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Altermagnets exhibit a large electron spin splitting which can be understood as a result of strong coupling be-
tween itinerant electrons and localized spins. We consider superconductivity due to electron-magnon scattering,
using strong-coupling Eliashberg theory to capture many-body effects that are not covered by a weak-coupling
approach. The characteristic band structure of altermagnets puts significant constraints on the spin structure of
electron scattering on the Fermi surface. We emphasize the role of spin-preserving, double-magnon scattering
processes compared to conventional spin-flip processes involving a single magnon. Then, we derive the Eliash-
berg equations for a situation where double-magnon scattering mediates spin-polarized Cooper pairs, while both
double-magnon and single-magnon scatterings contribute to many-body effects. These many-body effects im-
pact superconducting properties in a way that differs significantly from systems where conventional spin-flip
processes mediate superconductivity. To highlight the role of d-wave magnetism on superconductivity in alter-
magnets, we compare our results to those found in ferromagnetic half-metals and conventional antiferromagnetic
metals.

I. INTRODUCTION

The study of spin dynamics in systems with coupled itiner-
ant electrons and localized spins represents a fertile ground for
exploring the fundamental physics of magnetism and electron
transport. Beyond fundamental research, the insights gained
from spin dynamics hold immense promise for technological
innovations in spin-based electronics and quantum informa-
tion processing [1, 2]. The spins of itinerant electrons and
localized spins in magnetic materials interact through an sd
coupling Jsd locally. This coupling allows for controlling the
magnetic order through effects such as spin pumping [3] and
spin transfer torques [4]. These effects facilitate interconver-
sion of charge or spin currents [5] carried by electrons and
spin currents carried by magnons, offering low-dissipation
transport of information [1, 2].

The effect of the sd coupling depends strongly on the mag-
netic crystal hosting the interaction. Ferromagnets (FMs)
are uncompensated magnets with overall spin-split electron
bands. A simple magnetic structure with a single mag-
netic sublattice captures these properties. In contrast, con-
ventional antiferromagnets (AFMs) typically have a two-
sublattice magnetic structure with compensated localized
spins. As a consequence, the magnetic properties allow for
ultrafast spin dynamics in the absence of magnetic stray fields
[6, 7]. However, the sd coupling Jsd does not give rise to spin-
split electron bands. The spin-split bands are prohibited by
structural symmetry evident from PT or T t symmetry, where
P , T and t are the inversion, time-reversal, and translation op-
erators, respectively.

More recently, a new class of colinear magnets called alter-
magnets (AMs) has received attention [8–10]. AMs are com-
pensated magnets for which the structural symmetry does not
prohibit spin-splitting. Instead, electron bands and magnon
bands show a rotational symmetry of d-, g- or i-wave charac-
ters. Consequently, AMs exhibit properties in common with
both FMs and AFMs, in addition to unique properties absent
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for FMs and AFMs. The character of the spin-splitting of the
electron bands renders AMs intriguing candidates for super-
conducting devices [10–21].

The effect of the structural asymmetry in AMs is strong.
Altermagnetic materials such as RuO2 [22, 23], MnTe [24–
26] and CrSb [27] exhibit a spin-splitting with the same order
of magnitude as in FMs. The spin splitting is in the range
100 meV – 1 eV, and is a direct reflection of the magnitude of
the sd coupling Jsd, instead of relativistic spin-orbit coupling
(SOC) [9].

Minimal models of AMs have been introduced in Refs. [28–
30]. Reference [28] introduces a microscopic model for two-
dimensional (2D) AMs defined on a Lieb lattice [31]. The
model separates localized spins and itinerant electrons as dis-
tinct degrees of freedom in an sd model. sd models assume
that the localized spins originate with occupied electron states
far from the Fermi surface (FS). The ordering of the local-
ized spins yields itinerant electron bands with a sizable d-
wave spin splitting. The model is applied to consider super-
conductivity mediated by quantum fluctuations of the local-
ized spins within a weak-coupling Bardeen-Cooper-Schrieffer
(BCS) approach [32].

Replacing phonons with magnons in search of unconven-
tional superconductivity has a long history in the context of
heavy-fermion superconductivity and high-Tc superconduc-
tivity in the copper oxides [33–36]. More recently, electron-
magnon coupling (EMC) has been invoked in the search for
unconventional superconductivity in heterostructures involv-
ing FMs [37–42], AFMs [41–46], and noncolinear magnets
[47–49]. The latter efforts have led to a wide range of pre-
dicted superconducting phases, including topological super-
conductivity. These previous studies focused on effective
electron-electron interactions mediated by the exchange of a
single boson (magnon). This is also the standard approach for
phonon-mediated superconductivity [32, 50]. However, the
combination of d-wave spin splitting of the electron bands and
the colinearity of the magnetic state, means that an exchange
of a single magnon between two electrons with opposite mo-
menta is energetically suppressed in an AM. Instead, Ref. [28]
considered superconductivity arising from effective electron-
electron interactions mediated by two magnons. We refer to
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these as double-magnon processes, and they do not flip the
spin of the electrons. This led to spin-triplet p-wave super-
conductivity with spin-polarized Cooper pairs. By tuning the
chemical potential, a large enhancement of the coupling may
occur due to a combination of a large density of states (DOS)
and suppression of interference effects between the two mag-
netic sublattices.

The large magnitude of Jsd in AMs combined with the
prediction of enhanced coupling strength motivates a strong-
coupling approach to superconductivity. Eliashberg theory
is a strong-coupling theory of superconductivity that treats
the Green’s function of the superconductor. This includes
many-body effects on the normal state due to the same in-
teractions that cause the superconducting pairing [51–56]. We
use anomalous Green’s functions to capture the superconduct-
ing pairing caused by double-magnon processes, while regu-
lar Green’s functions capture renormalization effects caused
by both single- and double-magnon processes.

The coexistence of superconductivity and magnetic order
has also been discussed in bulk systems where the same elec-
trons are responsible for both the magnetic order and the su-
perconducting order. In other words, there are no localized
spins, as in the sdmodel. This has been explored theoretically
[57–60] and observed experimentally [61, 62] for ferromag-
netic order. Spin-triplet p-wave superconductivity is consid-
ered the most likely candidate [58–62]. Furthermore, several
studies [63–67] have considered the coexistence of AFM or-
der and superconductivity. There, spin-singlet d-wave pairing
is the most likely candidate for the superconducting order pa-
rameter [67]. Antiferromagnetic spin fluctuations have also
been proposed as the mechanism behind d-wave supercon-
ductivity, in close proximity to an antiferromagnetic phase,
in heavy-fermion superconductors and other high-Tc super-
conductors [33–36]. Additionally, the coexistence of super-
conductivity and AM order has been discussed [10, 11]. Al-
ternatively, an sd model for a bulk AFM would essentially
be the same as the model studied for AFM insulator/normal
metal (NM) interfaces [43–46]. In contrast to the interfacial
models, the itinerant electrons should always couple equally
to the sublattices in bulk AFM metal models. In that case,
spin-singlet d-wave superconductivity is expected [45, 46].

In this paper, we study superconductivity mediated by
magnons in colinear magnets, treating localized spins and
itinerant electrons as separate degrees of freedom. We focus
on strong-coupling superconductivity in AMs and compare to
FMs and AFMs. Section II introduces the concept of single-
and double-magnon EMCs and compares their contributions
to magnon-mediated superconductivity. In Sec. III, we derive
the Eliashberg equations necessary to study superconductiv-
ity in a spin-split system where double-magnon processes in-
duce spin-polarized Cooper pairing. Section IV extends the
model in Ref. [28] for a 2D AM and compares BCS to Eliash-
berg predictions of the critical temperature for superconduc-
tivity. In Sec. V, we consider the formation of spin-triplet p-
wave superconductivity in a ferromagnetic half-metal in an sd
model. We relegate additional details of the derivations to Ap-
pendixes. Units ℏ = kB = a = 1 are used throughout, where
a is the distance between nearest neighbors on the lattice.

II. ELECTRON-MAGNON COUPLING IN COLINEAR
MAGNETS

The interaction between itinerant electrons and localized
spins is captured by the exchange coupling [28, 37–39, 41–
49, 68–74],

Hsd = −2Jsd

∑
i

Si · si. (1)

Here, Si is the localized spin on site i, and si =

c†i,σσσσ′ci,σ′/2 is the spin of an itinerant electron on site i.

c
(†)
i,σ destroys (creates) and electron at site i with spin σ, and σ

is a vector of Pauli matrices. Experiments have observed sig-
natures of such spin exchange coupling across interfaces [73–
76]. The interfacial coupling is expected to be weaker than an
onsite coupling in a bulk material [28, 38, 39, 44, 71, 77–79].

For a system with an ordered magnetic state arising from
localized magnetic moments, we use the Holstein-Primakoff
(HP) transformation [80] to study spin fluctuations around
the classical ground state. The HP transformation expresses
spin operators in terms of creation and destruction opera-
tors for quantized spin waves, i.e., magnons. Truncating at
second order in magnon operators, we approximate Si,x ≈√
S/2(ai+a

†
i ), Si,y ≈ i

√
S/2(a†i−ai), and Si,z = S−a†iai.

Here, S is the spin quantum number, a(†)i destroys (creates) a
magnon at lattice site i, and the prefactor in Si,y is the imagi-
nary unit. If the magnetic state has more than one sublattice,
separate magnon modes must be introduced for each sublat-
tice. The HP transformation is technically an expansion in
1/S, but as long as there are few magnons in the system, i.e.,
the temperature is low compared to the magnon gap, it should
be a good approximation even when S is not large [71, 80, 81].

The HP transformation applied to Eq. (1) yields
two types of terms. The first type is an EMC
with a single magnon, where the finite spin carried
by the magnon flips the electron’s spin. These are
terms of the type H

(1)
em = −Jsd

√
2S

∑
i a

†
i c

†
i,↑ci,↓ =

−Jsd
√
2S/N

∑
kk′ a

†
k−k′c

†
k′,↑ck,↓. The last term has been

Fourier transformed to momentum space, with momentum
sums restricted to the first Brillouin zone (1BZ) of the lat-
tice under consideration, and N is the total number of unit
cells. The Fourier transform (FT) is defined as ciσ =∑

k ckσe
ik·ri/

√
N for electrons and ai =

∑
q aqe

iq·ri/
√
N

for magnons, where ri is the location of lattice site i. Given
a colinear magnetic configuration, we assume the electrons
have the same quantization axis for spin as the localized spins.

There are also terms involving two magnon operators.
They are captured by H

(2)
em = Jsd

∑
i a

†
iaic

†
i,↑ci,↑ =

(Jsd/N)
∑

kk′q a
†
k−k′+qaqc

†
k′,↑ck,↑. We denote these as

double-magnon processes, in contrast to single-magnon pro-
cesses that contain a single magnon operator. Double-magnon
processes originate with Si,z = S − a†iai, and do not flip
the electron spin. Also, note that the interaction strength for
double-magnon processes does not depend on the spin quan-
tum number S. The momentum space versions of these two
types of EMC are illustrated with Feynman diagrams in Fig. 1,



3

(a)
k

kI

k

kI

k,

kI,k kI

(b)
k

kI

k

kI

k,

kI,
k kI + q

q

FIG. 1. (a) Feynman diagram for single-magnon electron-magnon
coupling (EMC). Solid lines are electrons, and dashed lines are
magnons. When arising from a colinear magnetic state, the magnon
flips the electron’s spin. An effective electron-electron interaction
is derived by connecting two such diagrams. Note that the two in-
coming electrons must have opposite spin. (b) Feynman diagram for
double-magnon EMC, where two magnon lines connect to the same
interaction vertex. In this case, the electron’s spin is not flipped,
permitting effective electron-electron interactions that can generate
spin-polarized Cooper pairs. Here, spin up is chosen as an example.
Note the free momentum q in the double-magnon-mediated electron-
electron interaction.

FM AFM

M X

Y

AM

FIG. 2. Sketches of Fermi surfaces (FSs) in metallic ferromagnets
(FMs), antiferromagnets (AFMs) and altermagnets (AMs). Here,
Γ = (0, 0) is the center of the first Brillouin zone (1BZ). We illus-
trate possible zero-momentum Cooper pairs by filled circles, where
orange (blue) corresponds to electrons with spin up (down). In a FM
metal, the electron bands are spin split. Here, we imagine a situation
where only one spin component has an FS. In that case, only spin-
polarized Cooper pairs are relevant, which can occur due to double-
magnon processes. The crystal symmetry of AFMs prohibits spin
splitting. This allows Cooper pairs with opposite spin and opposite
momenta, which can be induced by single-magnon processes. The
AM has a d-wave spin splitting of the electron bands. Both spins
have FSs, but like the FM, only spin-polarized Cooper pairs carry
zero net momentum.

along with possible electron-electron interactions they could
mediate. We will consider magnon-mediated superconductiv-
ity as an application of EMC where double-magnon processes
could be important. The term double magnon has been used
to describe Feynman diagrams containing four single-magnon
EMC vertices such that two magnons enter the diagram [82].
In this paper, we consider such diagrams to be higher-order
single-magnon diagrams.

Most studies of magnon-mediated superconductivity have
ignored the double-magnon processes. The argument is that
there are few magnons, such that single-magnon processes

dominate. This argument relies on ⟨a†iai⟩ being small at
low temperatures due to a low concentration of magnons.
However, if the magnon description requires diagonalization
through a Bogoliubov transformation to obtain the long-lived
magnon modes, ⟨a†iai⟩ could contain quantum corrections
originating with commutators of the diagonalized magnon op-
erators in momentum space. This is the case if the classical
ground state is not the quantum mechanical ground state. The
d-wave spin splitting of the electron bands in AMs means that
only spin-polarized Cooper pairs can have zero net momen-
tum, as illustrated in Fig. 2. Cooper pairs with zero net mo-
mentum have the greatest phase space for attractive interac-
tions and are considered most stable [50]. Hence, the single-
magnon processes do not contribute to the formation of super-
conductivity. Reference [28] explored how double-magnon
scatterings can mediate an effective interaction between elec-
trons without any spin flips. Figure 2 shows a similar situation
in metallic FMs, while conventional AFMs do not display any
spin splitting such that single-magnon processes can mediate
zero-momentum Cooper pairing without spin polarization.

Reference [38] considers an FM/NM/FM trilayer with op-
posite magnetization directions in the two magnetic insula-
tors, giving zero spin splitting in the normal metal. In that
case, the FS in the NM looks like the AFM case in Fig. 2, and
the effective interaction is relatively simple. Single-magnon
processes can generate superconductivity, and we can write
the effective electron-electron interaction as [38]

HFM,1 =
∑
kk′

V FM,1
kk′ c†k′,↑c

†
−k′,↓c−k,↑ck,↓, (2)

with

V FM,1
kk′ = V 2 2ωk−k′

(ϵk − ϵk′)2 − ω2
k−k′

. (3)

Here, V = −Jsd
√

2S/N is a constant, ϵk is the spin-
degenerate electron spectrum, and ωq is the magnon spectrum.
If we restrict the electron momenta to the FS, we get

V FM,1
kk′∈FS = − 2V 2

ωk−k′
. (4)

The strongest coupling comes from the lowest energy
magnons, which tends to happen at k ≈ k′. Reference
[38] considered isotropic exchange, in which case the FM
is inherently classical, and there are no quantum double-
magnon processes. An electron-electron interaction mediated
by double-magnon processes would require the presence of
thermal magnons, i.e., Bose-Einstein distribution nB(ωq) ̸=
0. Hence, it would be absent at zero temperature.

In Appendix A, we consider a bulk 2D FM with anisotropic
exchange. Such a model requires a diagonalization to find the
long-lived magnon excitations. As a result, double-magnon
processes are available at zero temperature due to quantum
effects. We consider a half-metal, where only spin up has an
FS, i.e., ϵk,↓ > 0, as illustrated in Fig. 2. The coupling for
spin-up electrons is

HFM,2 =
∑
kk′

V FM,2
kk′ c†k′,↑c

†
−k′,↑c−k,↑ck,↑, (5)
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with V FM,2
kk′ = Vkk′,↑ given in Eq. (A8), which on the FS sim-

plifies to

V FM,2
kk′∈FS = − J2

sd

2N2

∑
q

(uk−k′+qvq + uqvk−k′+q)
2

ωk−k′+q + ωq
. (6)

The factors uq, vq are the coefficients in the Bogoliubov
transformation. They are largest at q = 0, and since
magnons are bosons, they can be greater than 1. Again, the
strongest coupling happens for the lowest energy magnons,
with k ≈ k′ and q ≈ 0. However, unlike the single-
magnon processes, the double-magnon processes involve a
free sum over momentum, see also Fig. 1(b). In large
parts of the sum over q the coupling will be weaker than at
k ≈ k′ and q ≈ 0. As a result, the double-magnon pro-
cesses should be subdominant to the single-magnon processes
as long as both are operative. Schematically, we say that
1/ωk−k′ ≫ (1/N)

∑
q 1/(ωk−k′+q + ωq) when k ≈ k′, re-

sults in V FM,1
kk′∈FS ≫ V FM,2

kk′∈FS, given the same Jsd. This means
that in the studies involving FM/NM/FM trilayers [38] or
AFM systems [43–46] any double-magnon corrections should
be negligible. In cases where only double-magnon processes
are relevant due to spin-split FSs, they could be important

Aside from generating superconductivity, double-magnon
processes could also be relevant in other applications of EMC.
This could be magnon drag [70, 75, 76, 83–85], spin insula-
tronics [1], and magnon spintronics [2, 68, 69, 74]. Addition-
ally, double-magnon processes can be relevant when explor-
ing the self-energy in the normal state due to EMC [71, 86], as
demonstrated in this paper for AMs since we solve linearized
Eliashberg equations which contain the self-energy in the nor-
mal state.

We end this section by noting that long-lived magnons orig-
inating with noncolinear magnetic ground states do not have
a well-defined quantization axis for spin, such that single-
magnon processes can give rise to EMC that either does or
does not flip the electron’s spin. In that case, single-magnon
processes can give rise to spin-polarized Cooper pairs and
topological superconductivity [47–49]. From the above argu-
ments, double-magnon processes should have little influence
on the results derived in Refs. [47–49].

III. ELIASHBERG EQUATIONS

A. Green’s function and self-energy

We consider a system with a spin-split electron band ϵk,σ
crossing the FS, interacting with two magnon modes via
spin-flipping single-magnon interactions and spin-preserving
double-magnon interactions. Feynman diagrams generated by
double-boson fermion-boson couplings have been explored in
particle physics [87–90], with focus on the interaction energy
between two fermions. They have also been considered in the
case of double-bogolon-mediated superconductivity within
weak- and strong-coupling approaches [91–95]. Bogolons
are bosonic excitation on top of a Bose-Einstein condensate,
and provide spin-independent interactions for both single- and

= +
k k k k I

k k I

k
+

k k I

k k I + q

q
k

+
k k

q q

k I

+
k k

q

G
G0

D gS1

gS1(1 + S1)
gS2

gS2(1 + S2)

FIG. 3. Feynman diagrams illustrate the Dyson equation on the form
G = G0 +G0ΣG. The self-energy has four contributions, named in
the order Σ = ΣS1 + ΣS2 + ΣEL + ΣML. The single-magnon sun-
set diagram ΣS1 involves a spin flip at each interaction vertex. The
double-magnon diagrams ΣS2, ΣEL, and ΣML do not involve spin
flips. ΣS2 comes from a sunset diagram containing two magnons
(S2), while ΣEL and ΣML are tadpolelike with an electron-loop (EL)
and a magnon-loop (ML), respectively. Vertex corrections are il-
lustrated in the sunset diagrams and quantified by ΓS1 and ΓS2 for
the single-magnon and double-magnon sunset diagram, respectively.
The interaction strengths gS1 and gS2 depend on the momenta and
magnon modes at the vertices.

double-bogolon processes. To capture the effects of spin-
flipping and spin-preserving interactions in a spin split sys-
tem, we present a detailed derivation of the Eliashberg equa-
tions when including single- and double-magnon EMC pro-
cesses.

It is most convenient to consider Eliashberg theory in the
Matsubara formalism [96, 97]. We define the renormal-
ized Green’s function in imaginary time τ as G(k, τ) =

−⟨Tτψk(τ)ψ
†
k(0)⟩. Here, Tτ is the time-ordering operator,

the interactions are included in the expectation value [53, 98,
99], and the Nambu spinor is ψ†

k = (d†k↑, d
†
k↓, d−k,↑, d−k,↓).

The electron operators dkσ are potentially linear combinations
of the original electron operators in a tight-binding model, re-
sulting from a diagonalization.

The self-energy Σ is extracted from the Dyson equation
G = G0 + G0ΣG using an S-matrix expansion of the renor-
malized Green’s function G. G0 is the bare Green’s func-
tion, i.e., ignoring interactions. The FT to imaginary fre-
quency is G(k, iωn) =

∫ β

0
dτeiωnτG(k, τ), where β = 1/T

is the inverse temperature. The Matsubara frequencies are
iωn = i(2n + 1)πT for fermions, and iων = i2νπT for
bosons. The bare Green’s function is

G0(k, iωn) =diag
(
iωn − ϵk,↑, iωn − ϵk,↓,

iωn + ϵ−k,↑, iωn + ϵ−k,↓
)−1

. (7)

We split the self-energy into four contributions Σ = ΣS1 +
ΣS2 + ΣEL + ΣML. These are illustrated in Fig. 3, and de-
tailed expressions are derived in Appendix B. We explain our
reasons for ignoring the electron-loop (EL) diagram ΣEL and
the magnon-loop (ML) diagram ΣML in Appendix C. These
tadpolelike diagrams are nonzero, unlike the single-magnon
tadpole diagram which is not permitted since single-magnon
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EMC flips the electron spin. ΣS1 originates with the single-
magnon sunset diagram (S1). Apart from some details of the
matrix structure, its derivation is covered in most textbooks
on many-particle perturbation theory [98, 99]. The single-
magnon interaction Hamiltonian can be written

H
(1)
int =

∑
kqαβγ

gαβγk+q,kBqγψ
†
k+q,αψkβ , (8)

where Bq is a vector of magnon operators, e.g., Bq =

(αq, α
†
−q, βq, β

†
−q) in the case of two magnon modes. These

operators describe the long-lived magnon modes. Any trans-
formation coefficients in the electron and magnon sectors are
contained in the coupling gαβγk+q,k. Then, the self-energy is

ΣS1
α1β2

(k) =−
∑
k′

∑
β1,γ1,α2,γ2

gα1β1γ1

k,k′ gα2β2γ2

k′,k

×Dγ1γ2
(k − k′)Gβ1α2

(k′). (9)

We let k = k, iωn and
∑

k = T
∑

k,iωn
. Dγ1γ2(q)

is the FT of the magnon propagator Dγ1γ2(q, τ) =
⟨−TτBqγ1(τ)B−q,γ2(0)⟩. Furthermore, the double-magnon
interaction Hamiltonian can be written

H
(2)
int =

∑
kqq′αβγγ′

gαβγγ
′

k,q,q′B−q,γBq′γ′ψ†
k+q′−q,αψkβ . (10)

The self-energy in the double-magnon sunset diagram (S2),
derived in Appendix B, is

ΣS2
α1β2

(k) =
∑
k′,q

∑
β1γ1γ

′
1

α2γ2γ
′
2

Gβ1α2
(k′)

[
g
α1β1γ1γ

′
1

k′,−k+k′−q,−q

× g
α2β2γ2γ

′
2

k,k−k′+q,qDγ1γ2
(k − k′ + q)Dγ′

1γ
′
2
(−q)

+ g
α1β1γ1γ

′
1

k′,q,k−k′+qg
α2β2γ2γ

′
2

k,k−k′+q,q

×Dγ′
1γ2

(k − k′ + q)Dγ1γ′
2
(−q)

]
. (11)

Detailed expressions for gαβγk+q,k and gαβγγ
′

k,q,q′ for the case of an
AM, are given in Appendix C.

Since the renormalized Green’s function G contains the
self-energy, these are coupled self-consistent equations,
thereby counting a great number of diagrams. Nevertheless,
the description excludes some diagrams, illustrated as ver-
tex corrections in Fig. 3. Migdal’s theorem [100] applies to
electron-phonon coupling, and states that vertex corrections
are negligible when the electron bandwidth is much larger
than the phonon bandwidth [56]. A similar requirement is

found in 2D [101], but its applicability to EMC is questionable
since processes with small momentum transfer can be strong.
Reference [45] discusses the lowest-order vertex correction
due to single-magnon processes, which is a fourth-order di-
agram. The strength of processes involving zero-momentum
magnons means that this diagram is not necessarily negligi-
ble. In the case of a spin split FS, this vertex correction should
be small since zero-momentum single-magnon processes are
energetically suppressed. The inclusion of double-magnon
EMC, however, gives rise to vertex corrections of first order
in interactions. From rough estimates, we find that these cor-
rections should be an order Jsd/t weaker than the included
diagrams. An exploration of such corrections is outside the
scope of the present paper.

We now assume that the Green’s function is on the form

G =

G11 0 G13 0
0 G22 0 G24

G31 0 G33 0
0 G42 0 G44

 . (12)

The element G12 would entail a single spin flip, but spin flips
will always come in pairs in any self-energy diagrams, so it
must be zero. G14 would be an anomalous Green’s function
describing Cooper pairs consisting of electrons with opposite
spin. For FMs and AMs, only spin-polarized Cooper pairs can
have zero net momentum. The anomalous Green’s functions
on the off-diagonal in Eq. (12) describe such pairing. From
the Dyson equation on the form G−1 = G−1

0 − Σ, and the
fact that G0 is diagonal, it is clear that the self-energy must
take the same form as the Green’s function. We parametrize
the self-energy in terms of Pauli matrix outer products as

Σ =(1− Z)iωnτ0σ0 + ητ0σ3 + χτ3σ0 − Σhτ3σ3

+ ϕ10τ1σ0 + ϕ13τ1σ3 + ϕ20τ2σ0 + ϕ23τ2σ3. (13)

Here, τi covers the particle-hole degree of freedom, and σi
covers the spin degree of freedom. τ0 and σ0 are the 2 × 2
identity matrix and τiσj is a shorthand for the outer product
τi ⊗ σj . The Eliashberg functions, like the self-energy, de-
pend on momentum and frequency, which is suppressed in the
notation. Inserting this expression in the Dyson equation, we
recognize two disconnected 2 × 2 blocks, one for each spin.
Their determinants are given by

Θσ =(iωnZ − ση)2 − (ϵk,σ + χ− σΣh)
2

− (ϕ10 + σϕ13)
2 − (ϕ20 + σϕ23)

2, (14)

with σ = 1 for spin up and σ = −1 for spin down. We then
obtain

G =


iωnZ+ϵk,↑+χ−η−Σh

Θ↑
0 ϕ10+ϕ13−iϕ20−iϕ23

Θ↑
0

0
iωnZ+ϵk,↓+χ+η+Σh

Θ↓
0 ϕ10−ϕ13−iϕ20+iϕ23

Θ↓
ϕ10+ϕ13+iϕ20+iϕ23

Θ↑
0

iωnZ−ϵk,↑−χ−η+Σh

Θ↑
0

0 ϕ10−ϕ13+iϕ20−iϕ23

Θ↓
0

iωnZ−ϵk,↓−χ+η−Σh

Θ↓

 . (15)
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Symmetry relations between the electron correlations in the
Green’s function results in the symmetries f(k, iωn) =
f(k,−iωn)

∗, where f represents all the Eliashberg func-
tions, Z(k) = Z(−k), χ(k) = χ(−k), η(k) = −η(−k),
Σh(k) = Σh(−k), and ϕij(k) = −ϕij(−k) [45, 97].

Using the assumption in Eq. (12) permits a simplification
of the self-energy expressions. We find that ΣS1 is diagonal,
with

ΣS1
11(k) =

∑
k′

ΛS1
22(k, k

′)G22(k
′), (16)

ΣS1
22(k) =

∑
k′

ΛS1
11(k, k

′)G11(k
′), (17)

ΣS1
33(k) =

∑
k′

ΛS1
44(k, k

′)G44(k
′), (18)

ΣS1
44(k) =

∑
k′

ΛS1
33(k, k

′)G33(k
′), (19)

while the double-magnon sunset diagram gives

ΣS2
αβ(k) =

∑
k′

ΛS2
αβ(k, k

′)Gαβ(k
′). (20)

The definitions of ΛS1
αα(k, k

′) and ΛS2
αβ(k, k

′) =∑
q Λ

S2
αβ(k, k

′, q) are given in Appendix C for the AM
case. These functions are introduced to compactify the
expressions, and contain the parts of the self-energy which
are not an electron Green’s function. In general, they consist
of terms with a product of interaction strengths at the vertices,
and one (two) boson propagator(s) for ΛS1

αα (ΛS2
αβ).

Equation (15) for the Green’s function can be inserted in the
expressions for ΣS1 and ΣS2 and compared to the parametriza-
tion of Σ in Eq. (13) to derive equations for the Eliash-
berg functions. The equations for the pairing functions ϕij
are derived from equations for Σ13(k),Σ24(k),Σ31(k), and
Σ42(k). We then use ϕ10(k) = (Σ13(k)+Σ24(k)+Σ31(k)+
Σ42(k))/4 and similar relations to get coupled equations for
ϕ10(k), iϕ20(k), ϕ13(k), and iϕ23(k). By interchanging
ϕ10 ↔ iϕ20 and ϕ13 ↔ iϕ23, we see that the equations for
iϕ20 and iϕ23 correspond to the equations for ϕ10 and ϕ13,
respectively. This reflects the free complex phase choice of
the gaps. We add the equations to get equations for generally
complex ϕ0 = ϕ10 + iϕ20 and ϕ3 = ϕ13 + iϕ23. Finally,
it is more convenient to study the spin-polarized gaps rather
than a linear combination of them. From the elements of G
in Eq. (15) we identify ϕ↑ = ϕ0 + ϕ3 and ϕ↓ = ϕ0 − ϕ3.
We can add and subtract the equations for ϕ0 and ϕ3 to get
equations for ϕ↑ and ϕ↓. The Eliashberg equations for the
superconducting pairings are

ϕ↑(k) =
∑
k′

ΛS2
13(k, k

′)

Θ↑(k′)
ϕ↑(k

′), (21)

ϕ↓(k) =
∑
k′

ΛS2
24(k, k

′)

Θ↓(k′)
ϕ↓(k

′). (22)

For the AM model in Sec. IV, we find ΛS2
11(k, k

′) =
ΛS2
33(k, k

′), ΛS2
22(k, k

′) = ΛS2
44(k, k

′), ΛS2
13(k, k

′) = ΛS2
31(k, k

′),

and ΛS2
24(k, k

′) = ΛS2
42(k, k

′). These relations arise from real
transformation elements for the electrons, stemming from the
fact that the Hamiltonian on matrix form, Hk,σ in Eq. (C19),
is real and symmetric. Such a property should generally apply
to inversion symmetric systems and has been used to simplify
the equations.

The full Eliashberg equations for the diagonal terms are too
lengthy to write down here. Instead, we proceed directly to
derive linearized Eliashberg functions and apply FS averages
to handle the momentum dependence. The first step is to gain
a better understanding of the effect of the Eliashberg func-
tions Z, η,Σh, and χ. The poles of G provide information
about renormalized bands through self-consistent equations,
which should be analytically continued to the real frequency
axis [96, 102]. The poles are the zeros of Θσ(k) which are

iωn =σ
η

Z
±

[(
ϵk,σ + χ− σΣh

Z

)2

+

∣∣∣∣ϕσZ
∣∣∣∣2
] 1

2

, (23)

where we used that Z(k) is even in frequency and, therefore,
real [55]. We can compare the right hand side to the BCS spec-
trum Ek,σ = ±

√
ϵ2k,σ + |∆k,σ|2. Thus, we see that η shifts

the bands Ek,σ depending on spin, which, in this spin decou-
pled case, is not the same as a magnetic field. A magnetic
field would enter in ϵk,σ +χ−σΣh → ϵk,σ +χ−σh−σΣh

inside the square root. So, Σh is a renormalization of the mag-
netic field [97], though without a magnetic field, it is more
natural to think of it as a renormalization of the spin split-
ting. χ is a spin independent shift of the electron bands.
We can identify the spin-polarized superconducting gaps as
∆σ(k) = ϕσ(k)/Z(k). From the symmetries listed after
Eq. (15), it is clear that ϕσ(k) = −ϕσ(−k) and so they rep-
resent spin triplet gaps that are even in frequency and odd
in momentum, or odd in frequency and even in momentum
[103, 104].

The functions χ(k) and Σh(k) shift the electron bands.
To apply FS averages, the position of the FS must be fixed.
Therefore the effects of χ and Σh must be thought of as ab-
sorbed in our definition of the chemical potential µ and JsdS.
See also our argument for regarding ΣML and ΣEL as included
in our choice of JsdS in Appendix C. η will not shift the po-
sition of the FS and hence can be included in FS averaged
equations. However, when solving the equations, we found
that η(k) = 0, so, for brevity, we omit it here.

B. Fermi surface average

A spin-split system has a spin dependent DOS, Nσ(ϵ) =∑
k δ(ϵ− ϵk,σ). We define a spin dependent FS average as

⟨f(k)⟩FSσ
=

1

NF,σ

∑
k

δ(ϵk,σ)f(k), (24)

where NF,σ = Nσ(ϵ = 0) is the DOS for spin σ on the FS
for spin σ, FSσ . We want to find an FS averaged version of
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equations on the form

f(k) =
∑
k′

Λ(k, k′)
h(k′)

Θσ′(iωn′ , ϵk′,σ′)
, (25)

where Θσ′(k′) depends on k′ only through ϵk′,σ′ . We as-
sume f(k) = f(iωn)ψ(k) and h(k) = h(iωn)ψ(k). If we
multiply both sides by

∑
k δ(ϵk,σ)ψ(k)/NF,σ we recognize

⟨ψ2(k)⟩FSσ
on the left hand side. Then, we convert the sum

over k′ to an integral, and split it into a part parallel and a part
perpendicular to a constant energy contour of ϵk′,σ . The sum
over k′ is dominated by k′ close to FSσ′ , assuming the elec-
tron bandwidth is the largest energy scale in the system. We
neglect the dependence of the parallel integral on the perpen-
dicular momentum, and restrict the parallel integral to the FS
for spin σ′. The end result is

f(iωn) =
1

NF,σ⟨ψ2(k)⟩FSσ

1

β

∑
iωn′

h(iωn′)

∫
dϵ

Θσ′(iωn′ , ϵ)

×
∑
k,k′

δ(ϵk,σ)δ(ϵk′,σ′)ψ(k)Λ(k, k′)ψ(k′), (26)

where the parallel momentum integral has been converted
back to a sum. We have approximated the length of the
constant energy contour to be independent of ϵ and set it
to the length of the FS. This is equivalent to approximating
Nσ′(ϵ) ≈ NF,σ′ . This is generally not a very precise ap-
proximation, but since the behavior close to the FS dominates
the physics, it should still give reasonable results. Note that
this approximation means we treat the system as particle-hole
symmetric with a constant DOS.

Assuming that the electron bandwidth is much larger than
the boson bandwidth, a very reasonable approximation for
magnons, we extend the integration limit for ϵ to infinity.
We have Θσ(k) = [iωnZ(k)]

2 − (ϵk,σ)
2 − |ϕσ(k)|2. We

now assume Z(k) = Z(iωn) and ϕσ(k) = ϕσ(iωn)ψσ(k).
If we linearize the equations for a temperature close to the
critical temperature Tc for superconductivity, we can neglect
the pairing amplitude ϕσ(k) in the denominator. This gives
Θσ(k) ≈ [iωnZ(iωn)]

2 − (ϵk,σ)
2 such that the momentum

dependence is solely in the form ϵk,σ . Then, using∫ ∞

−∞
dϵ

1

[iωnZ(iωn)]2 − ϵ2
=

−π√
[ωnZ(iωn)]2

, (27)

we can derive the FS averaged, linearized Eliashberg equa-
tions.

Some care must be exercised in performing the FS average
in the equation for Z(iωn), since this quantity is related to
both spin up and down. The key is first to FS average the
expressions for Σii(k). For instance, Σ11(k) is related to spin
up, so we FS average k to FS↑. We have Σii(k) = Σii(iωn)
since we have assumed Z(k) = Z(iωn). Using the general
FS average in Eq. (26), we get

Σ11(iωn) =
−π
NF,↑

1

β

∑
iωn′

i sgn[ωn′Z(iωn′)]

×
[∑

kk′

δ(ϵk,↑)δ(ϵk′,↓)Λ
S1
22(k, k

′)

+
∑
kk′

δ(ϵk,↑)δ(ϵk′,↑)Λ
S2
11(k, k

′)

]
. (28)

In the second line, related to the single-magnon sunset dia-
gram, the two momenta belong to FSs for different spins due
to the spin flip. In the third line, related to double-magnon pro-
cesses, both momenta belong to the same spin since there is
no spin flip. For Σ22(k) and Σ44(k) we let k ∈ FS↓, while for
Σ33(k) we let k ∈ FS↑. This gives analogous FS averaged ex-
pressions to that for Σ11(iωn). Then, from [1−Z(iωn)]iωn =
[Σ11(iωn) + Σ22(iωn) + Σ33(iωn) + Σ44(iωn)]/4 we arrive
at the equation for Z(iωn). The FS averaged equations for
ϕσ(iωn) are found straightforwardly from the general expres-
sion for the FS average and Eqs. (21) and (22).

It is convenient to define the following dimensionless cou-
plings

λ1,↑↓(iωn − iωn′) =
1

2NF,↑

∑
kk′

δ(ϵk,↑)δ(ϵk′,↓)

× [ΛS1
22(k, k

′) + ΛS1
44(k, k

′)], (29)

λ1,↓↑(iωn − iωn′) =
1

2NF,↓

∑
kk′

δ(ϵk,↓)δ(ϵk′,↑)

× [ΛS1
11(k, k

′) + ΛS1
33(k, k

′)], (30)

λ1,↑↑(iωn − iωn′) =
1

NF,↑

∑
kk′

δ(ϵk,↑)δ(ϵk′,↑)Λ
S2
11(k, k

′),

(31)

λ1,↓↓(iωn − iωn′) =
1

NF,↓

∑
kk′

δ(ϵk,↓)δ(ϵk′,↓)Λ
S2
22(k, k

′),

(32)

λ2,↑(iωn − iωn′) =
−1

NF,↑⟨ψ2
↑(k)⟩FS↑

∑
k,k′

δ(ϵk,↑)δ(ϵk′,↑)

× ψ↑(k)Λ
S2
13(k, k

′)ψ↑(k
′), (33)

λ2,↓(iωn − iωn′) =
−1

NF,↓⟨ψ2
↓(k)⟩FS↓

∑
k,k′

δ(ϵk,↓)δ(ϵk′,↓)

× ψ↓(k)Λ
S2
24(k, k

′)ψ↓(k
′). (34)

Note that they only depend on frequency through the dif-
ference iωn − iωn′ = iων , which is a bosonic Matsub-
ara freqeuency. For an AM, we find NF,↑ = NF,↓ =
NF , λ1,↑↓(iων) = λ1,↓↑(iων) ≡ λS1

1 (iων), λ1,↑↑(iων) =
λ1,↓↓(iων) ≡ λ1(iων), and λ2,↑(iων) = λ2,↓(iων) ≡
λ2(iων) due to the d-wave nature of the spin splitting. Ad-
ditionally, λS1

1 (iων), λ1(iων), λ2(iων) are real and even in
frequency. λS1

1 (iων) originates with the single-magnon sun-
set diagram, while λ1(iων) and λ2(iων) originate with the
double-magnon sunset diagram. In a half-metallic FM only
NF,↑, λ1,↑↑(iωn − iωn′), and λ2,↑(iωn − iωn′) are nonzero.
Assuming we are in one of those two situations for brevity,
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the linearized, FS averaged Eliashberg equations are

Z(iωn) =1 +
π

ωn

1

β

∑
iωn′

[λS1
1 (iωn − iωn′)

+ λ1(iωn − iωn′)] sgn(ωn′), (35)

ϕ↑(iωn) =
π

β

∑
iωn′

λ2(iωn − iωn′)
ϕ↑(iωn′)

|ωn′Z(iωn′)|
, (36)

ϕ↓(iωn) =
π

β

∑
iωn′

λ2(iωn − iωn′)
ϕ↓(iωn′)

|ωn′Z(iωn′)|
. (37)

From this, note that both λS1
1 (iων) and λ1(iων) contribute to

the mass renormalization. Meanwhile, λ2(iων) contributes to
the superconducting pairing. Also, note that Z(iωn) enters in
the equations for ϕσ(iωn), showing that the mass renormal-
ization affects the superconducting pairing.

C. Critical temperature estimates

1. Bardeen-Cooper-Schrieffer

In BCS theory, the estimate of the critical temperature is
[32, 50]

TBCS
c ≈ 1.13ωce

−1/λ, (38)

where ωc is the maximum boson frequency and λ is the di-
mensionless coupling.

2. Eliashberg

Since the dimensionless couplings are even in frequency,
the sign function sgn(ωn′) allows us to compute the sum over
frequencies exactly in Eq. (35). Let us take n ≥ 0 as an exam-
ple since the derivation for n < 0 is analogous, and we can use
that Z(iωn) = Z(−iωn). Then, the contributions at n′ = −1
and n′ = 2n + 1 cancel due to the sign function and the fact
that iωn − iω−1 = −(iωn − iω2n+1). We are left with the
contribution at n′ = n and two times the contributions from
n′ = 0, . . . , n− 1. As a result,

Z(iωn) =1 +
1

2n+ 1

(
λS1
1 (0) + λ1(0)

+ 2

n∑
ν=1

[λS1
1 (iων) + λ1(iων)]

)
. (39)

Note that Z(0) = Z(iωn=0) = 1 + λS1
1 (0) + λ1(0).

The equations for ϕ↑ and ϕ↓ are the same, so we expect
the same Tc for both the spin up and spin down gaps. We
introduce a symmetric cutoff |ωn| < M and symmetrize to
get

ϕ̃n =

N∑
n′=0

Ms
nn′(T )ϕ̃n′ . (40)

with ωN ≈M , ϕ̃n = ϕσ(iωn)/
√
|2n+ 1|Z(iωn),

Ms
nn′(T ) =

λ2(iωn − iωn′) + ζsλ2(iωn + iωn′)√
|2n+ 1|Z(iωn)|2n′ + 1|Z(iωn′)

, (41)

ζe = 1 for even-frequency gap, and ζo = −1 for odd-
frequency gap. We find the largest eigenvalue ρs(T ) of
Ms(T ) and find the critical temperature TE

c by solving
ρs(T

E
c ) = 1, where Eq. (40) is satisfied. Then, we can re-

cover ϕσ(iωn) from the eigenvector, which tells us the fre-
quency dependence of the gap just below Tc. The functions
ψσ(k) cover the momentum dependence.

3. Allen-Dynes

In a seminal work [105], Allen and Dynes (AD) suggested
a formula that approximates the critical temperature obtained
from solving the Eliashberg equations. It was originally intro-
duced to fit well with Eliashberg solutions and experimental
measurements in phonon-mediated, even-frequency, s-wave
superconductors [105]. Generalizing to more unconventional
pairing mechanisms and pairing symmetries, we write [45]

TAD
c =

ωlog

1.2
exp

(
−1.04Z(0)

λ2(0)

)
, (42)

where ωlog is a logarithmic average of the boson spectrum de-
fined in Appendix C 2 for the AM case. When low-energy
bosons dominate the coupling, as in EMC, one typically has
ωlog ≪ ωc, which reduces the estimate of Tc compared to
BCS theory [45]. The fact that Z(0) > 1 in the exponen-
tial also reduces the estimate of Tc compared to BCS the-
ory, indicating that many-body renormalization effects act in a
pair-breaking manner. We emphasize that the AD estimate in
Eq. (42) is primarily used to get an understanding of the resul-
tant Tc, the most reliable estimate of Tc comes from solving
the linearized Eliashberg equations, giving TE

c .

IV. ALTERMAGNET

As a specific model of a 2D AM, we extend the micro-
scopic model used in Ref. [28] to include up to third-nearest-
neighbor hopping

He =−
∑
i,j,σ

ti,jc
†
i,σcj,σ − µ

∑
i,σ

c†i,σci,σ +Hsd, (43)

where µ is the chemical potential andHsd is defined in Eq. (1).
We consider a Lieb lattice [31] illustrated in Fig. 4(a). This
involves three sublattices, where sublattice A (B) contains lo-
calized spins with spin up (down) and sublattice “nm” is non-
magnetic. The hopping parameters are ti,j = t for nearest-
neighbor hopping, t2 for next-nearest-neighbor hopping, td3
for direct third-nearest-neighbor hopping via vacuum, tnm

3 for
third-nearest-neighbor hopping via the nonmagnetic sites, and
t3 for third-nearest neighbor hopping between the nonmag-
netic sites. Figure 4(a) illustrates these hopping parameters.
For simplicity we set td3 = tnm

3 = t3 throughout this paper.
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FIG. 4. (a) The 2D Lieb lattice for our microscopic model of an AM.
The gold sites are nonmagnetic, and the orange (blue) sites have a
localized spin with spin up (down). Arrows illustrate the hopping
parameters, while wavy lines illustrate the exchange interactions. (b)
The magnon bands are plotted along a path in the 1BZ. The high-
symmetry points in the 1BZ are illustrated in Fig. 2. (c) The electron
bands show a d-wave spin splitting resulting in a spin-independent
density of states Nσ(ϵ), which is plotted in the right panel. Pa-
rameters: t2/t = 0.04, t3/t = 0.02, µ/t = 0, JsdS/t = 0.4,
Jd/JAB = −0.2, Jnm/JAB = −0.4, and K/JAB = 0.002.

The Hamiltonian [28, 106]

Hm =
∑
⟨i,j⟩

JABS
A
i · SB

j −
∑
i

K
[
(SA

i,z)
2 + (SB

i,z)
2
]

+
∑

⟨ix,jx⟩

(
JnmS

A
i · SA

j + JdS
B
i · SB

j

)
+

∑
⟨iy,jy⟩

(
JdS

A
i · SA

j + JnmS
B
i · SB

j

)
, (44)

describes the localized spins on sublattices A and B. Here
⟨ix(y), jx(y)⟩ indicates that the sum is taken over nearest
neighbors on the same sublattice in the x (y) direction, while
⟨i, j⟩ denotes nearest neighbors among the magnetic sites.
JAB > 0 is the antiferromagnetic exchange between sublat-
tices, Jd is direct exchange within sublattices via vacuum, and
Jnm is intrasublattice exchange via a nonmagnetic site. Figure
4(a) illustrates the different exchange interactions. K is the
strength of the easy-axis anisotropy along the z axis.

A. Electrons

Compared to Ref. [28], we have changed the sign conven-
tion on the hopping terms. Otherwise, we proceed in the same
manner in the following. An FT of the electron Hamiltonian to
momentum space gives a description in terms of three types of
electron operators cℓ,k,σ , with ℓ ∈ {A, nm, B}, one for each
sublattice. The Hamiltonian is then written on matrix form as
He =

∑
k,σ,ℓ,ℓ′ c

†
ℓ,k,σ[Hk,σ]ℓ,ℓ′cℓ′,k,σ , with Hk,σ defined in

Eq. (C19). Diagonalization by a unitary matrix Uk,σ gives

He =
∑
n,k,σ

ϵn,k,σd
†
n,k,σdn,k,σ, (45)

where the operators destroying and creating eigenstates are
given by dn,k,σ =

∑
ℓ q

∗
n,ℓ,k,σcℓ,k,σ and the corresponding

adjoint operators.
The three spin-split bands ϵn,k,σ are shown in Fig. 4(c), dis-

playing the d-wave spin splitting characteristic for AMs [10].
The second- and third-nearest-neighbor hopping terms break
the accidental particle-hole symmetry considered in Ref. [28].
The FS is most similar to the case in Ref. [28] for µ > 0
now. The middle bands have energies ±JsdS at the X and Y
points. The third-nearest-neighbor hopping terms add disper-
sion on the MX and MY lines giving a more realistic model
for an AM. Our motivation for including them is also to jus-
tify an FS average in the most interesting region of chemical
potentials, µ ≲ JsdS. Here, Ref. [28] predicts the strongest
coupling due to a combination of a large DOS, and electrons
being localized on mainly one sublattice. Hence, this is the
most interesting region to investigate using strong-coupling
Eliashberg theory. Figure 4(c) also shows the spin-dependent
DOSNσ(ϵ) =

∑
n,k δ(ϵ− ϵn,k,σ), which is the same for both

spins due to the d-wave spin splitting.

B. Magnons

The magnetic Hamiltonian is treated using an HP transfor-
mation and an FT. This gives a description in terms of magnon
operators aq and bq related to spin fluctuations on sublat-
tice A and B, respectively. The Hamiltonian describing the
magnons to second order in magnon operators, is diagonal-
ized by a Bogoliubov transformation aq = uqαq + vqβ

†
−q ,

b†−q = v∗qαq + u∗qβ
†
−q , yielding

Hm =
∑
q

(
ωα
qα

†
qαq + ωβ

qβ
†
qβq

)
. (46)

By defining

Aq =2S(Jd cos 2qy + Jnm cos 2qx

− Jd − Jnm + 2JAB +K), (47)
Bq =4SJAB cos qx cos qy, (48)
Cq =2S(Jd cos 2qx + Jnm cos 2qy

− Jd − Jnm + 2JAB +K), (49)
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we can write

uq =
i√
2

√√√√ Aq + Cq√
(Aq + Cq)2 − 4B2

q

+ 1, (50)

vq =
i√
2

√√√√ Aq + Cq√
(Aq + Cq)2 − 4B2

q

− 1, (51)

ωα
q =

Aq − Cq

2
+

1

2

√
(Aq + Cq)2 − 4B2

q, (52)

ωβ
q =

Cq −Aq

2
+

1

2

√
(Aq + Cq)2 − 4B2

q. (53)

The magnon bands are illustrated in Fig. 4(b) and display
a d-wave spin splitting if Jd ̸= Jnm. The magnon gap is
ω0 = ω

α/β
q=0 = 2S

√
K(K + 4JAB) and is caused by the easy-

axis anisotropy breaking a continuous symmetry. Note the
exchange-enhancement of the magnon gap, common to anti-
ferromagnets.

C. Electron-magnon coupling

The classical part of the spin operator in −Jsd
∑

i,σ,σ′ Si ·
c†i,σσσσ′ci,σ′ resulted in the spin splitting of the electron
bands. The quantum part of the spin operator, described in
terms of magnons by using the HP transformation, results
in EMC. Throughout this paper, we will place the FS in the
middle band and, therefore, only consider scatterings involv-
ing that band. Hence, we drop the band index on the elec-
trons. We include both single- and double-magnon processes,
Hem = H

(1)
em +H

(2)
em with

H(1)
em = −Jsd

√
2S√
N

∑
k,q

([
(ΩA

k+q,k,↓,↑uq +ΩB
k+q,k,↓,↑v

∗
q)αq

+ (ΩA
k+q,k,↓,↑vq +ΩB

k+q,k,↓,↑u
∗
q)β

†
−q

]
d†k+q,↓dk,↑

+
[
(ΩA

k+q,k,↑,↓u
∗
q +ΩB

k+q,k,↑,↓vq)α
†
−q

+ (ΩA
k+q,k,↑,↓v

∗
q +ΩB

k+q,k,↑,↓uq)βq
]
d†k+q,↑dk,↓

)
,

(54)

H(2)
em = −

∑
k,q,q′,σ

Jsdσ

N

[
ΩB

k+q′−q,k,σ,σ

(
v∗qvq′α−qα

†
−q′

+ v∗quq′α−qβq′ + u∗qvq′β†
qα

†
−q′ + u∗quq′β†

qβq′
)

− ΩA
k+q′−q,k,σ,σ

(
u∗quq′α†

qαq′ + u∗qvq′α†
qβ

†
−q′

+ v∗quq′β−qαq′ + v∗qvq′β−qβ
†
−q′

)]
d†k+q′−q,σdk,σ.

(55)

Here, the electron and magnon operators have been
transformed to their diagonal bases, and Ωℓ

k′,k,σ′,σ ≡
q∗ℓ,k′,σ′qℓ,k,σ . From H

(1)
em , we see that the α magnon mode

carries spin −1 along the z axis while the β magnon mode
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FIG. 5. (a) The dimensionless couplings λS1
1 (iων), λ1(iων), and

λ2(iων) as functions of bosonic Matsubara frequencies up to ων ≈
2M . This includes 534 discrete Matsubara frequencies at the chosen
temperature, so the curves look smooth, and markers are omitted.
(b) Z and (c) ϕ/ϕmax as a function of fermionic Matsubara frequen-
cies up to ωn ≈ M . All functions in this plot are real and even in
frequency. At larger frequencies Z → 1 and λS1

1 , λ1, λ2, ϕ → 0.
We plot a normalized version of ϕ = ϕσ since its amplitude is
arbitrary when solving linearized equations. Parameters: t2/t =
0.04, t3/t = 0.02, µ/t = 0.39, JsdS/t = 0.4, S = 3/2,
JABS/t = 0.01, Jd/JAB = −0.2, Jnm = −0.4, K/JAB = 0.002,
T/t = 1.8 × 10−5 ≈ TE

c /t, M/t = 0.03, N = 802 points in sum
over q, and 54 points on the FS for each spin. ψσ(k) is set to the
normalized solution of the linearized BCS gap equation, shown in
Fig. 6(c).

carries spin 1 along the z axis leading to a specific spin-flip
structure of the interactions. In H(2)

em , we see that all combi-
nations of magnon operators carry in total 0 spin along the z
axis, leading to no spin flip of the electron.

In BCS theory, a Schrieffer-Wolff transformation [107] is
applied to derive an effective electron-electron interaction me-
diated by the magnons. The derivation of the linearized BCS
gap equation was done in Ref. [28] and is not repeated here.
We perform new calculations to find the BCS prediction of Tc
when including third-nearest-neighbor hopping and a change
of parameters, using Eq. (A11).

D. Superconductivity

The frequency sum in ΛS2
αβ(k, k

′) can be computed analyt-
ically. This gives some terms that survive at zero tempera-
ture and additional terms that contain factors of nB(ω

α/β
q ).

Still, the free sum over momentum q means that computing
the dimensionless couplings in Eqs. (29)-(34) puts a heavy
demand on computational resources. As a simplification, we
assume the temperature is much smaller than the magnon gap,
T ≪ ω0, such that nB(ω

α/β
q ) ≈ 0, and ignore the contribu-

tions coming from thermal magnons. Then, the only temper-
ature dependence of the dimensionless couplings is through
the positions of the bosonic Matsubara frequencies. At a suffi-
ciently low temperature, we have enough discrete points such
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that λS1
1 (iων), λ1(iων), and λ2(iων) are smooth curves. From

this, we can interpolate to any temperature satisfying T ≪ ω0

using quadratic interpolation. The momentum sums are con-
verted to integrals and calculated using∫

dkf(k)δ(ϵk,σ) =

∫
Γ

dk · ek
f(k)

|∇kϵk,σ|
, (56)

where Γ is the line where ϵk,σ = 0 and ek is a unit vector
along that line. A sum over equidistant points on the FS ap-
proximates the line integral.

Figure 5(a) shows the dimensionless couplings
λS1
1 (iων), λ1(iων), and λ2(iων). While the single-magnon

sunset diagram does not contribute to superconductivity, it has
a significant effect on renormalizations as seen in λS1

1 (iων).
λ1(iων) and λ2(iων) are the contribution from the double-
magnon diagram to renormalization and superconducting
pairing, respectively. Note that λ2(iων) < λ1(iων), which,
according to the AD estimate in Eq. (42), will have a negative
effect on Tc. If the gap had been s-wave, ψ(k) = 1, we
would have λ1(iων) = λ2(iων) (ΛS2

13(k, k
′) = −ΛS2

11(k, k
′)

since the electron transformation coefficients are real). The
fact that ψσ(k) is odd in momentum for even-frequency,
spin-polarized pairing seems to have a detrimental effect
on Tc. However, Ref. [45] found that λ1(iων) ≈ λ2(iων)
for both even- and odd-momentum gaps when considering
single-magnon processes.

Reference [45] considers an AFM/NM/AFM trilayer. As
discussed in Sec. II, single-magnon processes are strongly
dominated by k ≈ k′ processes, especially when the magnon
gap is small. Double-magnon processes have a similar effect,
but the effect is much less significant due to the free sum over
q. As a result, λ2 in Ref. [45] should be dominated by the
k ≈ k′ parts of the sum where ψ(k) and ψ(k′) have the same
sign. In the AM case studied here, where double-magnon pro-
cesses dominate the superconducting pairing, the k′ ≈ −k
parts of the sum are not negligible. Since ψσ(k) and ψσ(k

′)
have opposite sign here, these parts contribute with the oppo-
site sign compared to when k ≈ k′. As a result, we obtain
λ2(iων) < λ1(iων).

In order to increase λ2 compared to λ1, one would need
to make the low-energy magnons more dominant. This can
be achieved by lowering the magnon gap, i.e., decreasing
K/JAB or JABS/t, or decreasing both. However, lowering
the magnon gap too far can destabilize the magnet even at
very low temperatures or destroy the Fermi liquid nature of
the quasiparticles close to the FS [37, 71]. Hence, a compro-
mise must be made. It is also of interest to minimize λS1

1 (iων).
Since this involves scattering between FSs of different spin,
the key is to separate the FSs as much as possible, which hap-
pens to be the situation when µ → JsdS. Hence, by lowering
µ compared to Fig. 5, λS1

1 (iων) increases since the recipro-
cal distance between the FSs decreases. Moreover, λS1

1 (iων)
is reduced if the intermediate and large momentum magnons
have a higher energy since only they contribute when the FSs
are well separated. Increasing the magnon bandwidth affects
the validity of FS averages and the Migdal theorem [100, 101],
so again, a compromise must be made. Making Jd and Jnm
antiferromagnetic such that they frustrate the magnetic state,

would make magnons away from zero momentum more rel-
evant since |uq| and |vq| would increase for q ̸= 0 [42]. In
this system, this is disadvantageous since it would increase
λS1
1 (iων), so we consider Jd and Jnm to be ferromagnetic.
Even-momentum gaps do not necessarily suffer from

λ2(iων) < λ1(iων). In fact, for dx2−y2 -wave pairing we
get λ2(iων) > λ1(iων) though only by a small amount. For
s-wave pairing, λ2(iων) = λ1(iων). Hence, one may won-
der if odd-frequency pairing [103] is preferred in this sys-
tem. However, there is no solution to the eigenvalue prob-
lem in Eq. (40) for odd-frequency gaps at any temperature.
The largest eigenvalue ρo(T ) ≪ 1 for any temperature, and
in fact decreases when the temperature is decreased. We used
ψσ(k) = cos(2θk) with θk equal to the angle between k and
the kx axis to represent a dx2−y2 -wave gap. We also tried
ψσ(k) = sin(2θk) corresponding to dxy-wave pairing. In that
case, λ2(iων) < λ1(iων), and λ2(iων) shows a sign change
at intermediate frequency. This could be advantageous to odd-
frequency pairing. However, we again find ρo(T ) ≪ 1 for any
temperature, possibly since the magnitude of λ2(iων) is very
low when it is negative. Hence, we exclude odd-frequency
pairing as a competing order in this system.

The unlikelihood of odd-frequency pairing mediated by
EMC appears to be a general feature for AMs. It is worth
considering phonon-mediated superconductivity in AMs, al-
though phonons typically do not give odd-frequency super-
conductivity [103]. However, applying a magnetic field that
is weak enough not to affect the compensated magnetic order-
ing in the AM state, might induce an odd-frequency compo-
nent in a phonon-mediated superconducting state [97, 108].
Additionally, a phonon-mediated interaction between elec-
trons typically yields s-wave superconducting gaps. However,
phonons may also yield d-wave superconductivity if included
in combination with spin-fluctuations, or provided that ver-
tex corrections in the electron self-energy are accounted for
[109, 110].

When focusing on even-frequency p-wave gaps, solutions
exist for ρe(TE

c ) = 1. Figures 5(b) and 5(c) show Z(iωn)
and ϕσ(iωn) for a temperature close to TE

c , where the largest
eigenvalue is ρe ≈ 1.0. The result forZ(iωn) indicates signif-
icant mass renormalization effects. For even-frequency gaps,
ρe(T ) increases when we decrease the temperature until it
crosses 1 at TE

c . We set ψσ(k) to normalized versions of
the BCS gap solutions ∆k,σ in order to maximize λ2(iων).
These are shown in Fig. 6(a) for µ/t = 0.35 and Fig. 6(c)
for µ/t = 0.39, and can be chosen to be real. From the lin-
earized BCS gap equation [Eq. (A11)] we find a transition
from nodeless py-wave symmetry to nodal px-wave symme-
try for ∆k,↑ at 0.381 < µ/t < 0.382. ∆k,↓ has a similar tran-
sition from nodeless to nodal p-wave. This transition occurs
because at larger chemical potential, it is an advantage to have
a sign change in ∆k,↑ across kx = 0, since the coupling Ṽ FS↑

kk′

[Eq. (A12)] becomes positive for k′ ≈ (−kx, ky). As µ in-
creases, the positive values at these momenta grow in magni-
tude compared to the negative values at k′ ≈ k so that at some
value of µ, a nodal gap becomes preferred. This is related to
the fact that the FS moves closer to the edge of the 1BZ, as
seen when comparing Figs. 6(a) and (c). However, the exact
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FIG. 6. (b) Critical temperature from BCS theory T BCS
c (divided by 500, blue line, diamonds), Allen-Dynes estimate TAD

c (orange line, crosses),
and from solving the linearized Eliashberg equations TE

c (green line, circles at calculated points). Parameters: t2/t = 0.04, t3/t = 0.02,
JsdS/t = 0.4, S = 3/2, JABS/t = 0.01, Jd/JAB = −0.2, Jnm/JAB = −0.4, Kz/JAB = 0.002, M/t = 0.03, N = 802 points in sum over
q, and 54 or 58 points on the FS for each spin, depending on the chemical potential. ψσ(k) is set to the normalized solution of the linearized
BCS gap equation, shown for µ/t = 0.35 in (a) and µ/t = 0.39 in (c). The black vertical line in (b) shows the transition from nodeless py- to
nodal px-wave symmetry for the spin-up gap. The magnon gap is ω0/t ≈ 0.0018, the maximum magnon frequency is ωc/t ≈ 0.064, and, if
t = 1 eV, then T BCS

c ≈ 88 K and TE
c ≈ 0.21 K at µ/t = 0.39.
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FIG. 7. The normalized solutions to the linearized BCS gap equation,
ψσ(k), are shown on the FS for (a) µ/t = 0.381 and (b) µ/t =
0.382. The transition from nodeless py- to nodal px-wave symmetry
for the spin-up gap occurs without any dramatic change in the shape
of the FS. Here, there are 110 points on the FS for each spin and
otherwise the parameters are the same as in Fig. 6.

shape of the FS is not what determines the transition point. As
illustrated in Fig. 7, there is no dramatic change in the shape
of the FS across the transition point. Instead, we find that the
magnon gap plays a significant role for the precise location
of the transition from nodeless to nodal gap. With parameters
as in Ref. [28], where the magnon gap is larger, the transition
occurs at 0.314 < µ/t < 0.315. With smaller magnon gap,
Ṽ

FS↑
kk′ increases in magnitude for k ≈ k′ while there are rela-

tively small changes when k and k′ are far apart. Hence, the
developing sign change at k′ ≈ (−kx, ky) becomes less im-
portant at low magnon gaps, which means that the transition
moves to higher values of µ.

Figure 6(b) shows TE
c as a function of chemical potential.

The general BCS prediction, namely that Tc increases signif-
icantly close to µ ≲ JsdS [28], remains. However, we find a
dramatic suppression of Tc compared to the BCS prediction
by a factor of about 500. This is due to the many-body ef-
fects that BCS theory neglects. For comparison, we plot the
BCS (TBCS

c ) and AD (TAD
c ) estimates together with the solu-

tion to the eigenvalue problem in Eq. (40), i.e., TE
c . Since

the AD estimate was constructed for single-boson-, specifi-
cally phonon-mediated superconductors, it must be noted that

it gives a surprisingly good guess of TE
c in a system where

double-magnon processes provide the superconducting pair-
ing. Still, it does underestimate Tc slightly, as was known for
phonon-mediated superconductors [105].

The factor of 500 decrease in critical temperature com-
pared to BCS is far more than what 1.13ωc → ωlog/1.2
causes. We find ωlog/t ≈ 0.01 while ωc/t ≈ 0.064. Hence,
this gives a factor of 9 decrease, similar to that found for
AFM/NM interfaces when comparing BCS to Eliashberg pre-
dictions [45, 46]. The major effect is in the exponentials,
where e−1/λ goes to e−1.04Z(0)/λ2(0). When we use the nor-
malized BCS gap solutions for the momentum dependence
ψσ(k), we get λ2(0) ≈ λ, where λ is the largest eigenvalue
in the linearized BCS gap equation [Eq. (A11)] at the same
parameters. We have Z(0) = 1 + λS1

1 (0) + λ1(0). The
fact that there are two sources of mass renormalization and
only one source of pairing (λ2) is a disadvantage of double-
magnon-mediated superconductivity. Furthermore, the fact
that λ2(iων) < λ1(iων) leads to a significant decrease in TE

c

compared to TBCS
c . Phonon-mediated s-wave superconduc-

tors, in contrast, have λ2(0) ≈ λ and Z(0) ≈ 1 + λ giving
a less dramatic correction to Tc compared to BCS estimates
[105].

Compared to the BCS prediction TBCS
c , the Eliashberg so-

lution TE
c decreases more rapidly when µ decreases, as seen

in Fig. 6(b). This is because λS1
1 (iων) increases when µ

decreases, since this brings the FSs for spin up and spin
down closer. Hence, the renormalization effects from single-
magnon processes become more detrimental to superconduc-
tivity.

Note the jump in TAD
c when the gap changes symmetry

across the black vertical line in Fig. 6(b). This is because
ωlog increases by 25% when going from nodeless to nodal gap
when increasing µ. Focusing on the FS for spin up, the elec-
tron band is flattest on the ΓY line where px-wave has a node
and py-wave is maximal. Hence, for nodeless py-wave, the
low-energy-magnon scattering for electrons close to the inter-
section of the FS and the line ΓY dominate more than any
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FIG. 8. (a) The Allen-Dynes estimate TAD
c of the critical temper-

ature, (b) ω0 and ωlog, and (c) the dimensionless couplings at zero
frequency, all plotted as a function of the easy-axis anisotropy K.
Parameters: t2/t = 0.04, t3/t = 0.02, JsdS/t = 0.4, µ/t = 0.39,
S = 3/2, JABS/t = 0.01, Jd/JAB = −0.2, and Jnm/JAB = −0.4.
ψσ(k) is set to the normalized solution of the linearized BCS gap
equation. To get accurate results, we used 110 points on the FS and
N = 1502 points in the sum over q at the lowest magnon gap.

low-energy-magnon scatterings do for the nodal px-wave gap.
Therefore ωlog is smaller for nodeless py-wave gap. BCS the-
ory does not catch this effect. Hence, this indicates that the
nodal px-wave gap may survive to lower µ in Eliashberg the-
ory. Due to the exponential dependence on the dimension-
less couplings, this should only be a small effect. Also, the
transition point is strongly dependent on material parameters.
Therefore we do not explore the Eliashberg correction to the
transition line.

The magnon gap in Fig. 6 is ω0/t ≈ 0.0018 while the
critical temperature for superconductivity is at most TE

c /t ≈
1.8× 10−5. Hence, we are at a much lower temperature than
the magnon gap, ensuring the validity of the HP transforma-
tion and the validity of ignoring any thermal effects in the di-
mensionless couplings proportional to nB(ω

α/β
q ). We found

only small changes in the dimensionless couplings when in-
creasing the number of points on the FS or the number of
points N in the sum over q. Double-magnon processes are
more spread out in momentum compared to single-magnon
processes, so fewer points are needed to get accurate sums.
The cutoff M = 0.03t is large enough to see ϕσ(iωn) drop to
15 % of its maximum. Increasing the cutoff gives only a slight
increase in the estimate of TE

c . From considering a larger cut-
off, more points in FS average, or more points in the sum over
q than in Fig. 6, we expect that the numerical estimate of TE

c

is at least accurate to within 5 % relative deviation. In that
case, we expect that the FS average should introduce more
errors than the numerics. ωlog/t ≈ 0.01 quantifies the typical
energy exchange in the interactions. This means that momenta
where |ϵk,σ| < ωlog should be most relevant, supporting the
validity of the FS average at the chosen chemical potentials,
especially with the added electron dispersion due to the third-
nearest-neighbor hoppings.

We mentioned that a lower magnon gap should give a larger
λ2(0) and λ2(0)/λ1(0). Figure 8 explores this and the ex-
pected behavior of Tc when lowering the magnon gap ω0.
Since the AD estimate only slightly underestimates TE

c we do
not solve the linearized Eliashberg equations in this figure. As
expected, the logarithmic average ωlog decreases when lower-
ing the magnon gap since low-energy magnons become more
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FIG. 9. (a) The electron bands in a metallic FM for a case where
only spin up crosses the FS. The bands are plotted along kx, with
ky = 0, giving an approximately circular FS around the Γ point. (b)
A normalized px-wave gap for spin up, ∆k,↑, shown on the FS. With
parameters chosen as t = 1 eV, S = 1, µ/t = −3.8, JsdS/t = 0.4,
JS/t = 0.005, Jx/J = 0.9999, and Jy/J = 0.3, we get ωc/t ≈
0.064, ω0/t ≈ 0.0003, λ ≈ 0.138, and T BCS

c ≈ 0.6 K.

important. Still, TAD
c increases due to the increase of λ2(0)

and λ2(0)/λ1(0). On the other hand, λS1
1 varies very little

with K since it does not depend on the low-energy magnons.
We predict that reaching a large Tc in AMs will require a very
small magnon gap.

The impact of many-body effects on Tc for magnon-
mediated superconductivity in AMs motivates us to explore an
alternative system. In this system, double-magnon processes
should still result in spin-polarized Cooper pairs, while single-
magnon processes do not contribute to renormalization. This
condition necessitates that only one spin component has an
FS, a scenario typically observed in a half-metallic FM.

V. DOUBLE-MAGNON PROCESSES IN HALF-METALLIC
FERROMAGNETS

In Appendix A, we present the linearized BCS gap equa-
tion for a half-metallic FM, describing spin-polarized super-
conductivity mediated by double-magnon processes. We con-
sider a square lattice and a case where only spin up has an
FS, as illustrated in Fig. 9(a). To get double-magnon pro-
cesses that contribute to superconducting pairing, we must
consider an exchange anisotropic Hamiltonian for the mag-
net, with Jx, Jy < Jz = J , Jx ̸= Jy , and 2∆J = Jx − Jy .
The size of ∆J is related to the strength of SOC in the sys-
tem [111]. With details relegated to Appendix A, we find that
any superconducting pairing is proportional to ∆J , a disad-
vantage compared to the AM case where no SOC is required
to generate the superconducting pairing.

Unlike the Lieb lattice model for an AM, the DOS is rel-
atively low in the tight-binding model on the square lattice,
especially in the ranges of chemical potential where only one
spin component crosses the FS. A very small magnon gap and
a substantial ∆J are necessary to get λ > 0.1. The magnon
gap decreases when Jx is closer to J . For smaller gaps, the
magnitude of the Bogoliubov transformation factors |uq| and
|vq| increase close to zero momentum, and the low-energy
magnons dominate the interactions.

Figure 9(b) illustrates the gap solution for a set of parame-
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ters where λ ≈ 0.138 and TBCS
c ≈ 0.6 K. The gap ∆k,↑ has a

p-wave symmetry, similar to the prediction for ferromagnetic
superconductors [59, 60]. Here, all linear combinations of px
and py are degenerate due to the four-fold symmetry of the
square lattice [46]. Since ∆J/J ≈ 0.35 this should entail a
requirement for strong SOC to reach an appreciable Tc [111].
TBCS
c and λ are so small for reasonable parameters that we

omit refining the estimate with strong-coupling theory. Still,
we would expect that Eliashberg theory leads to a lower Tc.
Low-energy magnons dominate, so ωlog should be small com-
pared to ωc. We know that λS1

1 = 0 since spin down has no
FS, which is an advantage. We would also expect λ2 < λ1,
though they should be closer in magnitude since the low-
energy magnons dominate more than with the parameters we
considered for the AM model. Hence, we expect that the
Eliashberg estimate TE

c is reduced by a smaller factor com-
pared to the BCS estimate TBCS

c than in the AM case. How-
ever, unlike the AM case, the BCS estimate for the critical
temperature is small. One could imagine another lattice where
a half-metallic FM can be realized with a larger DOS on the
FS, but we leave our study here. The critical temperature due
to EMC in a half-metallic FM is limited by the strength of
SOC, which is a relativistic effect [111].

VI. CONCLUSION

We have discussed the role of double-magnon electron-
magnon scattering in colinear magnets, focusing on magnon-
mediated superconductivity. Single-magnon processes proved
to be much stronger than double-magnon processes, provided
both are active. As a result, double-magnon processes play
little role in superconducting pairing in conventional antifer-
romagnets. On the other hand, they are the only source of
magnon-mediated pairing in altermagnets, unconventional an-
tiferromagnets that have nonrelativistic d-wave spin splitting
due to broken structural symmetries. A strong-coupling ap-
proach to superconductivity revealed that many-body renor-
malization effects drastically reduce the possible critical tem-
perature in altermagnets due to magnon-mediated supercon-
ductivity. This involved a detailed derivation of the self-
energy diagrams that result from electron-magnon coupling
with two electrons and two magnons at each vertex. At the
same time, single-magnon processes also contribute to the
many-body effects. We suggested ways in which Tc can be
increased compared to our estimates. In an attempt to limit
the many-body effects driven by single-magnon processes,
we also considered double-magnon-mediated superconductiv-
ity in a ferromagnetic half-metal. Here, we found that the
strength of spin-orbit coupling affects the critical temperature
for superconductivity.
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Appendix A: BCS theory for half-metallic ferromagnet

Electron bands in metallic FMs are spin split. We consider
a square lattice, with all Si = Sẑ in the classical ground state.
The electron Hamiltonian is

He = −t
∑

⟨i,j⟩,σ

c†i,σcj,σ − µ
∑
i,σ

c†i,σci,σ +Hsd. (A1)

Applying an FT gives

He =
∑
kσ

(ϵk − σJsdS)c
†
kσckσ =

∑
kσ

ϵk,σc
†
kσckσ. (A2)

Here, JsdS acts like a magnetic field, and ϵk = −µ −
2t(cos kx + cos ky).

FM groundstates are typically considered to be classical.
Hence, we would expect that only thermal magnons can give
double-magnon processes. Anisotropic exchange interactions
can make FM states quantum mechanical [112]. Anisotropic
exchange originates with SOC and should, therefore, be a
weak effect [111]. In AMs, quantum double-magnon pro-
cesses exist without SOC. Here, quantum is used in the sense
that terms originate with commutators, not Bose factors (ther-
mal magnons). The reason anisotropic exchange can lead to
quantum effects is that a Bogoliubov transformation is re-
quired to derive the long-lived magnons. We consider the
Hamiltonian

Hm = −
∑

⟨i,j⟩,α

JαSi,αSj,α, (A3)

for the localized spins, with J = Jz, 2J̄ = Jx + Jy , and
2∆J = Jx − Jy . Inserting an HP transformation and an
FT gives an off-diagonal description in terms of magnon op-
erators aq and a†q to second order. Then, we introduce a
Bogoliubov transformation Aq = uqaq + vqa

†
−q, A

†
−q =

uqa
†
−q + vqaq . In order to diagonalize the magnon Hamil-

tonian, we require that

uq =

√
1

2
+

|γ1(q)|
2
√
[γ1(q)]2 − [γ2(q)]2

, (A4)

vq = sgn[γ2(q)]

√
1

2
− |γ1(q)|

2
√
[γ1(q)]2 − [γ2(q)]2

, (A5)

giving Hm =
∑

q ωqA
†
qAq, with ωq =

2
√

[γ1(q)]2 − [γ2(q)]2, γ1(q) = 4JS − 2J̄S(cos qx +
cos qy), and γ2(q) = 2∆JS(cos qx + cos qy).

If ∆J = 0 we have uq = 1, vq = 0, i.e., there is no need
for a Bogoliubov transformation. If ∆J ̸= 0, |vq| increases.
Hence, its magnitude is related to the degree of anisotropy,



15

i.e., the strength of SOC. We find double-magnon EMC on
the form

H(2)
em =

Jsd

N

∑
kqq′

(uquq′A†
qAq′ − uqvq′A†

qA
†
−q′

− vquq′A−qAq′ + vqvq′A−qA
†
−q′)c

†
k+q′−q,σckσ.

(A6)

Focusing on spin-polarized Cooper pairing, a Schrieffer-Wolff
transformation [107] results in

HPair =
∑
kk′

Vkk′σc
†
k′σc

†
−k′,σc−k,σckσ, (A7)

with

Vkk′σ =
J2

sd

2N2

∑
q

[
(uk−k′+qvqvk−k′+quq + u2k−k′+qv

2
q)

ϵk,σ − ϵk′,σ − ωk−k′+q − ωq

−
(uk−k′+qvqvk−k′+quq + v2k−k′+qu

2
q)

ϵk,σ − ϵk′,σ + ωk−k′+q + ωq

]
, (A8)

Note that we only kept the terms coming from commutators
and set all Bose factors to zero, assuming the temperature is
lower than the magnon gap. Also note that if ∆J = 0, vq = 0
and so Vkk′σ = 0. If k and k′ are on the FS for spin σ we get

V FSσ

kk′ = − J2
sd

2N2

∑
q

(uk−k′+qvq + uqvk−k′+q)
2

ωk−k′+q + ωq
. (A9)

We now symmetrize the interaction as explained in Ref. [47].
We introduce 2Ṽkk′ = Vkk′ + V−k,−k′ − V−k,k′ − Vk,−k′ .
Note that this is a slight change in notation from Ref. [28]
where a factor 4 was used instead. With this change in no-
tation, the spectrum in the superconducting state is Ek,σ =

±
√
ϵ2k,σ + |∆k,σ|2, where ∆k,σ = ∆k,σσ are the spin-

polarized gaps. The linearized gap equation is [47]

∆k,σ = −
∑
k′

Ṽkk′σ
∆k′,σ

2|ϵk′,σ|
tanh

β|ϵk′,σ|
2

. (A10)

The FS averaged version is derived following Ref. [28] with a
slight change in notation, giving

λ∆k∥,σ = − NSFSσ

NsampABZ

∑
k′
∥

∣∣∣∣ ∂ϵ∂k′⊥

∣∣∣∣−1

Ṽ FSσ

k∥,k
′
∥
∆k′

∥,σ
, (A11)

where ABZ is the area of the 1BZ, SFSσ is the length of the FS
for spin σ,Nsamp is the number of points we sample on the FS,
k∥ denotes the momentum dependence parallel to the FS, and
|∂ϵ/∂k′⊥| is the slope of the electron band perpendicular to
the FS. The linearized gap equation is an eigenvalue problem
and the solution is the eigenvector ∆k∥,σ corresponding to the
largest eigenvalue λ.

The same gap equation is used when finding the BCS pre-
diction TBCS

c for the AM model in Sec. IV. In that model, we
have

V FSσ

k,k′ = −J
2
sd

N2

∑
q

(
|uk−k′+q||vq|ΩA

k′,k,σ,σ

− |uq||vk−k′+q|ΩB
k′,k,σ,σ

)2
/(ωα

k−k′+q + ωβ
q ). (A12)

Appendix B: Derivation of self-energies

The renormalized Green’s function is G(k, τ) =

−⟨Tτψk(τ)ψ
†
k(0)S(β, 0)⟩conn, where the subscript “conn” in-

dicates that it only includes connected diagrams [53, 98, 99],
and

S(τ, 0) =

∞∑
n=0

(−1)n

n!

∫ τ

0

dτ1 · · · dτnTτ [Hint(τ1) · · ·Hint(τn)]

(B1)
is the S matrix. Hint(τ) is the interaction Hamiltonian and
the interaction picture is used to calculate expectation values
[98]. Here, we present the S-matrix expansion to derive the
self-energy expressions for double-magnon processes.

The double-magnon EMC terms H(2)
em can in general be

written as

Hint =
∑

kqq′σσ′γγ′

fσσ
′γγ′

k,q,q′ B
γ
−qB

γ′

q′ d
†
k+q′−q,σdkσ′ , (B2)

where Bq is a vector of magnon operators and su-
perscript γ is the vector component. fσσ

′γγ′

k,q,q′ is
only nonzero for σ = σ′ since double-magnon
processes do not flip spin. Symmetrizing, we get
Hint →

∑
kqq′σσ′γγ′ f

σσ′γγ′

k,q,q′ B
γ
−qB

γ′

q′ (d
†
k+q′−q,σdkσ′ −

dkσ′d†k+q′−q,σ). Technically, there should be a factor 1/2
here. Below, when we calculate expectation values, operators
can be contracted either to the left or to the right. If we fix
this to only one direction for each operator we get a factor
of 2, canceling the factor of 1/2 from the symmetrization.
Writing this in terms of the Nambu spinor gives

Hint =
∑

kqq′αβγγ′

gαβγγ
′

k,q,q′B
γ
−qB

γ′

q′ψ
†
k+q′−q,αψkβ . (B3)

Now, the leftmost (rightmost) fermion operator is to be con-
tracted to the left (right).

The Green’s function involves an expectation value of a
large number of fermion operators. From Wick’s theorem
[113], the average of a product of fermion operators can be
calculated as a product of expectation values of two opera-
tors, with all possible contractions of two operators. If two
ways to contract only differ by Hint(τi) ↔ Hint(τj) they are
equivalent since all Hint(τi) are the same. There are n! ways
to order the n interaction Hamiltonians, so we get a factor of
n! times one of the orderings,
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G(k, τ) =

∞∑
n=0

(−1)n
∫ β

0

dτ1 · · · dτn⟨−Tτ [ψk(τ)Hint(τ1) · · ·Hint(τn)ψ
†
k(0)]⟩conn

fixed
, (B4)

where subscript “fixed” indicates that there is a fixed way of contracting the fermion operators. The n = 0 term is just the bare
propagator G0. Letting n = n1 + n2 + 1, M = n1 + 1, and inserting the expression for Hint(τM ) gives

G(k, τ) =G0(k, τ) +

∞∑
n1=0

∞∑
n2=0

(−1)n1+n2+1

∫ β

0

dτ1 · · · dτn1
dτM · · · dτM+n2

∑
k2q2q

′
2

α2β2γ2γ
′
2

g
α2β2γ2γ

′
2

k2,q2,q
′
2

× ⟨−Tτ{ψk(τ)Hint(τ1) · · ·Hint(τn1
)Bγ2

−q2
(τM )B

γ′
2

q′
2
(τM )ψ†

k2+q′
2−q2,α2

(τM )}⟩conn
fixed

× ⟨Tτ{ψk2β2(τM )[Hint(τM+1) · · ·Hint(τM+n2)]ψ
†
k(0)}⟩conn

fixed
. (B5)

1. Magnon-loop diagram

The n1 = 0 term yields the magnon-loop (ML) diagram, named ΣML and illustrated in Fig. 3. We find

(−1)
∑

k2q2q
′
2

α2β2γ2γ
′
2

g
α2β2γ2γ

′
2

k2,q2,q
′
2

∫ β

0

dτM ⟨−Tτψkρ(τ)ψ
†
k2+q′

2−q2,α2
(τM )⟩⟨−TτBγ2

−q2
(τM )B

γ′
2

q′
2
(τM )⟩

×
∞∑

n2=0

(−1)n2

∫ β

0

dτM+1 · · · dτM+n2
⟨−Tτ{ψk2β2

(τM )[Hint(τM+1) · · ·Hint(τM+n2
)]ψ†

kσ(0)}⟩conn
fixed

. (B6)

We recognize the first term as G0 and the last term as G. The term ⟨−TτBγ2

−q2
(τM )B

γ′
2

q′
2
(τM )⟩ is not a magnon propagator, since

the two operators act at equal time. Since only time-differences matter in equilibrium, we have ⟨−TτBγ2

−q2
(τM )B

γ′
2

q′
2
(τM )⟩ =

⟨−TτBγ2

−q2
(0)B

γ′
2

q′
2
(0)⟩ = ⟨−Bγ2

−q2
B

γ′
2

q′
2
⟩. To get nonzero expectation values, we need the operators to be diagonal in momentum,

so k = k2+q′
2−q2, k = k2, and q2 = q′

2 = q. This gives
∑

qαβγγ′ g
αβγγ′

k,q,q

∫ β

0
dτMG0,ρα(k, τ − τM )⟨Bγ

−qB
γ′

q ⟩Gβσ(k, τM ).
From an FT to imaginary frequency, we get

Gρσ(k, iωn) =G0,ρσ(k, iωn) +
∑

qαβγγ′

gαβγγ
′

k,q,q G0,ρα(k, iωn)⟨Bγ
−qB

γ′

q ⟩Gβσ(k, iωn). (B7)

We extract the self-energy from the Dyson equation, giving ΣML
αβ (k) =

∑
qγγ′ g

αβγγ′

k,q,q ⟨Bγ
−qB

γ′

q ⟩. Note that ΣML
αβ (k) is frequency

independent since the diagram does not involve any scattering of the electrons. It is however momentum and spin dependent.

2. Electron-loop diagram

The n1 ≥ 1 terms are, after writing out both Hint(τ1) and Hint(τM ), given by
∞∑

n1=1

∞∑
n2=0

(−1)n1+n2+1

∫ β

0

dτ1 · · · dτn1dτM · · · dτM+n2

∑
k1q1q

′
1

α1β1γ1γ
′
1

∑
k2q2q

′
2

α2β2γ2γ
′
2

g
α1β1γ1γ

′
1

k1,q1,q
′
1
g
α2β2γ2γ

′
2

k2,q2,q
′
2

× ⟨−Tτ{ψk(τ)B
γ1

−q1
(τ1)B

γ′
1

q′
1
(τ1)ψ

†
k1+q′

1−q1,α1
(τ1)ψk1β1

(τ1)[Hint(τ2) · · ·Hint(τn1
)]

×Bγ2

−q2
(τM )B

γ′
2

q′
2
(τM )ψ†

k2+q′
2−q2,α2

(τM )ψk2β2
(τM )[Hint(τM+1) · · ·Hint(τM+n2

)]ψ†
k(0)}⟩conn

fixed
. (B8)

First, we derive the tadpolelike electron-loop (EL) diagram by contracting the two Nambu spinors at τM . Such a contraction
breaks the rules we set forth after symmetrizing. When contracting at equal time, we should not symmetrize Hint(τM ), but leave
it in its original form. That is the same as restricting to the first half of the Nambu spinor, i.e., restricting α2, β2 to just 1 and 2.

(−1)

∫ β

0

dτ1dτM
∑

k1q1q
′
1

α1β1γ1γ
′
1

∑
k2q2q

′
2γ2γ

′
2

α2,β2∈{1,2}

g
α1β1γ1γ

′
1

k1,q1,q
′
1
g
α2β2γ2γ

′
2

k2,q2,q
′
2
⟨−Tτψkρ(τ)ψ

†
k1+q′

1−q1,α1
(τ1)⟩⟨Tτψ†

k2+q′
2−q2,α2

(τM )ψk2β2
(τM )⟩
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×
[
⟨−TτBγ1

−q1
(τ1)B

γ2

−q2
(τM )⟩⟨−TτB

γ′
1

q′
1
(τ1)B

γ′
2

q′
2
(τM )⟩+ ⟨−TτBγ1

−q1
(τ1)B

γ′
2

q′
2
(τM )⟩⟨−TτB

γ′
1

q′
1
(τ1)B

γ2

−q2
(τM )⟩

]
×

∞∑
n1=1

∞∑
n2=0

(−1)n1+n2−1

∫ β

0

dτ2 · · · dτn1dτM+1 · · · dτM+n2

× ⟨−Tτψk1β1
(τ1)[Hint(τ2) · · ·Hint(τn1

)Hint(τM+1) · · ·Hint(τM+n2
)]ψ†

kσ(0)}⟩conn
fixed

. (B9)

To get nonzero expectation values, we need k = k1 + q′
1 − q1, k2 + q′

2 − q2 = k2, k1 = k. So, q1 = q′
1 and q2 = q′

2. For the
two choices of magnon contraction we must choose either q1 = q2 or q1 = −q2. Then, we can recognize Green’s functions,
giving

(−1)

∫ β

0

dτ1dτM
∑
k2q

∑
α1β1γ1γ

′
1γ2γ

′
2

α2,β2∈{1,2}

G0,ρα1
(k, τ − τ1)⟨ψ†

k2,α2
ψk2β2

⟩
[
g
α1β1γ1γ

′
1

k,q,q g
α2β2γ2γ

′
2

k2,−q,−qDγ1γ2
(−q, τ1 − τM )

×Dγ′
1γ

′
2
(q, τ1 − τM ) + g

α1β1γ1γ
′
1

k,q,q g
α2β2γ2γ

′
2

k2,q,q
Dγ1γ′

2
(−q, τ1 − τM )Dγ′

1γ2
(q, τ1 − τM )

]
Gβ1σ(k, τ1). (B10)

The FT of F (τ) =
∫ β

0
dτ1dτMF1(τ − τ1)F2(τ1 − τM )F3(τ1 − τM )F4(τ1) is F (iωn) =

T
∑

ν F1(iωn)F2(−iων)F3(iων)F4(iωn). This gives

Gρσ(k, iωn) = G0,ρσ(k, iωn) + (−1)
1

β

∑
k2,q,iων

∑
α1β1γ1γ

′
1γ2γ

′
2

α2,β2∈{1,2}

G0,ρα1(k, iωn)⟨ψ†
k2,α2

ψk2β2⟩
[
g
α1β1γ1γ

′
1

k,q,q g
α2β2γ2γ

′
2

k2,−q,−q

×Dγ1γ2
(−q,−iων)Dγ′

1γ
′
2
(q, iων) + g

α1β1γ1γ
′
1

k,q,q g
α2β2γ2γ

′
2

k2,q,q
Dγ1γ′

2
(−q,−iων)Dγ′

1γ2
(q, iων)

]
Gβ1σ(k, iωn). (B11)

We can read off the electron-loop self-energy as

ΣEL
α1β1

(k) =− 1

β

∑
k2,q,iων

∑
γ1γ

′
1γ2γ

′
2

α2,β2∈{1,2}

⟨ψ†
k2,α2

ψk2β2
⟩
[
g
α1β1γ1γ

′
1

k,q,q g
α2β2γ2γ

′
2

k2,−q,−qDγ1γ2
(−q,−iων)Dγ′

1γ
′
2
(q, iων)

+ g
α1β1γ1γ

′
1

k,q,q g
α2β2γ2γ

′
2

k2,q,q
Dγ1γ′

2
(−q,−iων)Dγ′

1γ2
(q, iων)

]
. (B12)

As is the case for the magnon-loop self-energy, ΣEL
α1β1

(k) is frequency independent, since there is no scattering of the exter-
nal electron. By an alternate derivation, we could get ⟨ψ†

k2,α2
ψk2β2⟩ → T

∑
iωn2

Gα2β2(k2, iωn2) which we interpret as a
renormalized Fermi-Dirac distribution. For simplicity, we ignore this renormalization.

3. Double-magnon sunset diagram

Finally, the self-energy in the double-magnon sunset diagram ΣS2 is derived by using the symmetrized form of the interaction
and avoiding contracting operators at equal time. We find∫ β

0

dτ1dτM
∑

k1q1q
′
1

α1β1γ1γ
′
1

∑
k2q2q

′
2

α2β2γ2γ
′
2

g
α1β1γ1γ

′
1

k1,q1,q
′
1
g
α2β2γ2γ

′
2

k2,q2,q
′
2
⟨−Tτψkρ(τ)ψ

†
k1+q′

1−q1,α1
(τ1)⟩

×
∞∑

n1=1

(−1)n1−1

∫ β

0

dτ2 · · · dτn1
⟨−Tτψk1β1

(τ1)[Hint(τ2) · · ·Hint(τn1
)]ψ†

k2+q′
2−q2,α2

(τM )⟩conn
fixed

×
[
⟨−TτBγ1

−q1
(τ1)B

γ2

−q2
(τM )⟩⟨−TτB

γ′
1

q′
1
(τ1)B

γ′
2

q′
2
(τM )⟩+ ⟨−TτBγ1

−q1
(τ1)B

γ′
2

q′
2
(τM )⟩⟨−TτB

γ′
1

q′
1
(τ1)B

γ2

−q2
(τM )⟩

]
×

∞∑
n2=0

(−1)n2

∫ β

0

dτM+1 · · · dτM+n2
⟨−Tτψk2β2

(τM )[Hint(τM+1) · · ·Hint(τM+n2
)]ψ†

kσ(0)⟩conn
fixed

. (B13)

To get nonzero electron Green’s functions, we must choose k = k1 + q′
1 − q1, k1 = k2 + q′

2 − q2, k2 = k. So, q′
1 − q1 =

−(q′
2 − q2). To get nonzero boson propagators, we must have q2 = −q1 and q′

2 = −q′
1, or, in the second term, q′

2 = q1 and
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q2 = q′
1. We choose q′

2 = q′ and q2 = q as free momenta. Then,∫ β

0

dτ1dτM
∑
qq′

∑
α1β1γ1γ

′
1

α2β2γ2γ
′
2

G0,ρα1
(k, τ − τ1)Gβ1α2

(k + q′ − q, τ1 − τM )
[
g
α1β1γ1γ

′
1

k+q′−q,−q,−q′g
α2β2γ2γ

′
2

k,q,q′ Dγ1γ2
(q, τ1 − τM )

×Dγ′
1γ

′
2
(−q′, τ1 − τM ) + g

α1β1γ1γ
′
1

k+q′−q,q′,qg
α2β2γ2γ

′
2

k,q,q′ Dγ1γ′
2
(−q′, τ1 − τM )Dγ′

1γ2
(q, τ1 − τM )

]
Gβ2σ(k, τM ). (B14)

The FT of F (τ) =
∫ β

0
dτ1dτMF1(τ−τ1)F2(τ1−τM )F3(τ1−τM )F4(τ1−τM )F5(τM ) is F (iωn) = T 2

∑
ν3ν4

F1(iωn)F2(iωn−
iων3 − iων4)F3(iων3)F4(iων4)F5(iωn). We can write this as

Gρσ(k, iωn) = G0,ρσ(k, iωn) +
1

β2

∑
qq′

νν′

∑
α1β1γ1γ

′
1

α2β2γ2γ
′
2

G0,ρα1
(k, iωn)Gβ1α2

(k + q′ − q, iωn + iων′ − iων)
[
g
α1β1γ1γ

′
1

k+q′−q,−q,−q′

× g
α2β2γ2γ

′
2

k,q,q′ Dγ1γ2
(q, iων)Dγ′

1γ
′
2
(−q′,−iων′) + g

α1β1γ1γ
′
1

k+q′−q,q′,qg
α2β2γ2γ

′
2

k,q,q′ Dγ1γ′
2
(−q′,−iων′)Dγ′

1γ2
(q, iων)

]
Gβ2σ(k, iωn),

(B15)

and read off the self-energy

ΣS2
α1β2

(k, iωn) =
1

β2

∑
qq′

νν′

∑
β1γ1γ

′
1

α2γ2γ
′
2

Gβ1α2
(k + q′ − q, iωn + iων′ − iων)

[
g
α1β1γ1γ

′
1

k+q′−q,−q,−q′g
α2β2γ2γ

′
2

k,q,q′ Dγ1γ2
(q, iων)

×Dγ′
1γ

′
2
(−q′,−iων′) + g

α1β1γ1γ
′
1

k+q′−q,q′,qg
α2β2γ2γ

′
2

k,q,q′ Dγ1γ′
2
(−q′,−iων′)Dγ′

1γ2
(q, iων)

]
. (B16)

This is fully momentum and frequency dependent and involves summing over two sets of independent free momenta and fre-
quencies. It is convenient if the momentum and frequency in G is k′ = k′, iωn′ when deriving the Eliashberg equations. So we
define k′ = k + q′ − q, q = k − k′ + q′, and finally rename q′ → q to get Eq. (11).

Appendix C: Self-energies in altermagnets

In this appendix, we specialize the self-energy expressions
to the AM model in Sec. IV. We also consider the magnon-
loop and electron-loop diagrams and show that their combined
effect is to renormalize JsdS, and hence the spin splitting in
the AM. Therefore we ignore them in the main text, and imag-
ine that our choice of JsdS corresponds to this renormalized
sd exchange interaction.

1. Organizing propagators and sunset diagrams

For the single-magnon EMC interaction Hamiltonian H(1)
em

in Eq. (54), the nonzero gαβγk+q,k factors are

g1,2,2k+q,k =− Jsd

√
2S

N
(ΩA

k+q,k,↑,↓u
∗
q +ΩB

k+q,k,↑,↓vq),

g1,2,3k+q,k =− Jsd

√
2S

N
(ΩA

k+q,k,↑,↓v
∗
q +ΩB

k+q,k,↑,↓uq),

g2,1,1k+q,k =− Jsd

√
2S

N
(ΩA

k+q,k,↓,↑uq +ΩB
k+q,k,↓,↑v

∗
q),

g2,1,4k+q,k =− Jsd

√
2S

N
(ΩA

k+q,k,↓,↑vq +ΩB
k+q,k,↓,↑u

∗
q),

g3,4,1k+q,k =Jsd

√
2S

N
(ΩA

−k,−k−q,↓,↑uq +ΩB
−k,−k−q,↓,↑v

∗
q),

g3,4,4k+q,k =Jsd

√
2S

N
(ΩA

−k,−k−q,↓,↑vq +ΩB
−k,−k−q,↓,↑u

∗
q),

g4,3,2k+q,k =Jsd

√
2S

N
(ΩA

−k,−k−q,↑,↓u
∗
q +ΩB

−k,−k−q,↑,↓vq),

g4,3,3k+q,k =Jsd

√
2S

N
(ΩA

−k,−k−q,↑,↓v
∗
q +ΩB

−k,−k−q,↑,↓uq).

(C1)

For the double-magnon EMC interaction HamiltonianH(2)
em

in Eq. (55), the nonzero gαβγγ
′

k,q,q′ factors are

g1,1,1,2k,q,q′ = −Jsd

N
ΩB

k+q′−q,k,↑,↑v
∗
qvq′ ,

g1,1,1,3k,q,q′ = −Jsd

N
ΩB

k+q′−q,k,↑,↑v
∗
quq′ ,

g1,1,2,1k,q,q′ =
Jsd

N
ΩA

k+q′−q,k,↑,↑u
∗
quq′ ,

g1,1,2,4k,q,q′ =
Jsd

N
ΩA

k+q′−q,k,↑,↑u
∗
qvq′ ,

g1,1,3,1k,q,q′ =
Jsd

N
ΩA

k+q′−q,k,↑,↑v
∗
quq′ ,

g1,1,3,4k,q,q′ =
Jsd

N
ΩA

k+q′−q,k,↑,↑v
∗
qvq′ ,
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g1,1,4,2k,q,q′ = −Jsd

N
ΩB

k+q′−q,k,↑,↑u
∗
qvq′ ,

g1,1,4,3k,q,q′ = −Jsd

N
ΩB

k+q′−q,k,↑,↑u
∗
quq′ , (C2)

for α = β = 1. To get the α = β = 2 factors: change sign
and flip spin ↑→↓. To get the α = β = 3 factors: change sign
and let k → −k− q′ + q. To get the α = β = 4 factors: take
the α = β = 2 factors, change sign and let k → −k−q′+q.

Defining magnon propagators Dκ(q) = Dκ(q, iων) =
1/(iων − ωκ

q ), we have

D(q) =

 0 Dα(q) 0 0
Dα(−q) 0 0

0 0 0 Dβ(q)
0 0 Dβ(−q) 0

 . (C3)

EMC leads to feedback effects which renormalize the magnon
propagators. This was considered in Ref. [45], and it was ar-
gued that the effect is not detrimental as long as the magnon
gap is large enough. We consider quite large magnon gaps, as
typical for antiferromagnets, and so ignore the magnon renor-
malizations. Since Jsd/t is expected to be larger in bulk sys-
tems than across interfaces, a study of self-energy renormal-
izations of magnons in AMs seems well worth considering.

Performing the sums over Greek indices in Eq. (9), within
the assumption in Eq. (12), gives

ΣS1
11(k) =−

∑
k′

([
|g(1)k′,k|

2Dα(k
′ − k)

+ |g(3)k,k′ |2Dβ(k − k′)
]
G22(k

′)
)
, (C4)

ΣS1
22(k) =−

∑
k′

([
|g(1)k,k′ |2Dα(k − k′)

+ |g(3)k′,k|
2Dβ(k

′ − k)
]
G11(k

′)
)
, (C5)

ΣS1
33(k) =−

∑
k′

([
|g(1)−k′,−k|

2Dα(k − k′)

+ |g(3)−k,−k′ |2Dβ(k
′ − k)

]
G44(k

′)
)
, (C6)

ΣS1
44(k) =−

∑
k′

([
|g(1)−k,−k′ |2Dα(k

′ − k)

+ |g(3)−k′,−k|
2Dβ(k − k′)

]
G33(k

′)
)
. (C7)

We defined g(1)k,k′ = g2,1,1k,k′ and g(3)k,k′ = g1,2,3k,k′ . Comparing to
Eqs. (16)-(19) the definition of ΛS1

αβ(k, k
′) is clear. Perform-

ing the sums over Greek indices in Eq. (11) gives

ΣS2
αβ(k) =

∑
k′,q

Gαβ(k
′)
[(
gα,α,1,2k′,−k+k′−q,−q + gα,α,2,1k′,q,k−k′+q

)
gβ,β,2,1k,k−k′+q,qD12(k − k′ + q)D21(−q)

+
(
gα,α,2,1k′,−k+k′−q,−q + gα,α,1,2k′,q,k−k′+q

)
gβ,β,1,2k,k−k′+q,qD21(k − k′ + q)D12(−q)

+
(
gα,α,1,3k′,−k+k′−q,−q + gα,α,3,1k′,q,k−k′+q

)
gβ,β,2,4k,k−k′+q,qD12(k − k′ + q)D34(−q)

+
(
gα,α,3,1k′,−k+k′−q,−q + gα,α,1,3k′,q,k−k′+q

)
gβ,β,4,2k,k−k′+q,qD34(k − k′ + q)D12(−q)

+
(
gα,α,2,4k′,−k+k′−q,−q + gα,α,4,2k′,q,k−k′+q

)
gβ,β,1,3k,k−k′+q,qD21(k − k′ + q)D43(−q)

+
(
gα,α,4,2k′,−k+k′−q,−q + gα,α,2,4k′,q,k−k′+q

)
gβ,β,3,1k,k−k′+q,qD43(k − k′ + q)D21(−q)

+
(
gα,α,3,4k′,−k+k′−q,−q + gα,α,4,3k′,q,k−k′+q

)
gβ,β,4,3k,k−k′+q,qD34(k − k′ + q)D43(−q)

+
(
gα,α,4,3k′,−k+k′−q,−q + gα,α,3,4k′,q,k−k′+q

)
gβ,β,3,4k,k−k′+q,qD43(k − k′ + q)D34(−q)

]
. (C8)

We define ΛS2
αβ(k, k

′, q) as the expression inside the square
brackets, giving Eq. (20).

2. Definition of logarithmic average

ωlog is defined as the average of the logarithm of ω weighted
by λ2(0). λ2(iων) is defined in Eq. (33) and contains
ΛS2
13(k, k

′). The frequency sum in ΛS2
13(k, k

′) can be com-
puted analytically. At low temperatures T ≪ ω0 such that

nB(ω
α/β
q ) ≈ 0, we get

ΛS2
13(k, k

′) =
∑
q

[(
g1,1,1,3k′,−k+k′−q,−q + g1,1,3,1k′,q,k−k′+q

)
× g3,3,2,4k,k−k′+q,q

−1

iων − ωα
k−k′+q − ωβ

q

+
(
g1,1,3,1k′,−k+k′−q,−q + g1,1,1,3k′,q,k−k′+q

)
× g3,3,4,2k,k−k′+q,q

−1

iων − ωβ
k−k′+q − ωα

q
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+
(
g1,1,2,4k′,−k+k′−q,−q + g1,1,4,2k′,q,k−k′+q

)
× g3,3,1,3k,k−k′+q,q

1

iων + ωα
k−k′+q + ωβ

q

+
(
g1,1,4,2k′,−k+k′−q,−q + g1,1,2,4k′,q,k−k′+q

)
× g3,3,3,1k,k−k′+q,q

1

iων + ωβ
k−k′+q + ωα

q

]
. (C9)

From [96]

λ2(iων) = −
∫ ∞

−∞
dωα2F (ω)

1

iων − ω
(C10)

and Eq. (33), we define

α2F (ω) =
−1

NF,↑⟨ψ2
↑(k)⟩FS↑

∑
kk′

δ(ϵk↑)δ(ϵk′↑)

× ψ↑(k)A
S2
13(k, k

′)ψ↑(k
′), (C11)

with

AS2
13(k, k

′) =
∑
q

[(
g1,1,1,3k′,−k+k′−q,−q + g1,1,3,1k′,q,k−k′+q

)
× g3,3,2,4k,k−k′+q,qδ(ω − ωα

k−k′+q − ωβ
q )

+
(
g1,1,3,1k′,−k+k′−q,−q + g1,1,1,3k′,q,k−k′+q

)
× g3,3,4,2k,k−k′+q,qδ(ω − ωβ

k−k′+q − ωα
q )

−
(
g1,1,2,4k′,−k+k′−q,−q + g1,1,4,2k′,q,k−k′+q

)
× g3,3,1,3k,k−k′+q,qδ(ω + ωα

k−k′+q + ωβ
q )

−
(
g1,1,4,2k′,−k+k′−q,−q + g1,1,2,4k′,q,k−k′+q

)
× g3,3,3,1k,k−k′+q,qδ(ω + ωβ

k−k′+q + ωα
q )

]
. (C12)

Note that λ2(0) =
∫∞
−∞ dωα2F (ω)/ω, so we define

ωlog = ωa exp

[
1

λ2(0)

∫ ∞

−∞
dω ln

(
|ω|
ωa

)
α2F (ω)

ω

]
. (C13)

Here, ωa is an arbitrary energy scale.

3. Magnon-loop and electron-loop diagrams

Generalizing to three bands, and focusing on the normal
state, the magnon-loop diagram becomes a 6 × 6 matrix in
spin and band indices,

ΣML
n′nσ(k) =

∑
qγγ′

gn
′,n,σ,γ,γ′

k,q,q ⟨Bγ
−qB

γ′

q ⟩

=− Jsdσ

N

∑
q

[
ΩB

n′,n,k,k,σ,σ|vq|2[1 + nB(ω
α
q )]

− ΩA
n′,n,k,k,σ,σ|uq|2nB(ωα

q )

− ΩA
n′,n,k,k,σ,σ|vq|2[1 + nB(ω

β
q )]

+ ΩB
n′,n,k,k,σ,σ|uq|2nB(ωβ

q )
]
. (C14)

We define gn
′,n,σ,γ,γ′

k,q,q′ from the one-band gα,β,γ,γ
′

k,q,q′ by σ =↑↔
α = β = 1, σ =↓↔ α = β = 2, and by adding band indices
n′, n in Ωℓ

n′,n,k′,k,σ′,σ ≡ q∗n′,ℓ,k′,σ′qn,ℓ,k,σ .
Similarly, the electron-loop diagram becomes

ΣEL
n′nσ(k) = −

∑
q,k2

∑
γ1γ

′
1γ2γ

′
2

n2,σ2

⟨d†n2,k2,σ2
dn2,k2,σ2⟩

×
[
g
n′,n,σ,γ1,γ

′
1

k,q,q g
n2,n2,σ2,γ2,γ

′
2

k2,−q,−q Dγ1γ2
(−q)Dγ′

1γ
′
2
(q)

+ g
n′,n,σ,γ1,γ

′
1

k,q,q g
n2,n2,σ2,γ2,γ

′
2

k2,q,q
Dγ1γ′

2
(−q)Dγ′

1γ2
(q)

]
. (C15)

The sum over bosonic frequencies can be computed ana-
lytically, and ⟨d†n2,k2,σ2

dn2,k2,σ2⟩ = nF (ϵn2,k2,σ2), where
nF (z) is the Fermi-Dirac distribution.

Since the self-energies ΣML and ΣEL are frequency inde-
pendent, we can analytically continue to the real frequency
axis ω. From the Dyson equation, focusing solely on their
contributions, we get

G(k, ω) =
[
G−1

0 (k, ω)− ΣML(k)− ΣEL(k)
]−1

. (C16)

The renormalized bands are the zeros of the real part
of the denominators in G. This is the zeros of
det

[
G−1

0 (k, ω)− ΣML(k)− ΣEL(k)
]

which are the eigen-
values of diag(ϵ1,k,↑, ϵ1,k,↓, ϵ2,k,↑, ϵ2,k,↓, ϵ3,k,↑, ϵ3,k,↓) +
ΣML(k) + ΣEL(k). This is in the basis of diagonalized elec-
trons, dn,k,σ . The spin sectors decouple, so we can consider
two 3× 3 matrices separately, and transform back to the orig-
inal electron operators cℓ,k,σ . We have Uk,σDk,σU

†
k,σ =

Hk,σ , where Dk,σ is diagonal with [Dk,σ]nn = ϵn,k,σ , and
Hk,σ the electron Hamiltonian on matrix form. Numerically,
we find

Uk,σΣ
ML
σ (k)U†

k,σ =

σCML 0 0
0 0 0
0 0 −σCML

 , (C17)

with CML > 0 and

Uk,σΣ
EL
σ (k)U†

k,σ =

−σCEL 0 0
0 0 0
0 0 σCEL

 , (C18)

with CEL > 0, i.e., the contributions have opposite sign and
are momentum independent. Comparing to

Hk,σ =

 −σJsdS −2t cos kx −4t2 cos kx cos ky
−2t cos kx 0 −2t cos ky

−4t2 cos kx cos ky −2t cos ky σJsdS


− [µ+ 2t3(cos 2kx + cos 2ky)]I, (C19)

where I is a unit matrix, we see that the effects of the diagrams
ΣML and ΣEL are simply to renormalize JsdS, i.e., the spin
splitting in the AM. Instead of explicitly including them in
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our calculations, we instead assume that our choice of JsdS
includes this renormalization.

The magnon-loop diagram in fact has the exact same effect

as including corrections to the magnetization, i.e., letting [81]

S → 1

N

∑
i∈A(B)

⟨Si,z⟩ = S − 1

N

∑
q

(
|uq|2nB(ωα(β)

q )

+ |vq|2[1 + nB(ω
β(α)
q )]

)
(C20)

in the upper left (lower right) corner of Hk,σ . ΣML is the
diagrammatic version of this correction.
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T. Görlach, and H. v. Löhneysen, Superconductivity on the
Border of Weak Itinerant Ferromagnetism in UCoGe, Phys.
Rev. Lett. 99, 067006 (2007).

[63] J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Dynamic spin
fluctuations and the bag mechanism of high-Tc superconduc-
tivity, Phys. Rev. B 39, 11663 (1989).

[64] D. M. Frenkel and W. Hanke, Spirals and spin bags: A link be-
tween the weak- and the strong-coupling limits of the Hubbard
model, Phys. Rev. B 42, 6711 (1990).

[65] M. Capone and G. Kotliar, Competition between d-
wave superconductivity and antiferromagnetism in the two-
dimensional Hubbard model, Phys. Rev. B 74, 054513 (2006).

[66] J.-P. Ismer, I. Eremin, E. Rossi, D. K. Morr, and G. Blumberg,
Theory of Multiband Superconductivity in Spin-Density-
Wave Metals, Phys. Rev. Lett. 105, 037003 (2010).

[67] A. T. Rømer, I. Eremin, P. J. Hirschfeld, and B. M. Andersen,
Superconducting phase diagram of itinerant antiferromagnets,
Phys. Rev. B 93, 174519 (2016).

[68] L. Berger, Emission of spin waves by a magnetic multilayer
traversed by a current, Phys. Rev. B 54, 9353 (1996).

[69] S. Takahashi, E. Saitoh, and S. Maekawa, Spin current
through a normal-metal/insulating-ferromagnet junction, J.
Phys. Conf. Ser. 200, 062030 (2010).

[70] S. S.-L. Zhang and S. Zhang, Spin convertance at magnetic
interfaces, Phys. Rev. B 86, 214424 (2012).

[71] K. Mæland, H. I. Røst, J. W. Wells, and A. Sudbø, Electron-
magnon coupling and quasiparticle lifetimes on the surface of
a topological insulator, Phys. Rev. B 104, 125125 (2021).

[72] S. Nakosai, Y. Tanaka, and N. Nagaosa, Two-dimensional
p-wave superconducting states with magnetic moments on
a conventional s-wave superconductor, Phys. Rev. B 88,
180503(R) (2013).
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