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Abstract: We theoretically investigated the coupling between the exciton internal and center-of-mass 

motions in monolayer transition metal dichalcogenides subjected to a periodic electrostatic potential. The 

coupling leads to the emergence of multiple absorption peaks in the exciton spectrum which are the 

hybridizations of 1s, 2s and 2p± Rydberg states with different center-of-mass momentums. The energies 

and wave functions of hybrid states can be strongly modulated by varying the profile of the periodic 

electrostatic potential, which well reproduces the recent experimental observations. Combined with the 

electron-hole exchange interaction, non-degenerate valley-coherent bright excitons can be realized by 

applying an in-plane electric field, with the valley coherence determined by the field direction. 

 

I. Introduction 

The exciton is a hydrogen-like bound state formed by an electron and a hole 

through their Coulomb interaction. In atomically thin layers of semiconducting 

transition metal dichalcogenides (TMDs), exceptionally strong Coulomb interactions 

are exhibited between charged carriers due to the reduced dielectric screening in two-

dimensional (2D) systems. Therefore, excitons play a key role in photonic and 

optoelectronic properties of TMDs [1-3]. A free exciton can be viewed as a two-body 

system with a wave function consisting of a center-of-mass (CoM) part and an internal 

part describing the electron-hole relative motion. Similar to the 2D hydrogen atom, the 

exciton internal motion manifests as a series of discrete Rydberg states 1s, 2s, 2p±, … 

[4-7]. For these free excitons, s-type Rydberg states with zero CoM momentums are 

optically active and feature large oscillator strengths. Excitons in monolayer TMDs are 

found to exhibit various novel properties, including strong binding energies and small 

Bohr radii [8-12], non-hydrogenic Rydberg series [4-6], valley-dependent optical 

selection rules [13-17] and tunable exciton valley pseudospin through optical and 

magnetic fields [18-24]. 

Lateral superlattice potentials in 2D materials can serve as a novel platform for 

exploring exotic quantum phenomena [3,25]. In van der Waals stackings of layered 2D 

materials, the formation of long-wavelength moiré patterns with spatially modulated 

atomic registries can naturally introduce a superlattice potential [26-29]. Recent 

mailto:yuhy33@mail.sysu.edu.cn


 

 

experiments have revealed rich correlated insulating states [30-34] in moiré patterns of 

bilayer TMDs, demonstrating their great potential for quantum simulation. Besides, 

carriers in 2D layered materials are susceptible to external perturbations due to the 

atomically thin geometry, making possible the external implementation of superlattice 

potentials. In monolayers with the absence of moiré patterns, superlattice potentials 

with wavelengths ~ 100 nm have been introduced by periodic strain patterning [35,36]. 

Meanwhile, the spatially inhomogeneous charge distribution in moiré patterns of 

twisted TMDs, hexagonal boron nitride (hBN) and graphene layers can also generate 

periodic electrostatic potentials in adjacent 2D layers, with wavelengths ~ 10 nm 

adjustable through the twist angle [37-43]. In these moiré systems, twisted bilayer 

graphene (TBG) has attracted widespread attention for its large and dynamically 

tunable carrier density. The moiré patterned TBG can generate strong superlattice 

potentials in adjacent 2D layers and significantly alter their electronic properties. 

Early studies about the moiré effect on excitons focus on the modulation of exciton 

CoM motion by the superlattice potential [28,29]. Very recently, several experiments 

have shown that the absorption of high-energy Rydberg excitons in monolayer TMDs 

can be largely affected by the carrier distribution in an adjacent TBG moiré pattern 

[40,43]. When the moiré wavelength reaches λ ~ 20 nm or larger, monolayer TMDs 

exhibits multiple absorption peaks near the energy of 2s Rydberg exciton, which red-

shift significantly when increasing the carrier density in TBG. In this work, we 

developed a theoretical model to describe the behavior of excitons in monolayer TMDs 

subjected to a periodic electrostatic potential. Our analysis indicates that the exciton 

internal and CoM motions are coupled by the periodic electrostatic potential, resulting 

in eigenstates being the hybridizations of s- and p-type Rydberg states with different 

CoM momentums. Oscillator strengths of 1s and 2s excitons are then redistributed into 

multiple hybrid states, giving rise to additional absorption peaks. The simulated exciton 

spectrum based on our model can well reproduce experimental observations. We also 

propose to realize non-degenerate valley-coherent hybrid excitons by applying an in-

plane electric field, which have linearly polarized optical selection rules with the 

polarization direction determined by the field direction. 

The remainder of this paper is organized as follows. In Sec. II we give theoretical 

models for excitons subjected to a periodic electrostatic potential. In Sec. III we present 

the calculated optical spectrum of excitons in the TMDs/TBG system under different 

doping densities and moiré wavelengths. Sec. IV discusses the tunable valley coherence 

of the exciton by an in-plane electric field. A brief conclusion is presented in Sec. V. 

II. Theoretical models for excitons under a periodic electrostatic potential 

We consider a van der Waals heterostructure formed by a monolayer TMDs and 

an adjacent TBG moiré pattern as illustrated in Fig. 1(a). The spatially periodic charge 

density in TBG (see Fig. 1(b) for an illustration) can remotely generate a periodic 

electrostatic potential in monolayer TMDs. Writing the potential applied on the electron 

in monolayer TMDs as 𝑈(𝐫e), a hole then feels a potential −𝑈(𝐫h). Here 𝐫e/h is the 



 

 

spatial coordinate of the electron/hole. The exciton Hamiltonian in monolayer TMDs 

can be written as �̂� = �̂�𝑋 + �̂�𝑋, with 

�̂�𝑋 = −
ℏ2

2𝑀

𝜕2

𝜕𝐑2
−

ℏ2

2𝜇

𝜕2

𝜕𝐫2
 + 𝑉(𝐫), 

�̂�𝑋 = 𝑈(𝐫e) − 𝑈(𝐫h) = 𝑈 (𝐑 +
𝑚h

𝑀
𝐫) − 𝑈 (𝐑 −

𝑚e

𝑀
𝐫). 

(1) 

Here �̂�𝑋  corresponds to the free exciton Hamiltonian with 𝑉(𝐫)  the electron-hole 

Coulomb interaction, and �̂�𝑋  is the total external electrostatic potential. 𝐑 ≡
𝑚e

𝑀
𝐫e +

𝑚h

𝑀
𝐫h  and 𝐫 ≡ 𝐫e − 𝐫h  are the CoM and electron-hole relative coordinates, 

respectively. 𝑀 = 𝑚e + 𝑚h ≈ 𝑚0 is the exciton mass (𝑚0 is the free electron mass), 

and 𝜇 = 𝑚e𝑚h/𝑀 is the reduced mass. The eigenstate |𝐐, 𝑛𝑙⟩ ≡ |𝐐⟩|𝑛𝑙⟩ of �̂�𝑋 can 

be separated into a CoM wave function |𝐐⟩ in the plane form, and an electron-hole 

relative wave function in the discrete Rydberg state |𝑛𝑙⟩ (𝑛𝑙 = 1𝑠, 2𝑠, 2𝑝±, …) which 

describes the exciton internal motion [4-7]. The energy of |𝐐, 𝑛𝑙⟩ is 
ℏ2𝐐2

2𝑀
+ 𝐸𝑛𝑙 . Note 

that here we didn’t take into account the electron-hole exchange interaction, which 

doesn’t affect the main results and will be considered in detail in Sec. IV below. 

𝑈(𝐑) is a slowly varying potential in a length scale of the moiré wavelength 𝜆 

∼ 20 nm, significantly larger than the exciton Bohr radius (∼ 2 nm for 1s state [10-

12]). Consequently, we adopt a linear expansion 𝑈(𝐑 ±
𝑚h e⁄

𝑀
𝐫) ≈ 𝑈(𝐑) ±

𝑚h e⁄

𝑀
𝐫 ⋅

∇𝑈(𝐑) and write 

�̂�𝑋 ≈ 𝐫 ⋅ ∇𝑈(𝐑) = 𝑖𝐫 ⋅ ∑ 𝐆𝑈(𝐆)𝑒𝑖𝐆⋅𝐑

𝐆≠0

. (2) 

In the above last step, we have expanded the periodic function 𝑈(𝐑) into the Fourier 

series 𝑈(𝐑) = ∑ 𝑒𝑖𝐆⋅𝐑𝑈(𝐆)𝐆 , with G the reciprocal lattice vector of the superlattice. 

�̂�𝑋   couples two states |𝐐, 𝑛𝑙⟩  and |𝐐′, 𝑛′𝑙′⟩  with an angular momentum 

difference 𝑙 − 𝑙′ = ±1  and a CoM momentum difference 𝐐 − 𝐐′ = 𝐆 , with the 

coupling matrix element 

⟨𝐐, 𝑛𝑙|�̂�𝑋|𝐐′, 𝑛′𝑙′⟩ = 𝑖 ∑ 𝛿𝐐−𝐐′,𝐆𝑈(𝐆)𝐆 ⋅ ⟨𝑛𝑙|�̂�|𝑛′𝑙′〉

𝐆≠0

 

= ∑ 𝛿𝐐−𝐐′,𝐆𝑡𝑛′𝑙′
𝑛𝑙 (𝐆) 

𝐆≠0

. 

(3) 

The exciton Hamiltonian can then be written in the form �̂� = ∑ �̂�𝐐𝐐∈mBZ   (mBZ 

stands for the superlattice mini-Brillouin zone), with 



 

 

�̂�𝐐 = ∑ ∑ (
ℏ2(𝐐 + 𝐆)2

2𝑀
+ 𝐸𝑛𝑙) |𝐐 + 𝐆, 𝑛𝑙⟩⟨𝐐 + 𝐆, 𝑛𝑙|

𝑛𝑙𝐆

+ ∑ ∑ 𝑡𝑛′𝑙′
𝑛𝑙 (𝐆 − 𝐆′)|𝐐 + 𝐆, 𝑛𝑙⟩⟨𝐐 + 𝐆′, 𝑛′𝑙′|

𝑛𝑙,𝑛′𝑙′𝐆≠𝐆′

. 

(4) 

By diagonalizing the above Hamiltonian, the 𝑛𝑋 -th exciton branch becomes the 

hybridization of various Rydberg states: 

|Φ𝑛𝑋 ,𝐐⟩ = ∑ ∑⟨𝐐 + 𝐆, 𝑛𝑙|Φ𝑛𝑋,𝐐⟩|𝐐 + 𝐆, 𝑛𝑙⟩

𝑛𝑙𝐆

. (5) 

For optically active bright excitons, momentum conservation requires Q = 0. Note that 

due to the mixing between different |𝑛𝑙⟩, the angular momentum 𝑙 for the electron-

hole relative motion is no longer a good quantum number. In experiments, 𝑈(𝐫e/h) is 

generated by a triangular-type moiré pattern with the in-plane 2π/3 rotation (Ĉ3) 

symmetry [37-43], see Fig. 1(b). In this case, �̂�3|Φ𝑛𝑋,𝐐=0⟩ = 𝑒−𝑖
2𝜋

3
𝐶3X |Φ𝑛𝑋,𝐐=0⟩ , 

where C3X corresponds to the sum of Ĉ3 quantum numbers for CoM and internal 

motions. Bright excitons must have C3X = 0. 

 
FIG. 1. (a) A schematic illustration of the van der Waals heterostructure formed by a monolayer TMDs 

and an adjacent TBG moiré pattern vertically separated by d. The periodic charge density in the moiré 



 

 

pattern generates an electrostatic potential in the monolayer TMDs, where the electron and hole feel 

potentials 𝑈(𝐫e) and −𝑈(𝐫h), respectively. (b) The 2D map of the charge distribution, with the density 

maxima located at AA sites in TBG. The inset shows the superlattice mini-Brillouin zone (black hexagon) 

and reciprocal lattice vectors ±𝐛𝑛  (red arrows) and ±𝐛𝑛
′  (blue arrows). (c) Dispersions of free exciton 

Rydberg states 1s, 2s and 2p±. Q is the exciton CoM momentum. Double arrows denote couplings 

induced by the periodic electrostatic potential. (d) A schematic of the oscillator strength redistribution. 

The Q = 0 bright 1s and 2s excitons are coupled directly (indirectly) to dark 2p± (1s/2s) excitons with 

finite CoM momentums, thus redistribute their oscillator strengths into multiple hybrid states. 

 

Considering that 𝑈(𝐑)  is a smooth function of R, |𝑈(𝐆)|  should decrease 

rapidly with |𝐆| . Below we only consider 𝑈(𝐆)  with 𝐆 = ±𝐛1,2,3  which are 

nonzero reciprocal lattice vectors with the smallest magnitude, see Fig. 1(b). 𝑈(𝐑) 

induced by a TBG moiré pattern is expected to be Ĉ3- and inversion-symmetric, 

resulting in 𝑈(±𝐛1) = 𝑈(±𝐛2) = 𝑈(±𝐛3) = 𝑈0. For the free exciton state |𝐆, 𝑛𝑙⟩, 

we shall only keep 𝐆 = 0, ±𝐛1,2,3 and ±𝐛1,2,3
′ , where ±𝐛1

′ , ±𝐛2
′ , ±𝐛3

′  are nonzero 

reciprocal lattice vectors with the second-smallest magnitude, see Fig. 1(b). We also 

focus on the four lowest-energy Rydberg states with 𝑛𝑙 = 1𝑠, 2𝑠 and 2𝑝±, see Fig. 

1(c). Because of the nonlocal screening effect of 2D layered materials, 𝐸2𝑠  is slightly 

higher than 𝐸2𝑝±
 [6]. Here we set 𝐸2𝑠 − 𝐸2𝑝±

 = 5 meV considering that the binding 

energies of 2s and 2p± excitons are weak when near TBG [37,40]. The six degenerate 

states |±𝐆⟩, |±�̂�3𝐆⟩ and |±�̂�3
2𝐆⟩ for the exciton CoM motion with G ≠ 0 can be 

reformulated into a series of Ĉ3-symmetric basis states |𝜓𝐶3,CoM,𝐺⟩  and |�̅�𝐶3,CoM,𝐺⟩ 

with even and odd parities, respectively, whose forms are summarized in Table I. Here 

C3,CoM represents the Ĉ3 quantum number of the CoM wave function, and the resultant 

total Ĉ3 quantum number of the exciton is C3X = C3,CoM + 𝑙 (mod 3), with 𝑙 = 0, +1 and 

−1 for s, p+ and p− Rydberg states, respectively. When referring to bright excitons with 

even parity and C3X = 0, the involved basis states are |𝐐 = 0, 𝑛𝑠⟩ , |𝜓0,𝑏 , 𝑛𝑠⟩ ≡

|𝜓0,𝑏⟩|𝑛𝑠⟩, |𝜓0,√3𝑏, 𝑛𝑠⟩, |�̅�−,𝑏, 2𝑝+⟩, |�̅�+,𝑏, 2𝑝−⟩, |�̅�−,√3𝑏 , 2𝑝+⟩ and |�̅�+,√3𝑏 , 2𝑝−⟩. 

After taking into account the coupling effect between exciton internal and CoM 

motions with a strength characterized by |𝑡𝑛𝑠
2𝑝| = 𝑈0𝑏|⟨2𝑝±|�̂�|𝑛𝑠〉|, a bright eigenstate 

|Φ𝑛𝑋,𝐐=0〉 becomes the hybridization of |0, 𝑛𝑠⟩, |𝜓0,𝑏, 𝑛𝑠⟩, |𝜓0,√3𝑏, 𝑛𝑠⟩, |�̅�∓,𝑏 , 2𝑝±⟩ 

and |�̅�∓,√3𝑏, 2𝑝±⟩ . The oscillator strengths of free excitons |𝐐 = 0,1𝑠⟩  and |𝐐 =

0,2𝑠⟩ are thus redistributed into a series of bright hybrid states with different energies, 

giving rise to multiple absorption peaks in the exciton spectrum as observed in 

experiments. 

 



 

 

TABLE I. Equation forms of Ĉ3- and inversion-symmetric basis states |𝜓𝐶3,CoM,𝐺⟩ and |�̅�𝐶3,CoM,𝐺⟩ for 

the exciton CoM motion with G ≠ 0. We have used the notations 𝐆0 ≡ 𝐆, 𝐆1 ≡ �̂�3𝐆, 𝐆2 ≡ �̂�3
2𝐆 and 

𝐆𝑗 ≡ −𝐆𝑗. 

C3,CoM Even parity for the CoM motion Odd parity for the CoM motion 

0 |𝜓0,𝐺⟩ ≡
1

√6
∑(|𝐆𝑗⟩ + |�̅�𝑗⟩)

2

𝑗=0

, |�̅�0,𝐺⟩ ≡
1

√6
∑(|𝐆𝑗⟩ − |�̅�𝑗⟩)

2

𝑗=0

, 

+1 |𝜓+,𝐺⟩ ≡
1

√6
∑ 𝑒𝑖

2𝜋
3

𝑗(|𝐆𝑗⟩ + |�̅�𝑗⟩)

2

𝑗=0

, |�̅�+,𝐺⟩ ≡
1

√6
∑ 𝑒𝑖

2𝜋
3

𝑗(|𝐆𝑗⟩ − |�̅�𝑗⟩)

2

𝑗=0

, 

−1 |𝜓−,𝐺⟩ ≡
1

√6
∑ 𝑒−𝑖

2𝜋
3

𝑗(|𝐆𝑗⟩ + |�̅�𝑗⟩)

2

𝑗=0

, |�̅�−,𝐺⟩ ≡
1

√6
∑ 𝑒−𝑖

2𝜋
3

𝑗(|𝐆𝑗⟩ − |�̅�𝑗⟩)

2

𝑗=0

. 

 

III. Results for monolayer transition metal dichalcogenides on twisted bilayer 

graphene 

To gain some quantitative results, it is instructive to apply the above theoretical 

model to a realistic system and compare it to experimental results. In a TBG moiré 

pattern, doped carriers will accumulate at AA-stacked regions, resulting in a periodic 

charge distribution [40,43]. We approximate the charge at each AA site by a Gaussian 

wavepacket (see Fig. 1(a,b)), and write the total charge density distribution in the TBG 

moiré pattern as 

𝜌(𝐑) =
𝜈

𝜋𝛿𝑅2
∑ 𝑒

−
(𝐑−𝐑𝑙)2

𝛿𝑅2

𝑙

. (6) 

Here 𝐑𝑙 is the center position of l-th AA site, and the wavepacket width 𝛿𝑅 should 

vary with the carrier density quantified by 𝜈 which is the filling factor in each moiré 

supercell. ν = 1 corresponds to a density 2𝜆−2 √3⁄  ≈ 2.09×1011 cm-2 for λ = 23.5 nm 

(the case of θ = 0.6° in Ref. [40]), and ν = 4 fully fills the first moiré mini-band. 𝜌(𝐑) 

in TBG can generate a periodic electrostatic potential 𝑈(𝐑) = ∑ 𝑒𝑖𝐆⋅𝐑𝑈(𝐺)𝐆   in the 

adjacent TMDs monolayer, with [44] 

𝑈(𝐺) ≈ 𝜈
𝑏

𝜖𝜆𝐺

𝑒−𝐺2𝛿𝑅2 4⁄ −𝐺𝑑

(1 + 𝑟0𝐺)(1 + 𝑟0
′𝐺) − 𝑟0𝑟0

′𝐺2𝑒−2𝐺𝑑
. (7) 

Here 𝑏 ≡
4𝜋

√3𝜆
 is the length of the primitive reciprocal lattice vector and d ≈ 0.6 nm is 

the interlayer spacing between the monolayer TMDs and TBG. 𝑟0  and 𝑟0
′  are 

screening lengths of monolayer TMDs and TBG, respectively. 𝑟0 ≈ 4.5/𝜖  can be 

obtained from first-principles calculations [45], but 𝑟0
′ is not known. Considering that 

the presence of the adjacent TBG can significantly reduce the exciton binding energy 



 

 

in TMDs [37,40], we expect 𝑟0
′ to be much larger than 𝑟0. The wavepacket width 𝛿𝑅 

is expected to increase with ν due to the Pauli exclusion and Coulomb repulsion 

between carriers, which for simplicity can be approximated by a linear relation. 

Meanwhile 𝛿𝑅 should be nearly independent on the moiré wavelength for λ ~ 10 nm 

or larger, due to the lattice reconstruction effect which keeps the area of AA region in 

TBG fixed (~ 2.6 nm) [40]. Below we set 𝑟0
′ = 70/𝜖  and 𝛿𝑅 = 2(1 + 0.1𝜈)  nm, 

which are found to give good agreement between theoretical and experimental results. 

 

Fig. 2 (a) The coupling strength |𝑡2𝑠
2𝑝

| as a function of ν under 𝜖 = 5 and λ = 12, 23.5 and 35 nm, which 

corresponds to 1.18°, 0.6° and 0.4° TBG, respectively. (b) The calculated optical absorption spectra as 

functions of 𝜈, for λ = 23.5 nm. (c) The Rydberg state and CoM momentum compositions for the bright 

states  to  in (b). Different colors denote different magnitudes of the CoM momentum. 

 

The carrier density ν in TBG can affect the Hamiltonian in Eq. (4). First and most 

importantly, the resultant electrostatic potential gives rise to finite coupling strengths 



 

 

|𝑡𝑛𝑠
2𝑝| = 𝑈0𝑏|⟨2𝑝±|�̂�|𝑛𝑠〉| in Eq. (4). |⟨2𝑝±|�̂�|𝑛𝑠〉|, determined by the wave function 

extension of |𝑛𝑠〉 and |2𝑝±〉, is expected to be in the order of 1-10 nm. By setting 𝜖 

= 5 (the dielectric constant of the surrounding thick hBN layers in experiments), 

|⟨2𝑝±|�̂�|2𝑠〉|  = 7.5 nm and |⟨2𝑝±|�̂�|1𝑠〉|  = 1 nm, values of |𝑡2𝑠
2𝑝| = 7.5|𝑡1𝑠

2𝑝|  as 

functions of ν under λ = 12, 23.5 and 35 nm are shown in Fig. 2(a). We can see that 

|𝑡2𝑠
2𝑝| increases linearly with ν in the low-density limit, but decays exponentially under 

a high density. Second, the screening effect of doped carriers in TBG can correct both 

the electronic band gap and the exciton binding energy in monolayer TMDs. 

Experiments have been shown that, the two corrections almost cancel each other for the 

1s exciton such that its energy remains constant under different carrier densities with 

𝐸1𝑠 ≈ 1.70 eV [37]. On the other hand, the 2s exciton red shifts significantly with the 

increase of the carrier density (~ 5 meV under 1012 cm−2) due to the reduced energy 

splitting 𝐸2𝑠 − 𝐸1𝑠 . By fitting the experimental result in Ref. [40], we write 𝐸2𝑠 ≈

1.79 eV − √
2𝜈

√3𝜆2 × 10−12 cm2 × 5 meV. 

We emphasize that the purpose of selecting the above parameter values is to 

reproduce the experimental observations in Ref. [40], and the resultant optical spectrum 

of excitons from our model under λ = 23.5 nm is shown in Fig. 2(b) (also see Fig. A1 

for a comparison between the theoretical and experimental results). Here the brightness 

of the eigenstate |Φ𝑛𝑋,𝐐=0〉 is characterized by its normalized oscillator strength given 

by 

|⟨vac|�̂�|Φ𝑛𝑋,𝐐=0⟩|
2

|⟨vac|�̂�|1𝑠⟩|2
= |⟨𝐐 = 0,1𝑠|Φ𝑛𝑋 ,𝐐=0⟩ +

⟨vac|�̂�|2𝑠⟩

⟨vac|�̂�|1𝑠⟩
⟨𝐐 = 0,2𝑠|Φ𝑛𝑋,𝐐=0⟩|

2

. (8) 

Here ⟨vac|�̂�|𝑛𝑠⟩ is the optical dipole with |vac〉 denoting the vacuum state, and we set 

|⟨vac|�̂�|1𝑠⟩|2 = 9|⟨vac|�̂�|2𝑠⟩|2 which comes from the numerically calculated 1s and 

2s exciton wave functions [46]. We can see that multiple (at least 6) bright branches 

emerge under the effect of the periodic electrostatic potential. The Rydberg orbital and 

CoM momentum compositions for the selected states  to  are indicated in Fig. 

2(c). The lowest-energy branch with the largest brightness is dominated by |𝐐 = 0,1𝑠⟩, 

whose energy exhibits a relatively small shift due to the large difference 𝐸2𝑝±
− 𝐸1𝑠  ≈ 

90 meV. The 2nd (3rd) lowest-energy branch with an energy ≈
ℏ2𝑏2

2𝑀
+ 𝐸1𝑠  (≈

3ℏ2𝑏2

2𝑀
+

𝐸1𝑠) is dominated by |𝜓0,𝑏 , 1𝑠⟩ (|𝜓0,√3𝑏, 1𝑠⟩), which becomes bright due to the finite 

fraction of |0,1𝑠⟩ when ν falls in a suitable range. The 4th (5th) bright branch is the 

strong hybridization of |𝐐 = 0,2𝑠⟩ , |𝜓0,𝑏, 2𝑠⟩  and |�̅�∓,𝑏, 2𝑝±⟩  ( |𝐐 = 0,2𝑠⟩ , 

|𝜓0,𝑏, 2𝑠⟩ and |�̅�∓,√3𝑏, 2𝑝±⟩), whereas the 6th branch is dominated by |𝜓0,√3𝑏, 2𝑠⟩. 



 

 

When ν increases from close to 0, the 4th and 5th branches first red shift linearly, and 

then blue shift after ν reaching a critical value νm. Such a behavior originates from the 

near degeneracy between 𝐸2𝑠   and 𝐸2𝑝   together with the large coupling strength 

|𝑡2𝑠
2𝑝|. At a critical carrier density νm ≈ 20 which gives the largest |𝑡2𝑠

2𝑝
| (see the solid 

green line in Fig. 2(a)), a maximum energy shift ∆𝐸m~70 meV for the 4th branch is 

achieved (state   in Fig. 2(b)). These behaviors can well reproduce experimental 

observations in Ref. [40,43]. Compared to state  *, state   exhibits a significant 

fraction of 1s state due to the small energy difference between  and .  

Fig. 3(a) indicates the real-space CoM density distributions ∫ 𝑑𝐫|Φ𝑛𝑋,𝐐=0(𝐑, 𝐫)|2 

for states  to  in Fig. 2(b), which are found to show standing wave patterns with 

maximum values located near AA sites. It is known that due to the opposite charges of 

the electron and hole, a spatially homogeneous electrostatic potential only affects the 

exciton’s internal motion but not its CoM motion. The results in Fig. 3(a) indicate that 

the exciton’s CoM motion can be localized by a periodic electrostatic potential that 

spatially modulates the exciton’s internal motion. Considering the strong oscillator 

strength of |𝐐 = 0,1𝑠⟩ , these bright exciton branches then have nano-patterned 

spatially inhomogeneous couplings to the optical field. Meanwhile, the coupled internal 

and CoM motions for exciton state  in Fig. 2(b) can be more directly visualized by 

the distinct electron-hole relative motions when fixing R at two different positions. Fig. 

3(b) and 3(c) indicate the electron-hole relative wave function for R located at AB and 

AA, respectively. Φ𝑛𝑋 ,𝐐=0(𝐀𝐁, 𝐫)  is similar to 1s, whereas Φ𝑛𝑋,𝐐=0(𝐀𝐀, 𝐫)  shows 

the superposition state of 2s and 2p±. 

 
Fig. 3 (a) The real-space CoM density distributions ∫ 𝑑𝐫|Φ𝑛𝑋,𝐐=0(𝐑, 𝐫)|2 for the bright exciton states 

 to  in Fig. 2(b). The density distribution of * is similar to that of . (b) The real-space wave 

function for the electron-hole relative motion of state  when the CoM position R is fixed at AB. (c) 

The relative wave function of state  when R is fixed at AA. 



 

 

We have shown in Fig. 2(a) that the moiré wavelength λ can greatly affect the 

coupling strength |𝑡𝑛𝑠
2𝑝

|. To reveal how the hybrid excitons are influenced by λ, we 

calculated the exciton spectra for two other wavelengths distinct from λ = 23.5 nm. The 

spectrum under a relatively short wavelength λ = 12 nm is shown in Figs. 4(a), where 

the weaker |𝑡𝑛𝑠
2𝑝

| value results in fewer bright branches compared to Fig. 2(b). Now the 

two branches with energies ≈
ℏ2𝑏2

2𝑀
+ 𝐸1𝑠   and ≈

3ℏ2𝑏2

2𝑀
+ 𝐸1𝑠   become too dark to 

observe. Meanwhile, the maximum energy shift ΔEm at the critical density νm is also 

significantly smaller (~ 30 meV vs. ~ 70 meV under λ = 23.5 nm). Fig. 4(b) summarizes 

the wavelength dependences of ΔEm and νm. With the increase of λ, both ΔEm and νm 

become larger. νm has an approximately linear dependence on λ, whereas ΔEm increases 

sub-linearly with λ, in good agreement with the experimental observation [40,43]. Fig. 

4(c) is the spectrum under a large wavelength λ = 35 nm, where the lowest-energy state 

 has a much larger red-shift and significantly weaker brightness compared to that in 

Fig. 2(b). In contrast, states  and  become much brighter. To see more clearly the 

underlying mechanism, we turn off the coupling |𝐐, 1𝑠⟩ ↔ |𝐐′, 2𝑝±⟩  by artificially 

setting 𝑡1𝑠
2𝑝

 = 0, and show the resultant spectrum as dashed cyan curves in Fig. 4(c). It 

indicates that the large wavelength of the periodic electrostatic potential induces a 

strong coupling between |𝐐 = 0,2𝑠⟩, |𝜓0,𝑏, 2𝑠⟩ and |�̅�∓,𝑏, 2𝑝±⟩, such that the energy 

of their hybridized state can be shifted to below 𝐸1𝑠 . After taking into account the finite 

𝑡1𝑠
2𝑝

 value, low-energy states  to  become the strong hybridizations of |𝐐 = 0,1𝑠⟩, 

|𝜓0,𝑏, 1𝑠⟩ , |𝜓0,√3𝑏 , 1𝑠⟩ , |�̅�∓,𝑏, 2𝑝±⟩  and |𝐐 = 0,2𝑠⟩ . Such a behavior is further 

confirmed by Fig. 4(d) which shows the Rydberg state and CoM momentum 

compositions for states   to  . All Rydberg states |1𝑠⟩ , |2𝑠⟩  and |2𝑝±〉  exhibit 

significant fractions in the lowest-energy state . 

The above theoretical results change quantitatively with values of parameters like 

𝑟0
′, |⟨2𝑝±|�̂�|2𝑠〉|, 𝛿𝑅, etc., but the main conclusion that the exciton internal and center-

of-mass motions are coupled does not change. A comparison between different sets of 

parameters is given in Appendix, where we can see parameters of 𝑟0
′ = 70/𝜖  nm, 

|⟨2𝑝±|�̂�|2𝑠〉| = 7.5 nm, |⟨2𝑝±|�̂�|1𝑠〉| = 1 nm and 𝛿𝑅 = 2(1 + 0.1𝜈) nm used in Fig. 

2(b) result in optical spectrum in good agreement with the experiment. 



 

 

 

Fig. 4 (a) The calculated optical spectrum under a relatively short wavelength λ = 12 nm. (b) The moiré 

wavelength dependence of the maximum energy shift ∆𝐸m and the critical density νm. The top 

horizontal axis indicates the twist angle of TBG for the corresponding λ value. (c) The calculated 

optical spectrum under a large wavelength λ = 35 nm. The dashed cyan curves correspond to the result 

after turning off the coupling |𝐐, 1𝑠⟩ ↔ |𝐐′, 2𝑝±⟩, i.e., artificially setting 𝑡1𝑠
2𝑝

 = 0. (d) The Rydberg 

state and CoM momentum compositions for the four bright states  to  in (c). 

 

IV. Tunable valley coherence and optical selection rules by an in-plane electric 

field 

In the above analysis, the valley pseudospin of bright excitons in monolayer TMDs 

is not considered. Below we use |𝐐, 𝑛𝑙〉|±〉 to denote the ±K-valley exciton in |𝑛𝑙⟩ 

Rydberg state with a CoM momentum Q, then each bright hybrid state shown in Fig. 

2(b) and Fig. 4(a,c) exhibits a valley degeneracy. The free bright excitons |0, 𝑛𝑠〉|±〉 

exhibit a circularly polarized valley optical selection rule [13-17], with their coherent 

superpositions coupling to linearly polarized photons [17]. Meanwhile, two free 

excitons |𝐐, 𝑛𝑠〉|±〉 in opposite valleys can be coupled by the electron-hole exchange 

interaction (Fig. 5(a)), with the exchange Hamiltonian given by [1] 

�̂�ex = ∑ 𝐽𝑛𝑠𝑄|𝐐, 𝑛𝑠⟩⟨𝐐, 𝑛𝑠|(|+⟩⟨+| + |−⟩⟨−|)

𝑛,𝐐

+ ∑ 𝐽𝑛𝑠𝑄|𝐐, 𝑛𝑠⟩⟨𝐐, 𝑛𝑠|(𝑒−2𝑖𝜃𝐐 |+⟩⟨−| + 𝑒2𝑖𝜃𝐐|−⟩⟨+|)

𝑛,𝐐

. 

(9) 



 

 

Here 𝜃𝐐 is the direction angle of Q, 𝐽𝑛𝑠 ∝ |⟨𝐫 = 0|𝑛𝑠⟩|2 with 𝐽1𝑠 ≈ 9𝐽2𝑠~ 1 eV⋅Å, 

thus the exchange interaction is significant only for 1s state. However, �̂�ex  doesn’t 

introduce valley coherence to bright excitons with 𝑄 ≈ 0 due to the Ĉ3-symmetry of 

monolayer TMDs. For Ĉ3-symmetric basis states |𝜓0,𝐺 , 1𝑠⟩|±〉  whose components 

have finite CoM momentums (see Table I), their inter-valley couplings from �̂�ex also 

vanish due to the 𝑒±2𝑖𝜃𝐐  phase factor. Thus, the exchange interaction only leads to 

small energy shifts to bright hybrid excitons but doesn’t affect their valley pseudospins. 

Below we show that when the periodic electrostatic potential introduces a strong 

coupling between exciton internal and center-of-mass motions, an in-plane electric field 

can result in non-degenerate exciton eigenstates in the form of valley coherent 

superpositions, with the valley coherence determined by the field direction. 

 

Fig. 5 (a) The diagram for the inter-valley electron-hole exchange interaction. (b) The coupling between 

Ĉ3- and inversion-symmetric basis states in ±K valleys induced by 𝑈𝑋, �̂�ex and E. 𝑈𝑋 is the periodic 

electrostatic potential from the adjacent TBG, �̂�ex is the electron-hole exchange interaction, and E is an 

externally applied in-plane electric field. |0, 𝑛𝑠⟩ in the ±K valley can emit a σ± circularly polarized 

photon. (c) The simplified three-level model. Red (blue) color denotes the state in +K (−K) valley, 

whereas purple color denotes a superposition of two valleys. (d) The dependence of emission linear 

polarizations for the two split valley-coherent excitons with the direction of E = (Ex, Ey). 

�̂�ex introduces a finite inter-valley coupling |�̅�−,𝑏, 1𝑠〉|+⟩ ↔ |�̅�+,𝑏, 1𝑠〉|−⟩ (see 

Table I for equation forms of |�̅�±,𝑏〉 ), with the coupling strength 



 

 

⟨+|⟨�̅�−,𝑏 , 1𝑠|�̂�ex|�̅�+,𝑏 , 1𝑠⟩|−⟩ = 𝐽1𝑠𝑏 ≈  20 meV. The exchange interaction then 

results in two valley-coherent superpositions (|�̅�−,𝑏, 1𝑠〉|+⟩ + |�̅�+,𝑏 , 1𝑠〉|−⟩)/√2 and 

(|�̅�−,𝑏, 1𝑠〉|+⟩ − |�̅�+,𝑏, 1𝑠〉|−⟩)/√2  separated by 2𝐽1𝑠𝑏 ≈  40 meV. Note that 

|�̅�−,𝑏, 1𝑠〉 (|�̅�+,𝑏 , 1𝑠〉) is Ĉ3-symmetric with C3X = −1 (+1), thus doesn’t hybridize to 

bright excitons with C3X = 0 unless the system becomes Ĉ3-asymmetric. 

Applying an in-plane electric field 𝐄 = 𝐸(cos 𝜃𝐄 , sin 𝜃𝐄)  breaks the inversion- 

and Ĉ3-symmetries, which couples Rydberg states |𝑛𝑠⟩ and |2𝑝±⟩ in the same valley 

[47]. This then leads to intra-valley couplings |�̅�−,𝑏 , 1𝑠〉|+⟩ ↔ |�̅�−,𝑏, 2𝑝+〉|+〉  and 

|�̅�+,𝑏, 1𝑠〉|−⟩ ↔ |�̅�+,𝑏, 2𝑝−〉|−〉. When |�̅�∓,𝑏, 2𝑝±〉 becomes strongly hybridized with 

|0, 𝑛𝑠⟩  by the periodic electrostatic potential, 𝐄  will indirectly introduce an inter-

valley coupling between |0, 𝑛𝑠⟩|+〉 and |0, 𝑛𝑠⟩|−〉 (see Fig. 5(b)). This will give rise 

to valley-coherent bright excitons with linearly polarized optical selection rules. Taking 

state  in Fig. 4(c) or  in Fig. 2(b) as an example, below we give a rough estimation 

on the energy splitting between the resultant valley-coherent states. We expect 

(|�̅�−,𝑏, 1𝑠〉|+⟩ + |�̅�+,𝑏, 1𝑠〉|−⟩)/√2  and (|�̅�−,𝑏, 1𝑠〉|+⟩ − |�̅�+,𝑏, 1𝑠〉|−⟩)/√2  to be 

less affected by the periodic electrostatic potential, similar to states  in Fig. 2(b) and 

4(c). (|�̅�−,𝑏, 1𝑠〉|+⟩ − |�̅�+,𝑏, 1𝑠〉|−⟩)/√2  ((|�̅�−,𝑏, 1𝑠〉|+⟩ + |�̅�+,𝑏 , 1𝑠〉|−⟩)/√2 ) has 

an energy 𝐸1𝑠 +
ℏ2𝑏2

2𝑀
 (𝐸1𝑠 +

ℏ2𝑏2

2𝑀
+ 2𝐽1𝑠𝑏) close to  ( ), with a small difference Δ 

~ 10 meV. The six-level model of Fig. 5(b) can then be simplified to a three-level model 

with close energies shown in Fig. 5(c). For general values of Δ, the resultant 

perturbative inter-valley coupling strength is −
𝛼

8
|⟨2𝑝

±
|�̂�|1𝑠⟩|

2
𝐸2𝑒−2𝑖𝜃𝐄 /∆ , with 

𝛼~0.17 the fraction of |�̅�−,𝑏 , 2𝑝+〉 or |�̅�+,𝑏, 2𝑝−〉 in state  or  (see Fig. 4(c) and 

Fig. 2(b)). An in-plane electric field of E = 100 V/μm thus leads to a splitting ~10 meV 

between the formed bright states with valley pseudospins (|+⟩ ± 𝑒2𝑖𝜃𝐄 |−⟩)/√2. This 

value exceeds the exciton linewidth thus can be observed in experiments. On the other 

hand, if Δ ≈ 0 which can be tuned by the doping density ν in TBG, then the splitting 

becomes 
√𝛼

2
|⟨2𝑝

−
|�̂�|1𝑠⟩|𝐸 (~ 10 meV under E = 50 V/μm). These split valley-coherent 

states have linearly polarized optical selection rules determined by the direction of the 

applied in-plane electric field. Their linear polarization directions are longitudinal and 

transverse to E, respectively, which changes 4π when E rotates a full circle, see Fig. 

5(d). Combined with a magnetic or optical field that splits the energies of ±K valleys 

[18-24], any non-degenerate valley pseudospin state for the bright exciton can be 

realized. 

 



 

 

V.  Conclusion 

Our work theoretically investigated the coupling between the exciton internal and 

CoM motions induced by a periodic electrostatic potential. Taking the TMDs/TBG van 

der Waals structure as an example, we simulated the optical spectrum of bright excitons 

in monolayer TMDs under a periodic electrostatic potential generated by the charge 

distribution in TBG. Due to the CoM momentum dependent coupling between exciton 

ns and 2p± Rydberg states, the oscillator strengths of ns excitons are redistributed into 

a series of hybrid excitons, resulting in the emergence of additional absorption peaks. 

By varying the doping density and TBG moiré wavelength, energies of these hybrid 

eigenstates can be shifted by several tens meV, which well reproduces the recent 

experimental observations. Wave functions of hybrid eigenstates exhibit nano-patterned 

spatial modulations, with the electron-hole relative motion depending on the exciton 

CoM position. Lastly, we propose to use an in-plane electric field to tune the valley 

pseudospin of the hybridized bright exciton. Our study can serve as a theoretical 

background for the manipulation of optical properties and valley pseudospin of excitons 

in two-dimensional semiconductors through proximity controls. 
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Appendix. A comparison between experimental and theoretical optical spectra 

under different parameter sets 

Our theoretical model involves a series of system parameters whose values can 

quantitatively change the calculated exciton spectrum. In these parameters, the exciton 

energies 𝐸𝑛𝑠  can be directly obtained from experiments [40,43], the environmental 

dielectric constant is given by 𝜖 = 5 which corresponds to that of bulk hBN since the 

system is usually encapsulated by thick hBN layers, the screening length of TMDs 𝑟0 ≈

4.5/𝜖 is known from first-principles calculations [45]. However, there are uncertainties 

for values of other parameters including |⟨2𝑝±|�̂�|𝑛𝑠〉|, 𝑟0
′ (the screening length of TBG) 

and 𝛿𝑅  (the wavepacket width at AA sites of TBG). For a more comprehensive 

perspective, we vary these parameters and show the resultant exciton spectra in Fig. 

A1(a-e), with the parameter values summarized in Table II. Different sets of parameters 

lead to quantitatively different spectra, but main features, including the emergence of 

multiple bright branches and the energy shifts of higher-energy branches with ν, are 

qualitatively the same. For a comparison, the experimentally observed reflectance 

contrast spectrum is presented in Fig. A1(f). We can see that the optical spectrum in Fig. 

A1(e) (with parameters the same as Fig. 2(b)) is in good agreement with the experiment. 

We note that the additional branches in Fig. A1(f) could be due to the spatial 



 

 

inhomogeneity of the TBG moiré pattern in the experiment, which leads to spatially 

varying λ values and the coexistence of multiple energies for a given exciton branch. 

 

Table II. A summary of parameter values used in Fig. A1(a-e). Other parameters not given in the table 

are λ = 23.5 nm, 𝜖 = 5, 𝑟0  = 4.5/𝜖, 𝐸1𝑠 = 1.7 eV and 𝐸2𝑠 = 1.79 eV −√
2𝜈

√3𝜆2 × 10−12 cm2 ×5 meV. 

Figure |⟨2𝑝±|�̂�|2𝑠〉| |⟨2𝑝±|�̂�|1𝑠〉| 𝑟0
′ 𝛿𝑅 

A1(a) 10 nm 1 nm 70/𝜖 nm 2(1 + 0.1𝜈) nm 

A1(b) 7.5 nm 1 nm 50/𝜖 nm 2(1 + 0.1𝜈) nm 

A1(c) 7.5 nm 1 nm 70/𝜖 nm 3(1 + 0.1𝜈) nm 

A1(d) 7.5 nm 1 nm 70/𝜖 nm 2(1 + 0.5√𝜈) nm 

2(b) & A1(e) 7.5 nm 1 nm 70/𝜖 nm 2(1 + 0.1𝜈) nm 

 

 
Figure A1. (a-e) Theoretically calculated absorption spectra of excitons under various parameter 

selections, whose values are summarized in Table II. (f) The experimental reflectance contrast spectrum 

of a TMDs/TBG sample with λ = 23.5 nm. Details about the experiment can be found in Ref. [40]. 
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