0 + τ , 0) line

profiles are further measured (i.e. line scan B) as summarized in Figs. 2j-n. We define

q0 = (q1 + q2)/2 based on the wave numbers q1 and q2 identified from the line scan A,

where q = q1 = q2 holds for Phases I, IV and V. Our measurements reveal that magnetic

reflections on the line B are observable only in Phases II, III and IV, in accord with the

neutron data in Supplementary Fig. 8. In Phase IV, the peak position on the line B can

be exactly indexed as QB = (q/2, q/2, 0). By considering the symmetrically equivalent wave
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vector QB′ = (−q/2, q/2, 0), the relation QA = QB −QB′ is satisfied (Fig. 2r). It indicates

that Phase IV hosts multi-Q magnetic order. As detailed in Supplementary Note II, similar

relations are also satisfied in Phases II and III (Figs. 2p and q), where the peak positions

on the line B are indexed as QB = (q1/2, q2/2, 0) or (q2/2, q1/2, 0). It also demonstrates

the multi-Q character of these phases. (Note that the appearance of higher order reflection

is not the necessary condition of multi-Q state, and Phase V is also assigned as a multi-Q

state as discussed in Supplementary Note I.)

When the magnetic structure breaks the symmetry of the original crystal structure, there

should appear multiple equivalent magnetic domains that are converted into each other by

the broken symmetry elements. In case of Phase I (Fig. 2o), the single-Q magnetic order

breaks the four-fold symmetry, and two magnetic domains with QA = (q, 0, 0) and (0, q, 0)

can coexist. In a similar manner, the four-fold symmetry is broken in Phases II and III.

It leads to the emergence of two magnetic domains α and β related to each other by four-

fold rotation, whose magnetic satellite positions are denoted by black and white circles in

Figs. 2p and q, respectively (See Supplementary Note II and Supplementary Fig. 2 for the

detail). It explains the observed appearance of two distinctive magnetic reflections for the

line scan A in Phases II and III (Figs. 2f and g), where two peaks reflect the contribution

from the domains α and β. In Phase IV (Fig. 2r), the four-fold symmetry is recovered and

the consideration of such rotational domains is not necessary.

Next, to identify the detailed spin orientations in each phase, we perform the polarization

analysis of the scattered X-ray beam. The measurement configuration is illustrated in Fig.

2a, in which the propagation vectors of the incident and scattered X-ray beams (ki and kf ,

respectively) are always confined within the (001) plane. Here, the incident X-ray beam is

linearly polarized parallel to the scattering plane (π-polarized). The scattered beam includes

two polarization components parallel (π′) and perpendicular (σ′) to the scattering plane, and

their intensities (Iπ−π′ and Iπ−σ′) are measured separately. When the magnetic structure

m(r) is composed of modulated spin component (m̃(Q)exp(iQ · r)+ c.c.) with the wave

vector Q, the corresponding magnetic scattering intensity is described[41] as

I ∝ |(ei × ef ) · m̃(Q)|2 (3)

with ei and ef representing the polarization vectors of the incident and scattered beams,

respectively. Here, m̃(Q) is a complex vector and c.c. represents the complex conjugate. In
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general, m̃(Q) can be decomposed as

m̃(Q) = m̃c(Q)ec + m̃Q(Q)eQ + m̃c×Q(Q)ec×Q, (4)

where ec, eQ, and ec×Q (m̃c, m̃Q, and m̃c×Q) are the unit vectors (amplitudes of modulated

spin components) parallel to the [001] axis, Q-vector, and the axis perpendicular to both

of them, respectively. In the present setup with the (001) scattering plane (Fig. 2a), Iπ−π′

always represents the m̃c component, and Iπ−σ′ reflects the component of m̃(Q) parallel to

ki.

First, we investigate Phase IV with four-fold symmetric multi-Q character. For this pur-

pose, the magnetic satellites at the (4, 2, 0)±Q position are studied, with the measurement

geometry shown in Fig. 3a. In this configuration, ki is almost parallel to the [100] axis, and

Iπ−σ′ mainly reflects the [100] component of m̃(Q). Figures 3b and d show the (4 + δ, 2, 0)

line profile measured in Phase IV, where the presence of Iπ−π′ (absence of Iπ−σ′) suggests

the presence of m̃c (the absence of m̃Q) for QA = (q, 0, 0). The corresponding (4, 2 + δ,

0) line profile is also shown in Figs. 3c and e, where the presence of Iπ−π′ and Iπ−σ′ indi-

cate the presence of m̃c and m̃c×Q for QA′ = (0, q, 0). These results suggest that QA and

QA′ are characterized by the screw-type spin modulation, as shown in Fig. 3f, where their

neighboring spin components rotate within a plane normal to each wave vector.

In a similar manner, the magnetic satellites at the (4, 0, 0)±Q positions have also been

investigated, with the measurement geometry shown in Fig. 3m. In this case, ki is almost

parallel to the [11̄0] axis, and Iπ−σ′ mainly reflects the [11̄0] component of m̃(Q). Figures 3n

and p show the (4−τ, q0−τ, 0) line profile measured in Phase IV, where the presence of Iπ−π′

(absence of Iπ−σ′) suggests the presence of m̃c (the absence of m̃Q) for QB′ = (−q/2, q/2, 0).

The corresponding (4− τ,−q0 + τ, 0) line profile is also shown in Figs. 3o and q, where the

presence of Iπ−π′ and Iπ−σ′ indicates the presence of m̃c and m̃c×Q for QB = (q/2, q/2, 0).

These results demonstrate that QB and QB′ are also characterized by the screw-type spin

modulation, as shown in Fig. 3r. To summarize, Phase IV can be approximately described

as the superposition of four distinctive screw-type spin modulations characterized by QA,

QA′ , QB and QB′ (Figs. 3f and r).

We have also performed the same line scans for Phases III and II with the anisotropic

multi-Q character, as summarized in Figs. 3g-l and 3s-x. In this case, the four-fold symmetry

breaking leads to the appearance of magnetic domains α and β (Figs. 3b, c, n and o).
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Domain α is characterized by QA = (q1, 0, 0), QA′ = (0, q2, 0), QB = (q1/2, q2/2, 0) and

QB′ = (−q1/2, q2/2, 0), while domain β is characterized by QA = (0,−q1, 0), QA′ = (q2, 0, 0),

QB = (q2/2,−q1/2, 0) and QB′ = (q2/2, q1/2, 0). As a result, each line scan profile is

characterized by two magnetic satellite peaks reflecting the contributions from the domains

α and β (Note that the broadness of magnetic reflection peaks in Figs. 3q,t,w and Figs.

2j-n is due to the limited wave number resolution along this scan direction). In Phase II, the

selection rule of magnetic scattering (i.e. the presence/absence of Iπ−π′ and Iπ−σ′ for each line

scan) is exactly the same as the Phase IV, which suggests that Phase II is also characterized

by the superposition of four distinctive screw-type spin modulations characterized by QA,

QA′ , QB and QB′ (Figs. 3l and x). For Phase III, though the selection rule of magnetic

scattering is almost the same as Phase IV, the appearance of Iπ−σ′ in Fig. 3g (at δ = q1 ∼
0.219) and Fig. 3s suggests the existence of additional small m̃Q spin component for QA,

QB and QB′ . For these wave vectors, screw-type spin spiral plane is slightly tilted toward

the Q directions, as shown in Figs. 3i and u. On the basis of the observed Iπ−π′ and Iπ−σ′

values for each magnetic reflection, the relative amplitudes of m̃c, m̃Q and m̃c×Q are deduced

for four distinctive wave vectors in Phases II, III and IV as summarized in Figs. 3f, i, l, r, u

and x (See Supplementary Note I and III for the detail, which also includes the results for

Phases I and V). In Supplementary Note III and IV, we have further performed a similar

analysis for higher order wave vectors such as QC = 2QB and QC′ = 2QB′ .

On the basis of the experimentally deduced m̃c, m̃Q and m̃c×Q for QA, QA′ , QB, QB′ , QC

andQC′ in each phase (Supplementary Table 1), we reconstruct the corresponding real-space

spin texture m(r) described as

m(r) = ecm
0
c +

∑

α,ν

eαm̃α(Qν)sin(Qν · r+ θQν
α ). (5)

Here, α represents the directions c, Q or c×Q. m0
c is the uniform magnetization component

in the B ∥ [001] direction, and its value is estimated from the experimental M -B profile.

While the phase θQν
α cannot be directly determined from the X-ray scattering experiments,

the localized character of Gd3+ magnetic moment requires the spatially uniform |m(r)| dis-
tribution. By considering this constraint, appropriate θQν

α values can be uniquely identified.

For this purpose, we exhaustively investigate various combinations of θQν
α , and deduce the

relative phases that provide the most uniform |m(r)| distribution (See Supplementary Note

III for the detail).
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The resultant real-space spin texture m(r) for Phases I, II, III, IV and V reconstructed

based on Eq. (5), as well as their schematic illustrations, are summarized in Figs. 4a-e and

Figs. 4f-j. The corresponding |m(r)| profiles are shown in Figs. 4k-m, which satisfies almost

uniform |m(r)| distribution. At B = 0, the single-Q screw spin texture is realized in Phase

I (Figs. 4a and f). By applying B ∥ [001], helical stripes are pinched off, and turn into

the lattice of elliptic skyrmion (Nsk = −1) with vortex-like arrangement of in-plane spin

components as shown in Figs. 4b and g (Phase II). Each elliptic skyrmion transforms into

a meron/anti-meron pair (Nsk = 0) in Phase III (consisting of the combination of Figs. 1d

and g), where the in-plane spin component can be described as the combination of a half

vortex and a half anti-vortex (Figs. 4c and h). In Phase IV, the pair further turns into a

circular skyrmion (Nsk = −1), as shown in Figs. 4d and i. Finally, the sign of out-of-plane

spin component (mc) at the skyrmion core is reversed, and the circular vortex (Nsk = 0) is

realized in Phase V (Figs. 4e and j). In this process, the region with negativemc (antiparallel

to B) gradually shrinks as a function of B, and the associated Zeeman energy gain can be

considered as the main driving force for these magnetic transitions.

Here, Phases II and IV represent the skyrmion lattice states with non-zero net topological

charge and skyrmion lattice constant ∼ 2.7 nm, which is consistent with the observed peak-

like enhancement of ρyx in Figs. 1j and k associated with the topological Hall effect (See

Supplementary Note X). In Phase III, the meron and anti-meron form a molecule-like pair,

whose core region is characterized by negative mc component (See Supplementary Note

V for the detail). When we consider the skyrmion as meron-meron pair consisting of the

combination of Figs. 1d and f, the incremental and decremental change of topological number

∆Nsk = ±1 for the transitions Phases II → III → IV can be interpreted as the step-by-

step local transformation between the meron (Nsk = −1/2) and anti-meron (Nsk = +1/2)

spin textures (Figs. 4b-d and g-i). These magnetic phases with distinctive Nsk values are

separated by sizable energy barrier, as evidenced by the appearance of clear hysteresis in

Fig. 1k. Note that the vortex-lattice state in Phase V (Figs. 4e and j) is also characterized

by local fractional topological charge, while its spin texture cannot wrap a half of unit sphere

due to the uniform out-of-plane magnetization component. Therefore, Phase V cannot be

considered as a genuine meron/anti-meron lattice state.

Since GdRu2Ge2 is characterized by the centrosymmetric crystal structure, the observed

multi-step topological transitions cannot be explained in terms of DM interaction, and some
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different microscopic mechanism must be considered. Following Refs. [21, 22, 42], we assume

the itinerant-electron-mediated interactions on two-dimensional square lattice, and perform

the simulated annealing based on the effective magnetic Hamiltonian derived from the Kondo

lattice model given by

H = −2J
∑

ν,α,β

Γαβ
Qν

m̃α(Qν)m̃β(Qν)−
∑

i

B ·m(ri), (6)

with α, β = [100], [010], [001] and Qν = QA,QA′ ,QB,QB′ . m̃(Qν) is the Fourier transform

of the real-space distribution of classical localized spin m(ri), whose amplitude is fixed at

|m(ri)| = 1. Here, the first and second terms represent RKKY interaction and Zeeman

coupling, respectively. We suppose the situation as shown in Fig. 5a, where the bare-

susceptibility χ(Q) of itinerant electron shows the maxima at QA = (q, 0) and QA′ =

(0, q) with q = 2π/5, as well as relatively large values at QB = (q/2, q/2) and QB′ =

(−q/2, q/2) satisfying the relation QA = QB − QB′ and QA′ = QB + QB′ . Such χ(Q)

distribution can be naturally realized, for example, by considering the nesting of the Fermi

surfaces[21, 42]. For these ordering vectors, we adjust the value of interaction tensors Γαβ
Qν

to satisfy the tetragonal lattice symmetry, weak easy-axis anisotropy[36], and the relation

χ(QA) = χ(QA′) > χ(QB) = χ(QB′) (See Methods section and Supplementary Note VIII

for the detail).

Figure 5b indicates the magnetic field dependence of magnetization M and associated

scalar spin chirality N ′
sk (which becomes non-zero for Nsk ̸= 0 as discussed in the Methods

section) for B ∥ [001] calculated based on Eq. (6). It predicts successive magnetic phase

transitions (Phase I → II → III → IV → V → FM), where Phases II and IV are char-

acterized by non-zero scalar spin chiralities. Theoretically obtained spin texture m(r) for

each magnetic phase is summarized in Figs. 5c-g, which well reproduces the experimentally

deduced ones in Figs. 4a-e. Figures 5h-l indicate the simulated reciprocal space distribution

of |m̃(Q)|2, scaling with the scattering intensity expected at each Q position in the RXS ex-

periments. Here, magnetic peaks at QB = (q/2, q/2) and QB′ = (−q/2, q/2) are observable

only in Phases II, III and IV, in accord with the experimental RXS patterns in Figs. 2o-s.

In Phases II and III, the four-fold symmetry is broken, and QA = (q, 0) is characterized by

a much larger value of |m̃(Q)|2 than QA′ = (0, q). It well explains the different scattering

intensity between the first and second peaks (corresponding to QA of domain α and QA′ of

domain β, respectively) in Figs. 2f and g. The overall good agreement between the theo-
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retical and experimental results supports the validity of our magnetic structure analysis in

Fig. 4, and suggests that the magnetism in GdRu2Ge2 is well captured by Eq. (6).

Note that earlier theoretical works for the square lattice system[21, 22] assumed RKKY

interaction at QA and QA′ only, and did not consider the QB or QB′ contribution. In that

case, the large amplitude of four-spin interaction (∝ ∑
ν(
∑

α,β Γ
αβ
Qν

m̃α(Qν)m̃β(Qν))
2) was

required to stabilize the circular skyrmion phase (Phase IV), while it could not predict the

appearance of Phases II or III. On the other hand, our present theoretical model (Eq. 6)

suggests that the competition between RKKY interactions at inequivalent wave vectors QA

and QB (Fig. 5a) is crucial for the appearance of Phases II, III and IV, and the four-spin

interaction is not important to reproduce the magnetism in GdRu2Ge2. In this context,

the observed meron/anti-meron and two distinctive skyrmion crystal phases are realized

under the delicate balance between magnetic interactions mediated by itinerant electrons.

(In Supplementary Note IX, the additional theoretical calculation has been performed to

clarify the key difference between GdRu2Si2 and GdRu2Ge2.)

In this study, we reported the experimental discovery of multi-step topological transi-

tions among the elliptic skyrmion, meron/anti-meron pair, and circular skyrmion phases in

a centrosymmetric magnet GdRu2Ge2. Previously, the controlled transformation between

different types of magnetic quasi-particles has been reported only for a few DM-based non-

centrosymmetric magnets[4, 43–45], and it is remarkable that such a simple centrosymmetric

compound can host even more intricate manner of topological magnetic transitions. The

diameter of observed magnetic quasi-particles in GdRu2Ge2 is as small as 2.7 nm, which

is one or two orders of magnitude smaller than traditional DM-based non-centrosymmetric

compounds. Our theoretical analysis reveals that the competition between RKKY interac-

tions at inequivalent wave vectors QA = (q, 0, 0) and QB = (q/2, q/2, 0), typically induced

by the nesting of Fermi-surfaces along multiple directions[21, 42], is the key to realize a

rich variety of nanometric particle-like spin textures in centrosymmetric systems. In princi-

ple, these magnetic quasi-particles will be transformable into each other by various external

stimuli, because of their pseudo degeneracy and sizable energy barrier[46]. Such a potential

metastability may lead to the development of unique manner of multi-valued memory/logic

function[3, 10, 45]. Recent theoretical studies predict the appearance of even wider vari-

ety of nontrivial topological spin textures (such as higher-order skyrmion with |Nsk| ≥ 2)

in centrosymmetric rare-earth compounds[21, 26, 42]. Further search for novel materials
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hosting exotic magnetic quasi-particles, as well as their direct real-space observation and

manipulation, are the issue for the future study. (See Supplementary Note XI.)
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[14] S. Mühlbauer et al., Science 323, 915 (2009).

[15] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, Y. Tokura,

Nature 465, 901 (2010).

[16] W. Koshibae, N. Nagaosa, New J. Phys. 18, 045007 (2016).

[17] S. Seki, X. Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198 (2012).

[18] Y. Tokunaga et al., Nature Comm. 6, 7638 (2015).

[19] A. K. Nayak et al., Nature 548, 561 (2017).

[20] K. Karube et al., Nature Mater. 20, 335 (2021).

[21] S. Hayami, R. Ozawa, Y. Motome, Phys. Rev. B 95, 224424 (2017).

[22] S. Hayami, Y. Motome, Phys. Rev. B 103, 024439 (2021).

[23] I. Martin, C. D. Batista, Phys. Rev. Lett. 101, 156402 (2008).

[24] T. Okubo et al., Phys. Rev. Lett. 108, 017206 (2012).

[25] A. O. Leonov, M. Mostovoy, Nature Commun. 6, 8275 (2015).

[26] Z. Wang et al., Phys. Rev. B 103, 104408 (2021).

13



[27] J. Bouaziz et al., Phys. Rev. Lett. 128, 157206 (2022).

[28] T. Kurumaji et al. Science 365, 914 (2019).

[29] N. D. Khanh et al., Nature Nanotech. 15, 444 (2020).

[30] M. Hirschberger et al., Nature Commun. 10, 5831 (2019).

[31] K. Kaneko et al., J. Phys. Soc. Jpn. 88, 13702 (2019).

[32] Y. Yasui et al., Nature Commun. 11, 5925 (2020).

[33] N. D. Khanh et al., Adv. Sci. 9, 2105452 (2022).

[34] R. Takagi et al., Nature Commun. 13, 1472 (2022).

[35] Z. Li et al., Adv. Mater. 35, 2211164 (2023).

[36] A. Garnier et al., Physica B 222, 80 (1996).

[37] A. Neubauer et al., Phys. Rev. Lett. 102, 186602 (2009).

[38] N. Nagaosa et al., Rev. Mod. Phys. 82, 1539 (2010).

[39] A. Zadorozhnyi, Y. Dahnovsky, Phys. Rev. B 107, 054436 (2023).

[40] T. Adams et al. Phys. Rev. Lett. 107, 217206 (2011).

[41] M. Blume, in Resonant Anomalous X-Ray Scattering (eds Materlik, G., Sparks, C. J. and

Fischer, K.), 495-512, Elsevier, (1994).

[42] S. Hayami, J. Phys. Soc. Jpn. 91, 23705 (2022).

[43] L. Peng et al., Nature Nanotech. 15, 181 (2020).

[44] J. Jena et al., Nature Commun. 11, 1115 (2020).

[45] F. Zheng et al., Nature Nanotech. 13, 451 (2018).

[46] H. Oike et al., Nature Physics 12, 62 (2016).

[47] S. Itoh et al., Nucl. Instrum. Methods Phys. Res., Sect. A 631, 90 (2011).

(https://doi.org/10.1016/j.nima.2010.11.107)

[48] R. T. Azuah et al., J. Res. Natl. Inst. Stan. Technol. 114, 341 (2009).

[49] K. Momma, F. Izumi, J. Appl. Crystallogr., 44, 1272 (2011).

14



Methods

Sample preparation and characterization.

Polycrystalline rods of GdRu2Ge2 were prepared by the arc-melting technique from sto-

ichiometric amount of pure Gd, Ru, and Ge pieces using a water-cooled copper crucible

under an Ar atmosphere. Bulk single crystals were grown in Ar gas flow by using a floating

zone furnace. The crystal orientation was determined using the X-ray Laue method, and

the phase purity of the samples was confirmed by the powder X-ray diffraction.

Magnetic and electrical transport property measurements.

Magnetization measurements (Figs. 1j, 1k and 2b in the main text and the top panels of

Supplementary Figs. 8b and 11c) on rectangular-shaped polished samples were performed

using a Magnetic Properties Measurement System (MPMS, Quantum Design) with SQUID

(superconducting quantum interference device) magnetometer. Measurements of the elec-

trical transport properties were performed with the conventional five-terminal method using

the AC-transport option in a Physical Properties Measurement System (PPMS, Quantum

Design). The same sample was used for the measurements of magnetization and electri-

cal transport properties in Fig. 1. Since the Hall resistivity (longitudinal resistivity) is an

odd (even) function of magnetic field B, the measured ρyx-B profile was anti-symmetrized

with respect to B to eliminate the possible contamination of the longitudinal resistivity

component[37]. Note that the shape of the sample used for the resonant X-ray scattering

experiment in Figs. 2 and 3 was different from the one used for the electrical transport

measurements in Fig. 1, which caused the slight discrepancy of critical B value via the

shape anisotropy associated with the demagnetizing field. In the present work, the typical

thickness of GdRu2Ge2 sample is in order of 1 mm. We investigated several crystal pieces

with different thickness, and the multi-step topological transition was commonly observed

for all samples.
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Neutron scattering measurements.

Neutron scattering measurement was performed using the high-resolution chopper (HRC)

spectrometer at BL12 [47] in the Materials and Life Science Facility (MLF) of Japan Proton

Accelerator Research Complex (J-PARC). A single crystal with a polished flat (100) plane

(dimensions of 6.5×8.0×0.4 mm) was loaded into a vertical-field superconducting magnet.

The field direction was parallel to the [001] axis of the sample. To reduce the strong neutron

absorption effect of Gd, the energy of the incident neutron beam was tuned to 153.5 meV

by using a high-resolution Fermi chopper. The energy resolution at the elastic condition

was approximately 4%. The intensities of the scattered neutrons were measured by arrays

of 3He-position sensitive detectors. The measurements were repeated with different ω angles

(rotation about the [001] axis). The data were processed by DAVE software[48] to obtain

the intensity distributions in the reciprocal lattice space shown in Supplementary Fig. 8.

Resonant X-ray scattering measurements.

RXS measurement was performed at BL-3A, Photon Factory, KEK, Japan. The photon

energy was adjusted in resonance with the Gd L2 absorption edge (∼7.935 keV), as detailed

in Supplementary Fig. 7 and Supplementary Note VI. A single crystal with a polished flat

(100) plane (dimensions of 0.45×3.2×4.6 mm) was attached on an Al plate with varnish and

loaded into a vertical-field superconducting magnet, so that the magnetic field was applied

parallel to the [001] axis. (The accuracy of magnetic-field value is within 0.01 T.) The

incident X-ray beam was horizontally polarized and the scattering plane was perpendicular

to the [001] axis. To analyze the polarization of the scattered X-ray beam, we used the

006 reflection of a pyrolytic graphite plate, where the 2θ angle for the analyzer at the Gd

L2 edge was 88.7 degrees. By rotating the pyrolytic graphite plate about the scattered

beam, the σ’ (π’) component, polarized perpendicular (parallel) to the scattering plane, was

selectively detected. We also performed measurements without analyzing polarization of

the scattered X-ray beam, where the scattered beam included both the σ’- and π’-polarized

components. In Figs. 2c and d, the error bars correspond to the asymptotic standard errors

in the least-squares fitting analysis of experimental data in Figs. 2e-i using the Gaussian

functions. The possibility of double scatterings for the observed higher-order peaks could
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be ruled out because of the absence of the peaks in the multi-domain state of Phase I.

Theoretical calculation.

The data in Fig. 5 were obtained by performing numerical calculations based on simulated

annealing for the model in Eq. (6) on a square lattice. The temperature was gradually

reduced from T = 1 to 0.01 with a condition Tn+1 = αTn, where Tn was the temperature

in the nth step and α was set between 0.99999 and 0.999999. 105-106 Monte Carlo steps

were performed for thermalization and measurements followed by the standard Metropolis

algorithm. In the vicinity of the phase boundaries, the simulations were also performed from

the spin patterns obtained at low temperatures. The model parameters in Eq. (6) were set

as J = 1, κ = 0.86, γ1 = 0.9, γ2 = 0.91675, and γ3 = 0.0725 for Γxx
QA

= Γyy
QA′ = γ1γ2, Γ

yy
QA

=

Γxx
QA′ = γ1, Γ

zz
QA

= Γzz
QA′ = 1, Γxx

QB
= Γyy

QB
= Γxx

QB′ = Γyy
QB′ = κγ1, −Γxy

QB
= −Γyx

QB
= Γxy

QB′ =

Γyx
QB′ = κγ3, for Γ

zz
QB

= Γzz
QB′ = κ to satisfy four-fold rotational symmetry of the square lattice

(the other components of Γαβ
Qν

were zero), where x = [100], y = [010], and z = [001]; γ1 < 1

represents the easy-axis anisotropy, while γ2 and γ3 represent the in-plane bond-dependent

anisotropy that fixes the spiral plane; κ < 1 represents the competition between interactions

at different wave vectors to hold the relation χ(QA) = χ(QA′) > χ(QB) = χ(QB′). The

system size was set as N = 1002. The scalar spin chirality N ′
sk in Fig. 5b was calculated as

N ′
sk =

[
1

N

∑

i,δ=±1

m(ri) · {m(ri + δêx)×m(ri + δêy)}
]2
, (7)

where êx (êy) is the unit vector in the x (y) direction on the square lattice. The scalar

spin chirality N ′
sk represents the non-coplanarity of spin texture and usually scales with the

amplitude of topological Hall signal ρTyx[38], while the value is not quantized unlike Nsk

defined in the continuum model, Eq. (1).

Data availability

The data presented in the current study are available from the corresponding authors on

reasonable request.
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FIG. 1: Magnetic and electrical transport properties of GdRu2Ge2. a, Crystal structure

of GdRu2Ge2. b-g, Schematic illustration of skyrmion, anti-skyrmion, meron and anti-meron spin

textures. h,i, B-T magnetic phase diagram of GdRu2Ge2 for B ∥ [001]. The background color

represents the value of Hall resistivity ρyx. Open circles (triangles) indicate phase boundaries ob-

tained from the magnetic-field (temperature) dependence of magnetization M . FM represents the

ferromagnetic state. j,k, Magnetic-field dependence of magnetization M , longitudinal resistivity

ρxx and Hall resistivity ρyx measured at 6 K for B ∥ [001] and I ∥ [100]. Black and gray lines

represent the field increasing and decreasing runs, respectively.
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FIG. 2: RXS measurements for GdRu2Ge2. a, Schematic illustration of experimental setup

for RXS measurement. The scattering plane spanned by the incident and the scattered beams (ki

and kf , respectively) lies normal to the [001] axis. The incident X-ray beam is linearly polarized

within the scattering plane (π-polarized). b-d, Magnetic-field dependence of magnetization M ,

the wave number q and integrated intensity of the (4 + q, 2, 0) magnetic reflection for B ∥ [001] at

6 K. e-i, Line profiles of (4 + δ, 2, 0) scan (i.e. line scan A) for Phases I (B = 0), II (0.92 T), III

(1.03 T), IV (1.13 T) and V (1.3 T) to identify the Q ∼ (q, 0, 0) magnetic satellite peaks around

the fundamental Bragg spot (4, 2, 0). Each experimental data (closed circles) is fitted by one or

two Gaussian functions. j-n, Line profiles of (4− τ, −q0 + τ, 0) scan (i.e. line scan B) to identify

Q ∼ (q/2, q/2, 0) magnetic satellite peaks around the fundamental Bragg spot (4, 0, 0) for Phases

I-V. The definition of q0 is shown in (p). o-s, Reciprocal-space distribution of magnetic satellite

reflections, as well as the directions of line scans A and B for Phases I-V. The selection rule of

magnetic satellite reflections are common for both (4, 2, 0)±Q and (4, 0, 0)±Q positions. Closed

and open circles in o-q represent the contributions of magnetic domains α and β, respectively.
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FIG. 3: Polarization analysis of RXS profiles in Phases II, III and IV. All measurements

were performed with the experimental setup shown in Fig. 2a, where the intensity of scattered

X-ray with the polarization parallel and normal to scattered plane (Iπ−π′ and Iπ−σ′ , respectively)

was separately measured. According to Eq. (3), Iπ−π′ always represents the m̃c component,

and Iπ−σ′ reflects the component of m̃(Q) parallel to ki. a, The measurement geometry for the

magnetic satellites around the fundamental Bragg spot (4, 2, 0). The incident vector ki is almost

parallel to the [100] axis and thus Iπ−σ′ should mainly reflect the [100] component of m̃(Q).

b,c, Schematic illustration of (4 + δ, 2, 0) and (4, 2 + δ, 0) line scans in the reciprocal space, to

investigate the Q ∼ (q, 0, 0) and (0, q, 0) magnetic satellites around the fundamental Bragg spot

(4, 2, 0), respectively. d,e, (4 + δ, 2, 0) and (4, 2 + δ, 0) line profiles measured in Phase IV (1.13

T). The inset indicates the spin component m̃α(Q) represented by Iπ−π′ and Iπ−σ′ for each scan.

f, Real-space schematic illustration of the modulated spin components m̃α(Q) for the wave vectors

Q = (q, 0, 0) and Q = (0, q, 0). The numbers represent the relative amplitude of m̃α(Q) along

the direction denoted by red arrow (i.e. α = c, Q or c ×Q). g-i and j-l, The corresponding data

measured at Phases III (1.03 T) and II (0.92 T), respectively. m, The measurement geometry

for the magnetic satellites around the fundamental Bragg spot (4, 0, 0). The incident vector ki is

almost parallel to the [11̄0] axis and thus Iπ−σ′ should mainly reflect the [11̄0] component of m̃(Q).

n,o, Schematic illustration of (4 − τ, q0 − τ, 0) and (4 − τ,−q0 + τ, 0) line scans in the reciprocal

space, to investigate the Q ∼ (−q/2, q/2, 0) and (−q/2,−q/2, 0) magnetic satellites around the

fundamental Bragg spot (4, 0, 0), respectively. p,q, (4 − τ, q0 − τ, 0) and (4 − τ,−q0 + τ, 0) line

profiles measured in Phase IV (1.13 T). r, Real-space schematic illustration of the modulated

spin components m̃α(Q) for the wave vectors Q ∼ (−q/2, q/2, 0) and Q ∼ (−q/2,−q/2, 0). The

numbers represent the relative amplitude of m̃α(Q) along the direction denoted by red arrow. s-u

and v-x, The corresponding data measured at Phases III (1.03 T) and II (0.92 T), respectively.
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FIG. 4: Experimentally deduced magnetic structures for GdRu2Ge2. a-e, The magnetic

structure m(r) for Phases I, II, III, IV and V, reconstructed based on Eq. (5) and m̃α(Qν) (Qν =

QA, QA′ , QB, QB′ , QC and QC′) deduced by RXS experiments as summarized in Supplementary

Table 1. The relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution

(See Supplementary Note III for the detail). The black arrows and background color represent the

in-plane and out-of-plane component of local magnetic moment m(r), respectively. f-j, Schematic

illustration of spin textures in a-e. k-m, The spatial distribution of |m(r)| for the spin textures

in b-d. The small amount of non-uniform component remaining in the |m(r)| profile is associated

with the higher-order harmonics neglected in the present model.
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FIG. 5: Theoretical magnetic structures obtained by simulated annealing. a, Schematic

illustration of bare-susceptibility χ(Q) distribution considered in the effective magnetic Hamilto-

nian Eq. (6), which assumes the largest peaks at QA = (q, 0) and QA′ = (0, q) with q = 2π/5

as well as the relatively large value at QB = (q/2, q/2) and QB′ = (−q/2, q/2). b, Magnetic-field

dependence of magnetization M and scalar spin chirality N ′
sk defined in Methods section, obtained

by the simulated annealing with magnetic field B applied normal to the square lattice. Msat and

Bc represent the saturated magnetization and the critical magnetic field to obtain fully polarized

ferromagnetic (FM) state, respectively. c-g, Theoretically simulated magnetic structure m(r) in

Phases I, II, III, IV and V, obtained at B = 0, 0.39Bc, 0.47Bc, 0.56Bc and 0.67Bc, respectively.

h-l, The corresponding reciprocal-space distribution of |m̃(Q)|2, which is expected to scale with

the scattering intensity at each Q position in the RXS experiments. See Methods section and

Supplementary Note VIII for the detail of theoretical calculations.
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I. POLARIZATION ANALYSIS OF RESONANT X-RAY SCATTERING PRO-

FILES IN PHASES I AND V

As discussed in the main text, the spin textures in Phases I and V contain the spin

component modulated with QA = (q, 0, 0), but not the one with QB = (q/2, q/2, 0) (Fig.

2 in the main text). To investigate the detailed spin orientations for these phases, the

polarization of scattered X-ray has been analyzed with the same experimental setup as the

one employed for Phases II - IV (Fig. 2a in the main text).

For this purpose, we investigated the magnetic satellites (4, 2, 0)±Q with the measure-

ment geometry shown in Supplementary Fig. 1c (i.e. the same as Fig. 3a in the main text).

In this configuration, ki is nearly parallel to the [100] axes, in which Iπ−σ′ and Iπ−π′ mainly

reflect the [100] and [001] components of m̃(Q), respectively. Supplementary Figs. 1a and

d show the (4+ δ, 2, 0) line profile in Phase I, where the presence of Iπ−π′ (absence of Iπ−σ′)

peak suggests the presence of m̃c (absence of m̃Q) for QA = (q, 0, 0). The corresponding (4,

2 + δ, 0) line profile is shown in Supplementary Figs. 1b and e, where the presence of Iπ−π′

and Iπ−σ′ indicate the presence of m̃c and m̃c×Q for QA′ = (0, q, 0). These results suggest

that Phase I represents the screw spin state, as shown in Supplementary Fig. 1f, where their

neighboring spins rotate within a plane normal to the wave vector.

Similar measurements were also performed for Phase V. The results are summarized in

Supplementary Figs. 1g and h. In this case, the absence of m̃c and m̃Q for QA = (q, 0, 0),

as well as the presence of m̃c×Q and the absence of m̃c for QA′ = (0, q, 0), are confirmed. It

suggests that QA and QA′ in Phase V are characterized by sinusoidal modulation of in-plane

spin component normal to the wave vector, as shown in Supplementary Fig. 1i. If we assume

Phase V as a double-Q state, their superposition deduced from Eq. (5) in the main text

represents the square vortex lattice state, as shown in Figs. 4e in the main text.

In the theoretical simulation, such a square vortex lattice state is stabilized in a high out-

of-plane magnetic field (Fig. 5g in the main text). The corresponding |m̃(Q)|2 profile (Fig.

5l in the main text) predicts the presence and absence of RXS peak at QA = (q, 0, 0) and

QB = (q/2, q/2, 0) position, respectively, which is consistent with the experimental results

obtained for Phase V (Figs. 2i, n and s in the main text). In case of the isostructural

GdRu2Si2, such a square vortex lattice state has indeed been identified by the real-space

STM (scanning tunneling microscopy) measurements[S1] in a high magnetic field B ∥ [001].
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Supplementary Fig. 1: Polarization analysis of RXS profiles in Phases I and V. All mea-

surements were performed with the experimental setup shown in Fig. 2a in the main text, where

the intensity of scattered X-ray with the polarization parallel and normal to scattered plane (Iπ−π′

and Iπ−σ′ , respectively) was separately measured. According to Eq. (3) in the main text, Iπ−π′

always represents the m̃c component, and Iπ−σ′ reflects the component of m̃(Q) parallel to ki. a,

b, Schematic illustration of (4+δ, 2, 0) and (4, 2+δ, 0) line scan in the reciprocal space, to investi-

gate the Q ∼ (q, 0, 0) and (0, q, 0) magnetic satellites around the fundamental Bragg spot (4, 2, 0),

respectively. The associated measurement geometry is illustrated in (c), where the incident vector

ki is nearly parallel to the [100] axis and thus Iπ−σ′ should mainly reflect the [100] component of

m̃(Q). d,e, The (4+ δ, 2, 0) and (4, 2+ δ, 0) line profiles measured in Phase I (B = 0). The inset

indicates the spin component m̃α(Q) represented by Iπ−π′ and Iπ−σ′ for each scan. f, Real-space

schematic illustration of the modulated spin components m̃α(Q) for the wave vector Q = (q, 0, 0).

The numbers represent the relative amplitudes of m̃α(Q) along the direction denoted by red arrows

(i.e. α = c, Q, or c×Q). g-i, The corresponding data measured in Phase V (1.3 T).
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On the basis of these analyses, we conclude that the Phase V in the present GdRu2Ge2

represents the double-Q square vortex lattice state.

Note that the square vortex lattice state (Figs. 4e in the main text) is characterized by

the vortex and anti-vortex arrangement of in-plane spin component, as well as the spatially

uniform out-of-plane spin component. In this case, the local spin texture can wrap only

less than a half of sphere (i.e. |Nsk| < 1/2), and this phase cannot be considered as the

meron/anti-meron lattice.

II. MAGNETIC DOMAINS

As discussed in the main text, the four-fold symmetry is broken in Phases II and III.

When the magnetic structure breaks the symmetry of the original crystal structure, there

Domain α (Phase II)

h

k

QA

QB

QA’
QB’ h

k

QA
QB
QA’

QB’

= h

k

Domain β (Phase II)

Supplementary Fig. 2: Magnetic domains in Phase II. Left (middle) panel indicates the

reciprocal-space distribution of magnetic satellites and the corresponding real-space spin texture

m(r) for domain α (β). Right panel indicates the overall reciprocal-space magnetic scattering

patten expected from the coexistence of domains α and β, which corresponds to Fig. 2p in the

main text.
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should appear multiple equivalent magnetic domains that are converted into each other

by the broken symmetry elements. In the present case, there should appear at least two

magnetic domains α and β related by four-fold rotation, as shown in Supplementary Fig.

2. Domain α is characterized by the QA = (q1, 0, 0), QA′ = (0, q2, 0), QB = (q1/2, q2/2, 0)

and QB′ = (−q1/2, q2/2, 0), while the domain β is characterized by the QA = (0,−q1, 0),

QA′ = (q2, 0, 0), QB = (q2/2,−q1/2, 0) and QB′ = (q2/2, q1/2, 0). In both cases, the relations

QA = QB − QB′ and QA′ = QB + QB′ are satisfied. These two magnetic domains are

degenerate in energy for B ∥ [001] and expected to coexist in nearly equal populations. It

leads to the reciprocal-space magnetic scattering pattern, as shown in the right panel of

Supplementary Fig. 2, which corresponds to Figs. 2p and q in the main text.

Note that the crystal structure of the present compound is centrosymmetric, while the

spin textures in Phases I - IV break the space inversion symmetry. It leads to the appearance

of at least two possible helicity domains that are converted into each other by the space-

inversion operation. For example, in the skyrmion lattice phases (Phases II and IV), the

right-handed and left-handed skyrmion domains, characterized by the clockwise and counter-

clockwise swirling manner of in-plane spin component, will coexist with the equal population

ratio. These helicity domains produce the same magnetic scattering pattern, and therefore

do not affect the analysis of RXS results.

III. RECONSTRUCTION OF REAL-SPACE SPIN TEXTURE BASED ON THE

RXS DATA

In this section, we explain the detailed procedures to reproduce the real-space magnetic

structure based on the RXS results. First, we performed rocking-curve scans for the magnetic

satellites at the (4, 0, 0)±Q position, and evaluated their exact values of Iπ−π′ and Iπ−σ′ by

performing the polarization analysis of scattered X-ray. By using Eq. (3) in the main text,

we identified the amplitudes of m̃c, m̃Q and m̃c×Q component for QA = (q1, 0, 0), QA′ =

(0, q2, 0), QB = (q1/2, q2/2, 0), QB′ = (−q1/2, q2/2, 0), QC = (q1, q2, 0) andQC′ = (−q1, q2, 0)

for Phases II, III, IV and V, as summarized in Supplementary Table I. In Phases II and

III, the population ratio of domains α to β has been identified from the Iπ−π′ intensities for

Q = (q1, 0, 0) and Q = (0, q1, 0).

On the basis of the experimentally deduced m̃α(Qν) values, the magnetic structure in

5



each magnetic phase is obtained by

m(r) = ecm
0
c +

∑

α,ν

eαm̃α(Qν)sin(Qν · r+ θQν
α ). (S1)

where α represents the directions c, Q or c×Q. m0
c is the uniform magnetization component

in the B ∥ [001] direction, which is estimated from the experimental M -B profile. While

the phase θQν
α cannot be directly determined from the X-ray scattering experiments, the

localized character of Gd3+ magnetic moment should result in the spatially uniform |m(r)|
distribution. By using this constraint, the appropriate θQν

α values can be uniquely identified.

To satisfy this condition, we attempted to deduce the relative phases θQν
α that provide

the most uniform |m(r)| distribution. For this purpose, the mean square deviation σ2
norm of

the local magnetic moment length |m(r)| is defined as

σ2
norm =

1

A

∫
dr

(
|m(r)| − |m(r)|

)2

, (S2)

Supplementary Table I: Modulated spin components m̃α(Qν) in Phases II, III, IV and V, deduced

from the RXS experiments performed at 6 K. Here, we assume q1 < q2 for Phases II and III and

q1 = q2 for Phases IV and V. M sat
c is the saturated M for B ∥ [001].

Q
QA = (q1, 0, 0)

QA′ = (0, q2, 0)

QB = (q1/2, q2/2, 0)

QB′ = (−q1/2, q2/2, 0)

QC = (q1, q2, 0)

QC′ = (−q1, q2, 0)
(0, 0, 0)

Phase II

m̃c×Q(QA) = 1.00

m̃c(QA) = 0.89

m̃c×Q(QA′) = 0.59

m̃c(QA′) = 0.24

m̃c×Q = 0.39

m̃c = 0.59

m̃c×Q = 0.08

m̃c = 0.15
m̃0

c = 0.23M sat.
c

Phase III

m̃c×Q(QA) = 0.58

m̃c(QA) = 0.35

m̃Q(QA) = 0.26

m̃c×Q(QA′) = 0.38

m̃c(QA′) = 0.12

m̃c×Q = 0.11

m̃c = 0.46

m̃Q = 0.08

— m̃0
c = 0.41M sat.

c

Phase IV
m̃c×Q = 0.43

m̃c = 0.18

m̃c×Q = 0.15

m̃c = 0.30

m̃c×Q = 0.03

m̃c = 0.07
m̃0

c = 0.57M sat.
c

Phase V m̃c×Q = 0.48 — — m̃0
c = 0.72M sat.

c
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Supplementary Fig. 3: Reconstruction of magnetic structure m(r) for Phase IV, based

on Eq. (S1) and m̃α(Qν) determined by RXS experiments. a-c, Superposition of two

screw spin textures characterized by (a) QA = (q, 0, 0) and QA′ = (0, q, 0), (b) QB = (q/2, q/2, 0)

and QB′ = (−q/2, q/2, 0), and (c) QC = (q, q, 0) and QC′ = (q,−q, 0). The black arrows and

background color represent the in-plane and out-of-plane components of local magnetic moments

m(r), respectively. d, Superposition of a-c, which provides the square skyrmion lattice. Here,

the relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution (See

text for the detail). e, The real-space distribution of |m(r)| for the spin texture in d. The small

amount of non-uniform component remaining in the |m(r)| profile is associated with the higher-

order harmonics neglected in the present model. f-j, The corresponding ones for the magnetic

structure calculated with inappropriate θQν
α , which results in much more inhomogeneous |m(r)|

distribution than the one shown in panel e, as shown in j.
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Supplementary Fig. 4: Reconstruction of magnetic structure m(r) for Phases II, III and

IV based on RXS results. a-c, List of θQν
α that provides the most uniform |m(r)| distribution

for Phase II. d, The corresponding magnetic structure m(r) reconstructed based on Eq. (S1) with

θQν
α listed in a-c and m̃α(Qν) in Supplementary Table I experimentally deduced from RXS results.

e, The real-space distribution of local magnetic moment amplitude |m(r)| for the spin texture in

d. f-i and j-n, The corresponding ones for Phases III and IV, respectively.
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with |m(r)| representing the averaged magnetic moment length given by

|m(r)| = 1

A

∫
dr|m(r)|. (S3)

Here, the integral is calculated for a magnetic unit cell and A represents its area. For Phases

II, III, and IV, we exhaustively investigated all the possible combinations of θQi
α (= 0, π/2,

π, and 3π/2), and deduced the real-space spin texture that provides the smallest σ2
norm value.

Supplementary Figs. 3a-e schematically illustrate the reconstruction process of the real-

space spin texture for Phase IV. Supplementary Figs. 3a, b and c indicate the superposition

of two screw spin modulations with the wave vectors QA and QA′ , QB and QB′ , and QC

and QC′ , respectively. By further taking their superposition based on Eq. (S1) with the

appropriate θQi
α values as listed in Supplementary Figs. 3a-c, the square lattice of skyrmions

(Supplementary Fig. 3d) with almost uniform |m(r)| distribution (Supplementary Fig. 3e)

can be obtained. Note that the small amount of non-uniform component remaining in the

|m(r)| profile is associated with the higher-order harmonics neglected in the present model.

On the other hand, when the inappropriate θQi
α values are assumed, the |m(r)| distribution

becomes much more inhomogeneous as shown in Supplementary Figs. 3f-j.

Similar analyses were performed for Phases II, III, and IV. Supplementary Fig. 4 sum-

marizes the reconstructed m(r) and |m(r)| profiles as well as associated θQi
α values giving

the smallest σ2
norm. They are characterized by almost uniform |m(r)| distribution, and these

spin textures are shown in Figs. 4b-d in the main text. Note that the appearance of similar

spin textures are also predicted by the theoretical simulation (Fig. 5 in the main text and

Supplementary Note VIII), which supports the validity of the present analysis.

IV. RXS MEASUREMENT OF THE HIGHER-ORDER MAGNETIC REFLEC-

TIONS

In Fig. 2 in the main text, magnetic refection peaks corresponding to QA ∼ (q, 0, 0) and

QB ∼ (q/2, q/2, 0) have been identified. In this section, we further explore the higher-order

magnetic reflections corresponding to QC ∼ (q, q, 0) and QD ∼ (2q, 0, 0). Supplementary

Figs. 5g-i summarize the positions of magnetic reflections for Phases II, III and IV, observed

in the RXS measurement. We focused on the magnetic satellite reflections around the

reciprocal lattice point (4, 0, 0), and performed two kinds of line scans C and D corresponding

9



to the blue and green arrows in Supplementary Fig. 5g, respectively.

Supplementary Figs. 5a-c indicate the (4−τ, −2q0+τ, 0) line profiles (i.e. line scan C) in

Phases II, III and IV, measured to identify the magnetic reflections corresponding to QC. A

line 
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Supplementary Fig. 5: RXS measurement for the higher-order magnetic satellite peaks.

a-c, Line profiles of (4− τ, −2q0 + τ, 0) scan (i.e. line scan C) to identify Q ∼ (q, q, 0) magnetic

satellite peaks around the fundamental Bragg spot (4, 0, 0) for Phases II (0.92 T), III (1.03 T),

and IV (1.13 T). The definition of q0 is shown in (g). Each experimental data (closed circles) is

fitted by one or two Gaussian functions. d-f, Line profiles of (4 − δ, 0, 0) scan (i.e. line scan D)

to identify Q ∼ (2q, 0, 0) magnetic satellite peaks around the fundamental Bragg spot (4, 0, 0) for

Phases II-IV. g-i, Reciprocal-space distribution of magnetic satellite reflections for Phases II-IV.

The directions of line scans C and D are shown in g. Closed and open circles in g and h represent

the contributions of magnetic domains α and β, respectively.

10



sharp reflection peak was identified in Phase IV (Supplementary Fig. 5c), which corresponds

to the (4−q,−q, 0) reflection. On the other hand, two reflection peaks corresponding to (4−
q1,−q2, 0) and (4−q2,−q1, 0) were found in Phase II, where the four-fold symmetry is broken

and the coexistence of two equivalent magnetic domains α and β leads to the appearance

of two peak structure as detailed in Supplementary Note II. In Phase III, no reflection peak

was identified in the line scan C (Supplementary Fig. 5b). We have further performed

the polarization analysis for these magnetic reflections, and the results are summarized in

Supplementary Table 1.

In the similar manner, the (4 − δ, 0, 0) line profiles (i.e. line scan D) were measured to

identify the magnetic reflections corresponding to QD, and the results for Phases II, III, and

IV are plotted in Supplementary Figs. 5d-f. In this case, a magnetic reflection peak was

detectable only in the Phase IV, and no peak was identified in Phases II and III.

Here, the observed scattering intensity for QD (QC) is at least two (one) orders of mag-

nitude smaller than the fundamental reflection QB (Figs. 2k-m in the main text). Such

small harmonic components little affect the magnetic structure. On the basis of the above

results, we consider only QA, QB and QC for the reconstruction of real-space spin texture

in Supplementary Note III.

V. MERON/ANTI-MERON SPIN TEXTURES IN PHASE III

As discussed in the main text, topological charge density nsk(r) for two-dimensional spin

texture m(r) is generally defined as

nsk(r) =
1

4π
·
(
∂n

∂x
× ∂n

∂y

)
, (S4)

where n(r) = m(r)/|m(r)| is the unit vector along the local magnetic moment m(r). Its

spatial integral Nsk =
∫
nsk(r)dxdy corresponds to the net topological charge, which repre-

sents how many times the spin directions wrap a sphere. In general, meron and anti-meron

represent the spin texture m(r) with Nsk = −1/2 and +1/2, respectively[S2, S3, S4]. Sup-

plementary Figs. 6c and d (Supplementary Figs. 6e and f) indicate examples of meron

(anti-meron) spin textures, where the spin directions always wrap a half of unit sphere and

the in-plane spin component shows vortex-type (anti-vortex-type) arrangement.

On the basis of the above framework, we analyze the spin texture in Phase III. Sup-
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plementary Fig. 6a indicates the magnetic structure m(r) in Phase III, obtained by the

theoretical simulation in the main text. This spin texture can be considered as the combina-

tion of Supplementary Figs. 6c and e, i.e. a pair of meron and anti-meron. To confirm the

validity of this picture, the corresponding spatial distribution of topological charge density

nsk(r) is plotted in Supplementary Fig. 6b. Here, the magnetic unit cell is indicated by the
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Supplementary Fig. 6: Topological charge density distribution in Phase III (meron/anti-

meron crystal state). a, The magnetic structure m(r) in Phase III obtained by the simulated

annealing, which is identical with Fig. 5e in the main text. The black arrows and background color

represent the in-plane and out-of-plane component of local magnetic moment m(r), respectively.

b, Corresponding topological charge density distribution nsk(r) in Phase III. The background color

represents the amplitude of nsk calculated based on Eq. (S4). Magnetic unit cell is indicated with

dotted lines in a and b. c-f, Examples of meron and anti-meron spin textures characterized by

Nsk = −1/2 and Nsk = +1/2, respectively. g-j, Their projections onto a unit sphere.
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dashed square, and its upper and lower half are characterized by the positive and negative

sign of local topological charge, respectively. It supports that the spin texture in Phase III

can be regarded as the meron/anti-meron lattice.

In terms of the nsk(r) distribution, the presently identified meron/anti-meron pair is

identical with so-called type-II magnetic bubble. This object can behave like a particle

(i.e. ”molecule” of meron and anti-meron) as a whole[S5], since the opposite sign of out-of-

plane spin component between the core and edge region causes sizable energy barrier for its

elimination. Previously, type-II magnetic bubbles were studied in ferromagnetic thin films

with dipolar/exchange interactions and perpendicular anisotropy, while they usually appear

as a meta-stable state and their typical diameter was in order of several micrometers[S7].

In contrast, our present results revealed that the competition of itinerant-electron-mediated

interactions can stabilize a meron/anti-meron pair even in the equilibrium ground state,

whose diameter (2.7 nm) is three orders of magnitude smaller than the typical magnetic

bubbles.

Note that the vortex lattice spin texture in Phase V (Fig. 5g in the main text) was

often termed as ”meron/anti-meron-like” state in the previous literature[S6]. In this state,

however, the local spin texture can wrap only less than a half of sphere (i.e. |Nsk| < 1/2)

due to the uniform out-of-plane spin component, and Phase V cannot be considered as a

genuine meron/anti-meron lattice state.

VI. PHOTON ENERGY DEPENDENCE OF MAGNETIC X-RAY SCATTERING

Supplementary Fig. 7 indicates the photon-energy dependence of the X-ray fluorescence

excitation and the magnetic scattering intensity for the (4− δ, 0, 0) reflection with δ = 0.21

measured at B = 0. A resonance peak was observed at E ∼ 7.935 keV, which corresponds

the Gd L2 absorption edge representing the transition from 2p orbital to 5d orbital of Gd.

This result proves that the observed RXS results indeed reflect the magnetic properties of

the Gd sites.
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Supplementary Fig. 7: Photon-energy dependence of the X-ray reflection and fluores-

cence excitation. Closed red symbols show the scattering intensity of the (4− δ, 0, 0) magnetic

X-ray reflection with δ = 0.21 measured at 6 K and 0 T. The maximum value at E ∼ 7.935 keV

corresponds to the Gd L2 absorption edge. Blue open symbols represent the X-ray fluorescence

excitation.

VII. NEUTRON SCATTERING PROFILES IN PHASES I, II, III, IV AND V

In this section, we discuss the results of neutron scattering experiments for GdRu2Ge2.

To reduce the large neutron absorption of Gd, the energy of the incident neutron beam

was tuned to 153.5 meV by using a high-resolution Fermi chopper, as detailed in Methods

section.

Supplementary Fig. 8b indicates the magnetic-field dependence of magnetization M ,

as well as the wavenumber q and integrated intensity of the (q, 0, 0) magnetic reflection,

measured for B ∥ [001] at 6 K. The magnetic phase transitions characterized by step-like

magnetization anomalies are accompanied by an abrupt change of q-value and/or integrated

intensity. These behaviors are in accord with the ones observed by the resonant X-ray

scattering experiments in Figs. 2b-d in the main text.

In Supplementary Figs. 8c-g, reciprocal-space distribution of neutron scattering intensity

for the (hk0) plane measured in Phases I, II, III, IV, and V are plotted. These data revealed

the magnetic satellites at (−1, 1, 0)±Q or (0,−1, 0)±Q positions. Here, magnetic reflections
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Supplementary Fig. 8: Neutron scattering experiments in Phases I, II, III, IV and V for

GdRu2Ge2. a, Schematic illustration of the setup for the neutron scattering measurements. kin

and kout represent the propagation vectors of incident and scattered neutron beams, respectively.

b, Magnetic-field dependence of magnetization M , wavenumber q, and integrated intensity for the

(q, 0, 0) magnetic reflection. M in the upper panel of b is measured by using a SQUID magnetome-

ter. In the middle panel of b, the error bars are tentatively plotted based on the standard errors for

the Gaussian fitting of experimental data. Note that the actual error bars would be much larger,

because of the small unintended misalignment of the crystal orientation that is inevitable for the

high-energy neutron scattering experiments with limited wave-number resolution. c, Reciprocal-

space distribution of neutron scattering intensity around the (−1, 1, 0)±Q position measured for

Phase I (B = 0). d-g, The corresponding data around the (0,−1, 0) ± Q position for Phases II,

III, IV and V, measured at B = 0.9, 1.0, 1.1 and 1.3 T, respectively.
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corresponding to QA = (q, 0, 0) are always observed, and additional peaks corresponding to

QB ∼ (q/2, q/2, 0) appear in Phases II, III, and IV. These results are consistent with the

scattering patterns identified by the RXS experiments (Fig. 2 in the main text).

Note that the imbalance of scattering intensity between the (±q,−1, 0) and (0,−1± q, 0)

peaks in Supplementary Figs. 8d-g arises from the selection rule of neutron scattering. In

general, the neutron scattering intensity I ∝ |m̃⊥(Q)|2 reflects the modulated spin compo-

nent normal to the scattering vector (m̃⊥(Q)). In case of the (0,−1, 0) ±Q reflection, the

scatting vector is almost parallel to the [010] direction, and therefore the scattering intensity

should mainly reflect the [100] and [001] component of m̃(Q). According to Supplementary

Table 1, the [100] component of m̃(Q) for QA = (q, 0, 0) is much smaller than the one for

QA′ = (0, q, 0), which explains the stronger scattering intensity in the (0,−1 ± q, 0) reflec-

tions. While both QA and QA′ also possess the common [001] component of m̃(Q), its

amplitude is gradually suppressed as B ∥ [001] increases. It causes the larger imbalance of

scattering intensity between QA and QA′ for larger B, in consistent with the experimental

observations.

Here, the employment of high-energy neutron compromises the wave-number resolution

in the reciprocal space, which leads to much broader magnetic reflection peaks than the

resonant X-ray scattering experiments. As a result, the two distinctive magnetic satellite

peaks at the (q1, 0, 0) and (q2, 0, 0) positions for Phases II and III (Fig. 2 in the main text)

are observed as a broad single peak in the present case. In Supplementary Fig. 8b, the

error bar for the q-value is tentatively plotted based on the asymptotic standard errors of

the peak positions in the least-squares fitting analysis for the observed neutron diffraction

profiles using Gaussian functions. Nevertheless, the actual error bar would be much larger

due to possible imperfections in aligning the single-crystal sample with respect to the inci-

dent neutron beam, which is inevitable for the high-energy neutron small-angle scattering

experiments with limited wavenumber resolution. This effect is particularly large for the

(q, 0, 0) magnetic reflection considered in Supplementary Fig. 8b, characterized by the

small neutron scattering angle (∼ 1.8◦). The above factors cause the slight inconsistency of

q-value between Supplementary Fig. 8b (i.e. neutron scattering) and Fig. 2c in the main

text (i.e. resonant X-ray scattering). Considering the compromised wave-number resolution

in the former neutron data, the latter X-ray data should be more reliable.
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VIII. THEORETICAL SIMULATION OF STABLE MAGNETIC STRUCTURES

FOR B ∥ [001]

To understand the microscopic origin of nontrivial magnetic orders and successive mag-

netic phase transitions in GdRu2Ge2, we performed the simulated annealing for the two-

dimensional square lattice system based on the effective magnetic Hamiltonian derived from

the Kondo lattice model[S8, S9, S10] given by

H = −2J
∑

ν,α,β

Γαβ
Qν

m̃α(Qν)m̃β(Qν)−
∑

i

B ·m(ri) (S5)

with α, β = [100], [010], [001] and Qν = QA,QA′ ,QB,QB′ . m̃(Qν) is the Fourier transform

of the real-space distribution of classical localized spin m(ri), whose amplitude is fixed at

|m(ri)| = 1. Here, the first and second terms represent RKKY interaction and Zeeman

energy, respectively. We suppose the situation shown in Supplementary Figs. 9a and b,

where the bare susceptibility χ(Q) of itinerant electron shows the first maxima atQA = (q, 0)

and QA′ = (0, q) with q = 2π/5, and the relatively large values at QB = (q/2, q/2) and

QB′ = (−q/2, q/2) satisfying the relation QA = QB −QB′ and QA′ = QB +QB′ . Such χ(Q)

distribution can be naturally realized by considering the nesting of the Fermi surfaces, for

example[S8, S10]. For these ordering vectors, we adjusted the value of interaction tensors

Γαβ
Qν

to satisfy the tetragonal lattice symmetry, weak easy-axis anisotropy, and the relation

χ(QA) = χ(QA′) > χ(QB) = χ(QB′); J = 1, κ = 0.86, γ1 = 0.9, γ2 = 0.91675, and

γ3 = 0.0725 for Γxx
QA

= Γyy
QA′ = γ1γ2, Γ

yy
QA

= Γxx
QA′ = γ1, Γ

zz
QA

= Γzz
QA′ = 1, Γxx

QB
= Γyy

QB
=

Γxx
QB′ = Γyy

QB′ = κγ1, −Γxy
QB

= −Γyx
QB

= Γxy
QB′ = Γyx

QB′ = κγ3, for Γ
zz
QB

= Γzz
QB′ = κ.

Supplementary Fig. 9c indicates the magnetic-field dependence of magnetization M ,

scalar spin chirality N ′
sk, and various m̃α(Qν) components for B ∥ [001] theoretically calcu-

lated based on Eq. (S5). The definition of scalar spin chirality N ′
sk is provided in Methods

section, which becomes non-zero for Nsk ̸= 0. The simulation results predict the appearance

of successive magnetic phase transitions (Phase I → II → III → IV → V → FM). Here,

the spin components modulated with QB and QB′ appear only in the Phases II, III, and

IV, and the emergence of finite scalar spin chirality is confirmed for the Phases II and IV.

Theoretically obtained spin texture m(r) for each magnetic phase is summarized in Figs.

5c-g in the main text, which well reproduces the experimentally deduced ones in Figs. 4a-e

in the main text. The overall good agreement between the theoretical and experimental
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Supplementary Fig. 9: Theoretically simulated magnetic-field dependence of spin tex-

tures. a,b, Schematic illustration of bare susceptibility χ(Q) distribution considered in the ef-

fective magnetic Hamiltonian Eq. (S5), which assumes the largest peaks at QA = (q, 0, 0) and

QA′ = (0, q, 0) as well as the relatively large value at QB = (q/2, q/2, 0) and QB′ = (−q/2, q/2, 0).

c, Magnetic-field dependence of magnetization M , scalar spin chirality N ′
sk (defined in Meth-

ods section) and modulated spin component mα(Qν), theoretically calculated based on magnetic

Hamiltonian in Eq. (S5) with magnetic field B applied normal to the square lattice. Msat. and

Bc represents the saturated magnetization and the critical magnetic field to obtain fully polarized

ferromagnetic (FM) state, respectively. Phases II and IV are highlighted by yellow and blue shad-

ows.
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results supports the validity of our magnetic structure analysis in Supplementary Note III,

and suggests that the magnetism in GdRu2Ge2 is well captured by Eq. (S5).

Note that a non-centrosymmetric chiral magnet Co8Zn9Mn3 was previously reported

to exhibit a transition between the square meron lattice and hexagonal skyrmion lattice

states[S3]. Nevertheless, the skyrmion formation in this compound requires DM interaction,

and the mechanism of observed meron-skyrmion transition has not been fully clarified yet.

On the other hand, our present results demonstrate that more intricate manner of multi-

step topological magnetic transitions (among elliptic skyrmion, meron/anti-meron pair and

circular skyrmion) can be realized even in a centrosymmetric compound without DM inter-

action. Its skyrmion diameter is almost two orders of magnitude smaller than the traditional

DM-based mechanism. Our analysis revealed that a novel mechanism, i.e. the competition

of RKKY interactions at inequivalent wave vectors, is the key for the observed multi-step

topological transitions, which will contribute to the better understanding and further explo-

ration of non-trivial topological magnetic quasi-particles in centrosymmetric systems.

IX. MICROSCOPIC ORIGIN OF DIFFERENT MAGNETIC PHASE DIAGRAMS

BETWEEN GDRU2GE2 AND GDRU2SI2

In this section, to better understand the origin of the multi-step topological phase transi-

tions in GdRu2Ge2, we analyze the key difference between the previously studied GdRu2Si2

and the present GdRu2Ge2. In case of GdRu2Si2, the M -B profile for B ∥ [001] shows only

a single intermediate step, where the square lattice of circular skyrmion is realized[S11].

On the other hand, GdRu2Ge2 hosts three intermediate magnetization steps, which corre-

spond to the square lattice states of elliptic skyrmion, meron/anti-meron pair, and circular

skyrmion.

To understand the magnetism in these systems, we performed the simulated annealing

for the two-dimensional square lattice system based on the effective magnetic Hamiltonian

given by

H = −2
∑

ν

{
JλQν +

K

N
λ2
Qν

}
−
∑

i

B ·m(ri) (S6)

with

λQν =
∑

α,β

Γαβ
Qν

m̃α(Qν)m̃β(Qν), (S7)
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Supplementary Fig. 10: Theoretical simulation with and without the competition of

RKKY interactions at inequivalent wave vectors. a,b, Schematic illustration of bare sus-

ceptibility χ(Q) distribution with the peak structures atQA = (q, 0) andQA′ = (0, q). c, Magnetic-

field dependence of magnetization M and scalar spin chirality N ′
sk (defined in Methods section),

theoretically calculated based on magnetic Hamiltonian in Eq. (S6) and χ(Q) distribution in a.

Here, the value of interaction tensor Γαβ
Qν

for Qν = QA is the same as the ones used for Eq. (6)

in the main text or Eq. (S5) in Supplementary Note VIII, while the one for Qν = QB is zero.

d, Theoretically simulated magnetic structure m(r) in Phases IV’, obtained at B = 0.39Bc. e-j,

The corresponding ones for the χ(Q) distribution with the largest peaks at QA and QA′ as well

as relatively large value at QB = (q/2, q/2) and QB′ = (−q/2, q/2). In this case, the values of

interaction tensor Γαβ
Qν

for Qν = QA and Qν = QB are the same as the ones used for Eq. (6) in the

main text or Eq. (S5) in Supplementary Note VIII. h, i and j indicate theoretically simulated mag-

netic structures in Phases II, III, and IV, obtained at B = 0.33Bc, B = 0.45Bc, and B = 0.56Bc,

respectively. Note that K = 0.1 is assumed throughout this figure, in contrast to Supplementary

Fig. 9 that assumes K = 0.
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which was originally derived from Kondo lattice model in Ref. [S8, S9, S10]. Here, J(≡ 1)

and K represent the amplitude of RKKY and four-spin interactions, respectively. The

definition of each symbol is common with Eq. (S5). In the following, we assume K = 0.1,

and explore how the magnetic interactions at inequivalent wave vectors affect the magnetic

phase diagram.

First, we consider the magnetic interactions at QA = (q, 0) and QA′ = (0, q) only. It

corresponds to the magnetic susceptibility distribution χ(Q) as shown in Supplementary

Figs. 10a and b, which is characterized by χ(Q) peaks at ±QA and ±QA′ . Supplementary

Fig. 10c indicates the magnetic field dependence of magnetizationM and scalar spin chirality

N ′
sk calculated by the simulated annealing based on Eq. (S6). The magnetization profile

shows only a single intermediate step (Phase IV’), and it represents the square lattice of

circular skyrmion (Supplementary Fig. 10d). This model well reproduces the magnetic

phase diagram in GdRu2Si2[S6].

Next, we consider the magnetic interactions at QB = (q/2, q/2) and QB′ = (q/2,−q/2),

in addition to the ones at QA and QA′ . It corresponds to the magnetic susceptibility dis-

tribution χ(Q) as shown in Supplementary Figs. 10e and f, where the largest peaks appear

at ±QA and ±QA′ and relatively large value appear at ±QB and ±QB′ . The simulated

magnetic field dependence of M and N ′
sk is plotted in Supplementary Fig. 10g. In this case,

there appear three intermediate magnetization steps (Phases II, III and IV), which repre-

sent the square lattice of elliptic skyrmion, meron/anti-meron pair, and circular skyrmion,

respectively (Supplementary Figs. 10h-j). It well reproduces the experimental behavior of

GdRu2Ge2. When K = 0 is assumed, this model becomes identical with Eq. (S5) in Supple-

mentary Note VIII. Even in the latter case without four-spin interaction K, the same phase

transition process (Phases II → III → IV) is obtained as shown in Supplementary Fig. 9.

The above analyses indicate that the competition of RKKY interactions at inequivalent

wave vectors QA and QB is the key for the appearance of multi-step topological phase

transitions in GdRu2Ge2, and the four-spin interaction K is not essential. This is distinct

from previous theoretical models proposed for GdRu2Si2, where only the interaction at QA

was considered. The present results demonstrate that the competition of RKKY interactions

at inequivalent wave vectors QA = (q, 0) and QB = (q/2, q/2) (typically induced by the

nesting of Fermi-surfaces along multiple directions[S8, S10]) can be a novel promising route

to realize a rich variety of topological magnetic quasi-particles in a single compound, which
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would be a good guideline for further exploration of non-trivial swirling spin textures.

X. ANALYSIS OF HALL RESISTIVITY PROFILES

In this section, we discuss the microscopic origin of Hall signals in GdRu2Ge2. Supple-

mentary Figs. 11a and b indicate the magnetic-field dependence of magnetization M and

Hall resistivity ρyx measured for B ∥ [001] at various temperatures. At 2 K, a series of

step-like anomalies are observed in the magnetization profile, which represent the magnetic

phase transitions among the Phases I, II, III, IV, and V. Correspondingly, Hall resistivity

profile also shows peak-like enhancement in Phases II and IV (i.e. shaded regions in Sup-

plementary Fig. 11b). These anomalies become weaker at higher temperature, and the ρyx

peak structures disappear above 26 K. On the basis of these data, the B-T magnetic phase

diagram is summarized in Figs. 1h and i in the main text.

As discussed in the main text, Hall resistivity ρyx is generally described as

ρyx = ρNyx + ρAyx + ρTyx = R0B +RsM + PR0Bem, (S8)

where ρNyx ∝ B and ρAyx ∝ M represent the normal and anomalous Hall terms, respectively

(R0 and Rs are the coefficients for the respective terms)[S2, S12, S13]. According to recent

theoretical studies, anomalous Hall effect can originate from the intrinsic and extrinsic mech-

anisms, which are characterized by the relations Rs ∝ ρ2xx and Rs ∝ ρxx, respectively[S13].

The third term ρTyx represents the topological Hall effect, which scales with the emergent

magnetic-field Bem = (h/e)nsk in proportion to skyrmion density nsk[S2, S13]. P represents

the spin polarization ratio of conduction electrons.

Supplementary Fig. 11c indicates the magnetic-field dependence of magnetization M ,

longitudinal resistivity ρxx, and Hall resistivity ρyx measured at 6 K for B ∥ [001]. In

the bottom panel of Supplementary Fig. 11c, we also plotted the calculated profiles of

ρAyx ∝ Mρ2xx and ρAyx ∝ Mρxx to estimate the expected B-dependence of anomalous Hall term

ρAyx associated with the intrinsic and extrinsic mechanisms, respectively. In both cases, the

experimentally observed sharp enhancement of ρyx in Phases II and IV cannot be reproduced

by ρAyx, which suggests that these anomalies rather originate from the topological Hall term

ρTyx.

The RXS experiments for GdRu2Ge2 have revealed that Phases II and IV are charac-
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terized by skyrmion lattice spin textures with skyrmion density nsk ∼ 1/(2.7 nm)2. The

normal Hall coefficient R0 (= 7.5 nΩ cm/T at 6 K) can be estimated from the slope of ρyx-B

profile in the saturated ferromagnetic state (Fig. 1j in the main text). If we assume the spin

polarization ratio P ∼ 0.01 (in the same order as P ∼ 0.07 reported for Gd2PdSi3[S14]),

the expected amplitude of topological Hall signal is ρTyx = PR0(h/e)nsk ∼ 0.04 µΩ cm. This

well reproduces the observed amplitude of peak-like ρyx anomalies for Phases II and IV in

Supplementary Fig. 11c, indicating that they can be reasonably ascribed to the topological
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Supplementary Fig. 11: Magnetic and electrical transport properties of GdRu2Ge2 mea-

sured at various temperature. a,b, Magnetic-field dependence of magnetization M and Hall

resistivity ρyx measured for B ∥ [001] at various temperatures. Each data is arbitrarily shifted

along the vertical direction for clarity. Dotted lines indicate the temperature development of mag-

netic phase boundaries. Two peak structures in ρyx, probably representing the topological Hall

term ρTyx, are highlighted by the shadows. c, Magnetic-field dependence of M , longitudinal resis-

tivity ρxx, and ρyx measured at 6 K. The expected B-dependence of anomalous Hall term ρAyx,

calculated based on ρAyx ∝ Mρ2xx and ρAyx ∝ Mρxx assuming the intrinsic and extrinsic mechanism,

respectively, are also plotted in the bottom panel.
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Hall effect associated with skyrmion spin texture.

Note that the large change of ρyx value is also observed at the transition between the

Phase V (square vortex lattice spin state with Nsk = 0) and higher-B phases (Figs. 1h

and j in the main text). Similar behavior has also been reported for the isostructural

GdRu2Si2[S11], although their microscopic origin is not clear at this stage. According to

latest theoretical studies, the emergence of chiral Hall effect[S19], associated with the close

link between the real- and momentum-space Berry phase, is often expected for non-collinear

magnet even with Nsk = 0. In addition, nontrivial Hall response may originate from vari-

ous scattering processes such as electron-phonon, electron-skyrmion and skyrmion-skyrmion

interactions[S15, S16, S17, S18]. To fully understand the ρyx-B profiles for GdRu2Ge2, fur-

ther theoretical studies and the detailed information on the electron, magnon and phonon

band structures would be required.

XI. FUTURE PERSPECTIVE

In this section, we discuss several remaining issues for the future study.

A. Enhancement of magnetic ordering temperature.

Toward the potential application, further enhancement of magnetic ordering temperature

is important. The present theoretical model based on Eq. (6) in the main text suggests

that the rare-earth intermetallic compounds with highly symmetric crystal lattice would

be promising for the realization of multi-step topological phase transitions. To enhance

the magnetic ordering temperature, the employment of (a) higher density of magnetic rare-

earth ions and/or (b) magnetic 3d-transition metal ion would be effective. Previously, many

room temperature rare-earth ferromagnets, such as SmCo5[S20] and Gd7Pd3[S21], have been

identified based on these approaches. By tuning the balance of RKKY interactions in such

systems, the multi-step topological phase transition may be realized at higher temperature.

24



B. Real-space observation of spin texture.

In principle, the Lorentz transmission electron microscopy (LTEM) technique will allow

the real-space imaging of spin texture in each phase. Nevertheless, the magnetic modulation

period in GdRu2Ge2 (2.7 nm) is almost close to the resolution limit of this technique, and

such experiments are extremely difficult. In Ref. [S11], some of the present authors reported

the atomic-resolution LTEM images in the square skyrmion lattice state, while this has been

achieved by using the magnetic condenser-objective lens that inevitably generates 1.95 T of

out-of-plane magnetic field. In other words, such a high spatial resolution cannot be achieved

for different amplitude of magnetic field. We have once tried LTEM for GdRu2Ge2, while

no meaningful magnetic contrast could be obtained due to the above reason. The direct

real-space observation of spin texture is the issue for the future study.

C. Skyrmions with higher density.

When we consider skyrmion particles as information carriers, further exploration of

smaller size of skyrmions would be important to achieve the higher information density[S2].

According to the present theoretical model based on Eq. (6) in the main text, the skyrmion

diameter is governed by the RKKY interaction and electronic band structure. To realize

smaller size of skyrmions, the tuning of Fermi-surface and associated nesting vector may

be effective. In addition, the amplitude of fictitious magnetic field is proportional to the

skyrmion density, and such a small size of skyrmion is expected to host a giant topological

Hall effect. This phenomenon may contribute to the efficient electrical readout of topological

magnetic states[S12, S14].

D. Response to various external stimuli.

As discussed in Supplementary Note X, the conduction electrons interacting with

skyrmion spin texture with non-zero topological charge Nsk feel a fictitious magnetic field

in proportion to the skyrmion density, and it leads to the appearance of topological Hall

effect[S12]. In the similar manner, various off-diagonal response associated with fictitious

magnetic field, such as topological magneto-optical Kerr effect[S22] and topological Nernst

effect[S23], can be expected.
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In principle, the observed magnetic quasi-particles (elliptic skyrmion, meron/anti-meron

pair, and circular skyrmion) in GdRu2Ge2 will be transformable into each other by various

external stimuli (such as electric current and mechanical strain), because of their pseudo

degeneracy and sizable energy barrier[S24]. The further exploration of the above phenomena

would be an interesting topic for future study.
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