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Fu and Kane have taught us that a Majorana zero-mode appears on the quantum spin Hall edge
at the interface with a superconductor. If a magnetic scatterer is placed on the edge, the zero-point
energy of massless edge excitations exerts a force on the scatterer. This is the fermionic analogue
of the electromagnetic Casimir effect. We show that the Majorana zero-mode produces a repulsive
Casimir force, pushing the scatterer away from the superconductor. Unlike some other signatures
of Majorana zero-modes, the repulsive Casimir force is directly tied to the topological invariant of
the system (the sign of the determinant of the reflection matrix from the superconductor).

I. INTRODUCTION

A Majorana zero-mode is a topological defect in a su-
perconductor [1]. It is described formally as a state that
is annihilated by the Hamiltonian, or informally as “half
an electron” [2–4]. It may find applications in quantum
information processing [5, 6], but it is elusive [7, 8]: Al-
though the zero-mode is a mid-gap state that can be de-
tected spectroscopically [9], there are confounding factors
in a superconductor that may produce a non-topological
mid-gap spectral peak [10].

One reason why probes of Majorana zero-modes can
be ambiguous is that they do not directly connect to
a topological invariant. In a scattering formulation the
topological invariant of a superconductor is the sign of
the determinant of the reflection matrix [11]. A negative
determinant identifies an unpaired Majorana zero-mode.
Here we wish to show how the fermionic Casimir effect
can provide such a probe.

The electromagnetic Casimir effect [12–14] refers to the
attractive force between two metal plates produced by
the zero-point energy of photons. In the fermionic ana-
logue [15] the photons are replaced by massless excita-
tions with the same linear dispersion relation, as they
appear in graphene or in topological insulators [16–21].
Non-topological Majorana fermions (not the zero-modes)
have been studied in the context of neutrino physics
[22, 23] — the Casimir effect has been proposed as a way
to distinguish Dirac fermions from Majorana fermions
[24].

To investigate how the Casimir effect is modified by the
presence of a topological Majorana zero-mode we con-
sider the geometry of Fig. 1 (inset): A segment of length
L of the conducting edge of a quantum spin Hall insu-
lator is gapped at one end by a superconductor (s-wave
gap ∆0). At the other end it is gapped by a magnetic
scatterer, which could be the tip of a scanning probe.
As pointed out by Fu and Kane [25], this topologically
nontrivial system hosts a pair of Majorana zero-modes,
one on each edge. The two edges are decoupled by the
insulating bulk, the magnetic scatterer is only influenced
by the Majorana zero-mode on the upper edge.

The magnetic scatterer will experience a Casimir force,
given by the derivative FC = −dF/dL of the free energy

FIG. 1. Casimir force on a magnetic scatterer, placed on the
edge of a quantum spin Hall (QSH) insulator at a distance
L from a superconductor. The force points away from the
superconductor. The plot gives the dependence of the Casimir
force on the transmission probability Γ of the QSH edge mode,
in the long-distance regime L ≫ ξ0 at zero temperature (Eq.
(16), with the asymptotes dashed).

with respect to the separation L to the superconductor.
The force can be attractive, pointing towards the super-
conductor, or repulsive, pointing away from it. We will
show that a repulsive Casimir force is a signature of topo-
logical superconductivity and the presence of a Majorana
zero-mode.

II. SCATTERING FORMULATION

The free energy in equilibrium at temperature T is
given by

F = −T

∫ ∞

0

dε ρ(ε) ln
[
2 cosh(ε/2T )

]
, (1)

with ρ(ε) the density of states of Bogoliubov quasiparti-
cle excitations (electrons and holes) at energy ε, relative
to the Fermi level. Spin and valley degeneracies can be
included in the density of states, but on the quantum
spin Hall edge there are no degeneracy factors. We set
ℏ and Boltzmann’s constant kB equal to unity in most
equations.
In a scattering formulation [26] the integral over real

energies can be transformed into a sum over imaginary
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Matsubara frequencies, see App. A:

F = −T

∞∑
p=0

ln det[1−RM(iωp)RS(iωp)] + Ffree,

ωp = (2p+ 1)πT.

(2)

The additional term Ffree is the free energy of the uncon-
fined quantum spin Hall edge, which does not contribute
to the Casimir force and will be omitted in what follows.

The change in the free energy due to the confinement
is expressed in terms of the product of reflection matrices
RM(ε) and RS(ε) from the magnetic scatterer (M) and
the superconductor (S). Electron-hole symmetry requires
that

RM,S(−ε) = νxR
∗
M,S(ε)νx, (3)

with νx a Pauli matrix in the electron-hole degree of free-
dom.

Time-reversal symmetry forbids back scattering along
the gapless quantum spin Hall edge [27]. Transmission
over a distance L introduces a phase shift k(ε)L for the
electron and −k(−ε)L for the hole. The resulting L-
dependence of the free energy is introduced via the sub-
stitution

RMRS = UR̃MUR̃S, U =

(
eik(ε)L 0

0 e−ik(−ε)

)
. (4)

The reflection matrices R̃M and R̃S are L-independent.
Near the Fermi energy EF we may linearize k(ε) =

kF + ε/vF, hence

U(ε) = eiεL/vFeiνzkFL. (5)

Taking also the zero-temperature limit the free energy
becomes

F = −
∫ ∞

0

dω

2π
ln det[1−e−2ωL/vFe2iνzkFLR̃M(iω)R̃S(iω)],

(6)

where we have used that R̃M commutes with νz (be-
cause the magnetic scatterer does not couple electrons
and holes).

III. CASIMIR FORCE

The Casimir force depends on the ratio L/ξ0 of
the junction length and the superconducting coherence
length ξ0 = ℏvF/∆0. In the long-distance regime L ≫ ξ0
one may neglect the energy dependence of the reflection
matrices, evaluating them at ε = 0 = ω,

F = −
∫ ∞

0

dω

2π
ln det(1− e−2ωL/vFΩ),

Ω = e2iνzkFLR̃M(0)R̃S(0).

(7)

We assume that Ω is unitary at ε = 0 (no transmis-
sion through the magnetic scatterer, we will relax this

assumption later on). The electron-hole symmetry rela-
tion

Ω∗ = νxΩνx (8)

then implies that 1) if λ is an eigenvalue of Ω, then also
λ∗ = 1/λ is an eigenvalue; and 2) the determinant of Ω
equals ±1. The determinant is +1 if the superconductor
is topologically trivial, while detΩ = −1 if the supercon-
ductor is topologically nontrivial [11]. The sign change is
due to reflection from an unpaired Majorana zero-mode.
On the quantum spin Hall edge, the condition detΩ =

−1 pins the two eigenvalues at +1 and −1, independent
of L. The free energy then evaluates to

F = − 1

2π

∫ ∞

0

dω
∑
s=±1

ln
(
1 + se−2ωL/vF

)
= − 1

2π

∫ ∞

0

dω ln
(
1− e−4ωL/vF

)
=

πℏvF
48L

. (9)

This corresponds to a repulsive Casimir force FC ∝ L−2

on the scatterer.

IV. TRIVIAL VERSUS NONTRIVIAL
SUPERCONDUCTOR

To contrast this with a conventional, trivial supercon-
ductor, we consider a more general case in which the
gapless region of length L may have multiple conducting
modes n = 1, 2, . . . N (counting degeneracies). We still
assume that there is no backscattering upon propagation
over the length L, which in the general case without topo-
logical protection will require L small compared to the
mean free path.
The wave vector kn will in general be mode dependent,

but the dependence is weak for the modes with the largest
longitudinal velocity (which give the dominant contribu-
tion to F). For simplicity we neglect the n-dependence
of kn. We thus arrive at the same equation (7), but now
Ω is a 2N × 2N unitary matrix. We consider the free
energy F± separately in the two cases detΩ = ±1.
For a trivial superconductor, if detΩ = +1, the 2N

eigenvalues of Ω come in N complex conjugate pairs
e±iϕn , with 0 ≤ ϕn ≤ π. The free energy then evalu-
ates to

F+ = − 1

π

N∑
n=1

Re

∫ ∞

0

dω ln
(
1 + e−2ωL/vFeiϕn

)
= − πℏvF

24L

N∑
n=1

(1− 3ϕ2
n/π

2). (10)

For a nontrivial superconductor, if detΩ = +1, two of
the eigenvalues of Ω are pinned on the real axis, one at
+1 and the other at −1. The other eigenvalues are still
complex conjugate pairs, hence

F− =
πℏvF
48πL

− πℏvF
24L

N∑
n=2

(1− 3ϕ2
n/π

2). (11)
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If the superconductor is disordered the scattering
phases ϕn will be uniformly distributed in (0, π), and
we may average

⟨1− 3ϕ2/π2⟩ =
∫ π

0

(1− 3ϕ2/π2)
dϕ

π
= 0 (12)

Then ⟨F+⟩ = 0 while ⟨F−⟩ = πℏvF/48L. All of this
assumes that backscattering upon propagation between
the barriers can be neglected.

V. MODEL CALCULATION

The precise formula (9) for the repulsive Casimir force
from a Majorana zero-mode assumes limiting conditions
(long distance, fully reflecting magnetic scatterer, zero
temperature). We may relax these conditions in a model
calculation.

We choose a gauge where the pair potential in the su-
perconductor is real. Its reflection matrix is [28]

R̃S(ε) = α(ε)νx, α(ε) = iε/∆0 +
√
1− ε2/∆2

0, (13)

evaluated at ε+i0+ to avoid the branch cut of the square
root. (Check that the symmetry (3) is satisfied.) The
off-diagonal Pauli matrix νx signifies Andreev reflection,
from electron to hole. Normal reflection (from electron
to electron) is forbidden by time-reversal symmetry on
the quantum spin Hall edge. The reflection matrix is
unitary below the gap, while above the gap there is also
propagation into the superconductor and R̃S decays as
1/ε.

The magnetic scatterer has only normal reflection,
with probability 1 − Γ and phase shift ±ϕ for electron
and hole,

R̃M = eiϕνz
√
1− Γ. (14)

For simplicity we do not include the energy dependence
of R̃M (assuming that the ε-dependence is on a scale large
compared to ∆0).

At zero temperature the free energy (6) is then given
by

F = −
∫ ∞

0

dω

2π
ln
[
1− (1− Γ)α(iω)2e−4ωL/vF

]
. (15)

The phase shifts kFL and ϕ drop out of the determinant
because of the identity eaνzνxe

aνz = νx for any a ∈ C.
The resulting Casimir force FC = −dF/dL has in the

long-distance regime the asymptotics

FC =
ℏvF
L2

Li2(1− Γ)

8π
, for L ≫ ξ0, (16a)

=
ℏvF
8πL2

×

{
(π2/6 + Γ lnΓ− Γ) if Γ ≪ 1,

(1− Γ) if Γ ≲ 1.
(16b)

FIG. 2. Distance dependence of the Casimir force at zero and
at nonzero temperature, on a log-log scale.

(The function Li2 is the dilogarithm.) In the opposite
short-distance regime the asymptotics is

FC =
∆0

2πξ0
(1− Γ) ln(ξ0/L), for L ≪ ξ0. (17)

The Casimir force is repulsive for all L. The 1/L2

decay for large distances becomes a logarithmic increase
for short distances, saturating at the Fermi wave length,
when FC ≃ (∆0/ξ0) ln(EF/∆0). (A similar logarithmic
increase appears in a Josephson junction [29].)
All of this is at zero temperature. At non-zero tem-

perature we sum over the discrete Matsubara frequen-
cies,

∫∞
0

dω 7→ (2πT )
∑

ωp=(2p+1)πT . The chararacter-

istic temperature scale is the smallest of ℏvF/kBL and
∆0/kB. As shown in Fig. 2, for L ≲ ξ0 the temperature
dependence is insignificant for T ≲ 0.1∆0/kB.

VI. CONCLUSION

Prospects for direct measurement of the repulsive
Majorana-Casimir force are not promising: Even in the
short-distance regime a force of order ∆0/ξ0 ≲ 10−15 N
is beyond present detection capabilities. Conceptually
the effect provides a novel connection between zero-point
fluctuations of gapless fermionic excitations and the pres-
ence of a Majorana zero-mode. The connection involves
a topological invariant, so it directly ties to the defining
property of a topological superconductor.
It is instructive to compare with other appearances of a

repulsive fermionic Casimir effect: in a carbon nanotube
[16] and in a Josephson junction [29–31]. In these topo-
logically trivial systems the Casimir force crosses over
from attractive to repulsive as a parameter is varied (the
orientation of the magnetization in the carbon nanotube
and the superconducting phase difference in the Joseph-
son junction). In contrast, here the sign of the Casimir
force is fixed by a topological invariant.
It is also of interest to compare with the electromag-

netic Casimir effect in vacuum, which may become repul-
sive if the mirrors that confine the photons break time
reversal symmetry [18, 19]. A connection with topologi-
cal invariants appears if the mirrors are Chern insulators:
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FIG. 3. Three scattering regions in series, each with their
own unitary scattering matrix.

the Casimir force is attractive or repulsive depending on
whether the Chern numbers in the two mirrors have the
same or the opposite sign [32].
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Appendix A: Free energy of a
magnet–normal–superconductor junction

To make the paper self-contained, we give the deriva-
tion of the free energy formula (2). This calculation
for a magnet–normal–superconductor junction is anal-
ogous to the calculation for a superconductor–normal–
superconductor junction of Ref. 26.

1. Scattering formulation

The scattering geometry is shown schematically in Fig.
3. It consists of three scattering regions in series, with
scattering matrices SL (tunneling through the magnetic
scatterer), S0 (propagation along the edge mode), and SR

(Andreev reflection by the superconductor). The scatter-
ing regions are connected by leads with 2N propagating
modes at energy ε.
In each region we allow for both transmission and re-

flection, via the block structure

SX =

(
rX t′X
tX r′X

)
, X ∈ {L,R, 0}. (A1)

The blocks contain the reflection submatrices rX , r′X (re-
flection from the left and from the right) and the trans-

mission submatrices tX , t′X (transmission from left-to-
right and from right-to-left). These submatrices have
dimension 2N×2N . The scattering matrix is a 4N×4N

unitary matrix, SXS†
X = 1.

The full scattering matrix S of the entire structure is
given by

S = R+ T ′S0(1−R′S0)
−1T , (A2)

where we have defined the block-diagonal matrices

R =

(
rL 0
0 r′R

)
, R′ =

(
r′L 0
0 rR

)
, (A3a)

T =

(
tL 0
0 t′R

)
, T ′ =

(
t′L 0
0 tR

)
. (A3b)

2. Density of states

Knowledge of the energy dependence of S(ε) gives the
density of states via the Friedel formula,

ρ(ε) =
1

2πi

d

dε
ln detS(ε) + ρlead(ε), (A4)

where ρlead is the density of states of the leads connecting
the scattering regions. For the Casimir effect we need to
subtract the contributions from the individual scattering
regions,

ρX(ε) =
1

2πi

d

dε
ln detSX(ε). (A5)

For that purpose we note the identities

detSX =
det r′X

det r†X
=

det(−t′X)

det t†X
, (A6)

which follow directly from the polar decomposition

SX =

(
UX 0
0 VX

)(√
1− TX −

√
TX√

TX

√
1− TX

)(
U ′
X 0
0 V ′

X

)
,

(A7)
with unitary matrices UX , VX , U ′

X , V ′
X and a diagonal

matrix of transmission probabilities TX .
We now rewrite Eq. (A2), using the unitarity relations

T T † +R′R′† = 1, R = −T ′R′†(T †)−1, (A8)

as follows:
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S = R+ T ′S0(1−R′S0)
−1T

= T ′[−R′†(T †)−1 + S0(1−R′S0)
−1T ]

= T ′[−R′†(T T †)−1 + S0(1−R′S0)
−1]T

= T ′[−R′†(1−R′R′†)−1 + S0(1−R′S0)
−1]T

= T ′[−R′†(1−R′R′†)−1(1−R′S0) + S0](1−R′S0)
−1T

= T ′[R′†R′(1−R′†R′)−1S0 −R′†(1−R′R′†)−1 + S0](1−R′S0)
−1T

= T ′[(1−R′†R′)−1S0 − (1−R′†R′)−1R′†](1−R′S0)
−1T

= T ′(1−R′†R′)−1(S0 −R′†)(1−R′S0)
−1T

= (T ′†)−1S0(1− S†
0R′†)(1−R′S0)

−1T . (A9)

The resulting density of states is

ρ(ε) = − 1

π

d

dε
Im ln det(1−R′S0)

+ ρ0 + ρL + ρR + ρlead, (A10)

where we have used Eq. (A6) to extract the contributions
from the separate scattering regions.

The change in the density of states due to the confine-
ment, δρ = ρ− ρ0 − ρL − ρR − ρlead, is then given by the
first term in Eq. (A10), which upon substitution of Eqs.
(A1) and (A3) takes the form

δρ(ε) = − 1

π

d

dε
Im ln det

(
1− r′Lr0 r′Lt

′
0

rRt0 1− rRr
′
0

)
. (A11)

In our case the normal region is a quantum spin Hall
edge, without backscattering: r0 = 0 = r′0, hence

δρ(ε) = − 1

π

d

dε
Im ln det(1−RMRS),

RM = r′Lt
′
0, RS = rRt0.

(A12)

3. Free energy

The free energy follows upon substitution of Eq. (A12)
into Eq. (1),

F =
T

π

∫ ∞

0

dε ln
[
2 cosh(ε/2T )

]
× d

dε
Im ln det[1−RM(ε)RS(ε)] + Ffree, (A13)

where Ffree is the contribution from the separate scat-
tering regions. Because of the particle-hole symmetry
relation (3) the extension of the integral to

∫∞
−∞ gives

2i times the imaginary part of the integral
∫∞
0

. Upon
partial integration we then have

F =
i

4π

∫ ∞

−∞
dε tanh(ε/2T ) ln det[1−RM(ε)RS(ε)]+Ffree.

(A14)
The integral along the real energy axis converges

slowly. To convert it into a rapidly converging expression
we close the integration contour in the upper half of the
complex energy plane. The scattering matrices are ana-
lytic for Im ε > 0. The tanh has poles at the Matsubara
frequencies ε = iωp = (2p + 1)iπT , with p-independent
residue 2T . We thus arrive at

F = −T

∞∑
p=0

ln det[1−RM(iωp)RS(iωp)] + Ffree, (A15)

which is the result (2) from the main text.
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