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Abstract

In this study, we investigate the nonlinear optical phenomena emerging from
the interaction of vortex beams with achiral nanoparticles, leading to the obser-
vation of nonlinear circular dichroism in the high-harmonic generation. Despite
the achiral symmetry of the nanoparticles, the interplay between the vector prop-
erties of the light, the symmetry of the nanoparticles, and the symmetry of the
crystalline lattice of the nanoparticle material results in circular dichroism in
the nonlinear regime. We derive a formula that describes the conditions for the
appearance of circular dichroism across a broad range of scenarios, taking into
account all the symmetries. We believe that this work provides important in-
sights that can help improve the design process of chiral sensors, making them
more versatile and effective.
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1 Introduction

Chirality, being a natural characteristic, is crucial in various scientific fields such as
physics and biology [1–3]. It’s often observed in natural structures like amino acids
or proteins. Circular dichroism spectroscopy is a well-known method for investigating
the properties of chiral substances. While it is commonly defined as a difference in
the absorption of a left- and right-circularly polarized light [6, 7], it can be general-
ized for more complex systems [8–11], including nonlinear circular dichroism [12–17] or
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Figure 1: Schematic of the concept. Incident vortex beam, characterized by an angular
momentum projection ±m is depicted using higher order Poincare sphere [4, 5]. The
value m = 3 is taken, as an example. The circular dichroism in high-harmonic gen-
eration can be obtained when we excite the nanoparticle of an achiral symmetry Dnh

or Cnv by either |Rm⟩ or |Lm⟩ beam. Another two states are shown with the black
lines (polarization ellipses with one zero axis) for illustration purposes. The nanopar-
ticle generates high harmonic due to material properties, where q is an order of high
harmonic. The crystalline lattice is rotated with respect to the nanoparticle symmetry
axis by an angle β and characterized by differences ∆mχ determined by χ̂(q) tensor.
The main result is shown in a box, where ν ∈ Z.

circular dichroism under excitation by light beams with angular momentum [18–22].
Previously, various types of circular dichroism were investigated for continuous media,
and focused studies on individual nanoparticles or metamaterials have only recently
begun to emerge [23–29]. In recent works, we have demonstrated the existence of non-
linear, particularly second-harmonic circular dichroism (SH-CD) in achiral dielectric
nanostructures [30, 31] with intrinsic nonlinearity. In fact, it was defined as the differ-
ence between values of second-harmonic intensity for right- and left-circularly polarized
plane wave excitation, and it was proven that this nonlinear effect appears under certain
conditions on the orientation of the nanoparticle relative to its material’s lattice.

Here, we show that these results can be generalized to the case of any high-harmonic
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generation as well as any excitation by a vortex beam with an angular momentum (See
Fig. 1) proposing a generalized framework for understanding nonlinear circular dichro-
ism in complex light-matter interactions. These results can be of particular importance
for chiral sensing enhancement by nanoparticles, since we show that in some cases, the
dichroic signal of the nanoparticle itself cannot be neglected.

This work is organized as follows. In Section 2, we give a general framework of the
problem. Section 3 contains the main result: the formula, which describes the conditions
of dichroism occurrence in all cases. Section 4 provides the strict consideration of the
second-harmonic generation for particular materials and shapes of the nanostructures
in terms of modal and multipolar analysis. The first case 4.1 is one in which dichroism
is possible, and the second 4.2 is one in which it is not. This approach leads to the
derivation of the main formula in Section 5 and also shows the variety of options and
interactions that arise in intermediate processes. Section 6 provides the numerical
calculations to support the theoretical predictions. Section 7 gives a discussions of
some important subtleties. In Section 8, we give a brief conclusion.

2 Theoretical framework

2.1 Incident light beams

Before introducing the formula for general notation of the nonlinear circular dichroism,
we describe the nature of vortex beams. We consider the following description for
vortex beams in cylindrical coordinates, for which a higher-order Poincare sphere can
be introduced [4, 5, 32, 33]. In paraxial regime, they can be described as:

|Rm⟩∼ exp(+i(m− 1)φ)(x̂+ iŷ)/
√
2, (1)

|Lm⟩∼ exp(−i(m− 1)φ)(x̂− iŷ)/
√
2, (2)

where |Rm⟩ and |Lm⟩ are related to the right- and left-handed beam, respectively, which
are mirror images of each other. Here m ∈ Z, φ is the azimuthal angle, and x̂ and ŷ
are unit basis vectors. A detailed description of the properties of vortex beams and
the connection between angular momentum and topological charge can be found in the
Appendix A.4. We omit the dependence of the radial coordinate r [34] because it does
not change the general symmetry, in which we are interested. We also use

(x̂± iŷ) = e±iφ(ρ̂± iφ̂) (3)

and rewrite:

|Rm⟩ = e+imφ ρ̂+ iφ̂√
2

, (4)

|Lm⟩ = e−imφ ρ̂− iφ̂√
2

. (5)

Note that ±m refers to the total angular momentum projection on the z-axis and
plays the important role in our considerations. Handedness refers to the helicity of the
beam [35]. We consider this problem by implementing the multipolar decomposition
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because, for the multipoles, total angular momentum projection is well-defined [36]. We
use vector spherical harmonics [37, 38] (spherical multipoles), although their application
may seem redundant in this context. However, in fact, employing any kind of cylindrical
harmonics [39] does not necessarily simplify or clarify the problem, as we are only
interested in the total angular momentum projection m regardless of the basis used.

2.2 Multipolar content of the vortex beams

For further convenience, we introduce min = |m|. The multipolar content of vortex
beams with particular helicity [35] and total angular momentum projection is known
from literature (Eq. (4) in [40] and Eq. (53) in [41]). Thus, we are interested in the
following combinations of vector spherical harmonics defined in [38] (see Appendix A.3):

(Neminn ± iNominn) + (±Meminn + iMominn) ∼ e±iminφ(ρ̂± iφ̂), (6)

which also can be compared with multipolar content of circularly polarized plane wave
for min = 1 [38], and also

(Neminn ∓ iNominn)− (∓Meminn + iMominn) ∼ e∓iminφ(ρ̂± iφ̂), (7)

where ρ and φ are unit basis vectors in cylindrical coordinates. Here we use the sign
∼ which shows that such linear combinations contribute to the multipolar content of
the corresponding beam, and also possess the same symmetry behavior under rota-
tions around the z-axis. Further analysis is applicable to all potential incident beams
that can be expressed via these multipolar combinations. We have addressed paraxial
approximation as commonly employed and familiar; however, it is the analysis of the
multipolar composition that yields the conclusive answer.

Importantly, when nanostructures are excited by a vortex beam, combinations as
described in equations (6) and (7) do not occur for internal or scattered fields [38] due
to the resonant excitation of the eigenmodes. Additionally, the resonant frequencies
of magnetic and electric multipoles are generally different, except in helicity-preserving
systems where ε/µ = const [42–45].

Thus, we further prove that we can just consider the total angular momentum
projection of a beam min (except the case min = 0, which is commented in discussions),
which obeys a “modified by nanostructure” conservation law, and the problem becomes
almost fully analogous to the one considered in [31]. Now we can move to the discussion
of the nonlinear response.

2.3 Perturbative harmonic generation

We consider achiral nanoparticles or nanostructures, which can be of Cnv, Dnh symme-
try (Schoenflies notation). The nanoparticles are made from a material with a non-
centrosymmetric crytalline lattice (e.g., GaAs, BaTiO3, or LiNbO3). In such dielectric
nanostructures, second harmonic generation is commonly described by the nonlinear
susceptibility tensor χ̂(2) [46]:

P 2ω
i (r) = ε0χ

(2)
ijkE

ω
j (r)E

ω
k (r), (8)
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where P 2ω
i (r) is a nonlinear polarization, and Eω(r) is a fundamental field inside the

nanoparticle or nanostructure. The second-harmonic generation is given separately
as a most common case and will be further considered in some examples. For the
perturbative (See discussion in Appendix A.1) high-harmonic generation of order q, the
nonlinear polarization P qω

i (r) can be defined as [47]:

P qω
i (r) = ε0χ

(q)
ijk...hE

ω
j (r)E

ω
k (r) . . . E

ω
h (r)︸ ︷︷ ︸

q

, (9)

The far-field outside the nanoparticle can be described with the help of Green’s func-
tion [48, 49]:

Eqω(r) = (qω)2µ0

∫
V

dV ′Ĝ(qω, r, r′)Pqω(r′) = (10)

= (qω)2µ0

∫
V

dV ′
∑
j

Eqω
j (r)⊗ Eqω

j (r′)

2k (k − kj)
Pqω(r′) =

= (qω)2µ0

∑
j

1

2k (k − kj)
Eqω

j (r)

∫
V

dV ′Eqω
j (r′)Pqω(r′),

where ω is the fundamental frequency, µ0 is the vacuum permeability, and Eqω
j (r) is

the field of the system’s quasi-normal mode (eigenfrequency ωj = ckj) [49–51] at the
appropriate frequency qω = ck. The integration is over the particle’s volume. Green’s

function is defined as ∇ × ∇ × Ĝ(ω, r, r′) =
(
ω
c

)2
ε(r, ω)Ĝ(ω, r, r′) + Îδ(r − r′) [48],

where Î is the unit dyadic, ε(r, ω) = ε2(ω) for nanostructure, and ε(r) = 1 for vacuum.
We assume ε2(ω) to be a scalar quantity, and the structure is not birefringent (which
is rigorous for cubic lattices). Note that strictly speaking, the equation (10) converges
only for the region inside the nanoparticle, and Eqω(r) in the outer region should be
replaced by its analytic continuation (See e.g. [52] or SI in [53, 54]). However, this
detail is omitted subsequently, as the symmetry of the fields remains unchanged after
this procedure. In this work, we assume that the incident beam has a certain azimuthal
symmetry.

Circular dichroism in the second-harmonic signal can be defined as:

SH-CDm,λ =
(I2ωRm

− I2ωLm
)

(I2ωRm
+ I2ωLm

)
, (11)

where I2ωRm
, I2ωLm

is the corresponding total intensity of a second-harmonic described
by Eqω(r), excited by a right- or left-handed beam, respectively, and integrated over
the sphere in the far-field (the center of the sphere should coincide with the center
of the nanostructure). This definition is analogous to circular-helical dichroism [55]
or circular-vortex dichroism [56], which can be found in literature. We can introduce
analogously higher-order nonlinear circular dichroism [57, 58]:

HH-CDm,λ =
(IqωRm

− IqωLm
)

(IqωRm
+ IqωLm

)
. (12)
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In the previous work [31], the general form of the decomposition of the nonlinear po-
larization P2ω(r) (8) has been obtained for an achiral nanostructure with Cnv or Dnh

symmetry irradiated by a normally incident circularly polarized plane wave. To obtain
polarization in the general case, two steps are necessary. Firstly, one should describe
the field inside the nanostructure on the fundamental frequency: its multipolar decom-
position contains the functions with m equal to the sum of the total angular momentum
projection of the incident field and additional momentum projections, nν (where ν ∈ Z),
which are multiples of the rotational symmetry of the nanoparticle characterized by the
number n. Secondly, it is required to rewrite the χ̂(q) tensor in cylindrical coordinates,
as it was done, e.g. in [59, 60] for χ̂(2) or for χ̂(3) in the Appendix A.2. After that, we get
all possible additional momentum projections mχ (it is the multiplier which stands in
the terms like exp(mχφ) if one looks at the tensor components written in cylindrical co-
ordinates), as well as differences ∆mχ = mχ −m′

χ between all possible different values.
Note that the values of the mχ are related to the rotational symmetry of the lattice,
but in fact, the symmetry of the tensor is in some sense “higher” than the symmetry of
the lattice itself, being restricted by the tensor transformation properties and its rank.
Now, due to the fact that the geometry of the problem is the same but nanostructures
are irradiated by a vortex beam, we can introduce the same expression as in [31] with
only one generalization: the projection of the momentum of the incident vortex ±min

instead of the values ±1, as it was for the plane wave. Thus, the decomposition of the
nonlinear polarization P2ω(r) for the second-harmonic can be written in the cylindrical
coordinates r, z, φ in the following form:

P2ω(r) ∝
∑
mχ,ν

e−mχiβ

[
P2ω

(mχ+2min),ν(r, z)e
(mχ±2min+nν)iφ

]
, (13)

where n describes the symmetry group of a nanostructure (Cnv or Dnh), ν ∈ Z, and
β is a relative angle between the nanoparticle and its crystalline lattice, as it shown
in Fig. 1. The values mχ reflect the lattice symmetry, while the value min character-
izes the incident vortex. Here we explicitly separate the dependence of the nonlinear
polarization Pqω(r) on coordinate φ. In a similar way, the high-harmonic nonlinear
polarization Pqω(r) can be written as:

Pqω(r) ∝
∑
mχ,ν

e−mχiβ

[
Pqω

(mχ+qmin),ν
(r, z)e(mχ±qmin+nν)iφ

]
. (14)

In the equations (13) and (14) we use the proportionality sign to emphasize the sym-
metrical nature of the phenomenon and the insignificance of constants and other depen-
dencies, such as dependency on wavelength. Nevertheless, this consideration is justified
because, for determining the multipolar content in an axially symmetric system, we
mainly need the dependence on φ (See Suppl. Info. in [60]).
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3 Conditions for the high harmonic circular dichro-

ism

Surprisingly, despite the particular complexity and tremendous construction of inter-
mediate calculations, the final expression for the possibility of circular dichroism can be
written in a short and elegant form. Moreover, the formula applies universally across
all cases, regardless of the incident beam, nanostructure symmetry, or high-order of
harmonic generation. Consequently, it aligns precisely with the one presented in [31],
and proving its universality is the main result of our work. The theoretical investiga-
tion shows independence of the obtained results on the angular momentum projection
absolute value |min| of the incident optical vortex.

Let us here recall that ∆mχ being one of the possible differences between mχ of a
χ̂(q) tensor written in cylindrical coordinates, generally reflects the crystalline lattice
symmetry, and n reflects the rotational symmetry of a nanoparticle. Thus, the HH-
CDm,λ can be obtained if:

1. ∃ν ∈ Z such that ∆mχ = νn, so we introduce the number s:

s = ∆mχ = νn. (15)

2. The relative angle β of a crystalline lattice rotation with respect to nanoparticle
is:

β ̸= πν

s
∀ν ∈ Z. (16)

3. If there are several possible s in (15), one should prohibit only those angles β =
πν/s in (16) that coincide for all s = ∆mχ.

Note that this formula does not know anything about the value of the total angular
momentum of the incident beam, but for the high-harmonic generation, the result can
depend on q. The difference will be in the nonlinear susceptibility tensor χ̂(q) and, as
a consequence, the values of the difference between the angular momentum projections
∆mχ. Overall, the introduced rule in (15) and (16) can be used for nonlinear circular
dichroism in high-harmonic generation in nanostructures with any achiral symmetry
and material characterized by the nonlinear susceptibility tensor χ̂(q) irradiated by any
optical vortex. We also note that for the second harmonic generation, the maximum
value of ∆mχ is equal to 6, thus, according to the rule (15), circular dichroism in the
second-harmonic signal is possible only for Cnv, Dnh symmetries with n ≤ 6. In a
more general q-order harmonic generation case, the maximum value of ∆mχ is equal to
2(q+1), thus circular dichroism in the q-order harmonic signal is possible only for Cnv,
Dnh symmetries with

n ≤ 2(q + 1). (17)

In what follows, we consider some examples to show the variety of cases that may arise
when all the intermediate calculations are carefully and rigorously considered and show
that they will indeed lead to the same result in the end.
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4 Analysing particular cases

To provide a clue as to how the main formula works and offer a proof, we investigate
specific cases. Through these examinations, we identify patterns that ultimately lead
us to derive the general formula. It is done in the following steps:

1. Find the nonlinear polarization induced inside the nanoparticle with a particular
symmetry made of particular material by a particular vortex.

2. Find the symmetry of the eigenmodes of the nanoparticle that can be excited by
this nonlinear polarization using the equation (10).

3. Analyze the phases of the excited modes as well as their dependence on the
incident light polarization and angle β.

4. Calculate the total integral intensity Iqω, where the integral is taken by the sphere
in the faf-field. For that, the two-mode approximation when two modes of the
same symmetry are excited with a phase α between them can be used.

5. Analyze the dependence of the total integral intensity on the sign of the incident
beam. If the case of left- and right-handed beams don’t exactly mirror each other,
then the nonlinear circular dichroism exists.

6. Find conditions for the appearance of the nonlinear circular dichroism in the
particular nanostructure.

In what follows, we analyse the second harmonic, but to generalize the results for the
higher harmonic, one should substitute q instead of 2, and consider another (in many
cases, similar) set of mχ values, which could be obtained as in Appendix A.2.

4.1 Second harmonic circular dichroism in GaAs[111]∥z C3v

nanostructure

In this section, we show that in the nanostructure GaAs[111]∥z with symmetry C3v

nonlinear circular dichroism appears in the second-harmonic signal for angles β ̸= πν/3,
where ν ∈ Z, regardless of the absolute value of the angular momentum projection |min|.

4.1.1 Nonlinear polarization

The second-order polarization P2ω(r) for the nanostructure GaAs[111]∥z (13) reads as
follows [31]

P2ω(r, z, φ) ∝
{∑

ν

P2ω
(3+2min),ν(r, z)e

±(3+2min)iφ+nνiφ

}
e∓3iβ+ (18)

+

{∑
ν

P2ω
(−3+2min),ν(r, z)e

±(−3+2min)iφ+nνiφ

}
e±3iβ+

+

{∑
ν

P2ω
2min,ν(r, z)e

±2miniφ+nνiφ

}
,

9



because for the χ̂(2) tensor for GaAs[111]∥z projections mχ = 0,±3, as it was shown in
the previous work [31]. We are interested in the group symmetry C3v, e.g., a trimer of
cylinders or a prism with a right triangle at the base, thus the index n is equal to 3.
For convenience, we will call it trimer further. We also note that in P2ω

mν(r, z) sign of
φ-component depends on the handedness, but one can check (See Suppl. Info. in [30])
that it does not alter the general result. We omit the notation, which contains this
difference. Nonlinear polarization P2ω(r) (18) excites in the trimer its eigenmodes at
the second harmonic frequency 2ω. Depending on the momentum projection min of
an incident field, the excited modes can be of any possible symmetry, i.e., transformed
under all possible irreducible representations A1, A2, or E of a C3v group [61, 62].
Specifically, with the help of coupling integrals Dj =

∫
V

dV ′E2ω
j (r′)P2ω(r′) (see (10)),

we will prove that modes transformed under E can be excited only if min = 3s− 2 and
min = 3s− 1, and modes transformed under A1 and A2 can be excited only if min = 3s
where s ∈ Z+.

4.1.2 Eigenmode presentations

For that, let us write down the expansions of trimer’s eigenmodes transformed under
E, and A1, A2 in magnetic and electric vector spherical harmonics Me

omn,Ne
omn one by

one, which definition can be found in Appendix A.3. One should pay attention to the
multipolar content of the modes. Importantly, each mode of a particular symmetry
consist of the multipoles, which ms differ by n.

Eigenmodes, which are transformed under E irrep Decomposition of the eigen-
modes transformed under E, according to the tables with a given multipolar content
of the eigenmodes [61, 62] consists only of the vector spherical harmonics with the
projections of the angular momentum m = 3s − 1 and m = 3s − 2, where s ∈ Z+

with, in general, complex coefficients. However, we note that E is a 2-dimensional ir-
reducible representation, thus there are two orthogonal eigenmodes transformed under
this representation. We defer further discussion to Appendix A.5.1 and present here
the expansions of the two orthogonal modes E2ω,x±iy

j (r′) transformed under E repre-
sentation:

E2ω,x±iy
j (r′) =

∑
n

{
Ej,1n(r, z)e

±1iφ + Ej,2n(r, z)e
∓2iφ+

+Ej,4n(r, z)e
±4iφ + Ej,5n(r, z)e

∓5iφ + . . .

}
, (19)

where index j denotes a specific eigenmode and coefficients Ej,mn(r, z) contain complex
constants used in the expansions of the eigenmodes and all other functions and constants
independent on coordinate φ, originating from expressions for the magnetic Me

omn(r, z)
and electric Ne

omn(r, z) vector spherical harmonics. Note that detailed derivations can
be found in Appendix A.5.1.

Eigenmodes, which are transformed under A1 and A2 irrep Decompositions
of eigenmodes transformed under irreducible representations A1 and A2 contain vec-
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tor spherical harmonics Me
o(3s)n and Ne

o(3s)n, where s ∈ Z+. Eigenmodes transformed
under A1 are even under reflection in the plane XZ (for a particular orientation of a
trimer), while eigenmodes transformed under A2 are odd. Following the same method
used for eigenmodes transformed under E representation, we can derive expressions for
eigenmodes transformed under A1 and A2 representations. They will take the following
form:

E2ω,A1

j (r′) =
∑
n

{
[Er

j,e3n (r, z) êr + Ez
j,e3n (r, z) êz] cos 3φ+ (20)

+Eφ
j,e3n (r, z) êφ sin 3φ+ . . .

}
,

E2ω,A2

j (r′) =
∑
n

{
[Er

j,o3n (r, z) êr + Ez
j,o3n (r, z) êz] sin 3φ+ (21)

+Eφ
j,o3n (r, z) êφ cos 3φ+ . . .

}
,

where coefficients Er
j,eo3n

(r, z), Ez
j,eo3n

(r, z), Eφ
j,eo3n

(r, z) contain all functions and con-
stants independent on coordinate φ. For transparency, we have included all intermedi-
ate steps of the calculations relevant to this case in Appendix A.5.1.

4.1.3 Coupling integrals

Next, we calculate coupling integrals Dj =
∫

C3v

dV ′E2ω,x±iy
j (r′)P2ω(r′) for all eigenmodes

to understand which of them are excited.

Eigenmodes, which are transformed under E irrep Let us use expressions (19)
for eigenmodes E2ω,x±iy

j (r′) and decomposition of nonlinear polarization P2ω(r) (18) to
calculate the coupling integrals Dj. Overall, we get four distinct coupling integrals Dj.
In particular, there are two integrals for eigenmode E2ω,x+iy

j (r′) excited by left- and
right-handed circularly polarized beam:

|Lm⟩ : Dj =

∫
C3v

dV ′E2ω,x+iy
j (r′)P2ω(r′) ∝ (22)

∝
∫
C3v

dV ′
∑
n,ν

([
Ej,1ne

+1iφ + Ej,2ne
−2iφ + Ej,4ne

+4iφ + Ej,5ne
−5iφ + . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+3νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+3νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+3νiφ

}])
,
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|Rm⟩ : Dj =

∫
C3v

dV ′E2ω,x+iy
j (r′)P2ω(r′) ∝ (23)

∝
∫
C3v

dV ′
∑
n,ν

([
Ej,1ne

+1iφ + Ej,2ne
−2iφ + Ej,4ne

+4iφ + Ej,5ne
−5iφ + . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+3νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+3νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+3νiφ

}])
,

and there are two other integrals for eigenmode E2ω,x−iy
j (r′) excited by left- and right-

handed circularly polarized beams:

|Lm⟩ : Dj =

∫
C3v

dV ′E2ω,x−iy
j (r′)P2ω(r′) ∝ (24)

∝
∫
C3v

dV ′
∑
n,ν

([
Ej,1ne

−1iφ + Ej,2ne
+2iφ + Ej,4ne

−4iφ + Ej,5ne
+5iφ + . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+3νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+3νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+3νiφ

}])
,

|Rm⟩ : Dj =

∫
C3v

dV ′E2ω,x−iy
j (r′)P2ω(r′) ∝ (25)

∝
∫
C3v

dV ′
∑
n,ν

([
Ej,1ne

−1iφ + Ej,2ne
+2iφ + Ej,4ne

−4iφ + Ej,5ne
+5iφ + . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+3νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+3νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+3νiφ

}])
.

Eigenmodes, which are transformed under A1 and A2 irrep Next, let us use
expressions (20) and (21) for eigenmodes E2ω,A1

j (r′) and E2ω,A2

j (r′) and again the de-
composition of nonlinear polarization P2ω(r) (18) to calculate the coupling integrals
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Dj for this case. There are two integrals for eigenmode E2ω,A1

j (r′) excited by left- and
right-handed circularly polarized beams:

|Lm⟩ : Dj =

∫
C3v

dV ′E2ω,A1

j (r′)P2ω(r′) ∝ (26)

∝
∫
C3v

dV ′
∑
n,ν

([ [
Er

j,e3n (r, z) êr + Ez
j,e3n (r, z) êz

]
cos 3φ+ Eφ

j,e3n (r, z) êφ sin 3φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+3νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+3νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+3νiφ

}])
,

|Rm⟩ : Dj =

∫
C3v

dV ′E2ω,A1

j (r′)P2ω(r′) ∝ (27)

∝
∫
C3v

dV ′
∑
n,ν

([ [
Er

j,e3n (r, z) êr + Ez
j,e3n (r, z) êz

]
cos 3φ+ Eφ

j,e3n (r, z) êφ sin 3φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+3νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+3νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+3νiφ

}])
,

and there are two other integrals for the eigenmode E2ω,A2

j (r′) excited by left- and
right-handed circularly polarized beams:

|Lm⟩ : Dj =

∫
C3v

dV ′E2ω,A2

j (r′)P2ω(r′) ∝ (28)

∝
∫
C3v

dV ′
∑
n,ν

([ [
Er

j,o3n (r, z) êr + Ez
j,o3n (r, z) êz

]
sin 3φ+ Eφ

j,o3n (r, z) êφ cos 3φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+3νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+3νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+3νiφ

}])
,

|Rm⟩ : Dj =

∫
C3v

dV ′E2ω,A2

j (r′)P2ω(r′) ∝ (29)
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∝
∫
C3v

dV ′
∑
n,ν

([[
Er

j,o3n(r, z) êr + Ez
j,o3n(r, z) êz

]
sin 3φ+ Eφ

j,o3n (r, z) êφ cos 3φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+3νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+3νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+3νiφ

}])
.

4.1.4 Excitation of the modes by different angular momentum

Let us find out, which of the expressions (22), (23), (24), (25), (26), (27), (28), and (29)
for coupling integrals Dj give nontrivial answer. For the integral to be non-zero, the
integrand should be transformed under the trivial irreducible representation, i.e. A1

irrep of C3v group [63]. In the group C3v, if the integrand contains exponents e±3isφ,
where s ∈ Z+, then the integral expression can be non-zero. Given the above, there
will be three different cases dependent on the value of the index min of incident vortex:

1. min = 3s, where s ∈ Z+

Eigenmodes, which are transformed under E irrep Coupling inte-
grals (22) and (23) for the eigenmode E2ω,x+iy

j (r′), as well as (24) and (25) for

the eigenmode E2ω,x−iy
j (r′) can only give zero. Thus, modes transformed under

E irrep aren’t excited.

Eigenmodes, which are transformed under A1 and A2 irrep Coupling
integrals (26), (27) for the eigenmode E2ω,A1

j (r′) give nonzero results:

|Lm⟩ : Dj ∝ cA1
j e−3iβ + c′A1

j e+3iβ + c′′A1
j , (30)

|Rm⟩ : Dj ∝ cA1
j e+3iβ + c′A1

j e−3iβ + c′′A1
j ,

in turn, coupling integrals (28) and (29) for the eigenmode E2ω,A2

j (r′) also give
nonzero results:

|Lm⟩ : Dj ∝ cA2
j e−3iβ + c′A2

j e+3iβ + c′′A2
j , (31)

|Rm⟩ : Dj ∝ cA2
j e+3iβ + c′A2

j e−3iβ + c′′A2
j ,

where coefficients cA1
j , c′A1

j , c′′A1
j , and cA2

j , c′A2
j , c′′A2

j were introduced, and, impor-
tantly, they are equal for different polarizations. Substituting the expression (30)
for the coupling integral Dj with the eigenmode E2ω,A1

j (r′) into the decomposition
of the second harmonic electric field (10):

|Lm⟩ : E2ω(r) ∝
∑
j

E2ω,A1

j (r)
(
cA1
j e−3iβ + c′A1

j e+3iβ + c′′A1
j

)
, (32)
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|Rm⟩ : E2ω(r) ∝
∑
j

E2ω,A1

j (r)
(
cA1
j e+3iβ + c′A1

j e−3iβ + c′′A1
j

)
,

and the expression (31) for the coupling integral Dj with the eigenmode E2ω,A2

j (r′):

|Lm⟩ : E2ω(r) ∝
∑
j

E2ω,A2

j (r)
(
cA2
j e−3iβ + c′A2

j e+3iβ + c′′A2
j

)
, (33)

|Rm⟩ : E2ω(r) ∝
∑
j

E2ω,A2

j (r)
(
cA2
j e+3iβ + c′A2

j e−3iβ + c′′A2
j

)
.

Thus, modes transformed under A1 and A2 irrep are excited and the fields are
of the form (32) and (33). Note that total electric field E2ω(r) is the sum of all
excited eigenmodes transformed under different irreducible representations but in
equations above (32) and (33), as well as below we write only sum of eigenmodes
transformed under the particular irreducible representation that we consider at
the moment. We can do it because only modes with the same symmetry can
interfere with each other, thus at one moment we can pay attention only to
eigenmodes transformed under the same irrep in order to avoid unnecessarily
long formulae.

2. min = 3s− 2, where s ∈ Z+

Eigenmodes, which are transformed under E irrep Coupling inte-
grals (22) and (23) with the eigenmode E2ω,x+iy

j (r′) give the values:

|Lm⟩ : Dj ∝ c+j e
−3iβ + c′+j e+3iβ + c′′+j , (34)

|Rm⟩ : Dj = 0,

where coefficients c+j , c
′+
j , c

′′+
j were introduced. Analogously, expressions (24)

and (25) with the eigenmode E2ω,x−iy
j (r′) take the form:

|Lm⟩ : Dj = 0, (35)

|Rm⟩ : Dj ∝ c−j e
+3iβ + c′−j e−3iβ + c′′−j ,

where new coefficients c−j , c
′−
j , c

′′−
j equal up to a sign to the old coefficients

c+j , c
′+
j , c

′′+
j from the expression (34), respectively. It can be proved by changing

the φ → −φ in the expression (25). Next, we substitute the obtained expres-
sion (34) with the eigenmode E2ω,x+iy

j (r′) into the decomposition of the second
harmonic electric field (10):

|Lm⟩ : E2ω(r) ∝
∑
j

E2ω,x+iy
j (r)

(
c+j e

−3iβ + c′+j e+3iβ + c′′+j
)
, (36)

|Rm⟩ : E2ω(r) = 0,

as well as expression (35) for the coupling integral Dj with the eigenmode
E2ω,x−iy

j (r′):

|Lm⟩ : E2ω(r) = 0, (37)
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|Rm⟩ : E2ω(r) ∝
∑
j

E2ω,x−iy
j (r)

(
c+j e

+3iβ + c′+j e−3iβ + c′′+j
)
.

Thus, modes transformed under E irrep are excited and their fields have the
forms (36) and (37).

Eigenmodes, which are transformed under A1 and A2 irrep Coupling
integrals (26) and (27) for the eigenmode E2ω,A1

j (r′), and (28) and (29) for the

eigenmode E2ω,A2

j (r′) give only zero answers. Thus, modes transformed under
these irreps aren’t excited.

3. min = 3s− 1, where s ∈ Z+

Eigenmodes, which are transformed under E irrep Coupling inte-
grals (22) and (23) for the eigenmode E2ω,x+iy

j (r′) give nonzero values:

|Lm⟩ : Dj = 0, (38)

|Rm⟩ : Dj ∝ c̃+j e
+3iβ + c̃′+j e−3iβ + c̃′′+j .

Analogously, expressions (24) and (25) for the eigenmode E2ω,x−iy
j (r′) take the

form:

|Lm⟩ : Dj ∝ c̃−j e
−3iβ + c̃′−j e+3iβ + c̃′′−j , (39)

|Rm⟩ : Dj = 0,

where new coefficients c̃−j , c̃
′−
j , c̃

′′−
j equal up to a sign to the old coefficients

c̃+j , c̃
′+
j , c̃

′′+
j from the expression (38), due to the same reasons as for coefficients

c±j . Next, we substitute the obtained expression (38) for the coupling integral Dj

with the eigenmode E2ω,x+iy
j (r′) into (10):

|Lm⟩ : E2ω(r) = 0, (40)

|Rm⟩ : E2ω(r) ∝
∑
j

E2ω,x+iy
j (r)

(
c̃+j e

+3iβ + c̃′+j e−3iβ + c̃′′+j
)
.

and for the coupling integral Dj (39) with the eigenmode E2ω,x−iy
j (r′):

|Lm⟩ : E2ω(r) ∝
∑
j

E2ω,x−iy
j (r)

(
c̃+j e

−3iβ + c̃′+j e+3iβ + c̃′′+j
)
, (41)

|Rm⟩ : E2ω(r) = 0,

Thus, modes transformed under E have the form (40) and (41).

16



Eigenmodes, which are transformed under A1 and A2 irrep Coupling
integrals (26) and (27) with the eigenmode E2ω,A1

j (r′), and (28) and (29) with

the eigenmode E2ω,A2

j (r′) give zero. Thus, modes transformed under these irreps
aren’t excited.

To summarize, dependent on the value of the projection of the angular momentum
min of the incident vortex we have three cases, but despite this we can consider only one
of them because electric field E2ω(r) always looks the same, i.e., contains three items
proportional to the exponents e±3iβ, e∓3iβ, or just constant, where the sign depends on
the sign of the polarization of the incident vortex. We can relate these terms to the
terms in polarization (18).

4.1.5 Total integral second harmonic intensity

We calculate the total integral second harmonic intensity I2ω in a two modes approx-
imation for the second case, where min = 3s − 2, and s ∈ Z+. This means that we
use decompositions of the fields (36) and (37) and take a sum only of two modes with
indexes i and j. Thus, according to the equations, a left-handed beam excites the eigen-
modes E2ω,x+iy

j (r), while a right-handed beam excites the eigenmodes E2ω,x−iy
j (r), and

the total integral second harmonic intensity I2ω for the left- and right-handed beams
can be written in the following form:

I2ω|Lm⟩,|Rm⟩ ∝
∫
sph

dV

∣∣∣∣E2ω,x±iy
j (r)

(
a+j e

∓3iβ + a′+j e±3iβ + a′′+j
)
+ (42)

+ eiαE2ω,x±iy
i (r)

(
a+i e

−3iβ + a′+i e+3iβ + a′′+i
) ∣∣∣∣2,

where the integral is taken over the big sphere in the far-field, containing the nanos-
tructure. Frequency-dependent phase α between the eigenmodes E2ω,x±iy

i,j (r) which is
related to the resonant excitation of the modes is isolated from complex coefficients
c+j,i, c

′+
j,i, c

′′+
j,i , and new coefficients a+j,i, a

′+
j,i, a

′′+
j,i are introduced.

To avoid cluttering the main text with lengthy technical derivations, we have trans-
ferred them to Appendix A.5.2 and present here the final expression for the interference
terms I2ω,interf.|Lm⟩,|Rm⟩ of the total intensity, in which we are primarily interested:

I2ω,interf.|Lm⟩,|Rm⟩ ∝
∫
sph

dV e−iαE2ω,x±iy
j (r)

(
E2ω,x±iy

i (r)
)∗

· (43)

·
(
Aji +Bjie

±6iβ + Cjie
∓6iβ +Djie

±3iβ + Ejie
∓3iβ

)
+ c.c.,

where, for simplicity, constants Aji, Bji, Cji, Dji, Eji were introduced. We should pay
attention to the following:

1. The eigenmode is excited simultaneously by several terms of the polarization. It
is possible, because ∆mχ coincides with nν for some ν ∈ Z.

2. The multiplier e−iα does not depend on the polarization.

3. The multipliers ei∆mχβ appear and change their sign by changing the polarization
of the beam.

This behavior is common and appears every time the dichroism is observed.
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4.1.6 Second-harmonic circular dichroism

Result The last step of our proof is to examine the dependence of the total intensity
I2ω|Lm⟩,|Rm⟩ on the sign of the polarization in detail. The expression for the interference

terms I2ω,interf.|Lm⟩,|Rm⟩ (43) can be simplified by taking into account that

E2ω,x+iy
j (r)

(
E2ω,x+iy

i (r)
)∗

= E2ω,x−iy
j (r)

(
E2ω,x−iy

i (r)
)∗
:

I2ω,interf.|Lm⟩,|Rm⟩ ∝ e−iαconstji ·
(
Aji +Bjie

±6iβ + Cjie
∓6iβ +Djie

±3iβ + Ejie
∓3iβ

)
+ c.c.,

(44)

where± corresponds to the sign of polarization of the incident beam and constji does not
depend on polarization. Next, we rewrite this expression in more detail, using the fact
that complex coefficients Aji, Bji, Cji, Dji, and Eji can be expanded as Aji = A′

ji+ iA′′
ji

through real A′
ji and the imaginary part A′′

ji:

I2ω,interf.|Lm⟩,|Rm⟩ ∝ 2constji

(
A′

ji cos(α) + A′′
ji sin(α) +B′

ji cos(α∓ 6β) +B′′
ji sin(α∓ 6β)+

+ C ′
ji cos(α± 6β) + C ′′

ji sin(α± 6β) +D′
ji cos(α∓ 3β) +D′′

ji sin(α∓ 3β)+

+ E ′
ji cos(α± 3β) + E ′′

ji sin(α± 3β)

)
. (45)

Note that interference contribution (44), (45) belonging to the expression for the total
integral second harmonic intensity I2ω|Lm⟩,|Rm⟩ contains terms like cos(α± 3β). These
terms are different for different signs of the polarization of the incident beam for the
most values of α and β. In other words, the total integral second harmonic intensity
I2ω contains the interference contribution I2ω,interf. that depends on the polarization of
the incident beam, if angles β are not equal to πν/3, where ν ∈ Z. From the above
the conclusion follows: SH-CD can appear appear in nanostructure GaAs[111]∥z with
symmetry C3v, only if angles β ̸= πν/3, where ν ∈ Z.

Comments Let us add some additional comments for better understanding the result.

1. Occurrence of the SH-CD in the structure doesn’t depend on the absolute value
of the angular momentum projection of the incident vortex |min|. Even though
we in details analyzed the case min = 3s− 2, where s ∈ Z+, nothing will change
for the two other cases, when min = 3s or min = 3s−1 because the dependence of
the second harmonic electric field and, consequently, of the total integral second
harmonic intensity on the sign of the polarization of the incident field are the
same for all cases, as it can be seen in expressions (32), (33), (36), (37), (40)
and (41). The main thing is the interplay between ∆mχ and n, which contributes
in the same way as it was discussed in [31].

2. We calculated total integral intensity only for two modes transformed under the
same irreducible representation because only between them interference is possi-
ble.
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3. Coefficients Aji, Bji, Cji, Dji, and Eji can be either real or complex coefficients
depending upon whether coefficients a+j , a

′+
j , a

′′+
j from the decomposition of the

intensity (42) are all in-phase or not. In the case of the real coefficients we need to
use at least two-mode approximation to obtain the condition for the appearance
of the SH-CD because noninterference terms from the equation (131) will be just
equal to each other for different beam polarizations. However, if coefficients are
complex, it’s enough to use only single-mode approximation because not only
interference but also noninterference terms contribute to the SH-CD and it leads
to the same result. The reason why we made all calculations for the two-mode
approximation is that interference contribution works in any case regardless of
whether coefficients are complex or real.

4.2 Second harmonic in GaAs[111]∥z C4v nanostructure (no
dichroism)

In this section, we will show that in the nanostructure with the same crystal lattice
GaAs[111]∥z with nanoparticle symmetry C4v second-harmonic circular dichroism can-
not ever be obtained, using the same theoretical approach, as in the previous subsec-
tion 4.1. The decomposition of the nonlinear polarization P2ω(r) will be defined as
in (18) due to the same crystal lattice but with n = 4. Firstly, as in the previous
example, we prove that the excitement of eigenmodes transformed under irreducible
representations of the C4v, i.e. E,A1,A2,B1, and B2 depends on the specific value of
the projection min. Specifically, modes transformed under E can always be excited,
modes transformed under A1 and A2 can be excited only if min = 4s and min = 4s− 2,
and modes transformed under B1 and B2 can be excited only if min = 4s − 3 and
min = 4s− 1, where s ∈ Z+.

4.2.1 Eigenmode presentations

Let us consider decompositions of eigenmodes transformed under E, and A1, A2, as well
as B1 and B2 in magnetic and electric vector spherical harmonics Me

omn,Ne
omn one by

one.

Eigenmodes, which are transformed under E irrep Eigenmodes transformed
under E can be decomposed into series of vector spherical harmonics Me

omn,Ne
omn with

m = 2s − 1, where s ∈ Z+. Recalling that representation E is a 2-dimensional irre-
ducible representation, we can define two orthogonal eigenmodes transformed under
this representation in the following form:

E2ω,x
j (r′) = ae11Ne11 + ae12Ne12 + bo11Mo11 + . . . , (46)

E2ω,y
j (r′) = ao11No11 + ao12No12 + be11Me11 + . . . . (47)

Using the same speculations as in the Appendix (A.5.1), we reach the convenient ex-
pressions for orthogonal eigenmodes E2ω,x±iy

j transformed under E:

E2ω,x±iy
j (r′) = (48)
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=
∑
n

{
Ej,1n(r, z)e

±1iφ + Ej,3n(r, z)e
∓3iφ + Ej,5n(r, z)e

±5iφ + Ej,7n(r, z)e
∓7iφ + . . .

}
,

where Ej,mn(r, z) contains linear combinations N(M)mn(r, z) with complex coefficients
amn, bmn. Note that signs here are related to the specific symmetry behavior of these
exponential terms under C4v transformations, i.e. e1iφ behaves as e−3iφ but not e3iφ.

Eigenmodes, which are transformed under A1 and A2 irrep Eigenmodes trans-
formed under irreducible representations A1 and A2 contain vector spherical harmonics
Me

o(4s)n and Ne
o(4s)n, where s ∈ Z+. The eigenmodes transformed under A1 are invariant

under reflection in the plane XZ, and eigenmodes transformed under A2 are not. Then,
their expansions can be written as:

E2ω,A1

j (r′) = ae01Ne01 + ae44Ne44 + bo44Mo44 + . . . , (49)

E2ω,A2

j (r′) = be01Me01 + be44Me44 + ao44No44 + . . . . (50)

Using the explicit form of the vector spherical harmonics (Appendix A.3) and new
notations, we rewrite the expressions above (49) and (50) in the following form:

E2ω,A1

j (r′) = (51)

=
∑
n

{[
Er

j,e4n (r, z) êr + Ez
j,e4n (r, z) êz

]
cos 4φ+Eφ

j,e4n (r, z) êφ sin 4φ+ . . .

}
,

E2ω,A2

j (r′) = (52)

=
∑
n

{[
Er

j,o4n (r, z) êr + Ez
j,o4n (r, z) êz

]
sin 4φ+Eφ

j,o4n (r, z) êφ cos 4φ+ . . .

}
,

where coefficients Er
j,eo4n

(r, z) , Ez
j,eo4n

(r, z) , Eφ
j,eo4n

(r, z) contain all functions and con-
stants independent on φ.

Eigenmodes, which are transformed under B1 and B2 irrep Eigenmodes trans-
formed under irreducible representations B1 and B2 contain vector spherical harmonics
Me

o(4s−2)n and Ne
o(4s−2)n, where s ∈ Z+:

E2ω,B1

j (r′) = ae22Ne22 + ae26Ne26 + bo22Mo22 + . . . , (53)

E2ω,B2

j (r′) = be22Me22 + ao22No22 + ao26No26 + . . . . (54)

which can be rewritten as

E2ω,B1

j (r′) = (55)

=
∑
n

{[
Er

j,e2n (r, z) êr + Ez
j,e2n (r, z) êz

]
cos 2φ+Eφ

j,e2n (r, z) êφ sin 2φ+ . . .

}
,

E2ω,B2

j (r′) = (56)
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=
∑
n

{[
Er

j,o2n (r, z) êr + Ez
j,o2n (r, z) êz

]
sin 2φ+Eφ

j,o2n (r, z) êφ cos 2φ+ . . .

}
,

where coefficients Er
j,eo2n

(r, z) , Ez
j,eo2n

(r, z) , Eφ
j,eo2n

(r, z) contain all functions and con-
stants independent on coordinate φ.

4.2.2 Coupling integrals

Eigenmodes, which are transformed under E irrep Using the expressions (48)
for eigenmodes E2ω,x±iy

j (r′) and decomposition of nonlinear polarization P2ω(r) (18)

we obtain four coupling integrals Dj =
∫

C4v

dV ′E2ω,x±iy
j (r′)P2ω(r′). In particular, there

are two integrals for eigenmode E2ω,x+iy
j (r′) excited by left- and right-handed circularly

polarized beam:

|Lm⟩ : Dj =

∫
C4v

dV ′E2ω,x+iy
j (r′)P2ω(r′) ∝ (57)

∝
∫
C4v

dV ′
∑
n,ν

([
Ej,1ne

+1iφ + Ej,3ne
−3iφ + Ej,5ne

+5iφ + Ej,7ne
−7iφ + . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+4νiφ

}])
,

|Rm⟩ : Dj =

∫
C4v

dV ′E2ω,x+iy
j (r′)P2ω(r′) ∝ (58)

∝
∫
C4v

dV ′
∑
n,ν

([
Ej,1ne

+1iφ + Ej,3ne
−3iφ + Ej,5ne

+5iφ + Ej,7ne
−7iφ + . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+4νiφ

}])
,

and there are two other integrals for eigenmode E2ω,x−iy
j (r′) excited by left- and right-

handed circularly polarized beam:

|Lm⟩ : Dj =

∫
C4v

dV ′E2ω,x−iy
j (r′)P2ω(r′) ∝ (59)
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∝
∫
C4v

dV ′
∑
n,ν

([
Ej,1ne

−1iφ + Ej,3ne
+3iφ + Ej,5ne

−5iφ + Ej,7ne
+7iφ + . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+4νiφ

}])
,

|Rm⟩ : Dj =

∫
C4v

dV ′E2ω,x−iy
j (r′)P2ω(r′) ∝ (60)

∝
∫
C4v

dV ′
∑
n,ν

([
Ej,1ne

−1iφ + Ej,3ne
+3iφ + Ej,5ne

−5iφ + Ej,7ne
+7iφ + . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+4νiφ

}])
.

Eigenmodes, which are transformed under A1 and A2 irrep Next, let us use
expressions (51) and (52) for eigenmodes E2ω,A1

j (r′) and E2ω,A2

j (r′) and again the de-
composition of nonlinear polarization P2ω(r) (18) to obtain four coupling integrals Dj.

Two integrals for eigenmode E2ω,A1

j (r′) excited by left- and right-handed circularly
polarized beam:

|Lm⟩ : Dj =

∫
C4v

dV ′E2ω,A1

j (r′)P2ω(r′) ∝ (61)

∝
∫
C4v

dV ′
∑
n,ν

([ [
Er

j,e4n (r, z) êr + Ez
j,e4n (r, z) êz

]
cos 4φ+ Eφ

j,e4n (r, z) êφ sin 4φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+4νiφ

}])
,

|Rm⟩ : Dj =

∫
C4v

dV ′E2ω,A1

j (r′)P2ω(r′) ∝ (62)
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∝
∫
C4v

dV ′
∑
n,ν

([ [
Er

j,e4n (r, z) êr + Ez
j,e4n (r, z) êz

]
· cos 4φ+ Eφ

j,e4n (r, z) êφ sin 4φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+4νiφ

}])
,

and for the eigenmode E2ω,A2

j (r′):

|Lm⟩ : Dj =

∫
C4v

dV ′E2ω,A2

j (r′)P2ω(r′) ∝ (63)

∝
∫
C4v

dV ′
∑
n,ν

([ [
Er

j,o4n (r, z) êr + Ez
j,o4n (r, z) êz

]
sin 4φ+ Eφ

j,o4n (r, z) êφ cos 4φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+4νiφ

}])
,

|Rm⟩ : Dj =

∫
C4v

dV ′E2ω,A2

j (r′)P2ω(r′) ∝ (64)

∝
∫
C4v

dV ′
∑
n,ν

([ [
Er

j,o4n (r, z) êr + Ez
j,o4n (r, z) êz

]
sin 4φ+ Eφ

j,o4n (r, z) êφ cos 4φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+4νiφ

}])
.

Eigenmodes, which are transformed under B1 and B2 Finally, in similar man-
ner for eigenmodes E2ω,B1

j (r′) and E2ω,B2

j (r′), using (55) and (56), and again the decom-
position of nonlinear polarization P2ω(r) (18), we obtain two integrals for eigenmode
E2ω,B1

j (r′):

|Lm⟩ : Dj =

∫
C4v

dV ′E2ω,B1

j (r′)P2ω(r′) ∝ (65)
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∝
∫
C4v

dV ′
∑
n,ν

([ [
Er

j,e2n (r, z) êr + Ez
j,e2n (r, z) êz

]
cos 2φ+ Eφ

j,e2n (r, z) êφ sin 2φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+4νiφ

}])
,

|Rm⟩ : Dj =

∫
C4v

dV ′E2ω,B1

j (r′)P2ω(r′) ∝ (66)

∝
∫
C4v

dV ′
∑
n,ν

([ [
Er

j,e2n (r, z) êr + Ez
j,e2n (r, z) êz

]
cos 2φ+ Eφ

j,e2n (r, z) êφ sin 2φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+4νiφ

}])
,

and two other integrals for eigenmode E2ω,B2

j (r′):

|Lm⟩ : Dj =

∫
C4v

dV ′E2ω,B2

j (r′)P2ω(r′) ∝ (67)

∝
∫
C4v

dV ′
∑
n,ν

([ [
Er

j,o2n (r, z) êr + Ez
j,o2n (r, z) êz

]
sin 2φ+ Eφ

j,o2n (r, z) êφ cos 2φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

+(3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

(−3+2min),νe
+(−3+2min)iφ+4νiφ

}
e+3iβ+

+

{
P2ω

2min,νe
+2miniφ+4νiφ

}])
,

|Rm⟩ : Dj =

∫
C4v

dV ′E2ω,B2

j (r′)P2ω(r′) ∝ (68)

∝
∫
C4v

dV ′
∑
n,ν

([ [
Er

j,o2n (r, z) êr + Ez
j,o2n (r, z) êz

]
sin 2φ+ Eφ

j,o2n (r, z) êφ cos 2φ+ . . .

]
·

·
[{

P2ω
(3+2min),νe

−(3+2min)iφ+4νiφ

}
e+3iβ+
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+

{
P2ω

(−3+2min),νe
−(−3+2min)iφ+4νiφ

}
e−3iβ+

+

{
P2ω

2min,νe
−2miniφ+4νiφ

}])
.

4.2.3 Excitation of the modes by different angular momentum

Let us consider, which of the expressions (57), (58), (59), (60), (61), (62), as well
as (63), (64), (65), (66), (67), and (68) for coupling integrals Dj give a nontrivial
answer. For that, the integrand should be transformed under the trivial irreducible
representation, i.e. A1 of group symmetry C4v. Therefore, if the integrand contains
exponents e±4isφ, where s ∈ Z+, then the integral can be nonzero. In view of the above,
there will be four different cases dependent on the value of the index min of the incident
vortex:

1. min = 4s, where s ∈ Z+:

Eigenmodes, which are transformed under E irrep Coupling inte-
grals (57), (58) for the eigenmode E2ω,x+iy

j (r′) give nonzero results:

|Lm⟩ : Dj ∝ cje
−3iβ, (69)

|Rm⟩ : Dj ∝ c′je
−3iβ.

Coupling integrals (59), (60) for the eigenmode E2ω,x−iy
j (r′) give nonzero results:

|Lm⟩ : Dj ∝ c′je
+3iβ, (70)

|Rm⟩ : Dj ∝ cje
+3iβ.

Eigenmodes, which are transformed under A1 and A2 irrep Coupling
integrals (61), (62) for the eigenmode E2ω,A1

j (r′) give nonzero results:

|Lm⟩ : Dj ∝ cA1
j , (71)

|Rm⟩ : Dj ∝ cA1
j .

Coupling integrals (63), (64) for the eigenmode E2ω,A2

j (r′) give nonzero results:

|Lm⟩ : Dj ∝ cA2
j , (72)

|Rm⟩ : Dj ∝ cA2
j .

Eigenmodes, which are transformed under B1 and B2 irrep Coupling
integrals (65) and (66) for the eigenmode E2ω,B1

j (r′), as well as (67) and (68)

for the eigenmode E2ω,B2

j (r′) give only trivial answers. Thus, modes transformed
under these irrep aren’t excited.

Comment: we omit all discussions related to the coefficients because that all was
mentioned in the previous section 4.1.

2. min = 4s− 2, where s ∈ Z+:
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Eigenmodes, which are transformed under E irrep Coupling inte-
grals (57), (58) for the eigenmode E2ω,x+iy

j (r′):

|Lm⟩ : Dj ∝ c̃je
−3iβ, (73)

|Rm⟩ : Dj ∝ c̃′je
−3iβ.

Coupling integrals (59), (60) for the eigenmode E2ω,x−iy
j (r′):

|Lm⟩ : Dj ∝ c̃′je
+3iβ, (74)

|Rm⟩ : Dj ∝ c̃je
+3iβ.

Eigenmodes, which are transformed under A1 and A2 irrep Coupling
integrals (61), (62) for the eigenmode E2ω,A1

j (r′):

|Lm⟩ : Dj ∝ c̃A1
j , (75)

|Rm⟩ : Dj ∝ c̃A1
j .

Coupling integrals (63), (64) for the eigenmode E2ω,A2

j (r′):

|Lm⟩ : Dj ∝ c̃A2
j , (76)

|Rm⟩ : Dj ∝ c̃A2
j .

Eigenmodes, which are transformed under B1 and B2 irrep Coupling
integrals (65) and (66) with the eigenmode E2ω,B1

j (r′), and (67) and (68) for

E2ω,B2

j (r′) give zeros, and these modes aren’t excited.

3. min = 4s− 3, where s ∈ Z+:

Eigenmodes, which are transformed under E irrep Integrals (57), (58)
with E2ω,x+iy

j (r′) are:

|Lm⟩ : Dj ∝ Cje
+3iβ, (77)

|Rm⟩ : Dj ∝ C ′
je

+3iβ.

Coupling integrals (59), (60) for the eigenmode E2ω,x−iy
j (r′) give nonzero results:

|Lm⟩ : Dj ∝ C ′
je

−3iβ, (78)

|Rm⟩ : Dj ∝ Cje
−3iβ.

Eigenmodes, which are transformed under A1 and A2 irrep Inte-
grals (61) and (62) for E2ω,A1

j (r′), and (63), (64) for E2ω,A2

j (r′) give zero.
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Eigenmodes, which are transformed under B1 and B2 irrep Coupling
integrals (65), (66) for the eigenmode E2ω,B1

j (r′):

|Lm⟩ : Dj ∝ cB1
j , (79)

|Rm⟩ : Dj ∝ cB1
j .

Coupling integrals (67), (68) for the eigenmode E2ω,B2

j (r′):

|Lm⟩ : Dj ∝ cB2
j , (80)

|Rm⟩ : Dj ∝ cB2
j .

4. min = 4s− 1, where s ∈ Z+:

Eigenmodes, which are transformed under E irrep Coupling inte-
grals (57), (58) for the eigenmode E2ω,x+iy

j (r′):

|Lm⟩ : Dj ∝ C̃je
+3iβ, (81)

|Rm⟩ : Dj ∝ C̃ ′
je

+3iβ.

Coupling integrals (59), (60) for the eigenmode E2ω,x−iy
j (r′):

|Lm⟩ : Dj ∝ C̃ ′
je

−3iβ, (82)

|Rm⟩ : Dj ∝ C̃je
−3iβ.

Eigenmodes, which are transformed under A1 and A2 irrep Inte-
grals (61), (62) for E2ω,A1

j (r′), as well as (63), (64) for E2ω,A2

j (r′) give zero.

Eigenmodes, which are transformed under B1 and B2 irrep Inte-
grals (65), (66) for the eigenmode E2ω,B1

j (r′):

|Lm⟩ : Dj ∝ c̃B1
j , (83)

|Rm⟩ : Dj ∝ c̃B1
j .

Integrals (67), (68) for the eigenmode E2ω,B2

j (r′):

|Lm⟩ : Dj ∝ c̃B2
j , (84)

|Rm⟩ : Dj ∝ c̃B2
j .

To summarize, depending on the value of the projection of the angular momentum
min of the incident vortex, we have four cases. However, as in the previous example
(Sec. 4.1), due to the somewhat similar expressions for the coupling integrals which are
proportional to either the exponents e+3iβ, e−3iβ, or just constants, we can consider
only one of them. Let us proceed with further calculations, assuming min = 4s − 3,
where s ∈ Z+.
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4.2.4 Second-harmonic electric field

Let us obtain expressions for the second-harmonic electric field E2ω, assuming min =
4s − 3, where s ∈ Z+. This means that we use coupling integrals (77), (78), (79),
and (80)

Eigenmodes, which are transformed under E We calculate second-harmonic
electric field for the eigenmode E2ω,x+iy

j (r′) (77):

|Lm⟩ : E2ω ∝
∑
j

E2ω,x+iy
j (r)Cje

+3iβ, (85)

|Rm⟩ : E2ω ∝
∑
j

E2ω,x+iy
j (r)C ′

je
+3iβ,

for the eigenmode E2ω,x−iy
j (r′) (78):

|Lm⟩ : E2ω ∝
∑
j

E2ω,x−iy
j (r)C ′

je
−3iβ, (86)

|Rm⟩ : E2ω ∝
∑
j

E2ω,x−iy
j (r)Cje

−3iβ,

for the eigenmode EB1
j (r′) (79):

|Lm⟩ : E2ω ∝
∑
j

EB1
j (r)cB1

j , (87)

|Rm⟩ : E2ω ∝
∑
j

EB1
j (r)cB1

j ,

and, finally, for the eigenmode EB2
j (r′) (80):

|Lm⟩ : E2ω ∝
∑
j

EB2
j (r)cB2

j , (88)

|Rm⟩ : E2ω ∝
∑
j

EB2
j (r)cB2

j .

4.2.5 Total integral second harmonic intensity

We calculate the total integral second harmonic intensity I2ω in a two modes approxi-
mation, using the decomposistions of the field above E2ω (85), (86), (87), (88). We take
a sum only of two modes with indexes i and j. Recall that we consider eigenmodes
transformed under E irrep separately because modes transformed under different irreps
don’t interfere with each other. A left-handed and right-handed beam excites the eigen-
modes E2ω,x+iy

j (r), and the second-harmonic intensity I2ω|Lm⟩ and I
2ω
|Rm⟩ can be written as

follows:

I2ω|Lm⟩ ∝
∫
sph

dV

∣∣∣∣E2ω,x+iy
j (r)C̃je

+3iβ + eiαE2ω,x+iy
i (r)C̃ie

+3iβ

∣∣∣∣2, (89)
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I2ω|Rm⟩ ∝
∫
sph

dV

∣∣∣∣E2ω,x+iy
j (r)C̃ ′

je
+3iβ + eiαE2ω,x+iy

i (r)C̃ ′
ie

+3iβ

∣∣∣∣2, (90)

where in the explicit form the phase α between eigenmodes E2ω,x+iy
i,j (r) was extracted

from coefficients Cj,i, C
′
j,i, and, as a consequence the new coefficients C̃j,i, C̃

′
j,i were

introduced. Interference terms are proportional to:

I2ω,interf.|Lm⟩ ∝
∫
sph

dV e−iαE2ω,x+iy
j (r)

(
E2ω,x+iy

i (r)
)∗
Aji + c.c., (91)

I2ω,interf.|Rm⟩ ∝
∫
sph

dV e−iαE2ω,x+iy
j (r)

(
E2ω,x+iy

i (r)
)∗
A′

ji + c.c., (92)

where I2ω,interf.|Lm⟩,|Rm⟩ are related to the interference terms from the expressions (89) and (90)

for the total integral second harmonic intensity I2ω|Lm⟩,|Rm⟩, and new coefficients Aji, A
′
ji

contain all combinations of the old coefficients C̃j,i, C̃
′
j,i. Analogously, we obtain the total

integral second harmonic intensity I2ω|Lm⟩,|Rm⟩ for two eigenmodes E2ω,x−iy
j (r) excited by

a left-handed and right-handed beam:

I2ω|Lm⟩ ∝
∫
sph

dV

∣∣∣∣E2ω,x−iy
j (r)C̃ ′

je
−3iβ + eiαE2ω,x−iy

i (r)C̃ ′
ie

−3iβ

∣∣∣∣2, (93)

I2ω|Rm⟩ ∝
∫
sph

dV

∣∣∣∣E2ω,x−iy
j (r)C̃je

−3iβ + eiαE2ω,x−iy
i (r)C̃ie

−3iβ

∣∣∣∣2. (94)

Interference terms are proportional to:

I2ω,interf.|Lm⟩ ∝
∫
sph

dV e−iαE2ω,x−iy
j (r)

(
E2ω,x−iy

i (r)
)∗
A′

ji + c.c., (95)

I2ω,interf.|Rm⟩ ∝
∫
sph

dV e−iαE2ω,x−iy
j (r)

(
E2ω,x−iy

i (r)
)∗
Aji + c.c., (96)

where we should also note that the terms of the form E2ω,x+iy
j (r)

(
E2ω,x+iy

i (r)
)∗

=

E2ω,x−iy
j (r)

(
E2ω,x−iy

i (r)
)∗

are equal to each other due to the achiral symmetry of the

nanoparticle.
We should pay attention to the following:

1. The eigenmode is excited by only one term of the polarization, since ∆mχ is never
equal to nν, where ν ∈ Z.

2. The multiplier ei∆mχβ finally disappears.

3. A lot of coefficients are equal to each other.

4.2.6 Second-harmonic circular dichroism

Therefore, using this equality and comparing expressions above (91), and (96), as well
as (92), and (95), we can conclude that interference terms I2ω,interf., and, as a conse-
quence, the total integral second harmonic intensity I2ω look absolutely the same for a
left- and right-handed beams.
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Comment: the same independence of intensity on the incident vortex polarization
can be obtained for interference terms I2ω,interf. for interference of two excited eigen-
modes transformed under irreducible representation B1, as well as under irreducible
representation B2 with help of expressions (87), and (88). Consequently, the total inte-
gral second harmonic intensity I2ω doesn’t depend on the sign of the polarisation of the
incident vortex. Let us remind that despite the fact that all expressions for intensity
were obtained for the specific case, when min = 4s − 3, s ∈ Z+, it’s not necessary to
calculate all other cases because the expressions and the final result will be always the
same due to the same expressions for coupling integrals. Overall, the final conclusion
can be introduced: circular dichroism in the second-harmonic signal doesn’t appear in
a nanostructure GaAs[111]∥z with symmetry C4v under any circumstances.

5 Derivation of the main condition for a general

case

We’ve presented two examples, the choice of which is linked, firstly, to the popularity
of the materials considered, and secondly, to the nontrivial nature of the examples
themselves. In this section, we will identify the common patterns observed, ultimately
leading to a simple general formula.

1. An incident vortex beam excites intrinsic modes, consisting of the same multipoles
as the beam itself (with the samemin), as well as those that are transformed under
the same irreducible representation. By symmetry considerations (for instance, a
function describing the structure’s shape expands into series by cos(nφ)), these
will be multipoles with ±min + nν, ν ∈ Z. It is important to note that at this
stage, a mirror beam excites mirror modes, regardless of whether they were origi-
nally degenerate (transformed according to representation E) or not (transformed
according to other representations).

2. Subsequently, it is necessary to derive an expression for the nonlinear polarization,
into which the field inside the particles enters q times. The factor responsible for
rotational symmetry,

∑
ν [...]e

i(±min+nν)φ, ν ∈ Z, multiplied by itself q times, yields∑
ν [...]e

i(±qmin+nν)φ, ν ∈ Z.

3. At the previous stage, the symmetry of the particle was already considered. We
regard the particle as fixed relative to the coordinate system, and the relative
rotation of the lattice is represented by the rotation of the tensor describing this
lattice. Thus, one of the most important points is that tensor contains terms
of the form

∑
mχ

[...]eimχ(φ−β). This does not depend on the handedness, since
it characterizes the lattice. Note that phase differences between such terms are
proportional to ∆mχβ.

4. Another crucial observation is that nonlinear susceptibility is real (contains rather
cos(mχφ) or sin(mχφ)) terms than exponential). Thus polarizability can always
be written in a “mirror” form for other handedness (and also terms with mχ = 0).
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Generally, for some pair with mχ and −mχ:

Pqω(r, z, φ) ∝
{∑

ν

Pqω
(mχ+qmin+nν)

e±(mχ+qmin+nν)iφ

}
e∓mχiβ+ (97)

+

{∑
ν

Pqω
(−mχ+qmin+nν)

e±(−mχ+qmin+nν)iφ

}
e±mχiβ

At this stage it is not clear, how the dichroism could appear. Note that in general
case, first and second terms exciting eigenmodes of a different symmetry (with
different total m). For example, if mχ = 2, n = 3, for the first term we have
qmin + 2 + 3ν and qmin − 2 + 3ν, which never coincide for ν ∈ Z or any qmin.

5. Let us consider the case, when these terms can coincide, exciting the eigenmodes
of the same symmetry, e.g. mχ = 2, n = ∆mχ = 4. This is the stage, where
the dichroism appears. Imagine the first term of the polarization excites one
mode, and the second one excites another mode of the same symmetry. One of
these two modes can be in the vicinity of resonance, thus assume that the mode,
excited by the second term has a relative phase α. Note that α is the same (with
the same sign) for both beam handednesses, because these two cases mirror each
other. On the other hand, multipliers with β have opposite signs for left and right
beams. Thus, in one case, the relative phase will be α+∆mχβ, and in the other
α−∆mχβ, which provides constructive and destructive interference. Each mode
will be excited by both terms of the polarization, which makes the calculations
cumbersome, but does not change the general idea.

6. The main formula immediately follows from the fact that to obtain the dichroism,
different terms of nonlinear polarization should excite eigenmodes of the same
symmetry, and also phases should be different, which does not fulfill for β = πν/s.

The two described cases provide the consideration of all these processes in detail, and
it can be seen that regardless of the symmetry of the excited eigenmodes on each stage,
this general consideration is still applicable. We also note that not the symmetry of
the excited eigenmodes that matters, but the difference between the rotational sym-
metry of different modes excited. Due to the modified law of total angular momentum
projection conservation, each mode consists of the multipoles, whose m differs by nν.
Different terms of the tensor refer to the excitation of the modes, for which m differs by
∆mχ. If the multipolar content of the modes, “excited by different terms of the tensor”
coincide, the modes can interact. Mirror reflection of the incident beam changes the
sign of additional phase between these modes due to the lattice rotation. Hence, the
considerations eventually do not depend on the order of the harmonic or absolute value
of the incident angular momentum projection.

6 Numerical Calculations

In Section (5), we introduced a universal recipe for defining the possibility of circular
dichroism (CD) appearance in perturbative harmonic generation, based on the illustra-
tive examples previously discussed. Let us apply it to the second-harmonic generation
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and the nanostructure BaTiO3[001]∥x with symmetry D3h irradiated by an incident
vortex beam with the total angular momentum projection on the z-axis min = 3.

According to the step 1, vortex beam excited intrinsic modes, consisting of the
multipoles with m = ±3 + 3ν, ν ∈ Z. Let us refer to our previous work [31] and find
the values mχ for the crystalline lattice BaTiO3[001]∥x: mχ ∈ {±1, ±3}. Using it
and relying on the general form of the nonlinear vector polarization Pqω(r, z, φ) (97),
we can determine which eigenmodes can be excited at the doubled frequency. In fact,
eigenmodes with ±mχ ± 2min + 3ν = ±mχ ± 6 + 3ν, ν ∈ Z, with the additional phase
∓mχβ, where the sign ± denotes the handedness of the incident beam, are expected
to be excited. Particularly, there are eigenmodes with ±7 + 3ν, ±5 + 3ν, ±9 + 3ν, and
±3 + 3ν, and the main thing is which of them can interfere with each other. In this
particular case only eigenmodes with ±9 + 3ν and ±3 + 3ν have the same symmetry
and interfere. The phase’s difference between them is equal to ∓6β. Therefore, for the
possibility of SH-CD in considered system it’s required to rotate the nanostructure at
β ̸= π/6 with respect to the crystalline lattice.

For the validation of our theoretical results, we present numerical calculations of
the SH intensity in COMSOL Multiphysics® for the described system above with the
following parameters: a trimer that has the D3h symmetry consisting of three equidis-
tant discs each of which has the diameter equal to 500 nm and height equal to 450 nm.
The distance between the discs was equal to 55 nm and refractive index of the material
was equal to 3.5 which is close to the typical values of refractive index for dielectric
materials. Incident wave was not a particular vortex beam, but just a circularly polar-
ized plane wave, multiplied by e±2iφ/r, where r =

√
x2 + y2. Generally, this choice is

arbitrary, and one can take any incident field, which obey the symmetry requirements.
Second harmonic computation was conducted, using standard approach, described, e.g.
in [60, 64]. In Fig. 2, in the range of 1580–1630 nm, we illustrate the SH intensity in
arbitrary units for right- and left-handed beams for angle β = 15◦. As expected, SH-
CD can be obtained because SH intensity differs for different handednesses. In Fig. 2
(in the insert), absolute value of SH-CD is shown for different values of angle β that
we numerically calculated using the eq. (11): SH-CD appears for all β ̸= π/6 which is
consistent with the speculations described above.
Relatively small values of dichroism are explained by arbitrarily chosen wavelengths,
structure, and sizes. Higher values could be achieved if the proper engineering is con-
ducted. Particularly, eigenmodes, which contribute to the dichroism, should be close
to their resonances on the SH wavelength.

7 Discussions

7.1 Cascaded generation

Cascading is also possible to achieve high-harmonic generation [65–67] via lower-order
nonlinearities. Let us consider the cascading process in stages. In the first step, the
condition for the dichroism will be just the same as for the nonlinearity of the considered
order, e.g., the second harmonic. If there is a dichroism, there is no need to go further.
However, if in the first step, the dichroism does not appear, we should consider the next
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Figure 2: Numerically calculated values of SH intensity in arbitrary units for the nanos-
tructure BaTiO3[001]∥x with symmetry D3h for right- and left-handed incident beams
with m = 3. The angle β between the structure’s symmetry plane and the crystalline
lattice was chosen 15◦. On the insert: Numerically calculated absolute values of SH-CD
depending on angle β. SH-CD is possible for all β ̸= π/6.

process with a different incident field. Here, the consideration is more tricky than the
usual one.
The simplest example is the third harmonic cascaded process via χ̂(2). The second step
is a sum-frequency process 2ω + ω. One of the fields (2ω) will contain several terms
of different symmetry, with m, differing by ∆mχ since they are being generated in
the first step “by different components of the tensor”. They also have corresponding
phases, depending on β. Let us again consider (97) (and only one handedness). After
the first step, the first term will generate the SH field with the momentum projections
mχ + 2min + nν and phase −mχβ, and the second with −mχ + 2min + nν and phase
mχβ.
Then these terms participate in the sum-frequency process as a part of the incident
field. Let us consider the angular momentum projection, generated by the first term on
the second step. It will contain two terms, with mχ +mχ + 2min +min + nν and phase
−2mχiβ and −mχ+mχ+2min+min+nν and phase 0. The second term in the second
step will produce−mχ+mχ+2min+min+nν and phase 0 and−mχ−mχ+2min+min+nν
and phase 2mχiβ. Even though two of these four terms will have the same m, and the
same symmetry and could be the candidates to produce dichroism, their phase does
not depend on β. This will happen to all such terms in other processes, because each
mχ carries its corresponding phase, and terms with the same m will thus possess the
same phase, which cannot lead to dichroism. The first and fourth terms in general, can
have the same symmetry in the second step (2∆mχ = nν), even if ∆mχ ̸= nν (since we
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restrict ourselves to the case when we do not have dichroism in the first step). However,
this does not happen often. For example, if one can imagine the lattice which provides
only ∆mχ = 2, but n = 4, this will be the case. Another tricky case is when we have
n > 6. For the second harmonic, dichroism is not possible due to (17). But here, for
the first and fourth terms we have effectively 2mχ for each one, thus ∆meff

χ ≤ 12. This
difference, though insignificant, does not allow us to apply the same formula for cascade
processes directly. However, the selection rules will be still similar, and the method in
general is still applicable.

7.2 Angular incidence and substrate

All these considerations are applicable to a normal incidence of a beam, aligned with the
z-axis, which is also the symmetry axis of a nanostructure. The inclination of the beam
would break the symmetry. In this case, we suggest considering a perfectly aligned
beam, but a rotated nanostructure, which effectively will have a lower symmetry and
the crystalline lattice should be rotated (the Matlab code for the tensor rotation could
be found in [31]). We also note that the presence of substrate does not alter the results,
because it does not change the symmetry which is of interest to us. The dichroism will
appear both in transmission and reflection.

7.3 Other subtleties

Throughout the paper, we avoided considering the case min = 0, while the Poincare
sphere also exists for this case, and multipolar building blocks of the corresponding
beams are Ne01 ±Me01. Initially, it might appear that the nonlinear polarization (97)
terms are totally symmetric, and polarization coincides for both handednesses so the
circular dichroism can not be obtained. However, this is the case where particular form
of Pqω

(±mχ+nν)(r, z) plays a role. Such terms are not symmetric in general, reflecting

the interplay of the lattice with the field, carrying particular helicity [68, 69], thus our
considerations are still valid and main formula applicable. Additionally, we wish to
clarify that our analysis and results are not analogous to considering nanoparticles as
“big molecules” with their hyperpolarizability [70]. We assume that the nanostructure
is large enough so its material is described by nonlinear susceptibility tensor, and surface
effects are weak [71]. Thus, even if a “big molecule” can possess no symmetry at all we
can still have zero circular dichroism in this approximation.

8 Conclusions

To conclude, we performed a thoughtful theoretical analysis of nonlinear circular dichro-
ism and provided the complete answer for all possible perturbative harmonic order and
a broad range of materials and achiral nanostructures, which would help to accelerate
the further analysis of such structures. These results can play a particularly impor-
tant role in chiral sensing with nanostructures [29, 72–74], since determining the chiral
response of the nanoparticle itself is crucial.
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A Appendix

A.1 On non-perturbative harmonic generation

Even though high harmonic generation is widely studied and observed in non-
perturbative regime [75, 76], our study can be applied to the systems that are still under
conditions the perturbative regime, or have a perturbative contribution [47, 66, 77].
The symmetry dependencies in non-perturbative regime should be studied sepa-
rately [78, 79].

A.2 χ̂(3) tensor in cylindrical coordinates

By the link [80] we provide a Matlab code to compute the nonlinear susceptibility tensor
in cylindrical coordinates for cubic symmetries. It could be easily rewritten for other
tensors. One can imagine the procedure as writing tensor in the form of tensor product
of basis vectors:

χ̂(3) = χ
(3)
ijklei ⊗ ej ⊗ ek ⊗ el, (98)

where ei are x̂, ŷ, or ẑ and then rewriting each vector ei in cylindrical coordinates
according to

x̂ = ρ̂ cosφ− φ̂ sinφ (99)

ŷ = ρ̂ sinφ+ φ̂ cosφ

we get the answer. For example, for two of the most common materials, Si (m3m, Oh

group), and GaAs (43m, Td group) we have four independent components [46]:

χ(3)
xxxx = χ(3)

yyyy = χ(3)
zzzz (100)

χ(3)
xxyy = χ(3)

yyzz = χ(3)
zzxx = χ(3)

zzyy = χ(3)
yyzz = χ(3)

xxzz (101)

χ(3)
xzxz = χ(3)

xyxy = χ(3)
yzyz = χ(3)

yxyx = χ(3)
zyzy = χ(3)

zxzx (102)

χ(3)
xyyx = χ(3)

xzzx = χ(3)
yxxy = χ(3)

yzzy = χ(3)
zyyz = χ(3)

zxxz. (103)

For example, if we provide them with values 8, 4, 4, 4 respectively, in cylindrical
coordinates we obtain

χ(3)
zzzz = 8 (104)

χ(3)
ρρρρ = χ(3)

φφφφ = 9− cos 4φ (105)

−χ(3)
ρφφφ = −χ(3)

φρφφ = −χ(3)
φφρφ = −χ(3)

φφφρ =

= χ(3)
φρρρ = χ(3)

ρφρρ = χ(3)
ρρφρ = χ(3)

ρρρφ = sin 4φ (106)

χ(3)
ρρφφ = χ(3)

ρφρφ = χ(3)
ρφφρ = χ(3)

φρρφ = χ(3)
φφρρ = χ(3)

φρφρ = cos(4φ) + 3 (107)

χ(3)
φzφz = χ(3)

φzzφ = χ(3)
zφzφ = χ(3)

zφφz = χ(3)
φφzz = χ(3)

zzφφ =

= χ(3)
zρzρ = χ(3)

ρzzρ = χ(3)
ρzρz = χ(3)

zzρρ = χ(3)
zρρz = χ(3)

ρρzz = 4. (108)

From above, we see that mχ ∈ {0, 4,−4}, so ∆mχ ∈ {±4,±8}. Note that the second
value ±8 could not be obtained for χ̂(2) or any third rank tensor.
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A.3 Vector spherical harmonics

Magnetic and electric vector spherical harmonics Me
omn,Ne

omn are generated by the
scalar functions [38]:

ψemn = cosmφPm
n (cosϑ)zn(kr), (109)

ψomn = sinmφPm
n (cosϑ)zn(kr),

where Pm
n (cos θ) are associated Legendre polynomials, and zn(kr) are any of the spher-

ical Bessel functions: jn, yn, h
(1)
n , h

(2)
n . They can be defined as:

Me
omn = ∇×

(
rψe

omn

)
, (110)

Ne
omn =

∇×Me
omn

k
.

In the component form they can be written as follows:

Memn(k, r) =
−m
sin θ

sinmφPm
n (cos θ)zn(ρ)êθ− (111)

− cosmφ
dPm

n (cos θ)

dθ
zn(ρ)êφ,

Momn(k, r) =
m

sin θ
cosmφPm

n (cos θ)zn(ρ)êθ− (112)

− sinmφ
dPm

n (cos θ)

dθ
zn(ρ)êφ,

Nemn(k, r) =
zn(ρ)

ρ
cosmφn(n+ 1)Pm

n (cos θ)êr+ (113)

+ cosmφ
dPm

n (cos θ)

dθ

1

ρ

d

dρ
[ρzn(ρ)] êθ−

−m sinmφ
Pm
n (cos θ)

sin θ

1

ρ

d

dρ
[ρzn(ρ)] êφ,

Nomn(k, r) =
zn(ρ)

ρ
sinmφn(n+ 1)Pm

n (cos θ)êr+ (114)

+ sinmφ
dPm

n (cos θ)

dθ

1

ρ

d

dρ
[ρzn(ρ)] êθ+

+m cosmφ
Pm
n (cos θ)

sin θ

1

ρ

d

dρ
[ρzn(ρ)] êφ,

where dimensionless variable ρ = kr was introduced.

46



l’=-2

l’=4

Mo34+Ne34

x
y

y
x

z

y
x

Figure 3: Visual illustration of a real part of a multipolar combination (116) or (117).
The far-field radiation pattern is shown in the center with arrows depicted. For conve-
nience, we provide the view from the top and bottom. Red arrows are a guide for eyes
for computing the Hopf index l′.

A.4 On specific multipolar combinations and vortex beams

We provide this appendix for a better understanding of the symmetry properties of the
vortex beams building blocks, which are specific multipolar combinations. Recall that
in the paraxial approximation beam ((1) and (2)) is often written in the form

|R/Lm⟩∼ exp(i(m− λ)φ)(x̂+ λiŷ)/
√
2 (115)

where opposite signs of total angular momentum projection m and helicity λ [35, 81]
refer to the right- and left-handed beams. Usually, the quantity ℓ = m−λ is introduced,
which refers to the number of phase rotations around the singularity (see Fig. 1) and
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also to the order of higher-order Poincare sphere. For a circularly polarized plane wave,
ℓ = 0. Let us recall the expressions from (6) and (7) [40], which are the building blocks
of vortex beams with m and λ:

(Ne|m|n ± iNo|m|n) + (±Me|m|n + iMo|m|n), (116)

where upper sign is for λ = 1 and m = |m|, and the lower sign is for λ = −1 and
m = −|m| and

(Ne|m|n ∓ iNo|m|n)− (∓Me|m|n + iMo|m|n), (117)

where upper sign is for λ = 1 and m = −|m|, and the lower sign is for λ = −1 and m =
|m|. These multipolar combinations are eigenvectors of helicity operator [41, 82, 83],
and determine the polarization of the beam. Moreover, their total angular momentum
projection is also well-defined and equal to m [36]. These functions are complex-valued,
thus it is difficult to provide a visual presentation. However, if we depict the real part,
it provides us with some beautiful insights. For each smooth vector field on sphere

+4 +5

-3-2-1

+3

0

+2+1

+1

Figure 4: Nem4 +Mom4 for different m ∈ {0, 1, 2, 3, 4} and their Hopf indexes l′.

S2, according to Hairy ball, or Poicare-Hopf theorem [84, 85], the sum of Hopf indexes
l′ [86] of the singularities is equal 2. Hence it is also applicable for multipoles [87]. We
can calculate the Hopf index as the number of counterclockwise rotations made by the
polarization vector when circling the singularity counterclockwise. For these particular
linear combinations, we have two point singularities on the south and north poles, and
their Hopf indexes are always equal to either m+1 and m−1 (see Fig. 3 and 4). For the
linear combinations with m = 1, which contribute to Kerker effect [42], we only have
one of them with index 2. For the complex functions, the Hopf index will transform into
a number of phase rotations ℓ. These properties could be also useful for engineering,
e.g. topological charges of BICs [87, 88].

We should also notice that beams with the same ℓ can have either m = ℓ + 1 or
m = ℓ−1. In some papers, the dichroism is defined as a difference between responses for
the same ℓ but different λ. However, this would lead to the excitation of symmetrically
different resonant modes (with different m), hence different linear response [21].
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A.5 Extra technical derivations

A.5.1 Multipolar content of the eigenmodes of C3v nanostructure

Eigenmodes, which are transformed under E irrep Decomposition of the eigen-
modes transformed under E, according to the tables with a given multipolar content
of the eigenmodes [61, 62] consists only of the vector spherical harmonics with the
projections of the angular momentum m = 3s − 1 and m = 3s − 2, where s ∈ Z+

with, in general, complex coefficients. However, we note that E is a 2-dimensional ir-
reducible representation, thus there are two orthogonal eigenmodes transformed under
this representation. Given the above, eigenmodes can be written in the following form:

E2ω,x
j (r′) = ae11Ne11 + ae12Ne12 + bo11Mo11 + . . . , (118)

E2ω,y
j (r′) = ao11No11 + ao12No12 + be11Me11 + . . . , (119)

where E2ω,x
j (r′) and E2ω,y

j (r′) are orthogonal eigenmodes transformed under irreducible
representation E, the first one behaves as a function f(r) = x and the second as f(r) =
y [89]. To ensure orthogonality, we’ve exploited the symmetry of the nanostructure
under reflection in y = 0 plane. Index j corresponds to the specific eigenmode with
such symmetry. For each j the coefficients a and b are different. It’s worth mentioning
that orthogonal eigenmodes should be transformed through each other in a certain
way under transformations of group symmetry C3v, thus coefficients aemn and aomn, as
well as bemn and bomn are connected with each other: ae(3s−2)n = ao(3s−2)n = a(3s−2)n,
ae(3s−1)n = −ao(3s−1)n = a(3s−2)n, and be(3s−2)n = −bo(3s−2)n = b(3s−2)n, be(3s−1)n =
bo(3s−1)n = b(3s−1)n, where s ∈ Z+. These identities can be proved by applying the
symmetry transformations of the C3v group to each vector spherical harmonic [90, 91].
Therefore, decompositions of eigenmodes (118) and (119) are written as:

E2ω,x
j (r′) = a11Ne11 + a12Ne12 + b11Mo11 + . . . , (120)

E2ω,y
j (r′) = a11No11 + a12No12 + (−b11)Me11 + . . . . (121)

Let us change the basis to a circular form, i.e. E2ω,x±iy
j = (E2ω,x

j ± iE2ω,y
j )/2 and rewrite

decompositions as:

E2ω,x+iy
j (r′) =

a11
2
(Ne11 + iNo11) +

a22
2
(Ne22 − iNo22)+

+
a12
2
(Ne12 + iNo12) +

b11
2
(Mo11 − iMe11) + . . . , (122)

E2ω,x−iy
j (r′) =

a11
2
(Ne11 − iNo11) +

a22
2
(Ne22 + iNo22)+

+
a12
2
(Ne12 − iNo12) +

b11
2
(Mo11 + iMe11) + . . . , (123)

where E2ω,x±iy
j are also orthogonal eigenmodes. Using the definition of the vector spher-

ical harmonics (See Appendix A.3), we can simplify the expressions (122) and (123)
above:

E2ω,x±iy
j (r′) =

a11
2
N11(r, z)e

±1iφ +
a22
2
N22(r, z)e

∓2iφ+
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+
a12
2
N12(r, z)e

±1iφ +
b11
2
M11(r, z)e

±1iφ + . . . , (124)

where N(M)mn(r, z) do not depend on φ. Note that the functions N22(r, z) can have
a different sign of φ-component for different “polarization” but here we omit it as well
as in the polarization, since it doesn’t affect the final result (See Suppl. Info in [30]).
Finally, combining combinations all N(M)mn(r, z) with complex coefficients amn, bmn

with the same m into Ej,mn(r, z) we obtain the following decompositions of orthogonal

eigenmodes E2ω,x±iy
j :

E2ω,x±iy
j (r′) =

∑
n

{
Ej,1n(r, z)e

±1iφ + Ej,2n(r, z)e
∓2iφ+

+Ej,4n(r, z)e
±4iφ + Ej,5n(r, z)e

∓5iφ + . . .

}
. (125)

Eigenmodes, which are transformed under A1 and A2 irrep Decompositions
of eigenmodes transformed under irreducible representations A1 and A2 contain vec-
tor spherical harmonics Me

o(3s)n and Ne
o(3s)n, where s ∈ Z+. Eigenmodes transformed

under A1 are even under reflection in the plane XZ (for a particular orientation of a
trimer), while eigenmodes transformed under A2 are odd. Thus, decompositions can
be expressed as follows [62]:

E2ω,A1

j (r′) = ae01Ne01 + ae33Ne33 + bo33Mo33 + . . . , (126)

E2ω,A2

j (r′) = be01Me01 + be33Me33 + ao33No33 + . . . . (127)

Using the explicit form of the vector spherical harmonics (Appendix A.3), and new
notations, we can rewrite the expressions above (126) and (127) in the following form:

E2ω,A1

j (r′) = (128)

=
∑
n

{[
Er

j,e3n (r, z) êr + Ez
j,e3n (r, z) êz

]
cos 3φ+Eφ

j,e3n (r, z) êφ sin 3φ+ . . .

}
,

E2ω,A2

j (r′) = (129)

=
∑
n

{[
Er

j,o3n (r, z) êr + Ez
j,o3n (r, z) êz

]
sin 3φ+Eφ

j,o3n (r, z) êφ cos 3φ+ . . .

}
,

where coefficients Er
j,eo3n

(r, z), Ez
j,eo3n

(r, z), Eφ
j,eo3n

(r, z) contain all functions and con-
stants independent on coordinate φ.

A.5.2 Expression for the total intensity

In the Section (4.1.5), we obtained the following expression for the total integral sec-
ond harmonic intensity I2ω|Lm⟩,|Rm⟩ for the case of the nanostructure GaAs[111]∥z with

symmetry C3v (42):

I2ω|Lm⟩,|Rm⟩ ∝
∫
sph

dV

∣∣∣∣E2ω,x±iy
j (r)

(
a+j e

∓3iβ + a′+j e±3iβ + a′′+j
)
+ (130)
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+ eiαE2ω,x±iy
i (r)

(
a+i e

−3iβ + a′+i e+3iβ + a′′+i
) ∣∣∣∣2 = ∫

sph

dV · J±,

where, for clarity, we introduce the integrand J±.

A left-handed beam Let us precisely calculate the integrand from the expres-
sion (130) for the left-handed excitation:

J+ =

∣∣∣∣E2ω,x+iy
j (r)

(
a+j e

−3iβ + a′+j e+3iβ + a′′+j
)
+ (131)

+ eiαE2ω,x+iy
i (r)

(
a+i e

−3iβ + a′+i e+3iβ + a′′+i
) ∣∣∣∣2 =

=

[
e−iαE2ω,x+iy

j (r)
(
E2ω,x+iy

i (r)
)∗

·

·
(
a+j e

−3iβ + a′+j e+3iβ + a′′+j

)(
a+∗
i e+3iβ + a′+∗

i e−3iβ + a′′+∗
i

)
+ c.c.

]
+

+

(∣∣∣E2ω,x+iy
j (r)

∣∣∣2 · ∣∣a+j e−3iβ + a′+j e+3iβ + a′′+j
∣∣2+ (j → i)

)
=

=

[
e−iαE2ω,x+iy

j (r)
(
E2ω,x+iy

i (r)
)∗

·

·
({

a+j a
+∗
i + a′+j a

′+∗
i + a′′+j a′′+∗

i

}
+ a′+j a

+∗
i e+6iβ + a+j a

′+∗
i e−6iβ+

+

{
a′′+j a+∗

i e+3iβ + a′+j a
′′+∗
i e+3iβ

}
+

{
a+j a

′′+∗
i e−3iβ + a′′+j a′+∗

i e−3iβ

})
+ c.c.

]
+

+

[ ∣∣∣E2ω,x+iy
j (r)

∣∣∣2({|a+j |2 + |a′+j |2 + |a′′+j |2
}
+ a′+j a

+∗
j e+6iβ + a+j a

′+∗
j e−6iβ+

+

{
a′′+j a+∗

j e+3iβ + a′+j a
′′+∗
j e+3iβ

}
+

{
a+j a

′′+∗
j e−3iβ + a′′+j a′+∗

j e−3iβ

})
+ (j → i)

]
=

=

[
e−iαE2ω,x+iy

j (r)
(
E2ω,x+iy

i (r)
)∗

·

·
(
Aji +Bjie

+6iβ + Cjie
−6iβ +Djie

+3iβ + Ejie
−3iβ

)
+ c.c.

]
+

+

[ ∣∣∣E2ω,x+iy
j (r)

∣∣∣2(Ajj +Bjje
+6iβ + Cjje

−6iβ +Djje
+3iβ + Ejje

−3iβ

)
+ (j → i)

]
,

where constants Aji = a+j a
+∗
i + a′+j a

′+∗
i , Bji = a′+j a

+∗
i e+6iβ, Cji = a+j a

′+∗
i e−6iβ, Dji =

a′′+j a+∗
i e+3iβ + a′+j a

′′+∗
i e+3iβ, and Eji = a+j a

′′+∗
i e−3iβ + a′′+j a′+∗

i e−3iβ were introduced, for
simplicity. Substituting the expression for the integrand J+ (131) into formula for the
intensity I2ω|Lm⟩ (42), we get:

I2ω,interf.|Lm⟩ ∝
∫
sph

dV e−iαE2ω,x+iy
j (r)

(
E2ω,x+iy

i (r)
)∗

· (132)(
Aji +Bjie

+6iβ + Cjie
−6iβ +Djie

+3iβ + Ejie
−3iβ

)
+ c.c.,

where we focus only on interference terms of the intensity.
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A right-handed beam For the right-handed excitation, we omit the similar calcu-
lations (131) and present the interference terms I2ω|Rm⟩:

I2ω,interf.|Rm⟩ ∝
∫
sph

dV e−iαE2ω,x−iy
j (r)

(
E2ω,x−iy

i (r)
)∗

·

·
(
Aji +Bjie

−6iβ + Cjie
+6iβ +Djie

−3iβ + Ejie
+3iβ

)
+ c.c.. (133)

Finally, these two formulas for the interference terms of the total intensity (132)
and (133) can be combined into a single expression that has already been introduced
in the Section (4.1.5) (43):

I2ω,interf.|Lm⟩,|Rm⟩ ∝
∫
sph

dV e−iαE2ω,x±iy
j (r)

(
E2ω,x±iy

i (r)
)∗

· (134)(
Aji +Bjie

±6iβ + Cjie
∓6iβ +Djie

±3iβ + Ejie
∓3iβ

)
+ c.c..
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