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In these lectures, we present the behavior of conventional q̄q mesons,
glueballs, and hybrids in the large-Nc limit of QCD. To this end, we use an
approach based on rather simple “NJL-like” bound-state equations. The
obtained large-Nc scaling laws are general and coincide with the known
results. A series of consequences, such as the narrowness of certain mesons
and the smallness of some interaction types, the behavior of chiral and
dilaton models at large-Nc, and the relation to the compositeness condi-
tion and the standard derivation of large-Nc results, are explained. The
bound-state formalism shows also that mesonic molecular and dynamically
generated states do not form in the large-Nc limit. The same fate seems
to apply also for tetraquark states, but here further studies are needed.
Next, following the same approach, baryons are studied as bound states of
a generalized diquark (Nc− 1 antisymmetric object) and a quark. Similar-
ities and differences with regular mesons are discussed. All the standard
scaling laws for baryons and their interaction with mesons are correctly
reproduced. The behavior of chiral models involving baryons and describ-
ing chirally invariant mass generation is investigated. Finally, properties
of QCD in the medium at large-Nc are studied: the deconfinement phase
transition is investigated along the temperature and the chemical potential
directions, respectively. While the critical temperature for deconfinement
Tdec is Nc independent, the critical chemical potential is not and increases
for growing Nc, thus for very large Nc one has confined matter below Tdec
and deconfined above. Yet, in the confined phase but for large densities,
one has a ‘stiff-matter’ phase whose pressure is proportional to Nc (just as
a gas of quarks would do) in agreement with a quarkyonic phase. Within
the QCD phase diagrams, the features of different models at large-Nc are
reviewed and the location of the critical endpoint is discussed. In the end,
the very existence of nuclei and the implications of large-Nc arguments for
neutron stars are outlined.
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1. Introduction

In Quantum Chromodynamics (QCD) each quark can appear in three
charges denoted as colors: red (R), green (G), and blue (B). This applies for
any of the six quark flavors present in Nature (the light quarks flavors u, d,
s and the heavy quark flavors c, b, t [1]). The force carriers, the gluons, can
be thought as color-anticolor objects, for a total of 9− 1 = 8 combinations
[2, 3].

The origin of colors can be better understood by looking at the funda-
mental properties of QCD, which is a gauge theory built under local invari-
ance of the color group SU(3). The quarks transform under the fundamental
representation and the gluons under the adjoint representation.

Why QCD has 3 colors (Nc = 3, where Nc stands for the number of
colors) and not, e.g. 7? At present, there is no compelling answer for that,
at least not within the Standard Model (SM). One may eventually ask if
the choice Nc ̸= 3 would allow for stable nuclei, and if this is not the case
[4], resort to a kind of anthropic argument.

Yet, here we are not interested in this type of questions, but rather in
the study of Nc different from 3, and in particular the study of the limit in
which Nc is a ‘large’ number, in order to understand better our word with
Nc = 3. This is indeed the so-called QCD in the large-Nc limit, initiated by
’t Hooft [5] and further investigated in several review papers and lectures
[6, 7, 8, 9, 10, 11, 12] (and refs. therein).

At first, the idea to consider an expansion along Nc may sound as
strange: how could anything valid for, say, Nc = 101, be also somewhat
relevant for the physical case Nc = 3? In other words, how can Nc = 3 be
considered a ‘large’ number [6]? As we shall see, that depends. In some
(indeed the majority of) cases, the number 3 turns out to be large.

In particular, in these lectures we intend to revisit the behavior of bound
states of QCD in the large-Nc limit. To this end, we recall that quarks
and gluons are confined in hadrons, further classified as mesons (bosonic
hadrons) and baryons (baryonic hadrons).

Mesons can be divided into conventional ones corresponding to quark-
antiquark states (quarkonia), and to exotic or non-conventional types, such
as glueballs, hybrids but also mesonic molecules, dynamically generated
states, and compact tetraquark states (bound states of diquarks). Quite in-
terestingly, quarkonia, glueballs, and hybrids ‘survive’ in the large-Nc limit:
this means that their masses are Nc-independent, and their widths decrease
with Nc, implying that these objects become stable in the large-Nc limit.
We shall revisit these well known results as well as the specific scaling laws
in a novel fashion, that involves the study of bound-state equations. For
the latter, we chose the easiest possible approach that describes bound-state
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equations similar to the ones found in the Nambu Jona-Lasinio (NJL) model
[13, 14, 15] (technically, the kernel is separable). Indeed, these bound state
equations are also similar to approaches involving the compositeness condi-
tions, e.g. [16, 17, 18, 19]. Yet, it should be stressed that our aim is not to
actually solve these equations, but just to discuss their large-Nc behavior.
The latter is (thought to be) independent on the particular approach and
applies also to more advanced methods for bound states, such as Bethe-
Salpeter equations in QCD [20, 21, 22]. Quite interestingly, the proposed
large-Nc treatment can also help to understand, from a different perspec-
tive, various large-Nc features. Namely, we shall re-derive known results in
a different and quite simple way. The coupling of bound objects to their
constituents is also an intermediate consequence of the chosen approach.

As additional applications, we shall present the large-Nc study of the
linear sigma model (LSM) [23, 24], the dilaton [25, 26, 27, 28], and their
interconnection. Many other properties (weak decay constant, decay chains,
etc.) shall be discussed as well. The connection of our bound-state approach
to the commonly implemented one that uses correlators and currents is also
shown.

The fate of mesonic molecular and dynamically generated states is differ-
ent: they fade away in the large-Nc limit. Indeed, we shall recover this result
within the bound state approach. A peculiar case, not yet fully solved, is
if all tetraquark types (among which molecules are only a specific example)
fade out as well. It was long believed that this is the case, but this conclu-
sion was revisited by Weinberg in 2013 [29], in which he argued that certain
tetraquarks could exist in the large-Nc and, if that is the case, their mass
scale as N0

c and their widh as N−1
c , just as regular quarkonia. The work

[29] was followed by a series of papers on the subject [12, 30, 31, 32, 33, 34].
Up to now, the existence of such peculiar tetraquarks in the large-Nc limit
is not settled. We shall discuss what the bound-state approach has to say
for tetraquarks as well.

Baryons will be also briefly discussed in this work. We shall concentrate
on conventional baryons, which for Nc = 3 are made by 3 quarks and for an
arbitrary Nc by Nc quarks. We shall present some interesting similarities
between conventional baryons and conventional mesons. To this end, we
treat baryons in a way similar to conventional mesons: they shall be seen
as a bound state of a quark and of a generalized diquark, the latter being
the antisymmetric combination of Nc − 1 quarks. Within this context, we
will re-derive the large-Nc scaling for baryons. As an application, we study
chiral models implementing baryonic fields and investigate possible ways
to generate their mass in a chiral invariant manner and in agreement with
large-Nc expectations.

In the end, we recall -concisely- some relevant facts concerning the large-
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Nc behavior of QCD at finite temperature and density, concentrating on the
phase diagram and the quarkyonic phase [35, 36, 37, 38], chiral models in
the medium [24, 39], nuclear matter [4, 40], and neutron stars [41, 42].

The style of these lectures is focused on the conceptual and qualitative
features of QCD at large-Nc. Moreover, many pictures shall be presented for
a better visualization of the scaling properties. These lectures on large-Nc

complete previous lectures on chiral models for mesons beyond the quark-
antiquark picture given few years ago [43].

The article is organized as follows. In Sec. 2 we introduce QCD for
an arbitrary number of colors together with the double-line notation and
the groups SU(N) and U(N), we discuss the QCD running coupling in
the framework of the ’t Hooft large-Nc limit, and we qualitatively argue
that the main features of the propagators of quarks and gluons are Nc-
independent. Next, in Sec. 3 we study mesons in the large-Nc limit, first the
conventional ones (quarkonia) and related topics (chiral models,...), then the
exotic glueballs (together with the dilaton), hybrids, and four-quark objects.
In Sec. 4 we present conventional baryons and their implementation in chiral
models. In Sec. 5 we discuss the main properties of QCD matter at nonzero
temperature and chemical potential for large Nc. In Sec. 6 conclusions are
summarized.

2. QCD for arbitrary Nc

2.1. QCD Lagrangian of any Nc

We present the Lagrangian of QCD for an arbitrary number of colors
Nc and quark flavors Nf (see, for instance, [2, 3]):

LQCD = Tr

[
qi(iγ

µDµ −mi)qi −
1

2
GµνG

µν

]
, Dµ = ∂µ − ig0Aµ ,

Ga
µν = ∂µAν − ∂νAµ − ig0[Aµ, Aν ] . (1)

Above, Aµ is Nc×Nc Hermitian matrix, and qi(x) is a vector in color space
for each value of the flavor index i = 1, ..., Nf (with Nf being the number
of quark flavors), see details below. Moreover, the coupling constant g0 is
an adimensional parameter of the classical Lagrangian and mi is the bare
mass of the i-th quark flavor. Note, in the chiral limit (mi = 0, for each
i) the Lagrangian is invariant under dilatation transformation, since no
dimensionful parameter is present in the classical theory. This symmetry is
broken by quantum fluctuations (trace anomaly, see Sec. 3.2).

The part of Eq. (1) containing only gluons is called the Yang-Mills (YM)
Lagrangian:

LYM = Tr

[
−1

2
GµνG

µν

]
. (2)
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Fig. 1. Free quark, free gluon, and quark-gluon vertex. The double-line notation

for the gluons is also shown. The specific choice of colors refers to illustrative

examples: the free quark is taken with color C1, the free gluon carries C̄7C3, and

the vertex shows how a quark C2 changes into C5 via the interaction with a C̄2C5

gluon.

For Nc > 1, the YM Lagrangian contains 3-gluon and 4-gluon vertices. The
gluonic self-interactions are a fundamental property of nonabelian theories.
In turn, this feature implies that gluonic bound states, called glueballs, are
possible [44, 45, 46], see also Sec. 3.2.

In Nature, Nc = 3 and Nf = 6. However, depending on the problem,
one can consider different values for Nc and Nf . For instance, low-energy
QCD is realized for Nc = 3 and Nf = 3, i.e. only light quarks are retained.
Moreover, varying Nc is the main goal of large-Nc studies.

In Figs. 1 and 2 we present the Feynman diagrams that follow form
the QCD Lagrangian. In particular, in Fig. 1 the fundamental quark-gluon
vertex is depicted, while in Fig. 2 the gluonic self-interactions are shown. In
both cases, gluons are also represented via the so-called double line notation,
that ‘naively speaking’ corresponds to a quark and an antiquark. In order
to understand this point better, we need to have a closer look at the gluon
field.

The Nc×Nc Hermitian matrix Yang-Mills field Aµ(x) can be expressed
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Fig. 2. Three-leg and four-leg in the standard and double-line notation. The specific

choice of colors on the right part refers to examples.

as:

Aµ(x) =

N2
c−1∑
a=1

Aa
µ(x)ta , (3)

where ta is an appropriate set of N2
c − 1 matrices basis. Usually, they are

taken as Hermitian and traceless, see the next subsection. In this way the
coefficients Aa

µ(x) are real numbers.
The the quark field is a vector in color space with

qi =


q1,i
q1,i
...
qNc,i

 , (4)

where i = 1, ..., Nf is the flavor index.
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Under SU(Nc) local gauge transformations these fields transform as:

qi → U(x)qi , Aµ(x)→ A′
µ(x) = U(x)Aµ(x)U †(x)− i

g0
U(x)∂µU

†(x) , (5)

where U(x) is an arbitrary function of the space-time variable x ≡ xµ ≡
(t,x).

The Lagrangian LQCD has been constructed to be invariant under the
local gauge transformations of Eq. (5).

A particularly useful limit is the one in which U(x) = U is a constant
matrix, leading to:

qi → Uqi , Aµ(x)→ A′
µ(x) = UAµ(x)U † . (6)

In Figs. 1 and 2 a double-line notation for the gluon is presented, ac-
cording to which the gluon field is described with the help of components
carrying two indices

A(a,b)
µ (x) ≡ A(a,b)

µ (x) with a, b = 1, ..., Nc . (7)

This point reflects the adjoint Nature of the gluon field that, for what con-
cerns color, can be seen (besides the singlet colorless configuration that is
not present) as a quark-antiquark object. For instance:

A(2,5)
µ ≡ C̄2C5 , (8)

implying that this gluon configuration contains the color C5 and the anti-
color C̄2. Indeed, this choice corresponds to a specific choice for the basis
of the ta matrices:

Aµ(x) ≡
Nc∑
a=1

Nc∑
b=1

A(a,b)
µ t(a,b) , (9)

where the N2
c matrices t(a,b) are given by:(

t(a,b)
)
c,d

= δacδbd . (10)

The matrices of this basis are neither Hermitian nor traceless, so the ‘coef-

ficients’ A
(a,b)
µ are not real, nut need to fulfill the following requirements:

A(a,b)
µ =

(
A(b,a)

µ

)∗
,

Nc∑
a=1

A(a,a)
µ = 0 . (11)

In fact, the former equation guarantees that Aµ is hermitian, and the latter
that it is traceless. Namely, the employed basis contains a matrix ‘too
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much’, thus one needs to remove the color singlet (traceless) configuration.
Yet, for large-Nc this additional contribution is negligible, so we will usually
not ‘bother’ to subtract it. Note, also the tensor Gµν can be expressed in
this basis as

Gµν =

Nc∑
a=1

Nc∑
b=1

G(a,b)
µν t(a,b) . (12)

Indeed, while this choice for the matrices ta may be useful to realize the
double-line idea for a gluon, it is not what is usually employed for the
specific cases of Nc = 2 or Nc = 3, see the next subsection.

2.2. Brief recall of SU(N)

Before we continue, it is important to recall some basic properties of the
groups U(N) and SU(N) (see e.g. Ref. [47]). An element of the group
U(N) is a complex N ×N matrix such that:

U †U = UU † = 1N , (13)

thus U can be expressed as:

U = eiθat
a
, a = 0, 1, ..., N2 − 1 , (14)

where the matrices ta are N2 linearly independent N ×N Hermitian matri-
ces, implying that Eq. (13) is fulfilled.Following the usual convention, we
set:

t0 =
1√
2N

1N , (15)

and for the other matrices, we choose:

Tr
[
tatb
]

=
1

2
δab with a, b = 0, 1, ..., N2 − 1 , (16)

then

Tr [ta] = 0 for a = 1, ..., N2 − 1 . (17)

AN×N matrix U belongs to the group SU(N) if the following two equations
are fulfilled:

U †U = UU † = 1N , detU = 1 . (18)

It is clear that a matrix belonging to SU(N) can be written as

U = eiθat
a

with a = 1, ..., N2 − 1 , (19)



aaamain printed on May 17, 2024 9

(the identity matrix, which is not traceless, is left out). Then:

detU = e
Tr

[
i
∑N2−1

a=1 θata
]

= 1 . (20)

The matrices ta with a = 1, ..., N2 − 1 are the generators of SU(N) and
fulfill the algebra:

[ta, tb] = ifabctc with a, b, c = 1, ..., N2 − 1 , (21)

where fabc are the corresponding antisymmetric structure constants, see [47]
for their explicit form. Namely, the commutator of two Hermitian matrices
is anti-Hermitian and traceless, therefore it must be expressed as a sum over
ta for a = 1, ..., N2 − 1. By taking this choice, the matrix Aµ is Hermitian
and traceless for arbitrary real coefficients Aa

µ) in Eq. (3).
For the color local case of QCD, the matrix the unitary matrix U(x) can

be expressed as

U(x) = eiθa(x)t
a
, a = 1, ..., N2

c − 1 (= 8 for Nc = 3) , (22)

where the quantities θa(x) are arbitrary functions of the spacetime variable
x.

It is useful to briefly discuss some particular examples. For Nc = 2, the
generators are given by the matrices ta = σa/2, where the σa are the Pauli
matrices. The structure constants read fabc = ϵabc. Finally, the matrix Aµ

takes the explicit form

Aµ =

N2
c−1∑
a=1

Aa
µt

a =

N2
c−1∑
a=1

Aa
µ

τa

2

=
1√
2

 A3
µ√
2

A1
µ−iA2

µ√
2

A1
µ−iA2

µ√
2

−A3
µ√
2

 ≡ 1√
2

(
RR̄−GḠ

2 RḠ

GR̄ −RR̄+GḠ
2

)
(23)

where it is visible that Tr[Aµ] = 0 and A†
µ. The off-diagonal components

correspond to the expected double-line assignment. Note, upon including
the 0-th component (a negligible error for large Nc) we obtain

Aµ =

N2
c−1∑
a=0

Aa
µt

a =

N2
c−1∑
a=1

Aa
µ

τa

2

=
1√
2

 A0
µ+A3

µ√
2

A1
µ−iA2

µ√
2

A1
µ−iA2

µ√
2

A0
µ−A3

µ√
2

 ≡ 1√
2

(
RR̄ RḠ
GR̄ GḠ

)
(24)
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that correspond to the double-line notation also along the diagonal elements.
Note, in a classical view above R and G may be though as complex numbers

that characterize a quark component
(
R G

)t
, while the bar quantities

are the complex conjugates. The matrix Aµ (that includes the 0-th element,
corresponds then to

Aµ =
1√
2

(
R
G

)(
R̄ Ḡ

)
(25)

which clearly shows the origin of the double-line notation as well as the dual
nature of the gluon field.

It is interesting to notice that a similar decomposition holds for the pion
triplet:

π =

N2
c−1∑
a=1

πata =
1√
2

(
π3
√
2

π1−iπ2
√
2

π1+iπ2
√
2

− π3
√
2

)

=
1√
2

(
π0
√
2

π+

π− − π0
√
2

)
=

1√
2

(
uū−dd̄

2 ud̄

dū −uū+dd̄
2

)
(26)

while, upon introducing P 0 = ηN =
√

1/2(uū + dd̄), the full multiplet
(quartet) of pseudoscalar states can be described:

P =

N2
c−1∑
a=0

P ata =
1√
2

(
ηN+π3
√
2

π1−iπ2
√
2

π1+iπ2
√
2

ηN−π3
√
2

)

=
1√
2

(
ηN+π0
√
2

π+

π− ηN−π0
√
2

)
=

1√
2

(
uū ud̄
dū dd̄

)
. (27)

The case Nc = 3 can be treated in a similar way. The matrices are
ta = λa/2, with the λa being the Gell-Mann matrices for a = 1, ..., 8.

Finally, we recall also that there is discrete a subgroup of SU(N), de-
noted as the center Z(N), whose N elements are given by [3]:

Z = Zn = ei
2πn
N 1N , n = 0, 1, 2, ..., N − 1 . (28)

Each Zn corresponds to a proper choice of the parameters θa (the case
Z0 = 1N corresponds to the simple case θa = 0, the other elements to
more complicated choices). This group plays an important role at nonzero
temperature as an indicator of confinement, since the Z(N)-symmetry is
realized in the QCD vacuum and in the confined phase (at small T ), but is
broken in the deconfined one (at large T ) [3, 48].
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2.3. Running coupling of QCD

The coupling ‘constant’ g0 entering in the classical QCD Lagrangian of
Eq. (1) turns into a running coupling when QCD is quantized. At one-loop
level (which is enough for our illustrative purposes here) one has [2]:

µ
dg

dµ
= −bg3 , (29)

with

b =
1

2

1

8π2

(
11

3
Nc −

2

3
Nf

)
(30)

and where
gQCD ≡ g ≡ g(µ) (31)

refers to the QCD running coupling. In this work, whenever g will be pre-
sented, it always refers to the fundamental QCD coupling. Other coupling
constants shall carry an appropriate subscript specifying to what they refer.
For a detailed description of the QCD running coupling for Nc = 3 we refer
to Ref. [49] and refs. therein.

In Nature Nc = 3 and Nf ranges from 2 to 6, in dependence on the
number of considered quark flavors; in any case, b > 0. Note, b > 0 is
definitely also true in the large-Nc limit upon keeping Nf fixed, as we shall
do here. This is the so-called ’t Hooft large-Nc scheme [5].

Upon fixing g0 at a certain (large, or ultraviolet (UV)) energy scale ΛUV

and by integrating:∫ g0

g
dg′

dg′

g′3
=

[
g′−2

−2

]g0
g

= −
∫ ΛUV

µ
dg′b

dµ′

µ′
= −b ln

ΛUV

µ
= b ln

µ

ΛUV
;

(32)

1

g20
− 1

g2
= −2b ln

µ

ΛUV
; (33)

1

g2
=

1

g20
+ 2b ln

µ

ΛUV
=

1 + 2bg20 ln µ
ΛUV

g20
. (34)

Hence:

g2 =
g20

1 + 2bg20 ln µ
ΛUV

. (35)

Then:

g2(µ) =
g20

1 + 2bg20 ln µ
ΛUV

=
g20

1 +
g20
8π2

(
11
3 Nc − 2

3Nf

)
ln µ

ΛUV

. (36)
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One has (by construction):

g2(µ = ΛUV ) = g20 . (37)

Upon setting the denominator to zero

1 +
g20

8π2

(
11

3
Nc −

2

3
Nf

)
ln

µ

ΛUV
= 0 , (38)

we obtain the the so-called ΛQCD scale as a Landau pole of the running
coupling:

ΛQCD = ΛUV exp

[
− 8π2

g20
(
11
3 Nc − 2

3Nf

)]≪ |LambdaUV . (39)

The existence of a pole of the coupling at the low energy ΛQCD ≪ |LambdaUV

is an artifact of the one-loop perturbative approach, but it signalizes that
the running coupling becomes large. In Ref. [50], using the FRG approach,
it is shown that no infinity of the QCD running coupling takes place.

The value of the bare coupling can be expressed as:

g20 = − 1(
11
3 Nc − 2

3Nf

) 8π2

ln
ΛQCD

ΛUV

. (40)

Here, we intend to study the limit in which the low-energy scale ΛQCD is
independent on Nc (’t Hooft limit). We require that

g20 ∝
1

Nc
, (41)

then

g0 ∝
1√
Nc

. (42)

Next, upon eliminating the UV scale ΛUV we find:

g2(µ) =
g20

1 +
g20
8π2

(
11
3 Nc − 2

3Nf

)
ln µ

ΛUV

= −
− 1

( 11
3
Nc− 2

3
Nf)

8π2

ln
ΛQCD
ΛUV

1 +

(
− 1

( 11
3
Nc− 2

3
Nf)

8π2

ln
ΛQCD
ΛUV

)
1

8π2

(
11
3 Nc − 2

3Nf

)
ln µ

ΛUV

=
8π2(

11
3 Nc − 2

3Nf

) 1

ln µ
ΛQCD

. (43)
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2

Fig. 3. Running coupling of QCD of Eq. (45) for Nc = 3 (upper, blue curve) and

for Nc = 7 (lower, yellow curve). The Landau pole is the same in both cases, in

agreement with the ’t Hooft large-Nc limit.

Thus, in terms of µ and ΛQCD the one-loop running coupling can be
expressed as:

g2(µ) =
8π2(

11
3 Nc − 2

3Nf

) 1

ln µ
ΛQCD

. (44)

For large-Ncwe get:

g2QCD ≡ g2(µ) =
8π2(
11
3 Nc

) 1

ln µ
ΛQCD

∝ 1

Nc
. (45)

As for the bare coupling, also the running coupling scales as 1/
√
Nc if ΛQCD

and Nf are kept Nc-independent. In Fig. 3 the coupling g(µ) is plotted for
Nc = 3 and Nc = 7.

The fact that the coupling g is a function of µ is also at the basis of
the so-called trace anomaly: the original classical invariance under dilata-
tion symmetry (which is exact in the chiral limit) is broken by quantum
fluctuations that lead the emergence of the low-energy scale ΛQCD.

The behavior of the running coupling is in agreement with two crucial
properties of QCD: asymptotic freedom and confinement. The former is due
to the fact that the coupling becomes smaller at large energies, at which
quarks and gluons interact perturbatively. The latter implies that quarks
and gluons are confined into hadrons. This is not directly provable, but it
fits well with the fact that the coupling becomes large at small energies.
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The coupling constant becomes also small in the large-Nc limit, but at
the same time the number of colors grows. So, at first it is hard to say what
it will happen in this regime. It is assumed (and one finds no contradiction)
that many of the properties of QCD are still valid in the large-Nc limit,
among which confinement, asymptotic freedom, and spontaneous symmetry
breaking (SSB).

For completeness, we summarize below also additional symmetries (be-
sides ‘local’ color symmetry) of QCD for mi = 0 (more details in Ref. [43]).
To this end, the quark field qi is split into

qi = qi,R + qi,L (46)

with

qi,L =
1− γ5

2
qi and qi,R =

1 + γ5

2
qi . (47)

(i) The dilatation transformation (xµ → λ−1xµ, together with Aµ →
λAµ and qi → λ3/2qi ) is a classical symmetry of QCD in the chiral limit,
which is broken by quantum fluctuations (trace anomaly), in turn implying
the emergence of the energy scale ΛQCD outlined above.

(ii) Chiral symmetry is expressed as

U(Nf )R × U(Nf )L ≡ U(1)V × SU(Nf )V × U(1)A × SU(Nf )A .

According to it, quark fields transform as

qi = qi,L + qi,R → UL,i,jqj,L + UR,i,jqj,R , (48)

where UL and UR are 3× 3 unitary matrices that mix flavor (but no color!)
degrees of freedom. This symmetry undergoes SSB:

SU(Nf )V × SU(Nf )A → SU(Nf )V . (49)

(iii) The axial symmetry U(1)A corresponds to the choice UL = U †
R =

exp (−iα/2). This symmetry is also broken by quantum fluctuations and
the corresponding anomaly is called axial or chiral anomaly.

(iv) There is also an explicit breaking of U(1)A and SU(Nf )A through
nonzero bare quark masses. An explicit breaking of SU(Nf )V occurs if the
quark masses are different.

In the following, in order to keep the discussion as simple as possible,
we will omit -if not stated differently- the flavor index i = u, d, .... Yet,
the main features of QCD at large-Nc are not dependent on the number of
flavors. Yet, whenever needed, we will explicitly mention the quark flavors
as well.
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2.4. Quark and gluon propagators

Here we shall have a quick look at the quark and the gluon propagators.
The main message is simple: their main features are retained in the large-
Nc limit. It means that the can be “naively” regarded as large-Nc invariant
objects.

Let us be more specific. For the quark propagator, there is an infinity
class of diagrams which are large-Nc independent. They are depicted in Fig.
4. These are the famous ‘planar diagrams’ since they can be drawn on a
plane without intersection [5, 6].

Fig. 4. Two planar diagrams describing the self-energy of the quark (which is taken

to have a specific color C1 for definiteness). Both diagrams are ‘mass contributions’

and scale as N0
c . There is an infinity of such planar diagrams.

Admittedly, there are also non-planar diagrams which disappear in the
large-Nc limit, thus the large-Nc world is slightly simpler than the one for
Nc = 3. An example of a non-planar (and therefore large-Nc suppressed)
diagram for the quark propagator can be found in Fig. 5. Yet, the main
features are expected to be contained in the large-Nc dominant terms, which
survive the limit Nc →∞.

An important consequence is that the most important properties related
to low-energy QCD, among which SSB [51], are still valid for large values
of Nc. For instance, the quark u develops a constituent mass due to SSB as
[14]:

mbare
u ≃ 3 MeV→ m∗

u ≃ 300 MeV, (50)

which holds also for arbitrary large values of Nc. Since the dominant contri-
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Fig. 5. An example of a non-planar self-energy diagram for the quark propagator.

It scales as N−2
c , thus suppressed.

butions to the quark propagator are large-Nc independent, the constituent
mass m∗

u ≃ 300 MeV scales as N0
c . Then, as a consequence the whole low-

energy mesonic phenomenology is quite similar: the pions and kaons are still
(quasi-)Goldstone bosons, the vector particles carry a mass of about 2m∗

u,
see later on for more details on mesons. An important exception regards
the chiral anomaly, which indeed goes away for Nc →∞. In the chiral limit,
the mass of the singlet η0 scales as m2

η0 ∝ N−1
c [52], thus for Nf = 3 a full

nonet of Goldstone bosons is actually realized in the chiral limit for large
Nc.

The gluon propagator is dressed by large-Nc independent planar dia-
grams, that are expected to be responsible for its major properties. In this
sense, this feature is analogous to the quark propagator. One may roughly
speak about an effective gluon mass of about m∗

g ≃ 800 MeV [53], even
though the term ‘mass’ should be used with extreme care: one should better
refer to an energy scale entering into the propagator without breaking local
color gauge invariance [54]. This effective energy scale is Nc-independent.
As a consequence, glueballs carry a mass (starting at) about 2m∗

g, which is
also Nc independent, as we shall discuss in more detail in Sec. 3.

Summarizing, the quark and the gluon propagators contain a class of
dominant Nc-independent (∝ N0

c ) contributions. For our purposes, these
propagators can be seen as independent from the number of colors.

2.5. Brief recall of mesons and baryons at large-Nc

Quarks and gluons are not the physical states that hit our detectors.
They are confined into hadrons, i.e. mesons (integer spin) and baryons
(semi-integer spin).

A conventional meson is a meson constructed out of a quark and an
antiquark. Although it represents only one of (actually infinitely many)
possibilities to build a meson, the vast majority of mesons of the PDG [1]
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Fig. 6. Two planar diagrams describing the self-energy of the gluon (which is taken

to have a specific color C3C̄7 as an explicit example). Both diagrams are ‘mass

contributions’ and scale as N0
c .

can be consistently (and successfully) interpreted as belonging to a quark-
antiquark multiplet (see also the results of the quark model [55]). Mesons are
classified according to their total spin J , parity P , and charge conjugation
C, forming multiplets denoted with JPC .

Moreover, in the quark model one may express a quark-antiquark state
Q using the radial quantum number n = 1, 2, 3, ..., the angular quantum
number L = 0, 1, 2, 3, ... ≡ S, P,D, F, ..., the spin part S = 0, 1, the flavor
composition, and finally the color wave function (that is crucial for this
work).

Following this spectroscopic notation a meson is classified as

n2S+1LJ , (51)

where J is the total spin arising from the proper combination of L and S.
We remind that P and C are calculated as:

P = (−1)L+1 , C = (−1)L+S . (52)

In general, the wave function of a quarkonium state Q takes the form∣∣Q with n 2S+1LJ and JPC
〉

= |radial part n⟩ |angular part L⟩ |spin part S⟩ |flavor⟩ |color ⟩ . (53)
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As an example, the wave function of the vector meson ρ+ ≡ ud̄ reads∣∣ρ+〉 = N |n = 1⟩ |L = 0⟩ |S = 1(↑↓ + ↓↑)⟩
∣∣ud̄〉 ∣∣R̄R+ ḠG+ B̄B

〉
, (54)

where N is an overall normalization. The properly normalized color part is

|Q-color ⟩ =
1√
3

∣∣R̄R+ ḠG+ B̄B
〉

. (55)

Interestingly, this is the color wave function of any quarkonium, indepen-
dently on the other quantum numbers. This combination is colorless, in the
sense that it is invariant under any (local) SU(Nc = 3) color transforma-
tions.

As we shall prove explicitly later, in the large-Nc limit quark-antiquark
mesons retain their mass but become very narrow. For a generic Nc the
color wave function takes the form:

|Q-color ⟩ =
1√
Nc

∣∣C̄1C1 + C̄2C2 + ...+ C̄NcCNc

〉
, (56)

which is invariant under (local) SU(Nc) color transformations. This fact
can be easily seen by considering

|Q-color ⟩ ≃ 1√
Nc

Nc∑
a=1

q̄aqa |0⟩ . (57)

A generic color transformation implies:

qa → Uabqb , q†a → (Uacqc)
† = q†cU

∗
ac = q†c

(
U †
)
ca

, (58)

thus
q̄aqa → q̄c

(
U †
)
ca
Uabqb = q̄aqa (59)

where
(
U †)

ca
Uab = δbc follows from U †U = 1 (sum over indices understood).

Other mesons (such as glueballs, hybrids,...) have more complicated
wave functions, see later for their detailed study.

The same procedure above can be carried out for conventional baryon
states, where a conventional baryon is a three-quark state. Even if the
remaining part of their w.f. is more complicated, the normalized color part
is pretty simple:

|B-color ⟩ =
1√
6
|RGB +BRG+GBR−GRB −BGR−RBG⟩ , (60)
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which is invariant under SU(Nc = 3) color transformations. The extension
to a generic number of colors gives:

|B-color ⟩ =
1√
Nc!

εa1a2...aNc

∣∣Ca1Ca2 ...CaNc

〉
(61)

or, by using quark fields:

|B-color ⟩ ≃ 1√
Nc!

εa1a2...aNc
qa1qa2 ...qaNc |0⟩ . (62)

In fact, under SU(Nc) color transformations, one has:

εa1a2...aNc
qa1qa2 ...qNc → εa1a2...aNc

Ua1a′1
Ua2a′2

...UaNca
′
Nc
qa′1qa′2 ...qa′Nc

= εa′1a′2...a′Nc
qa′1qa′2 ...qa′Nc

(63)

where we have used that

εa1a2...aNc
Ua1a′1

Ua2a′2
...UaNca

′
Nc

= εa′1a′2...a′Nc
, (64)

being a consequence of detU = 1, namely:

N ! detU = N ! = εa1a2...aNc
εa′1a′2...a′Nc

Ua1a′1
Ua2a′2

...UaNca
′
Nc

. (65)

2.6. Large-Nc: recall of basic results

We present here a short summary of known large-Nc rules [6, 8]. In the
next sections we will re-derive them following (relatively simple) bound-state
equations forming these states.

1. The masses of quark-antiquark states Q ≡ qq, glueballs G ≡ gg, and
hybrids mesons H ≡ qqg are constant for Nc →∞:

MQ ∝ N0
c , MG ∝ N0

c , MH ∝ N0
c . (66)

2. The interaction between nQ quark-antiquark states Q ≡ |qq⟩ scales as

AnQQ ∝
Nc

N
nQ/2
c

for nQ ≥ 1 . (67)

This implies that the amplitude for a nQ-meson scattering process
becomes smaller and smaller for increasing Nc. In particular the decay

amplitude is realized for nQ = 3, ergo Adecay ∝ N
−1/2
c , implying that

the width scales as Γ ∝ 1/Nc. Conventional quarkonia become very
narrow for large Nc.
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3. The interaction amplitude between nG glueballs is

AnGG ∝
N2

c

NnG
c

for nG ≥ 1 , (68)

which is smaller than in the quarkonium case.

4. The interaction amplitude between nQ quarkonia and nG glueballs
behaves as

A(nQQ)(nGG) ∝
Nc

N
nQ/2
c NnG

c

for nQ ≥ 1 , (69)

thus the mixing (nG = nQ = 1) scales as Amixing ∝ N−1/2
c . Then, also

the glueball-quarkonium mixing is suppressed for Nc ≫ 1. Note, for
nG = 0 one finds the correct interaction for nQ quarkonia.

5. The amplitude for nQ quarkonia and nH hybrids scales as

A(nQQ)(nHH) ∝
Nc

N
nQ/2
c N

nH/2
c

for nQ + nH ≥ 1 . (70)

For nQ = nH = 1 one recovers that the quarkonium-hybrid mixing
scales as N0

c , implying that quarkonia and hybrids behave in the same
way at large-Nc.

6. For the general case of nH quarkonia, nG glueballs, and nH hybrids
one has:

A(nQQ)(nGG)(nHH) ∝
Nc

N
nQ/2
c NnG

c N
nH/2
c

for nQ + nH ≥ 1 . (71)

7. Four-quark states (both as molecular objects and diquark-anti-diquark
objects) tend to fade away at large Nc. In fact, a part from (eventually
existing, but not yet proven) peculiar tetraquarks [29], these objects
typically do not survive in the large-Nc limit.

8. Baryons are made of Nc quarks for an arbitrary Nc. As a consequence

MB ∝ Nc . (72)

9. Interactions involving baryons: the baryon-baryon-meson interaction

scales as N
1/2
c , while baryon-baryon scattering goes as Nc. In particu-

lar, for an arbitrary number of B̄B pairs, as well as for nQ quarkonia,
nG glueballs, and nH hybrids, one has:

A(B̄B...)(nQQ)(nGG)(nHH) ∝
Nc

N
nQ/2
c NnG

c N
nH/2
c

. (73)
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Summing up, the large-Nc limit is a firm theoretical method which ex-
plains why the quark model works. In fact, a decay channel for a certain
meson causes quantum fluctuations: the propagator of the meson is dressed
by loops of other mesons. For instance, the state ρ+ decays into π+π0, thus
the ρ-meson is dressed by loops of pions. In the end, one finds that the
wave function of the ρ-meson is given by:∣∣ρ+〉 = a

∣∣ud̄〉+ b
∣∣π+π0〉+ ... , (74)

where the full expression of
∣∣ud̄〉 is given in Eq. (54). Being a ∝ N0

c and b ∝
N

−1/2
c , we understand why the quark-antiquark configuration dominates.

Dots refer to further contributions which are even more suppressed.
Yet, for Nc = 3 there are some mesons for which the meson-meson

component dominates. These are for instance, the light scalar mesons such
as a0(980), see Sec. 3.5.

3. Large-Nc results for mesons

In this Section we deal with mesons. First, we discuss conventional
quarkonia states, then various exotic configurations: glueballs, hybrids, and
(briefly) four-quark states.

3.1. Quark-antiquark mesons

A quark-antiquark meson has a rather simple color wave function, see
Eq. (56), that we rewrite here for convenience:

|Q-color ⟩ =
1√
Nc

∣∣C̄1C1 + C̄2C2 + ...+ C̄NcCNc

〉
. (75)

How does such a bound state emerge? For simplicity, let us consider the
processes that mix two elements of the wave function, for instance:

C̄1C1 → C̄2C2 . (76)

This particular transition implies that an initial state with color 1 and
anticolor 1 transforms into color 2 and anticolor 2. (For Nc = 3 that would
correspond to e.g. R̄R into ḠG.) Of course, any other example, such as
C̄3C3 → C̄7C7, is equally good. The important point is that we start from a
possible component of a quarkonium state and end up in another component
of its wave function. This is so because an eventual bound state would couple
to any color combination C̄aCa with the same strength, and would appear
as an intermediate state for processes of the type (76). In particular, close
to the mass of the quarkonium, the s-channel becomes dominant. Note, for
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Fig. 7. Examples of dominating diagrams for the scattering process C̄1C1 → C̄2C2.

These diagrams scale as N−1
c . Of course, one could take any other color combina-

tion, such as C̄7C7 → C̄11C11.

the moment we do not ‘care’ about the normalization 1/
√
Nc entering in

eq. (56), but we simply study the amplitude for the transition of Eq. (76).

The simplest process of this type is depicted in Fig. 7 (upper part),
where it is evident that the dominant amplitude for C̄1C1 → C̄2C2 scales
as 1/Nc. Interestingly, loop processes of the type of Fig. 7 (lower part) also
scale in this way. Of course, there are also subleading terms that scale as
1/N2

c , see Fig. 8, which can be dismissed in the large-Nclimit. In Fig. 9 we
show another type of diagrams, which scales also as N−1

c and displays an
intermediate loop with any possible color combination.

How to study the emergence of bound states in this context? Of course,
the full problem is complicated and one would need a Bethe-Salpeter ap-
proach. Yet, a simple and in many respects successful approach makes use
of a quartic separable interaction, such as in the NJL model [14, 15]. As
previously mentioned, the large-Nc counting is independent on the details
of the employed approach, thus the results that we will present are general.

Let us consider a generic ‘colorless’ current for an arbitrary quarkonium
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Fig. 8. Example of a subleading diagram for the scattering process C̄1C1 → C̄2C2.

These types of diagram scale as N−2
c .

Fig. 9. Another dominating diagram for the scattering process C̄1C1 → C̄2C2, that

involves an intermediate state with an arbitrary color C̄aCa for a = 1, ..., Nc. It

scales as N−1
c .

meson Q:

JQ(x) =

Nc∑
a=1

q̄(a)Γq(a) ≡ C1C̄1 + C2C̄2 + ...+ CNcC̄Nc , (77)

where no normalization is considered. (Note, the quantity Γ is an appropri-
ate combination of Dirac matrices and derivatives, that varies case by case
in dependence of the mesonic quantum numbers, see Ref. [56]; for instance,
for pseudoscalar mesons one has Γ = iγ5.) The separable interaction term is
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Fig. 10. Generation of a quark-antiquark meson (red (dashed) line) upon resum-

mation of diagrams for the illustrative process C̄1C1 → C̄2C2.

proportional to J2
Q. The corresponding Lagrangian takes the effective form

LQ = KQJ
2
Q , (78)

where KQ is a coupling constant. In order to determine the scaling of KQ,
one may consider the illustrative transition C1C̄1 → C2C̄2 or any other of
that type, finding that

KQ ∝ g2QCD = g2 ∝ N−1
c . (79)

We then introduce a useful notation: we define K̄Q as a Nc-independent
constant, thus:

KQ =
K̄Q

Nc
. (80)

In the following, any quantity with ‘bar’ shall be regarded asNc-independent.
The corresponding T -matrix TQ is obtained by properly resumming the

interactions originated by the Lagrangian of Eq. (78), see Fig. 10 for its
pictorial representation. It then takes the form:

iTQ(s) = iKQ + iKQ(−iΣQ(s))iKQ + iKQ(−iΣQ(s))iKQ(−iΣQ(s))iKQ + ...
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Fig. 11. Conventional q̄q mesons Q are in red (dashed), quarks in black (solid).

Up: decay of a conventional q̄q meson into two conventional q̄q mesons via a loop

of quarks. The leading amplitude scales as N
−1/2
c , hence the decay width scales as

N−1
c . Down: two-body scattering process of conventional Q mesons, whose leading

order isN−1
c , thus the cross-section goes asN−2

c , and three-body scattering process,

, whose leading order is N−2
c , thus the cross-section goes as N−4

c .

leading to

TQ(s) = KQ +KQΣQ(s)KQ + ... =
KQ

1− ΣQ(s)KQ
=

1

K−1
Q − ΣQ(s)

, (81)

where ΣQ(s) is the quark-antiquark loop contribution, which scales as:

ΣQ(s) = NcΣ̄Q(s) . (82)

This result is a simple consequence of the Nc possible loops when the quark
carries Nc colors. The quantity Σ̄Q(s) is, according to the adopted conven-
tion, independent on Nc.

Next, the amplitude TQ(s) scales as 1/Nc (indeed, each terms in the
expansion is of order 1/Nc, as one can easily check). In this specific model,
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one can also write the explicit form of the loop function ΣQ(s) as

ΣQ(s = p2) = −iNc

∫
d4k

(2π)4
Tr [Sq (p/2 + k) ΓSq (−p/2 + k) Γ] fΛ(k) .

(83)
In this sense, the factor Nc is simply a trace over color d.o.f.: this is indeed a
general result that does not depend on the model details. The function fΛ(k)
stays for a regulator (in turn, this function may arise from a nonlocal current
[18, 19]), but its specification is not needed since no explicit calculation will
be performed.

The mass of the quark-antiquark bound states MQ corresponds to a pole
of the resummed amplitude TQ(s), hence to a zero of its denominator. As
such, it is a solution of the equation

TQ(s)−1 = 0→ K−1
Q − ΣQ(s = M2

Q) = 0 . (84)

Then, upon using KQ = K̄Q/Nc and ΣQ(s) = NcΣ̄Q(s), the previous equa-
tion takes the form

Nc

K̄Q
−NcΣ̄Q(s = M2

Q) = 0→ 1

K̄Q
− Σ̄Q(s = M2

Q) = 0 , (85)

which is Nc independent. Thus, the mass of the mesonic quarkonium state
Q ≡ q̄q scales as

MQ ∝ N0
c . (86)

We were able to reproduce this very well known and general result of the
large-Nc phenomenology.

Next, let us expand the denominator TQ around s = M2
Q, finding:

K−1
Q − ΣQ(s) ≃ K−1

Q − ΣQ(M2
Q)︸ ︷︷ ︸

=0

−
(
∂ΣQ(s)

∂s

)
s=M2

Q

(s−M2
Q) + ...

≃ −Nc

(
∂Σ̄Q(s)

∂s

)
s=M2

Q

(s−M2
Q) + .. (87)

Hence, the amplitude becomes:

TQ(s) =
1

K−1
Q − ΣQ(s)

≃ 1

−Nc

(
∂Σ̄Q(s)

∂s

)
s=M2

Q

(s−M2
Q)

=
(igQq̄q)

2

s−M2
Q

, (88)
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where we identify the coupling of the quarkonium to its constituents, a
quark and an antiquark, as:

gQq̄q =
1√

Nc

(
∂Σ̄Q(s)

∂s

)
s=M2

Q

=
1√
Nc
ḡQq̄q . (89)

Again, ḡQq̄q is Nc independent. Thus, the coupling of a conventional meson
to a quark-antiquark pair gQq̄q scales as 1/

√
Nc. In terms of the composite

fieldQ and the constituent quark fields, one can write an effective interaction
Lagrangian

LQq̄q = gQq̄qQJQ . (90)

Such interactions enter, for example, in meson-quark chiral models [57, 58],
in approaches using the Weinberg compositeness condition [16, 17] (some-
times within nonlocal Lagrangians [18, 19]), as well as at intermediate stages
of the hadronization process of quark models such as the NJL one [14].

Many results can be obtained from the previous outcomes. Let us first
look at 3-leg meson interactions (see Fig. 11), which is proportional to:

A3Q ∝ g3Qq̄qNc ∝
1√
Nc

. (91)

As a consequence, the decay width of a conventional mesons into two con-
ventional mesons Q→ Q1Q2 scales as:

ΓQ→Q1Q2 ∝ |A3Q|2 ∝
1

Nc
. (92)

This is also a very well known result of large-Nc phenomenology. Conven-
tional quark-antiquark mesons become stable for Nc →∞ with a scaling of
the type N−1

c .
Similarly, the four-leg conventional meson interaction goes as (again Fig.

11):

A4Q ∝ g4Qq̄qNc ∝
1

Nc
. (93)

For instance, the four-pion interaction term in an effective Lagrangian should
scale as 1/Nc.

In general, the nQ-th leg meson interaction among convectional mesons
scales as (nQ ≥ 1)

AnQQ ∝ g
nQ

Qq̄qNc ∝ N
−nQ/2
c Nc =

Nc

N
nQ
2

c

, (94)
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in agreement with the general result quoted in Sec. 2.6 (point 2). Note,

the case nQ = 1 generates AQ ∼ N
1/2
c , which coincides with the vacuum

production amplitude (and also with the weak decay constant), see below.
The case nQ = 0 implies A0 ∼ Nc which can be interpreted as the vacuum
contribution of quarks. In turn, the pressure generated by quarks scales as
Nc, see Sec. 5.

Next, we examine various additional consequences of the obtained large-
Nc scaling behavior.

1) The example of the χc,0 meson.

Fig. 12. Decay of the charm-anticharm χc,0 meson (red, dashed) into two π mesons

(also red, dashed). In this case, the leading decay into D̄D mesons as in Fig. 11

cannot take place because kinematically forbidden. The subleading diagram scales

as N
−3/2
c , thus the decay width goes as N−3

c , explaining why this charmonium

meson is so narrow. Note, the diagrams above also show that the flavor lines

(upper part) behave differently than the color ones (lower part).

The χc,0 meson is the ground-state scalar c̄c state. Its decay width is
very small [1]. Can large-Nc help us to understand why? Indeed, it does.
The dominant decay of the χc,0 would be decays of the type D̄D or similar
ones. The corresponding partial decay widths would be of the order of N−1

c ,
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but cannot take place because it is kinematically forbidden. Schematically:

Γχc,0→D̄D ∝ g2χc,0D̄D ·
kD
M2

χc,0

θ(Mχc,0 − 2MD) = 0 (95)

where gχc,0D̄D goes as N
−1/2
c and kD is the modulus of the three-momentum

of an outgoing D-particle. This quantity is Nc-independent but is imaginary
for Mχc,0 < 2MD. The step function assures that in these cases the decay
simply vanishes.

The χc,0 can decay into light hadrons, e.g. into π-mesons. Formally, an
analogous expression holds:

Γχc,0→ππ ∝ g2χc,0ππ ·
kπ

M2
χc,0

θ(Mχc,0 − 2Mπ) = g2χc,0ππ ·
kπ

M2
χc,0

̸= 0 . (96)

where kπ =
√
M2

χc,0
/4−M2

π ∼ N0
c . How does gχc,0ππ scale with Nc? A

simple diagrammatic analysis, see Fig. 12, shows that

ggχc,0ππ ∝ N−3/2
c , (97)

thus Γχc,0→ππ ∝ N−3
c . This result applies to any similar mesonic channel.

We thus find that:
Γχc,0→mesons ∝ N−3

c , (98)

or even smaller. This explains why these decays are so suppressed. This
result holds for any mesons whose (would be large-Nc) dominant decays
are kinematically forbidden, most notably for the famous charm-anticharm
j/ψ state (where, however, because of C-parity, three intermediate gluons
occur). Indeed, this general outcome is a realization of the so-called OZI
(Okubo, Zweig, and Iizuka) rule, e.g. [59], according to which diagrams in
which the quark lines are disconnected are suppressed. In this respect, the
OZI rule can be understood as a consequence of the large-Nc results.

2) Pion decay constant and π0 → γγ.
The pion decay constant fπ refers to the quark-antiquark annihilation

that forms it. It enters as a part of the amplitude of the weak decay of π+,
for which the chain π+ → W+ → µ+νµ takes place, see Fig. 13. It turns
out hat

fπ ∝ N1/2
c . (99)

Indeed, this is the same scaling of the chiral condensate, see below. The
correct scaling can be also seen by writing the formula for fπ as

fπ ∼ gπ+ud̄Σπ(s = M2
π) =

ḡπ+ud̄√
Nc

NcΣ̄π(s = M2
π) ∼

√
Nc . (100)
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Fig. 13. Schematic diagrams leading to the large-Nc scaling of the weak decay

constant fπ and π0 → γγ.

This result is indeed independent on the chosen quark-antiquark meson: the
weak decay constant of a generic conventional meson scales as

√
Nc. [Note,

while the scaling is correct, the expression gπ+ud̄Σπ(s = M2
π) has dimension

Energy2, but fπ has dimension energy. This is due to the fact that the
expression gπ+ud̄Σπ(s = M2

π) is indeed sufficient to determine the large-Nc

scaling, but is not enough for an actual calculation of the decay constant.
A closer inspection shows that gπ+ud̄Σπ(s = M2

π) ∝ Mπfπ. For a detailed
calculation that includes the large-Nc discussion within a qualitatively sim-
ilar approach, see Ref. [60]. We also refer to point 3 below for a connection
of this quantity to chiral models.
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For what concerns the decay of π0 into γγ, one obtains the amplitude:

Aπ0γγ ∝

[
gπ0ūu

(
2e

3

)2

+ gπ0d̄d

(
−e

3

)2]
Nc ≃ gπ0ūuNc

(
4

9
− 1

9

)
, (101)

where gπ0d̄d ≃ −gπ0ūu has been used (this comes from
∣∣π0〉 = 1√

2

∣∣ūu− d̄d〉.)
Since gπ0ūu scales as N

−1/2
c , one finds:

Γπ0→γγ ∝ g2π0ūuN
2
c ∝ Nc . (102)

(If one would neglect the scaling of the coupling, a N2
c dependence would

emerge, but that is not the correct scaling).
The result above is valid as long as the electric charges of the quarks

are left untouched. This hypothesis is meaningful if we consider QCD only,
yet things change when other interactions are taken into account. In fact,
following the scaling rules above, the large-Nc analogous of the proton would
not have charge 1, but rather the charge (for Nc odd and for the number of
quarks u exceeding that of quarks d of one unit):(

Nc − 1

2
+ 1

)
2

3
−
(
Nc − 1

2

)
1

3
=
Nc + 3

6
. (103)

In general, baryons would not have integer charges. For instance, the large-
N−c analogous of the ∆++ baryon would carry charge 2Nc/3, which is also
not necessarily an integer.

Following the discussion in Refs. [61, 62, 63], we impose the subsequent
scaling behavior for the charges of the u and d quarks:

qu =
1 +Nc

2Nc
, qd =

1−Nc

2Nc
, (104)

out of which any baryon has an integer charge. In particular, the proton
carries the charge (

Nc − 1

2
+ 1

)
qu −

(
Nc − 1

2

)
qd = 1 . (105)

The π+ has still the charge qu + qd̄ = qu − qd = 1, as expected. Then, the
amplitude for the π0 decay reads

Aπ0γγ = gπ0ūuNc

(
q2u − q2d

)
= gπ0ūuNc

(
q2u − q2d

)
= gπ0ūuNc

((
1 +Nc

2Nc

)2

−
(

1−Nc

2Nc

)2
)

= gπ0ūuNc
4Nc

4N2
c

= gπ0ūu .

(106)
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It follows that with this scheme Γπ0→γγ ∼ g2π0ūu ∼ N−1
c , just as a regular

mesonic decay.

3) Three-body decay: direct process vs decay chain.

Fig. 14. Direct three-body decay vs decay chain quarkonium Q (red, dashed) into

3 quarkonia states. The decay chain takes place via an intermediate quarkonium

state S. Under appropriate conditions, the decay chain dominates in the large-Nc

limit.

We intend to study the three-body decay process

Q→ Q1Q2Q3. (107)

Let us consider two possible models for this decay. For the direct decay, a
Lagrangian of the type (we call it ‘model A’) reads (see Fig. 14, left part)

LA = λQQ1Q2Q3 , (108)

where λ = λ̄/Nc, for which the three-body decay goes as:

ΓQ→Q1Q2Q3 ∝ |AQ→Q1Q2Q3 |
2 ∝ λ2 ∝ 1

N2
c

. (109)

Next, let us consider the possibility that the decay takes place via an ad-
ditional intermediate quark-antiquark state S via the Lagrangian (that we
shall denote as ‘model B’, see Fig. 14, right part):

LB = gQQ1SQQ1S + gSQ2Q3SQ2Q3 , (110)
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where both constants gQQ1S and gSQ2Q3 scale as 1/
√
Nc. Thus, one has the

decay chain
Q→ Q1S → Q1Q2Q3 , (111)

where in the second step S → Q2Q3 has taken place. We assume, for
simplicity, that S → Q2Q3 is the only available decay channel for S (the
main result holds also when this is not the case).

In scenario B, the decay amplitude takes the form:

AQ→Q1Q2Q3 ∝ gQQ1S
1

p2S −M2
S + iΓSMS

gSQ2Q3 . (112)

Since MS is not dependent on Nc and ΓS is suppressed as 1/Nc, at first sight
AQ→Q1Q2Q3 scales also as 1/Nc, thus leading to the same result of model
‘A’ (direct decay). Yet, a more careful analysis leads to a different result.
Following Ref. [64, 65], the decay chain leads to the integration over final
momenta leading to

ΓQ→Q1Q2Q3 =

∫ MQ−M1

0
dxΓQ→Q1S(x)dS(x) , (113)

where ΓQ→Q1S(x) is the decay width for Q → Q1S. The quantity dS(x) is
the mass distribution of the S state with

dS(x) =
ΓS

2π

1

(x−MS)2 + Γ2
S/4

, (114)

where x is the running mass of the intermediate state S; only for x <
MQ −M1 a nonzero contribution to Q → Q1Q2Q3 is possible. Above, the
nonrelativistic Breit-Wigner approximation has been used. This approxi-
mation is surely valid for narrow states. Anyway, the result is more general
than that (one could use for instance the relativistic Sill distribution of Ref.
[65] that takes into account threshold effects, getting the same outcome).
In the large-Nc limit one obtains:

dS(x) = δ(x−MS) , (115)

thus

ΓQ→Q1Q2Q3 = ΓQ→Q1S(x = MS) ∝ 1

Nc
, (116)

instead ofN−2
c . It is then evident that in this case the decay chain dominates.

Yet, this term is nonzero only if MS ≤ MQ −M1. If this is not the case,
one should consider the next to leading term for dS(x) that scales as 1/Nc

which again would lead to an overall 1/N2
c decay of Q. This can be easily
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seen in the case in which MS is much larger than MQ, thus (for x in the
range (0,MQ −M1))

dS(x) =
ΓS

2π

1

M2
S

+ ... ∝ 1

Nc
, (117)

out of which

ΓQ→Q1Q2Q3 =

∫ MQ−M1

0
dxΓQ→Q1S(x)dS(x)

=
ΓS

2π

1

M2
S

∫ MQ−M1

0
dxΓQ→Q1S(x) ∝ 1

N2
c

. (118)

(Note, this decay is additionally also suppressed by the assumed large mass
MS).

As anticipated, the outcome is unchanged if S has more than a single
decay channel. Namely, in this case the spectral function refers to the
specific decay channel [66] with:

dS(x) =
ΓS→Q2Q3

2π

1

(x−MS)2 + Γ2
S/4

(119)

which reduces to

dS(x) =
ΓS→Q2Q3

ΓS
δ(x−MS) (120)

in the large-Nc limit. Then

ΓQ→Q1Q2Q3 =
ΓS→Q2Q3

ΓS
ΓQ→Q1S(x = MS) ∝ 1

Nc
(121)

if, of course, MS ≤MQ −M1.
In conclusion, the decay chain is dominant, if appropriate kinematic

conditions are met.

3) Chiral models.
Let us study the large-Nc scaling in a chiral model. For simplicity, we

consider one scalar σ particle and one pseudoscalar π corresponding to the
case of a single flavor (Nf = 1). (Note, we neglect at first the chiral anomaly,
thus π emerges as a Goldstone boson: in this respect, it is more pion-like
than η′-like).

The basic chiral ‘multiplet’ reads

Φ = σ + iπ . (122)
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Fig. 15. Form of the chiral potential of Eq. (125) for m2
0 > 0. The (unique and

globnal) minimum sits at the origin.

A chiral transformation amounts to Φ→ eiαΦ (it is an O(2) rotation in the
place spanned by (σ, π)), thus the quantity

Φ†Φ = Φ∗Φ = σ2 + π2 (123)

is a chirally invariant object. For a generic Nf the quantity Φ is a Nf ×Nf

matrix, e.g. [23, 67, 68, 69, 70], but for Nf = 1 it is a scalar, thus Φ† =
Φ∗. Interestingly, the main large-Nc outcomes that we shall discuss are
independent on Nf (with an important exception, the chiral anomaly).

For Nf = 1 the chirally invariant potential takes the simple form:

V (σ, π) =
m2

0

2
Φ∗Φ +

λ

4
(Φ∗Φ)2 =

m2
0

2

(
π2 + σ2

)
+
λ

4

(
π2 + σ2

)2
. (124)

The large-Nc scaling is an immediate consequence of our previous discussion:

m0 ∼ N0
c , λ ∼ N−1

c . (125)

For m2
0 > 0 the potential is plotted in Fig. 15 for m2

0 = 0.62 GeV2 and
λ = 40: it has a single minimum for Pmin = (σ = π = 0). The masses of the
particles correspond to the second derivatives evaluated at the minimum:

M2
π =

∂2V

∂π2

∣∣∣∣
P=Pmin

= m2
0 ∼ N0

c , (126)

M2
σ =

∂2V

∂σ2

∣∣∣∣
P=Pmin

= m2
0 ∼ N0

c . (127)
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Both particles have the same mass m0. This is a manifest realization of
chiral symmetry. Yet, this is not how Nature works. Chiral partners do not
have the same mass.

Fig. 16. Form of the chiral potential of Eq. (125) for m2
0 < 0. There is a circle of

minima for σ2 + π2 = F 2 = −m2
0/λ. The originan is a local maximum.

The splitting of masses is possible without explicit breaking of chiral
symmetry by considering m2

0 < 0. The corresponding potential, plotted in
Fig. 16 for m2

0 = −0.62 GeV2 and λ = 40, can be rewritten as:

V (σ, π) =
λ

4

(
π2 + σ2 − F 2

)2 − m4
0

4λ
with F =

√
−m2

0

λ
∼ N1/2

c > 0 . (128)

It has the typical shape of a Mexican hat, in which the origin (for σ = π = 0)
is not a minimum but a maximum. In fact, upon calculating the masses
around the origin, they would turn out to be imaginary. There is however
a circle of equivalent minima for:

π2 + σ2 = F 2 = −m
2
0

λ
∼ Nc > 0 . (129)

Moreover, the radius of this circle goes as N
1/2
c . SSB is realized when a

specific minimum is picked up. Following the usual convention we choose:

Pmin =

(
σmin = ϕN =

√
−m

2
0

λ
= F, 0

)
. (130)
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The quantity ϕN = F is also denoted as the chiral condensate. Quite
remarkably, a closer inspection of chiral models show that the previously
studied pion decay constant is proportional to ϕN

ϕN ∼ fπ ∼ N1/2
c . (131)

Namely, the coupling to the weak boson W± emerges from an interaction
term of the type

gweak cos θCW
±
µ σ∂

µπ∓ , (132)

(θC is the Cabibbo angle), hence when σ condenses to ϕN ∼ fπ, the direct
W -π mixing

W±
µ ←→ π± (133)

arises.
Within this model, the masses are:

M2
π =

∂2V

∂π2

∣∣∣∣
P=Pmin

= 0 ∼ N0
c , (134)

M2
σ =

∂2V

∂σ2

∣∣∣∣
P=Pmin

= m2
0 + 3λϕ2N = −2m2

0 = 2λϕ2N ∼ N0
c > 0 , (135)

which are not degenerate: the pion has a vanishing mass (it is a Goldstone
boson), while the σ is massive. One then realizes how spontaneous chiral
symmetry breaking generates different masses for chiral partners. Note, Mσ

is proportional to the chiral condensate ϕN . Both masses are still ∼ N0
c . Yet,

as shown in [51], SSB is expected to occur for large Nc, just as it does for
Nc = 3.

In Nature, the pion has a small but nonzero mass. In order to take this
fact into account, the potential is modified as:

V (σ, π) =
m2

0

2

(
π2 + σ2

)
+
λ

4

(
π2 + σ2

)2 − hσ , (136)

where −hσ breaks chiral symmetry explicitly. This term follows directly
from the mass term −mq̄q in the QCD Lagrangian. We thus expect that
h ∝ mn, where mn is the bare quark mass (e.g. the average (mu +md)/2).
The potential, plotted in Fig. 17 (same parameters as before and h = m2

πfπ
with fπ = 92 MeV and mπ = 135 MeV) has now a unique minimum for

Pmin = (σmin = ϕN , 0) (137)

with
∂V (σ, 0)

∂σ

∣∣∣∣
σ=σmin=ϕN

= m2
0ϕN + λϕ3N − h = 0 ,
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Fig. 17. Same as in Fig. 16 but with the explicit symmetry breaking of Eq. (136).

There is now an absolute minimum for σ = ϕN > 0 and π = 0.

which is of third order. (Only one of the three solutions corresponds to an
absolute minimum). The pion mass is now nonzero:

M2
π =

∂2V

∂π2

∣∣∣∣
P=Pmin

= m2
0 + λϕ2N =

h

ϕN
> 0 . (138)

We realize that the pion mass scale as

Mπ ∝
√
h ∝
√
mn . (139)

This is indeed a nontrivial dependence, since one would naively expect that
Mπ ∝ h ∝ m|n, i.e. to the mass of its constituents. This is not the case,
signalizing that the tilted Mexican hat form of the potential is actually
realized in Nature. This peculiar feature is also confirmed by lattice QCD
studies, e.g. [71].

In order to fulfill the large-Nc expectation, one must require that:

h ∼ N1/2
c →M2

π ∼ N0
c . (140)

This is in agreement with the scaling fπ ∝ N
1/2
c . The term hσ acts as a

source term for σ, thus h scales as N
1/2
c . Yet, a closer look reveals a kind



aaamain printed on May 17, 2024 39

of problem: h has dimension energy3 and is proportional to mn, then one
would naively write h ∼ mnΛ2

QCD, but ΛQCD is Nc independent. How to

reconciliate that with the required scaling h ∼ N
1/2
c ? This point will be

clarified in Sec. 3.2 after discussing the dilaton at large Nc.
The mass of the σ-particle is:

M2
σ =

∂2V

∂σ2

∣∣∣∣
P=Pmin

= m2
0 + 3λϕ2N = M2

π + 2λϕ2N ∼ N0
c . (141)

The mass difference M2
σ −M2

π = 2λϕ2N ∼ N0
c > 0 does not depend on h.

The plot of the potential along the σ-direction is shown in Fig. 18 for two
values of Nc.

The chiral condensate ϕN ∼ fπ can be related to the quark condensate

⟨0QCD |q̄q| 0QCD⟩ < 0 (142)

via the GOR relation (e.g. [72]):

M2
πf

2
π = −2mn ⟨0QCD |q̄q| 0QCD⟩ , (143)

where both members of this equation scale with Nc (the r.h.s. is such be-
cause it comes from quark loops, see also Sec. 5). Note, this equation implies
a nontrivial link between the chiral condensate and the quark condensate,
ϕ2N scales as ⟨q̄q⟩, Moreover, it is also in agreement with M2

π ∝ mn.
The chiral condensate ϕN enters also in decays, such as σ → ππ. This

is determined by performing the shift σ → σ + ϕN and then isolating the
term λϕNσπ

2, out of which:

Γσ→ππ = 2
kπ

8πM2
σ

[λϕN ]2 ∼ N−1
c , (144)

where kπ =

√
M2

σ
4 −M2

π ∝ N0
c is the modulus of the three-momentum of one

of the outgoing particle. Also in this case, the expected scaling is recovered.
In the full Nf = 3 version of the model, see e.g. Refs. [23, 28], the masses

and decays are calculated by following the very same steps. Obviously, there
are many more fields and decay channels, but the principles and the basic
ideas are exactly the same as those discussed here.

As stated above, in this Nf = 1 example, the anomaly has been dis-
regarded. There are however some interesting large-Nc considerations that
can be done. The Lagrangian describing the anomaly for any Nf takes the
form [73]:

LA = −c1(det Φ + det Φ†)− c2(det Φ− det Φ†)2 − c3(det Φ + det Φ†)2

(145)



40 aaamain printed on May 17, 2024

-0.2 -0.1 0.1 0.2
σ [GeV]

-0.002

0.002

0.004

0.006

0.008

0.010

V [GeV4]

Fig. 18. Potential of Eq. (136) along the σ direction for Nc = 3 (upper blue curve)

and for Nc = 7 (lower yellow curve). The minimum gets deeper on the vertical

axis (Vmin ∼ −Nc) and its location on the horizontal axis moves to the right

(ϕN ∼ N1/2
c ).

which for Nf = 1 reduces to

LA = −2c1σ + 4c2π
2 − 4c3σ

2 . (146)

The mass arising from the anomaly scales as M2
π ∼ N−1

c . (Actually,
the name M2

η0 ∼ N−1
c [52] with η0 being the flavor singlet would be more

appropriate, but for simplicity we stick to π). For Nf = 1, the first terms is

analogous to hσ seen before, but the scaling is different, c1 ∼ N−1/2
c so that

M2
π ∼ N−1

c follows. For the same reason c2 ∼ N−1
c , c3 ∼ N−1

c . The former
is evident, for the latter one needs to calculate the pion mass that turns out
to be (for h = c1 = c2 = 0) M2

π = 8c3. Thus:

c1 ∼ N−1/2
c , c2 ∼ N−1

c , c3 ∼ N−1
c . (147)

When changing Nf , these scaling behaviors are modified in such a way to
preserve M2

η0 ∼ N−1
c . By properly counting the condensates that scale as

N
1/2
c , one finds:

c1 ∼ N
−Nf/2
c , c2 ∼ N

−Nf
c , c3 ∼ N

−Nf
c . (148)
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For recent applications and extensions of the axial anomaly, see Refs. [56,
74].

4) Different interaction types: a single trace ‘wins’.
The study of the full Nf = 3 chiral model is not within the scope of

this lecture, but there is indeed an interesting point related to large-Nc

that is worth to be discussed. To this end, let us introduce the nonet of
pseudoscalar states [23, 75] (see aslo Sec. 2.2 for Nf = 2):

P =


ηN+π0
√
2

π+ K+

π− ηN−π0
√
2

K0

K− K̄0 ηS

 ≡
 uū ud̄ us̄

dū dd̄ ds̄
sū sd̄ ss̄

 (149)

with π0 =
√

1/2
(
uū− dd̄

)
, and where η(547) and η′(958) emerge as a

mixing of ηN =
√

1/2
(
uū+ dd̄

)
and ηS = ss̄. In chiral models such as

[23, 70], there are typically two types of quartic interactions that emerge:

LP = −λ2Tr
[
P 4
]
− λ1(Tr[P 2])2 . (150)

Their scaling is depicted in Figs. 19 and 20 respectively showing that λ2 ∼
N−1

c and λ1 ∼ N−2
c .

Fig. 19. Large-Nc scaling of the term proportional to λ2 in the Lagrangian of Eq.

(150). Note, the quark loops involves distinct flavors but the usual color factor

Nc.

Note, other terms are possible, as:

L′P = −λ3Tr [P ] Tr
[
P 3
]
− λ4(Tr[P ])4 . (151)

The scaling for λ4 can be determined by drawing the corresponding diagrams
of Fig. 21, leading to λ4 ∼ N−4

c . A similar study for λ3 leads to λ3 ∼ N−2
c .
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Fig. 20. Large-Nc scaling of the four-leg term proportional to λ1 in the Lagrangian

of Eq. (150).

In conclusion, even if all the terms proportionals to λ1,2,3,4 are quartic
terms in the mesonic fields, the large-Nc results show that only one domi-
nates, the one that contains a single trace (the λ2-term). Interestingly, this
result deals with an interplay of flavor and color d.o.f.. It is also relevant for
models, since it makes clear which terms should be at first kept and which
can be disregarded, see e.g. [76, 77].

5) Connection to correlations.
In [6, 30] as well as other works on QCD at large-Nc, the starting point

is the correlation function

⟨JQ(x2)JQ(x1)⟩ = −i
∫

d4p

(2π)2
FQ(p2)eip(x1−x2) , (152)

where the quantity FQ(p) is the loop contribution with total momentum
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Fig. 21. Large-Nc scaling of the four-leg term proportional to λ4 in the Lagrangian

of Eq. (151).

p. Within our framework, at lowest order this is just the loop function
−ΣQ(s = p2). Expanding FQ(s) we get (see Fig. 22 for an illustration of
these processes):

FQ(s = p2) = −ΣQ(s = p2) (1 + ΣQ(s)KQ + ...) =

−
ΣQ(s)

1− ΣQ(s)KQ
= −

ΣQ(s)

KQ

1

K−1
Q − ΣQ(s)

. (153)

The pole is realized for the quarkonium mass M2
Q with the already encoun-

tered equation K−1
Q −ΣQ(s = M2

Q) = 0. Upon expanding close to the pole,
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we find:

FQ(s) =
ΣQ(s)ΣQ(M2

Q)

Σ
′
Q(M2

Q)(s−M2
Q)
≃

Σ2
Q(M2

Q)g2Qq̄q

s−M2
Q

≃
f2Q

s−M2
Q

, (154)

where

fQ = ΣQ(M2
Q)gQq̄q =

ΣQ(M2
Q)√

Σ′
Q(s = M2

Q)
∼ N1/2

c (155)

is the amplitude for the vacuum creation of the meson Q. Indeed, this
expression has the same large-Nc behavior of the weak decay constant of
this meson, see the previous discussion about fπ. (This equivalence does not
hold for glueballs or hybrids).

Fig. 22. Large-Nc scaling of the correlator FQ(s) ∝ Nc.

Since for any given set of quantum numbers an infinity of conventional
mesons exists [6], the previous equation may be generalized as:

FQ(s) ≃
∞∑
n=1

f2Q,n

s−M2
Q,n

∼ Nc (156)
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since f2Q,n ∼ Nc and M2
Q,n ∼ N0

c . This equation can be found in Ref. [6].

6) Connection to the Weinberg compositeness condition.
Finally, we study the Weinberg compositeness condition [16, 17] along

the large-Nc direction. The starting point is the Lagrangian

LQq = Lq + gQq̄qQ(x)JQ(x)− α

2
Q2 , (157)

where Q has no kinetic term and Lq contains the kinetic part for the quark
field as well as eventual other interactions not relevant here. Note, the pa-
rameter α is not the physical mass squared, see below. The basic assumption

is that gQq̄q ∼ N−1/2
c .

By using the e.o.m. for the field Q one gets:

∂LQq

∂Q
= gQq̄qJQ(x)− αQ(x) = 0→ Q(x) =

gQq̄q

α
JQ(x) . (158)

Plugging it back into Eq. 157 one obtains a Lagrangian that depends on
the quark field q only:

LQq ≡ Lq +
g2Qq̄q

2α
J2
Q. (159)

This is not a surprise, since Q had no kinetic term from the very beginning.
One then gets the correspondence

KQ =
g2Qq̄q

α
=

1

ΣQ(M2
Q)

, (160)

where Eq. (84) has been used. Then:

α =
ΣQ(M2

Q)

Σ′
Q(M2

Q)
∼ N0

c , (161)

out of which:

JQ(x) =
α

gQq̄q
Q(x) = ΣQ(M2

Q)gQq̄qQ(x) = fQQ(x) , (162)

which shows that the microscopic quark current JQ(x) is proportional to
the composite meson field Q(x), and the constant of proportionality is the
amplitude for production of this field in the QCD vacuum. In this way, the
correlator ⟨JQ(x2)JQ(x1)⟩ takes the form

⟨JQ(x2)JQ(x1)⟩ = f2Q ⟨Q(x2)Q(x1)⟩ = −if2Q
∫

d4p

(2π)2
1

p2 −M2
Q

eip(x1−x2)

(163)
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hence

FQ(p) =
f2Q

p2 −M2
Q

(164)

follows consistently.
The formal way to show the result above (especially Eq. (162)) starts

from the Lagrangian containing the bare mesonic coupling, mass and field:

LQq = Lq + gQ0q̄qQ0(x)JQ(x)−
M2

Q0

2
Q2

0 +
1

2
(∂µQ0)

2 , (165)

with
gQ0q̄q ∼ N−1/2

c and M0 ∼ N0
c . (166)

The propagator of the bare field Q0 reads:

1

p2 −M2
Q0

+ g2Q0q̄q
ΣQ(p2)

∼ N0
c . (167)

The first natural condition is to impose that the pole is realized for the
physical mass M2

Q:

M2
Q −M2

Q0
+ g2Q0q̄qΣQ(M2

Q) = 0 . (168)

By expanding the denominator, the propagator of Q0 reads:

1(
p2 −M2

Q

)(
1 + g2Q0q̄q

Σ′
Q(M2

Q)
)

+ g2Q0q̄q
Σ̃Q(p2)

≃ 1(
p2 −M2

Q

)(
1 + g20,Qq̄qΣ

′
Q(M2

Q)
) =

Z2

p2 −M2
Q

, (169)

where Σ̃Q(p2) contains terms of the type (p2 −M2
Q)2 and higher powers,

which are negligible close to the pole.
In order to obtain a correctly normalized propagator, the field

Q =
1√
Z2
Q0 ⇔ Q0 =

√
Z2Q (170)

with the renormalization constant

Z2 =
1

1 + g2Q0q̄q
Σ′
Q(M2

Q)
∼ N0

c (171)

is introduced.
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We impose here gQ0q̄q →∞, out of which Z2 → 0. Intuitively, it means
that the dressed field Q is not fundamental, realizing the main idea behind
the compositeness condition. The Lagrangian takes the form:

LQq = Lq + gQ0q̄q

√
Z2Q(x)JQ(x)−

M2
Q0

2
Z2Q

2
0 +

1

2
Z2 (∂µQ)2

= Lq + gQ0q̄q

√
Z2Q(x)JQ(x)−

M2
Q0

2
Z2Q

2 , (172)

where the dynamical term for the field Q(x) has disappeared. Next:

gQq̄q = gQ0q̄q

√
Z2 =

gQ0q̄q√
1 + g2Q0q̄q

Σ′
Q(M2

Q)

gQ0q̄q
→∞

=
1√

Σ′
Q(M2

Q)
∼ N−1/2

c

(173)
and

α = M2
Q0
Z2 =

g2Q0q̄q
ΣQ(M2

Q)

1 + g2Q0q̄q
Σ′
Q(M2

Q)

g0,Qq̄q→∞
=

ΣQ(M2
Q)

Σ′
Q(M2

Q)
∼ N0

c , (174)

which coincide with the previous derivation.

3.2. Glueballs

According to lattice QCD many glueballs with various quantum numbers
should exist, see e.g. the original predictions within the bag model [45], the
review of Ref. [46] and the lattice works of e.g. [44, 78] (for a recent
compilation and comparison of lattice results, see Ref. [79]). The glueball
wave function must be colorless. Considering for definiteness the case of the
scalar glueball, the corresponding (local and gauge invariant) current reads

JG =

N2
c−1∑
a=1

Ga
µνG

µν,a . (175)

(For other currents, see e.g. [45, 80]). Using the double-line index notation,
we may rewrite it as:

JG ≃
Nc∑
a=1

Nc∑
b=1

G(a,b)
µν Gµν,(b,a) . (176)

Then, the color wave function of this glueball can be written as

|G-color ⟩ ≃ 1√
N2

c − 1
JG |0⟩ . (177)
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Fig. 23. Example of a leading diagram for the gluon-gluon scattering of the type

C1C̄2C2C̄1 → C3C̄4C4C̄3. Note, all gluonic colors have switched. The amplitude

scales as N−2
c and models the coupling in Eq. (180).

Fig. 24. Example of a leading diagram for the gluon-gluon scattering of the type

C1C̄2C2C̄1 → C1C̄4C4C̄3. Note, not all colors have switched (C1 is in the beginning

and in the end). This term, whose amplitude goes as N−1
c , does not model the

constant KG in Eq. (180).

Explicitly:

|G-color ⟩ ≃ 1

Nc

∣∣C̄1C1C̄2C2 + C̄1C1C̄3C3 + ...
〉
≃ 1

Nc

Nc∑
a=1

Nc∑
b=1

∣∣C̄aCaC̄bCb

〉
,

(178)
where, for simplicity, on the r.h.s. all the combinations are taken into ac-
count. Again, there is one combination (the colorless one) that should be
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Fig. 25. Resummation of diagrams for the gluon-gluon scattering of the type

C1C̄2C2C̄1 → C3C̄4C4C̄3 with consequent formation of an intermediate glueball

state (blue, thick-dashed line).

subtracted, but this is unimportant for large Nc. Besides that, the previous
equation is fully general, and applies to any two-gluon glueball.

Following the same procedure as for quark-antiquark states, let us con-
sider the processes leading to the illustrative transition:

C̄1C1C̄2C2 → C̄3C3C̄4C4 (179)

in which all the colors have changed. It is easy to see that the dominant
processes leading to this type of transitions scales as N−2

c , see Fig. 23. In
fact, a single gluon exchange or the quartic interaction, proportional to g2,
are not sufficient for a switch of all colors, see Fig. 24.

We write down an effective Lagrangian

LG = KGJ
2
G (180)

where

KG ∼ g4 ∼ N−4
c , thus KG =

K̄G

N2
c

, (181)

with K̄G being Nc independent. Note, a (nonlocal version of this) La-
grangian was implemented in Ref. [18] to study the mixing of glueballs
with quarkonia.
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The gluon-gluon scattering matrix for a given selected process such as
C̄1C1C̄2C2 → C̄3C3C̄4C4 is given by

TG(s) =
1

K−1
G − ΣG(s)

(182)

see Fig. 25 for its pictorial representation. Now, the loop ΣG(s) scales as
[18, 81]:

ΣG(s) = N2
c Σ̄G(s) . (183)

Then:

TG =
1

N2
c

K̄G
−N2

c Σ̄G(s)
. (184)

Just as for the quarkonium, the glueball mass is Nc-independent and solves
the equation

1

K̄G
− Σ̄G(s = M2

G) = 0→MG ∼ N0
c . (185)

Following the same steps, the amplitude can be written as

TG ≃
(igGgg)2

s−M2
G

(186)

where the coupling of the glueball to its gluonic constituents is

gGgg =
1√

N2
c

(
∂Σ̄G(s)

∂s

)
s=M2

G

=
ḡGgg

Nc
. (187)

From the results above, we can easily derive the phenomenology of glue-
balls at large-Nc.

First, we describe the four- and six-leg purely glueball couplings, which
scale as N−2

c and N−3
c , respectively, see Fig. 26. This is in agreement with

the general amplitude for nG glueballs being AnGG ∝ N2
c

N
nG
c

, see Sec. 2.6.

Next, we calculate the interaction of a glueball with mesons. The basic

mixing goes as AGQ ∼ N−1/2
c , while the decay amplitude scales as AGQQ ∼

N−1
c (see Fig. 27). It then follows that the glueball decay into two standard

mesons is suppressed as
ΓG→QQ ∼ N−2

c , (188)

thus even more suppressed than the quarkonium decay.
As additional examples, in Fig. 29 we present the scattering GG→ QQ

(two glueballs into two quarkonia), that behaves as N−2
c , and in Fig. 26 the

scattering GGG→ QQ scaling with N−3
c .
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Fig. 26. Examples of processes involving only glueballs as initial and final states.

Up: the amplitude GG→ GG goes as N−2
c . Down: the amplitude GGG→ GGG

goes as N−3
c .

The general amplitude for nQ quarkonia and nG glueballs asA(nQQ)(nGG) ∝
Nc

N
nQ/2
c N

nG
c

. In this way we confirm the previously quoted results (Sec. 2.6).

An important remark is in order: glueballs with thee gluons work just
as above. The scaling laws are left unchanged.

Next, we describe additional consequences concerning glueballs.

1) The dilaton Lagrangian in the large-Nc limit.
The scalar glueball G can be described as a dilaton field, which is an

important element of many chiral models (among which the extended linear
sigma model [23]).

The dilaton Lagrangian reads [25, 26, 27, 28]

Ldil =
1

2
(∂µG)2 − Vdil(G) , (189)

with

Vdil(G) =
1

4
λG

[
G4 ln

(
G

ΛG

)
− G4

4

]
, (190)
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Fig. 27. Up: Mixing of a glueball (blue) and a quarkonium (red) via quarks and

gluons (black straight and springy lines). The amplitude scales as N
−1/2
c . Down:

Decay of a glueball (blue) into two quarkonia (red) via quarks and gluons (black).

This diagram scales as N−1
c , thus the glueball decay width goes as N−2

c .

which contains the dimensionless constant λG and the dimensionful constant
ΛG. The scaling laws, to be explained below, are given by:

λG ∼ N−2
c , ΛG ∼ Nc . (191)

The potential is shown in Fig. 30 for two different values of Nc (3 and 7,
respectively). For Nc = 3, the numerical values are given by λG = 1.72/0.52

and ΛG = 0.52 GeV2, corresponding to a glueball mass of 1.7 GeV, in
agreement with lattice estimates [44, 78].

The logarithm and the dimensional parameter ΛG are required for de-
scribing the breaking of dilatation symmetry

xµ → λ−1xµ and G(x)→ G′(x′) = λG(x)

in the following way:

∂µJ
µ = Tµ

µ = −G∂GVdil(G) + 4Vdil(G) = −1

4
λGG

4 . (192)
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Fig. 28. Leading amplitude for the process GG → QQ, that scales as N−2
c . As

usual, glueballs are blue, quarkonia red, quarks and gluons black.

This equation resembles the QCD result [2, 27]

(
Tµ
µ

)
QCD

= − αs

16π

(
11

3
Nc −

2

3
Nf

)
Ga

µνG
a,µν . (193)

Taking the expectation value of the former equation we get:〈(
Tµ
µ

)
QCD

〉
= − αs

16π

(
11

3
Nc −

2

3
Nf

)〈
Ga

µνG
a,µν
〉

, (194)

which scales as N2
c because the gluon condensate

〈
Ga

µνG
a,µν
〉
∼ N2

c and

αs ∼ N−1
c (for a numerical estimate of the gluon condensate for Nc = 3, see

Ref. [82]). Does the dilaton potential reproduce this scaling? In order to
see that, let us expand the dilaton potential around the minimum, which is
realized for G0 = ΛG. Upon performing the shift G→ G0 + ΛG, we obtain
[83]:

Vdil(G) = −λGΛ4
G +

1

2
λGΛ2

GG
2 +

5λGΛG

3!
G3 +

11λG
4!

G4 + ... (195)

where Vdil(G = ΛG) = −λGΛ4
G ∼ N2

c has been used. From the term
proportional to G4 it follows that

λG ∼ N−2
c . (196)
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Fig. 29. Leading amplitude for the process GGG→ QQ, that scales as N−3
c .

The glueball mass reads

M2
G = λGΛ2

G ∼ N0
c → ΛG ∼ Nc . (197)

Note, the G3 terms scales as λGΛG ∼ N−1
c , which is in agreement with

the previous general rules. Going to higher order in the expansions would
also generate terms in agreement with those rules (for instance, G5 goes as
λG/ΛG ∼ N−3

c as expected, etc.).
The fact that the energy parameter ΛG scales as Nc implies that it can

be intuitively expressed as

ΛG ∼ NcΛQCD . (198)
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Fig. 30. Function Vdil(G) expressed in Eq. (190) for Nc = 3 (blue line) and for

Nc = 7 (yellow line). The value of the minimum G0 increases with Nc, while its

depth scales with −N2
c . The numerical value for Nc = 3 are: ΛG = 0.5 GeV, and

λG = 1.72/Λ2
G, corresponding to a scalar glueball mass of MG = 1.7 GeV.

Finally, let us have a look at the condensate of the dilaton field:

〈
Tµ
µ

〉
= −1

4
λG
〈
G4
〉

= −1

4
λGΛ4

G ∼ −N2
c (199)

in agreement with the QCD scaling of Eq. (194).
The scalar glueball is the lightest gluonic state predicted by lattice QCD

and is a natural element of the chiral models with dilatation invariance
[23, 28]. Presently, the resonance f0(1710) is a good candidate for being
predominantly the scalar glueball, see e.g. [28, 84, 85, 86, 87, 88] and refs.
therein.

2) Coupling the dilaton to other glueballs.
The lightest scalar glueball is special since it is related to dilatation

symmetry and its breaking, but other fields can be easily introduced. For
illustrative purposes, let us couple the dilaton to the pseudoscalar glueball
G̃ and the tensor glueball Tµν :

L = Ldil +Lkin −
λG̃G

2
G̃2G2 − λG̃G̃

4 +
λTG

2
TµνT

µνG2 +
λT
2

(TµνT
µν)2 + ...

(200)
where ΛG is the only dimensionful parameter entering in Ldil. All the λ
parameters scale as N−2

c , since each of them describes a four-leg interaction
between glueballs.
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When considering the shift G→ ΛG +G, the other glueballs get a mass:
m2

G̃
= λG̃GΛ2

G ∼ N0
c and m2

T = λTGΛ2
G ∼ N0

c . For an explicit study of the

scattering of tensor glueballs using the Lagrangian above see Ref. [79].

3) Coupling the dilaton to the LSM.
We consider, again for simplicity, the case Nf = 1. The potential for

the chiral model containing both the dilaton as well as the chiral multiplet
Φ = σ + iπ is given by:

V (G, σ, π) = Vdil(G) +
a

2
G2Φ∗Φ +

λ

4
(Φ∗Φ)2 . (201)

Again, ΛG is the only dimensionful parameter. Above, the constant a scales
as

a ∼ N−2
c , (202)

since it parameterizes a vertex with 2 glueballs and two quarkonia. The
realistic Nf = 3 treatment of this model can be found in Ref. [28].

The search for the minimum of the model is more complicated than in
the LSM case, since now two scalar fields are present and can condense.
Namely, setting the pion field to zero (π = 0), one has:

V (G, σ, 0) =
1

4
λG

[
G4 ln

(
G

ΛG

)
− G4

4

]
+
a

2
G2σ2 +

λ

4
σ4 , (203)

with

λG ∼ N−2
c , ΛG ∼ Nc, a ∼ N−2

c , λ ∼ N−1
c . (204)

The minimum is searched for:

∂GV (G, σ, 0) = λGG
3 ln

(
G

ΛG

)
+ aGσ2 = 0 , (205)

∂σV (G, σ, 0) = aG2σ + λσ3 = 0. (206)

For a > 0, the minimum is realized for G0 = ΛG ̸= 0, σ0 = 0, but as
explained above this is not what we have in Nature.

For a < 0 , the minimum is realized for G0 ̸= 0, σ0 ̸= 0: spontaneous
breaking of chiral symmetry (on top of the breaking of dilatation symmetry)
is realized. In particular, one has

σ20 = −aG
2
0

λ
→ σ0 =

√
−m2

0

λ
∼ N1/2

c with m2
0 = aG2

0 < 0 . (207)
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The equation for G0 reads:

λGG
3
0 ln

(
G0

ΛG

)
= −aG0σ

2
0 =

a2G3
0

λ
, (208)

or

ln

(
G0

ΛG

)
=

a2

λλG
, (209)

hence:

G0 = ΛGe
a2

λλG ⩾ ΛG . (210)

In terms of large-Nc, we have:

G0 ∼ Nce
1/Nc ∼ Nc

(
1 +

1

Nc
+ ...

)
. (211)

Thus, in the large-Nc limit

G0 = ΛG ∝ Nc . (212)

How far is G0 from ΛG? For Nc = 3 that depends on the numerical values,
but typically G0 ≃ ΛG is well fulfilled [83].

Finally, let us briefly discuss the explicit symmetry breaking. That can
be achieved by a term of the type

λnmnG
2σ (213)

where the coupling constant λn scales as

λn ∼ N−3/2
c (214)

since it represents the coupling to two glueballs to an ordinary meson.
Then, the parameter h in Eq. (136) turns out to be (upon dilaton

condensation (G = G0):

h = λnmnG
2
0 ≃ λnmnΛ2

G ∼ N1/2
c , (215)

as required for getting a pion mass that does not depend on Nc. This result
shows that this is the appropriate way to model the explicit chiral symmetry
breaking.

Another interesting consequence of this toy model is the decay of G into
pions [83]:

ΓG→ππ = 2
kπ

8πM2
σ

[aG0]
2 = 2

kπ
8πM2

σ

[
−m2

0

G0

]2
(216)

≃ 2
kπ

8πM2
σ

[
M2

σ

2ΛG

]2
∼ N−2

c , (217)
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where kπ =

√
M2

G
4 −M2

π . The scaling laws, that follow from ΛG ∼ Nc, are
in agreement with the expected results.

All in all, a fully consistent picture, that is correctly embedded in chiral
models with the dilaton, is obtained in the large-Nc limit.
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4) Decays of other glueballs.
Other glueballs also decays into conventional quark-antiquark mesons. A

special case is given by the pseudoscalar glueball, whose coupling to mesons
may be written down as [89]

LG̃ = icG̃G̃(det Φ− det Φ†) (218)

where
cG̃ ∝ N

−1/2−Nf/2
c . (219)

A numerical evaluation of cG̃ via instantons can be found in Ref. [74]. The
recently discovered resonance X(2600) by the BES III collaboration is a
promising candidate for being the pseudoscalar glueball [90].

For the study of various glueball masses and decays we refer to chiral
models of Refs. [89, 91, 92] and to the Witten-Sakai-Sugimoto approach
(which also makes use of large-Nc arguments) of Refs. [87, 93, 94] (for
additional holographic considerations related to the spectrum, see Ref. [95]).

5) Connection to correlations
When considering the correlation involving glueball currents

⟨JG(x2)JG(x1)⟩ = −i
∫
d4pFG(s = p2)eip(x1−x2) , (220)

FG(s) is the loop contribution with total momentum p. At lowest order this
is just the loop function −ΣG(s = p2). Evaluating FG(p) according to Fig.
31 we get:

FG(p) = −ΣG(s = p2) (1 + ΣG(s)KG + ...) =

− ΣG(s)

1− ΣG(s)KG
= −ΣG(s)

KG

1

K−1
G − ΣG(s)

. (221)

The pole takes place (just as previously) for K−1
G −ΣG(s = M2

G) = 0. Upon
expanding close to the pole, we find:

FG(p) =
ΣG(s)ΣG(M2

G)

Σ
′
G(M2

G)(s−M2
G)
≃

Σ2
G(M2

Q)g2Ggg

s−M2
G

≃
f2G

s−M2
Q

(222)

where
fG = gGggΣG(M2

G) ∼ N−1
c ·N2

c ∼ Nc (223)

is the vacuum production/annihilation amplitude of the glueball G. In some
cases, fG may also be referred as a ‘decay constant’, yet it should be stressed
that this is not the weak decay constant. This is so because W± and Z0
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Fig. 31. Up: Amplitude for the production of the glueball, denoted as fG, scales

with Nc. Down: Correlator due to colorless sources of gluon-gluon states (glue-

balls): the bubbles scale as N2
c . One may understand this process with a (tower

of) glueball(s) as intermediate states, see Eq. (3.2).

couple directly to quarks and not to gluons. In order to obtain the weak
decay constant of glueballs, an additional suppression of Nc enters, leading
to

fweak
G ∼ N0

c . (224)

Indeed, the same result can be obtained starting with an external glueball

G, which transforms to a Q (mixing proportional N
−1/2
c ), which then an-

nihilates weakly (process proportional to fQ ∼ N
1/2
c ). The scaling goes as

fweak
G ∼ N−1/2

c · fQ ∼ N0
c .
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3.3. Hybrids

Hybrids are bound states containing a quark-antiquark pair and a gluon,
see the review of Ref. [96] and the lattice results in Ref. [97]. As an example
of an hybrid current, we consider the lightest 1−+ hybrid case:

Jµ
H =

N2
c−1∑
a=1

q̄Ga,µνtaγ5γνq . (225)

The quantity q̄Ga,µνtaγ5γνq is a scalar in color space. Schematically (and
neglecting Lorentz indices and Dirac matrices), the hybrid current in the
double-line notation reads

JH =

Nc∑
a=1

Nc∑
b=1

q̄(a)A(a,b)q(b) = C1

(
C̄1C2

)
C̄2 + C3

(
C̄3C4

)
C̄4 + ... (226)

The corresponding interaction Lagrangian for the hybrid formation is ex-
pressed as:

LH = KHJ
2
H (227)

Fig. 32. Amplitude for gluon-quark-antiquark (hybrid) scattering of the type

(C1C̄2)C2C̄1 → (C4C̄3)C3C̄4. Then initial gluon is (C1C̄2) and the final one

(C4C̄3). Note, all colors have switched. The corresponding amplitude scales as

N−2
c and models the constant KH appearing in the interaction Lagrangian of Eq.

(227).

In line with the previous cases, let us consider a specific transition (see
Fig. 32):

C1

(
C̄1C2

)
C̄2 → C3

(
C̄3C4

)
C̄4 (228)

in which all colors have been switched.
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Fig. 33. Resummed diagrams leading to the formation of an hybrid meson (purple,

double-solid line).

The basic (connected) interaction turns out to be of the order of (see
Fig. 32):

KH ∝ g4 ∝ N−2
c → KH =

K̄H

N2
c

. (229)

We then proceed as before by resumming over loop diagrams, see Fig. 33,
finding:

TH(s) =
1

K−1
H − ΣH(s)

. (230)

Now, the loop ΣH(s) scales as:

ΣH(s) = N2
c Σ̄H(s) . (231)

Then:

TH =
1

N2
c

K̄H
−N2

c Σ̄H(s)
. (232)

Just as for quarkonia and glueballs, the hybrid mass is Nc-independent:

1

K̄H
− Σ̄H(s = M2

H) = 0→MH ∼ N0
c . (233)

Following analogous steps, the T -amplitude can be written as

TH ≃
(igHq̄qg)2

s−M2
H

, (234)



aaamain printed on May 17, 2024 63

where the coupling of an hybrid meson to its constituents is

gHq̄qg =
1√

N2
c

(
∂Σ̄G(s)

∂s

)
s=M2

G

=
ḡHq̄qg

Nc
. (235)

Fig. 34. The mixing of an hybrid meson H (purple, double-solid line) with a con-

ventional quarkonium Q (red, dashed line) scales as N0
c , implying that hybrids and

quarkonia can freely mix at large-Nc and therefore behave (mostly) in a similar

way.

We list some phenomenological consequences of hybrids at large-Nc. The
most important one is that the mixing of a hybrid state H with a quarko-
nium state Q (with the same quantum numbers, of course) scales as:

AHQ ∼
1

Nc
N2

c

1√
Nc

1√
Nc
∼ N0

c , (236)

which is Nc independent! (This case is depicted in Fig. 34). This result
means that hybrids behave as quarkonia in the large-Nc limit.

For example, the decay of a hybrid into two standard quarkonia mesons
(see Fig. 35) scales as

AHQQ ∼
1

Nc
N2

c

1√
Nc

(
1√
Nc

)2

=
1√
Nc

, (237)
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Fig. 35. Upper part: Decay of an hybrid meson H (purple double-solid line) into

two quarkonia mesons Q (red dashed lines) via quarks and gluons (black lines). The

amplitude scales as N
−1/2
c , just as for the standard decay of a quarkonium. Lower

part: the same result is obtained by converting an hybrid H into a quarkonium

Q, which then decays into two quarkonia. Even simpler, one could just use the

previous result concerning mixing and study the chain H → Q → QQ, that goes

as N
−1/2
c .

just as a regular quark-antiquark mesonic decay.

The same applies to interactions with an arbitrary number of hybrids,

that scales as Nc/N
nH/2
c , as well as of hybrids and quarkonia, that goes as

Nc/
(
N

nQ/2
c N

nH/2
c

)
. In the case of nQ = 0 and nH = 1, one obtains N

1/2
c ,

which corresponds to the weak decay constant of an hybrid meson. Namely,
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Fig. 36. Up: Decay of an hybrid meson H (purple double-solid line) into two

glueballs G (blue thisk-dashed lines) via quarks and gluons (black lines). The

amplitude scales as N
−3/2
c . Lower part: the same result is obtained by converting

an hybrid into a quarkonium which then converts into two glueballs.

the hybrid production/annihilation amplitude goes as

fH ∼ gHqqgΣH(M2
H) ∼ N−1

c ·N2
c ∼ Nc , (238)

but the weak decay goes with an additional suppression of N
1/2
c (the gluon

needs to disappear):

fweak
H ∼ N1/2

c . (239)

This result is also obtained by taking an external H, which converts to Q

(amplitude N0
c ), which subsequently annihilates (amplitude N

1/2
c ), resulting

in N
1/2
c .

Indeed, hybrids can form nonets just as regular mesons, and thus can
be embedded into chiral approaches [98, 99].

The interaction of hybrids and glueballs can also be studied, see Fig. 36
for the explicit case of the decay of an hybrid meson into two glueballs, that

scales as N
−3/2
c .
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3.4. Summary of the scaling for an arbitrary number of Q,G,H states

Putting all the results together, we recover the general scaling law for
the amplitude with nQ quarkonia, nG glueballs, and nH hybrids (see Sec.
2.6) as:

A(nQQ)(nGG)(nHH) ∝
Nc ·N

2(1−sign(nQ+nH))
c

N
nQ/2
c NnG

c N
nH/2
c

(240)

where sign(x) is the sign function with sign(0) = 1/2. If nQ +nH > 0, thus

at least one quarkonium or an hybrid is present, Nc · N
2(1−sign(nQ+nH))
c =

Nc, while for nQ = nH = 0, the purely gluonic case is recovered: Nc ·
N

2(1−sign(nQ+nH))
c = N2

c .

3.5. Four-quark states

The treatment of four-quark states in the large Nc limit is subject to
an ongoing debate, see [12] for a review. Some of the questions related to
it are unsettled yet. The first question is what one can understand under
four-quark states, since different possibilities are available.

As a specific example, we shall consider the meson a0(980), for which
different interpretations have been proposed in the literature, that we briefly
review in the following.

(1) Molecular states, such as the binding of two colorless quark-
antiquark mesons.

For the illustrative state a+0 (980), this amounts to consider a bound state
of K+ and K̄0 [100, 101] resulting into the state:∣∣a+0 (980)

〉
=
∣∣K+K̄0

〉
. (241)

In general, such a molecule is of the type |QQ⟩ and its current can be
expressed as JQQ(x) = Q2(x). The basic interaction takes the form

LQQ = KQQJ
2
QQ(x) , (242)

where

KQQ ∼ N−1
c → KQQ ≃

K̄QQ

Nc
, (243)

being a quartic interaction between conventional mesonic fields.
Upon repeating the previous steps, the resummed T -matrix for the even-

tual formation of a QQ bound states (see Fig. 37) reads:

TQQ(s) =
1

K−1
QQ − ΣQQ(s)

(244)



aaamain printed on May 17, 2024 67

with ΣQQ(s) = Σ̄QQ(s) being large-Nc independent (it is the loop of two
colorless states). The mass of the molecular states corresponds to a solution
of the equation

Nc

K̄QQ
− Σ̄QQ(s = M2

QQ) = 0 . (245)

This equation might have a solution for Nc = 3, but this is not the case of
large Nc.

Let us first consider the case of a genuine molecular state whose mass
MQQ is below the threshold 2MQ for Nc = 3. The function ΣQQ(s) is
real below threshold and has a maximum (cusp) just at it. If the bound
state exists for Nc = 3 for a value MQQ < 2MQ below threshold, there is a
maximal value Nmax

c for which the molecular state forms just at threshold,
MQQ = 2MQ. Yet, upon increasing Nc further, the state ceases to form.
Indeed, this is very intuitive: by increasing Nc, the attraction decreases and
there is no Nc factor to compensate it. Molecular states of this type fade
away for large Nc.

Fig. 37. Resummation of regular meson-meson scattering diagrams needed to in-

vestigated the eventual emergence of a molecular bound state. While for Nc = 3

these states can form, this is not the case for large-Nc. Namely, the attraction

decreases as N−1
c but the intermediate states in the bubble are colorless, thus the

loop function cannot compensate for the decrease of attraction. See text for more

details.

Indeed, the previous argumentation may be extended also to molecular
resonances with mass above 2MQ, since ΣQQ(s) is a non-diverging function.
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In any case, for Nc large enough one has TQQ(s) ≃ KQQ ≃ K̄QQ/Nc, thus
no bound state is possible.

Molecular states may also emerge from glueballs or hybrids. The case of
glueball molecular states, so-called glueballonia, has been recently studied
in Ref. [83]. Quite remarkably, the bound state of two scalar glueballs may
be stable in pure Yang-Mills and be a resonance in full QCD for Nc = 3.
Yet, for large Nc it fades away even faster then QQ molecular states. In
fact, one has:

LGG = KGGJ
2
GG(x) (246)

where JGG = G2(x) and

KGG ∼ N−2
c → KGG ≃

K̄GG

N2
c

, (247)

as it follows from being a quartic interaction between glueballs. Then:

TGG(s) =
1

K−1
GG − ΣGG(s)

=
1

N2
c

K̄GG
− Σ̄GG(s)

(248)

with ΣGG(s) = Σ̄GG(s) being Nc-independent. This result shows that no
glueballonium can form at large-Nc. It is important to note that the same
large-Nc scaling for the glueballonium formation is obtained in the more
advanced approach of Ref. [83], where two unitarization methods have been
used to study its formation. This fact shows again that the rather simple
separable interaction considered above is fully consistent with general large-
Nc results and is therefore suitable to study the large-Nc scaling. Additional
bound states of regular mesons with glueballs and/or hybrids can be studied
[102], but for the very same reason they shall also not survive in the large-Nc

domain.

(2) Dynamically generated states: the example of companion
poles.

A specific example of a dynamically generated state is the so-called
emergence of a companion pole, as it was presented for the case of the
meson a0(980) in Refs. [103, 104]. The starting point is a Lagrangian which
contains a single conventional scalar quark-antiquark bare state, roughly
correspondent to a0 ≡ a0(1450). One then writes the interaction term as:

Lint = ga0KKa
+
0 K

−K0 + ga0πηa
+
0 π

−η + ... , (249)

with the standard scaling

ga0KK ∼ N−1/2
c , ga0πη ∼ N−1/2

c . (250)
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Then, upon studying mesonic loops, the full dressed propagator of a0(1450)
arising from the decays into K̄K, πη, etc., takes the form

1

p2 −M2
a0 + g2a0KKΣKK(p2) + g2a0πηΣπη(p2) + ...

(251)

with Ma0 ≃ 1.4 GeV∼ N0
c . The coupling constants are set to reproduce the

physical results for the resonance a0(1450) for the physical case Nc = 3.
Then, upon solving the pole equation in the complex plane

p2 −M2
a0 + g2a0KKΣKK(p2) + g2a0πηΣπη(p2) + ... = 0 (252)

two poles are found (in this specific case on the third and second Riemann
sheets, respectively, but this aspect is not relevant for our analysis).

One pole is close to the expected bare quarkonium result and corresponds
to a0(1450): when increasing Nc, this pole converges toward the real axis,
that is its imaginary part decreases as N−1

c , as expected for a regular q̄q
quarkonium state.

The second pole appears close the K̄K threshold and corresponds to
a0(980). In the large-Nc limit it behaves differently: its width increases
instead of decreasing, showing that this additional state is not an ordinary
quark-antiquark object. Eventually it disappears from the original (second)
Riemann sheet.

These features concerning dynamical generated companion poles are
quite general and apply, with minor changes, to other states as well, such
as the scalar resonances f0(500) [105, 106] and K∗

0 (700) [107, 108], or the
famous X(3872) (as a virtual pole) [109].

It should be also stressed that companion poles are not the only possi-
bility for dynamically generated states, see e.g. [106, 110] but it shows a
quite general feature: these solutions fade away in the large-Nc limit1.

(3) Genuine tetraquark state as a bound state of two diquarks.
Referring to a0(980) as our example, we may interpret it as a bound

state of a good diquark and a good anti-diquark [113, 114], where a good
diquark state is antisymmetric in both color and flavors, e.g.:

|us, good⟩ = |space: L = 0⟩ |spin: S = 0⟩ |color: RG−GR⟩ |flavor: us− su⟩ .
1 A word of caution is required; in some cases, one may obtain certain mesons as
solutions of bound-state equations out of effective Lagrangians. Yet, these mesons
can be ordinary quark-antiquark states, but the way they have been obtained would
make them look like molecular states that do not survive the large-Nc limit. We refer
to Ref. [111] (see also [112]) for this subtlety and for the related notion of ‘dynamical
reconstruction’.
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Fig. 38. Disconnected diagram for the reaction C1C̄1C2C̄2 → C3C̄3C4C̄4. All the

colors have switched, but these diagrams (properly resummed) eventually generate

two intermediate conventional Q states. Indeed, the scaling N−2
c is in agreement

with this interpretation.

Then ∣∣a+0 (980)
〉

= |us, good⟩
∣∣d̄s̄, good

〉
. (253)

Indeed, one can build nonets of states and describe these objects in a chiral
context [70, 115, 116, 117].

What about the large-Nc scaling of these configurations? The issue is
that the straightforward generalization of the good diquark is an object
that contains Nc−1 quarks, e.g. [33]. This object may be used to construct
baryons in the large-Nc limit (see next Section for its explicit implementa-
tion), but is not useful for building tetraquarks states (with ‘tetra’ in the
sense of four).

In the classic lecture of Coleman [9], it is stated that tetraquarks (of
whatever type) do not exist in the large-Nc limit because four-quark states
preferably arrange themselves into two free mesons, see Fig. 38.

Weinberg realized years later [29] that one should rather look at con-
nected diagrams, hence certain tetraquarks states might exist and show
scaling laws similar to regular mesons. A debate has followed [12, 30, 31,
32, 33, 34], basically confirming Weinberg point of view but always stressing
that it is not clear if such tetraquark states do form in the large-Nc limit.
Indeed, in [32] it is argued that they eventually do not.
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Fig. 39. Connected diagram for the reaction C1C̄1C2C̄2 → C3C̄3C4C̄4. All the

colors have been switched. It scales as N−3
c .

Does the bound-state approach discussed in these lectures help? Here,
we just make some basic considerations that are not conclusive, but may be
the starting point for future investigations. To this end, let us consider the
most general four-quark current [33]:

JT = C1δ
acδbdqaqbq̄cq̄d + C2δ

adδbcqaqbq̄cq̄d . (254)

Then, the separable interaction takes the form

LT = KTJ
2
T (x) , (255)

where we need to discuss the large-Nc scaling of KT . If one considers a
connected four-quark diagram, one obtains (see Fig. 39):

KT ∼ N−3
c → KT ≃

K̄T

N3
c

, (256)

since it is a quartic interaction between conventional mesonic fields. Namely,
a disconnected diagram, in which the two quark-antiquark parts interact
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Fig. 40. Tentative resummation of connected diagrams with a colorless four-quark

configuration in the initial and in the final states. The attraction seems to decrease

too fast to allow for a bound-state (a genuine tetraquark state) formation.

separately, would scale as N−2
c , see again Fig. 38, but this is not what we

search.
Then, the resummed T -matrix for the eventual formation of a tetraquark

state state, see Fig. 40, reads:

TT (s) =
1

K−1
T − ΣT (s)

(257)

where ΣT (s) scales as N2
c . Namely, Whatever is the specific tetraquark

configuration, the order is always N2
c . (If, for example, we consider only

antisymmetric diquark color configurations, there are Nc(Nc − 1)/2 ∼ N2
c

choices for the diquark color.) Hence, ΣT (s) ≃ N2
c Σ̄T (s), leading to

TT (s) =
1

N3
c

KT
−N2

c Σ̄T (s)
. (258)

This result suggests that no tetraquark bind for large-Nc, since the interac-
tion strength decreases too fast, just as mesonic molecular states.

Note, if we would study the tetraquark correlator ⟨JT (x2)JT (x1)⟩, one
should indeed remove the disconnected part ΣT (s) ∼ N2

c , hence the lowest
order contribution ΣT (s)K−1

T ΣT (s) scales asNc, as expected. Future studies
are needed to check if the present heuristic arguments against the emergence
of tetraquarks can be made rigorous.
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4. Brief study of baryons at large-Nc

The topic of baryons at large-Nc cannot be fully covered in these lectures.
Here, our aim is to show that an approach similar to the one applied to
mesons (bound state formation) is also consistent with baryonic large-Nc

scaling properties. To this end, let us introduce the generalized ‘diquark’
Da1 for a1 = 1, ..., Nc as a Nc − 1 quark object with the structure

Da1 =
1√

(Nc − 1)!

Nc∑
a2,a3,...,aNc=1

εa1a2....aNc
qa2qa3 ...qaNc . (259)

Fig. 41. Scattering of a generalized diquark D1 and a quark with color C1 into D2

and C2 (thus color ‘changed’). A simple switch of quarks does the job, thus at

leading order no gluon is present and the amplitude goes with N0
c .

There are Nc generalized diquarks, just as there are Nc antiquarks. In-
deed, under color transformations Da1 transforms as an antiquark. Then,
one may interpret the baryon as a bound state of such a generalized diquark
and a quark. The current is given by:

JB =

Nc∑
a1=1

Da1qa1 . (260)

Following the mesonic case, we write down the interaction Lagrangian as

LB = KBJ
2
B . (261)

The determination of the scaling of KB can be deduced from Fig. 41. Since
at lowest order no gluon is involved because a simple switch of quarks suffices
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Fig. 42. Resummation of the scattering D1C1 → D2C2 with consequent formation

of one baryon (as brown thick line) as intermediate state.

to change the color of both D and q (this is due to the fact that D contains
already Nc − 1 colors). It then follows that:

KB ∼ N0
c , (262)

hence KB ≃ K̄B. On the other hand, the loop ΣB(E) involving D-q goes
with Nc for what concerns the color circulating in it, but contains also a
dependence on the mass of the generalized diquark D with mD ∝ Nc − 1.
Since mD is very large, we resort to non-relativistic propagators and use
the energy E (and not s = E2) as an argument of the loop ΣB(E). This
function can be expanded in E finding:

ΣB(E) ≃ Nc

(
c1
mD

+ c2
E

m2
D

+ ...

)
, (263)

which scales as N0
c +N−1

c + .... The T -matrix for the illustrative scattering
process D1q1 → D2q2 reads (Fig. 42):

TB =
1

K−1
B − ΣB(E)

. (264)

The pole equation reads

K̄−1
B −Nc

(
c1
mD

+ c2
E

m2
D

+ ...

)
= 0 , (265)



aaamain printed on May 17, 2024 75

leading to
Nc

mD
c1 + c2

Nc

mD

E

mD
+ ... = K̄−1

B , (266)

thus

c2
Nc

mD

E

mD
= K̄−1

B −
Nc

mD
c1 ∼ N0

c . (267)

It then follows that

E ≡MB ∼ mD
mD

Nc
∼ mD ∼ Nc . (268)

In other words, we find that, if mD ∼ Nc, then MB ∼ mD ∼ Nc as well,
being a consistent (and expected) result.

Fig. 43. Vertex of two baryons B (brown thick lines) and one conventional meson Q

(red dashed line). The amplitude, that corresponds to the generic meson-baryon-

baryon coupling scales with N
1/2
c .

Upon expanding around the pole, we find:

TB ≃
(igBDq)

2

E −MB
(269)

with

gBDq ≃
√

1

Σ
′
B(E = MB)

≃
√

1
Ncc2
m2

D
+ ...

∼
√

1
1
Nc

∼ N1/2
c , (270)
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Fig. 44. Left: baryon-meson scattering, which goes with N0
c (note, the intermediate

baryon gives a N−1
c contribution. Right: baryon-baryon scattering that scales as

Nc. Baryons are brown thick lines, quarkonia are red dashed lines.

thus the baryon coupling to its generalized diquark D and quark q increases

as N
1/2
c .

From these scaling laws, one can determine all the others. The quarkonium-
baryon coupling goes as (see Fig. 43 as well as Ref. [118]):

gB̄BQ ∼ N1/2
c . (271)

The scaling is the same for any number of B̄B pairs.
By increasing the number of quarkonia to nQ, we find (see Fig. 44 for

two examples) that the generic amplitude

A(B̄BB̄B···)(nQQ) ∼
Nc

N
nQ/2
c

. (272)

The coupling to a single glueball goes as (see Fig. 45):

gB̄BG ∼ N0
c , (273)

and then the one to nG glueballs as

A(B̄BB̄B···)(nGG) ∼
Nc

NnG
c

. (274)

The coupling to hybrid meson is identical to quark-antiquark ones:

gB̄BH ∼ N1/2
c , (275)

A(B̄BB̄B···)(nHH) ∼
Nc

N
nH/2
c

. (276)
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The final coupling of an arbitrary number of baryon-antibaryon pairs to nQ
quarkonia, nG glueballs, and nH hybrid mesons is:

A(B̄BB̄B···)(nQQ)(nGG)(nHH) ∼
Nc

N
nQ/2
c NnG

c N
nH/2
c

. (277)

What about the scattering of baryons? Following the same ‘visual’ approach
(Fig. 44), the amplitude for the process BB → BB goes as

ABB→BB ∼ Nc . (278)

Indeed, it does not change for any arbitrary number of baryons, provided
that the initial number of baryons is equal to the final one (baryon number
conservation). In turn, it is equal to the amplitude with nB baryons and
nB antibaryons, and can be formally recovered from the previous case of
Eq. (277) upon setting nQ = nG = nH = 0.

Fig. 45. Coupling of a baryon (brown thick lines) to a glueball (blue thick-dashed

line). This is shown both at the level of intermediate quarks and gluons (upper

left) and color double-line notation (upper right). This interaction scales with N0
c .

At the bottom, the very same result can be obtained by coupling the baryon to a

quarkonium Q (red dashed line) and subsequently Q to G.

How to implement baryons in a chiral model? In line with previous
simplified treatments, we consider a single flavor (and disregard the chiral
anomaly). We introduce a nucleon field Ψ1, which is as usual split into
right-handed and left-handed parts as:

Ψ1,R =
1 + γ5

2
Ψ1 , Ψ1,L =

1− γ5

2
Ψ1 . (279)
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Fig. 46. Contribution to the mass of the baryon emerging from its interaction

to a scalar quarkonium field Q and to a scalar glueball G. One obtains that,

in both cases, when the scalar quarkonium field condenses or the scalar glueball

field (the dilaton) condenses, the mass of the baryon scales with Nc, as expected.

These results are implemented in the context of chiral models for the nucleon: the

upper one corresponds to the standard LSM, the second one to the so-called mirror

assignment (see text).

Fig. 47. The contribution to the mass of a baryon generated by a meson emission

and absorption is suppressed in the large-Nc limit.

A chiral transformation at the level of the nucleon amounts to:

Ψ1,R → eiα/2Ψ1,R , Ψ1,L → e−iα/2Ψ1,L , (280)

where the the right and left pieces transform with different sign of the
phase (for equal sign, one has a simple U(1) baryon-number transformation).
Because of this chiral transformation, a mass term of the type

Ψ̄1Ψ1 = Ψ̄1,RΨ1,L + Ψ̄1,LΨ1,R (281)
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is not chirally invariant! Thus, it seems that the nucleon needs to be -at
first- massless.

As indeed well known, one can generate a massive nucleon by fulfilling
chiral symmetry upon coupling the nucleon field to the mesonic field Φ,
which transforms as Φ → eiαΦ. Then, an invariant term that generates a
mass (via SSB) is obtained as (e.g. [119]):

LΨ1Φ = −gΨ1Φ

(
Ψ̄1,RΦΨ1,L + Ψ̄1,LΦ†Ψ1,R

)
(282)

where
gΨ1Φ ∼ N1/2

c . (283)

When Φ condenses via SSB to ϕN ∼ N
1/2
c , a nucleon mass proportional to

the chiral condensate ϕN is generated as:

MN ∼ gΨ1ΦϕN ∼ N1/2
c ·N1/2

c ∼ Nc (284)

with the expected large-Nc behavior, see Fig. 46 for a pictorial representa-
tion of this result.

Note, the mesonic loop mass correction contributes with N0
c to the nu-

cleon mass and is thus suppressed, as shown in Fig. 47. The ‘bulk’ mass
dominates the formation of the nucleon mass.

If the only mass term is the one of Eq. (284), it means that the nucleon
mass disappears when the chiral condensate vanishes (as e.g. in a confined
but chirally restored phase of matter, see next Section).

Interestingly, there is a second chiral way to give mass to the nucleon.
To this end, a second nucleon field (the chiral partner of the nucleon, with
opposite parity w.r.t. the bare nucleon field Ψ1) is considered, see for ex-
ample [120, 121, 122, 123, 124, 125, 126] and refs. therein. We consider its
chiral transformation as being mirror-like

Ψ2,R → e−iα/2Ψ2,R , Ψ2,L → eiα/2Ψ2,L . (285)

Besides a standard interaction

LΨ2Φ = gΨ2Φ

(
Ψ̄2,RΦ†Ψ2,L + Ψ̄2,LΦΨ2,R

)
(286)

an invariant mass term is obtained as [123, 125]:

Lmirror,mass = −cNG
(
Ψ̄1,LΨ2,R − Ψ̄1,RΨ2,L − Ψ̄2,LΨ1,R − Ψ̄2,RΨ1,L

)
= −cNG

(
Ψ̄1γ

5Ψ2 − Ψ̄2γ
5Ψ1

)
, (287)
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where cN ∼ N0
c is a dimensionless constant independent on Nc and G is,

as usual, the dilaton/scalar glueball field. Hence, a chirally invariant mass
terms

mN,0 = cNG0 ≃ cΛQCD ∼ Nc (288)

emerges with the correct scaling, see Fig. 46.
The mass of the nucleon and its chiral partners are obtained by properly

diagonalizing the system, finding:(
N
N∗

)
=

1√
2 cosh δ

(
eδ/2 γ5e−δ/2

γ5e−δ/2 eδ/2

)(
Ψ1

Ψ2

)
(289)

with

MN,N∗ =

√
m2

N,0 +
1

4
(gΨ1Φ + gΨ2Φ)2 ϕ2N ±

1

2
(gΨ1Φ − gΨ2Φ)ϕN ∼ Nc

(290)
and

cosh δ =
MN +MN∗

2mN,0
∼ N0

c . (291)

Note, for mN,0 = 0, one has MN = gΨ1ΦϕN and MN∗ = gΨ2ΦϕN , as ex-
pected. On the other hand, if ϕN = 0, the chiral partners are degenerate
with MN = MN∗ = mN,0.

There is another interesting aspect of chiral models, that regards the
axial coupling constant of the nucleon. In the model above, for mN,0 = 0
the axial coupling constant turns out to be one, gNA = 1. If mN,0 is nonzero,
the mixing sets in with

gNA =
1

2 cosh δ

(
eδ/2 − e−δ/2

)
∼ N0

c . (292)

Yet, the Skyrme model predicts gNA ∼ Nc [38]. How to reconcile these
different results?

The key is to consider vector and axial-vector mesons. We introduce

Rµ = ρµ − aµ1 , Lµ = ρµ + aµ1 (293)

(recall that we are in the one-flavor case, so we could have as well used
ωµ and fµ1 instead), which under a chiral transformation are separately
invariant: Rµ → Rµ , Lµ → Lµ. However, under parity: Rµ ⇔ Lµ. Hence,
the chirally and parity invariant coupling to (axial-)vector states is:

L(axial−)vector = cΨ1RµΨ̄1,Rγ
µΨ1,R + cΨ1LµΨ̄1,Lγ

µΨ1,L

+ cΨ2RµΨ̄2,Rγ
µΨ2,R + cΨ2LµΨ̄2,Lγ

µΨ2,L (294)
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where
cΨ1 ∼ N1/2

c , cΨ2 ∼ N1/2
c . (295)

The exact calculation of the axial coupling constants goes beyond the scope
of these lectures, since it involves subtle issues, such as the mixing of the a1
and π occurring in chiral models with (axial-)vector mesons [23, 28, 67, 68,
69]. Yet, we can provide the final results of this calculation. The previous
expression for the axial coupling gA is modified into:

gNA =
1

2 cosh δ

(
g
(1)
A eδ/2 + g

(2)
A e−δ/2

)
(296)

with

g
(1)
A = 1− cΨ1

g1

(
1− 1

Z2

)
, g

(2)
A = −1 +

cΨ2

g1

(
1− 1

Z2

)
(297)

where g1 ∼ N
−1/2
c is the coupling of one vector meson to two pseudoscalar

ones (hence a standard QQQ vertex that scales as N
−1/2
c ), and

Z =

(
1−

g21ϕ
2
N

M2
a1

)−1/2

∼ N0
c (298)

is a constant that appears when dealing with the mixing between the pion
and the a1 meson [23, 28, 67, 68, 69]. It then follows that

g
(1)
A ∼ Nc and g

(2)
A ∼ Nc (299)

thus
gNA ∼ Nc , (300)

in agreement with the Skyrme approach. This result implies that, in hte
present case, one cannot neglect axial-vector mesons, otherwise basic large-
Nc properties might be lost.

5. Brief description of QCD at nonzero temperature and
densities at large-Nc

The QCD phase diagram at large-Nc is a rich topic that would deserve
a series of lectures on its own. Here, we present a summary of some basic
facts and to some interesting recent developments.

As shown in [35], when Nc is large, gluons dominate: a first order phase
transition between the deconfined and confined phases at Tdec ≃ 300 ∝ N0

c

MeV (see [79] for a compilation of results) is expected for any value of the
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Fig. 48. Schematic representation of the pressure in the confined and the deconfined

phases. In the confined one, the pressure PHRG (Eq. 309, yellow line, the upper

one for low T ) of the hadron resonance gas scales as N0
c and vanishes at T = 0.

Then, the quark-gluon pressure PQGP (Eq. ??, blue line,, the lower one for low T )

contains the free parts of quarks ans gluons, that scale as Nc and N2
c respectively,

as well a vacuum part that has two similar terms, but with opposite sign. Thus,

in order the QGP to be realized, the QGP pressure needs first to become positive:

this occurs for a temperature of the order of N0
c . Shortly after, the QGP pressure

overcomes the HRG one, realizing deconfinement.

chemical potential. This is utterly different from the QCD phase diagram
for Nc = 3 [3], which is cross-over along the T direction and first order along
the µ one.

In the following, we first concentrate on the main expected properties
of confinement/deconfinement phase transition for varying Nc and then on
four snapshots concerning large-Nc properties in the medium.

Since relevant for our purposes, we write down the vacuum contribution
of the dilaton-LSM confined matter, see Sec. 3.1 (consequence 3) and Sec.
3.2 (consequence 1):

Vvac = V (G = G0, σ = σ0 = ϕN , 0) =

1

4
λGG

4
0

[
ln

(
G0

ΛG

)
− 1

4

]
+
a

2
G2

0σ
2
0 +

λ

4
σ40. (301)
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with

G0 = ΛGe
a2

λλG ∼ Nc , σ20 = −aG
2
0

λ
∼ Nc . (302)

Hence,
Vvac = VG,vac + Vσ.vav , (303)

with

VG,vac =
1

4
λGΛ4

Ge
4a2

λλG

[
a2

λλG
− 1

4

]
∼ N2

c

[
N−1

c − 1

4

]
∼ −N2

c < 0 , (304)

and

Vσ.vac =
a

2
G2

0σ
2
0 +

λ

4
σ40 = − a

2

4λ
G4

0 ∼ −Nc < 0 . (305)

We may then express the QCD vacuum pressure as function of Nc by
two terms:

PQCD,vac = PG,vac + Pσ,vac (306)

with
PG,vac ≃ B̄GN

2
c > 0 , Pσ,vac ≃ B̄σNc > 0 (307)

Now, strictly speaking this pressure should be added (as a positive term)
to the confined phase, as it is derived from a confined model of QCD. We
however follow the usual convention of subtracting this term from the QCD
vacuum, thus at zero temperature and density the pressure of the confined
phase vanishes. One has then to subtract this term from the corresponding
quark-gluon-plasma (QGP) phase.

Hence, the (schematic and simplified) pressure of the QGP can be ex-
pressed as [127]

PQGP (T ) = 2N2
c

π2

90
T 4 +

7

4
NcNf

π2

90
T 4 − PG,vac

= 2N2
c

π2

90
T 4 +

7

4
NcNf

π2

90
T 4 − B̄GN

2
c − B̄σNc , (308)

where it is visible that gluons dominate for Nc large enough. The pressure
for the confined phase (referred to as Hadron Resonance Gas (HRG) [3])
reads

PHRG(T ) =
∑
n

Pn(T ) , (309)

with

Pn(T ) = −Tςn
∫
k

ln

[
1− exp

(
−
√
k2 +M2

n

T

)]
for a meson , (310)

Pn(T ) = Tςn

∫
k

ln

[
1− exp

(
−
√
k2 +M2

n

T

)]
for a baryon , (311)
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where ςn is the appropriate degeneracy factor and Mn is the mass of the
n-th hadron. Clearly, mesons dominate at large-Nc, since baryons are very
heavy in this limit. Hence:

PHRG(T ) ≃ Pmesons
HRG (T ) ∼ N0

c . (312)

Note,
PHRG(T = 0) = 0 (313)

in agreement with the adopted normalization.
The confinement/deconfinement phase transition takes place for T =

Tdec given by (see Fig. 48):

PHRG(Tdec) = PQGP (Tdec) . (314)

It is easy to understand that this is the case for

Tdec ∼ N0
c . (315)

Namely, at large Nc the gluons dominate and the transition takes place
basically just after the QGP pressure comes positive:

Tdec ≳
B̄G

2π2

90

∼ N0
c . (316)

Note, the present simple treatment is not able to correctly guess the order
of the transition, which is by construction a first-order, but in reality it is
known to be a cross-over [3].

Moreover, it is also expected that the phase transition for chiral restora-
tion takes place for a similar temperature as the deconfined one, as sup-
ported by models, e.g. [3, 57, 128].

Next, let us consider zero temperature and finite density. To this end, we
introduce the quark chemical potential µq and the baryon chemical potential
µB = Ncµq. In the confined phase, one has only baryons. We follow here
one possible choice described in Ref. [42], that corresponds to a confined
stiff matter with speed of sound equal to the speed of light. Intuitively, it
corresponds to an interaction dominated gas. In this case, the pressure in
the baryonic phase is (for large values of the baryonic chemical potential)

PB = aBµ
2
B (317)

where aB is a constant with dimension Energy2, whose Nc dependence must
be established2.

2 In a more realistic treatment, one may consider at high density PB = aBµ
α
B − K

(with α a free parameter) which needs to be matched to known equation of state of
nuclear matter at about 2n0 [42]. The large-Nc behavior is not affected.
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The baryon density follows as

nB = dPB/dµB = 2aBµB , (318)

while the energy density as

εB = nBPB − PB = PB , (319)

hence the speed if sound is

vB =
√
dPB/dεB = 1 . (320)

This result is indeed in agreement with the high density limit of nuclear
matter described in Ref. [129], which takes place when vector meson driven
interaction dominates. Within, since aB has energy2 and since the appro-

priate dimension is constructed by m2
V /g

2
B̄BV

with gB̄BV ∼ N
1/2
c being the

baryon-baryon-vector coupling and mV the mass of the vector meson (such
as the ω meson) , one gets

aB ∼
m2

V

g2BBV

∼ N−1
c → aB =

āB
Nc

. (321)

In fact, the pressure as function of the density can be written as

PB =
n2B
4aB

≃ 1

2

g2
B̄BV

m2
V

n2B (322)

where the right hand side follows from Sec. 4.11 of Ref. [129] (high-density
limit). It thus shows the direct proportionality of aB to m2

V /g
2
B̄BV

.
Finally, in terms of the quark chemical potential, we may write the

baryonic pressure
PB(µq) = NcāBµ

2
q (323)

implying that we have a confined phase whose pressure scales with Nc. This
is in agreement with the quarkyonic phase discussed in Refs. [35, 36, 40],
and also with the result of the Walecka-type model at large Nc and for high
densities, see Ref. [4].

Next, let us consider the QGP phase, which contains only quarks as
d.o.f. (gluons are not present at T = 0) as well as the already discussed
vacuum contribution:

PQGP (µq) = Pq(µq) =
NcNf

12π2
µ4q + PQCD,vac =

NcNf

12π2
µ4q − B̄GN

2
c − B̄GNc.

(324)
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The deconfinement phase transition takes place for PB(µq,dec) = Pq(µq,dec),
leading to

µq,dec ∼ N1/4
c , (325)

thus the deconfinement phase transition takes place at higher and higher
densities when Nc increases. Here, one expects a different behavior of the
chiral phase transition, which should take place for µq,c ∼ N0

c . There is
therefore a wide range of µq for which matter is chirally restored but con-
fined, the already mentioned quarkyonic phase [35, 36] (see also the large-Nc

considerations of [130, 131]).
Additional topics related to large-Nc in the medium are briefly discussed

below.
1) Chiral mesonic models at nonzero T : a problem and how to

cure it.

Fig. 49. Vacuum diagrams can be used to establish the scaling of different con-

tribution to the pressure. Upper part: in the LSM, the pressure of free mesons

goes with N0
c , while the interaction contribution goes as N−1

c . This is why in the

large-Nc limit chiral restoration takes place at higher and higher T . Lower part: in

the NJL model, the free quarks give rise to a pressure proportional to Nc, just as

the interaction terms. Accordingly, the critical temperature for chiral restoration

is Nc-independent, as it should.

If a purely mesonic model as the one of Eq. (136) is considered, chiral
restoration can be studied by evaluating the chiral condensate as function
of the temperature, ϕN → ϕN (T ). For large T , ϕN (T ) tends to zero and
the way it does also specifies the order of the chiral phase transition. For
Nc = 3 one expects a smooth cross-over [3, 128, 132].

What about the behavior of the chiral phase transition at large Nc? One
indeed expects that the critical temperature for chiral restoration, denoted
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Fig. 50. Quark-level LSM. The free part contains two contributions for the pressure,

the meson one (N0
c ) and the quark one (Nc). Two interaction terms are outlined:

one with quark loops, whose pressure contribution goes as Nc (just as the free

quark part) and one with mesonic loops, whose pressure contribution goes as N−1
c .

Quarks dominate in both cases, and the final outcome is similar to the NJL model:

the critical temperature for chiral restoration scales as N0
c .

as Tc, should be Nc-independent:

Tc ∼ Tdec ∼ ΛQCD ∼ N0
c . (326)

Yet, in purely mesonic models, the contribution of the interaction to the
effective potential (or equivalently to the pressure) scales as 1/Nc and is
therefore suppressed. Correspondingly, one finds [39]:

Tc ∼ fπ ∼ N1/2
c , (327)

hence chiral restoration takes place at larger and larger Nc. This result is
depicted as in Fig. 49 (left), in which the vacuum diagrams give rise to
the contribution for the pressure, see Ref. [128] and refs. therein. It seems
therefore that such models cannot describe the expected large-Nc results.

How to reconcile chiral models with the expected large-Nc scaling? In
Ref. [39] some recipes were put forward. An intuitive heuristic approach
consists in considering the following potential with an explicit dependence
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on the temperature T :

V (σ, π) =
m2

0

2

(
1− T 2

T 2
0

)
Φ∗Φ +

λ

4
(Φ∗Φ)2

=
m2

0

2

(
1− T 2

T 2
0

)(
σ2 + π2

)
+
λ

4

(
σ2 + π2

)2
, (328)

where T0 ∼ ΛQCD ∼ N0
c . In this way, the chiral restoration is enforced by

this modification. At T = T0 the bare potential is such that only the quartic
interaction is present. With this ‘ad hoc’ modification, Tc ∼ N0

c is obtained.
A more formal way of achieving this result is realized by coupling the

chiral multiplet Φ to the expectation value of the Polyakov loop (see e.g.
[3, 48]). This quantity, denoted as l(T ), describes effectively the gluonic
sector, more specifically the restoration of the symmetry under Z(Nc) trans-
formations in the vacuum. In particular, |l(T )| = 1 at large temperature
(in the deconfined phase) while it vanishes at small T . One can couple the
Polyakov loop to the LSM in the following way:

V (σ, π, l) =
m2

0

2

(
1− clT 2 |l(T )|2

)
Φ∗Φ +

λ

4
(Φ∗Φ)2 , (329)

where cl ∼ N0
c is a dimensionless constant. Indeed, the proper description

of the Polyakov loop at large Nc is not an easy task, but certain relatively
simple choices are possible [24, 48]. Within LSMs with Polyakov loop, the
critical temperature for chiral restoration scales as Tc ∝ N0

c , as expected.

The already mentioned famous NJL model [13, 14] contains only quarks
with a chiral interaction of the type

VNJL(σ, π, l) = GNJL[
(
ψ̄ψ
)2

+
(
ψ̄iγ5ψ

)2
] (330)

where the chiral transformation (in this one-flavor case) is ψ → eiαγ
5/2ψ,

and where GNJL ∼ N−1
c (this is just as the constant KQ studied in the case

of the quarkonium formation in Sec. 3.1; indeed, the NJL model has been
widely used to study q̄q bound states [14, 15]). Here, the interaction type
is of the same order of the free quark ones. The SSB takes place if GNJL is
large enough and chiral restoration takes place at nonzero T , with Tc ∼ N0

c ,
see Fig. 49 (right part).

The last case that we mention is the one that involves quark-meson type
model [24, 57, 58], in which both mesons and quarks are present:

VLSM,quarks(σ, π, l) = gσσ
(
ψ̄ψ
)

+ gππ
(
ψ̄iγ5ψ

)
. (331)
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In this case, the interaction contribution to the pressure is also of the order
of Nc just as the quarks, thus Tc ∼ N0

c , see Fig. 50.

2) Critical endpoint CEP at large-Nc

It is well known that the confinement/deconfinement as well as the chi-
ral phase transition(s) are of cross-over type along the T direction, and first
order along the µq one. At least one critical point is therefore expected,
whose search is important for both theoretical and experimental investiga-
tions, e.g. [3, 57, 134, 135].

Yet, at large Nc, as shown in details in [24] using an extended linear
sigma model with quarks and Polyakov loop, the phase diagram turns out
to be utterly different: one has a first-order transtion along T and a cross-
over one along µq. A critical point is present at about (TCEP , µq,CEP ) where
TCEP ∝ ΛQCD ∼ N0

c while µq,CEP increases for increasing Nc). Quite
remarkably, for intermediate Nc (from 4 up to about 50), only cross-over
phases are present in the whole phase diagram [24].

The pressure at very large Nc resembles the expected behavior, in par-
ticular we have the following areas, see Fig. 51 as well as the detailed
explanations in ref. [24]:

(i) P ∼ N0
c for low-T and low-µq within the confined and chirally broken

phase.
(ii) P ∼ Nc for low-T and high-µq within the confined and chirally

restored (quarkyonic) phase. Note, in this phase the nucleons do not not
need to be massless, see the discussion in Sec. 4.

(iii) P ∼ N2
c for high T and high-µq within the deconfined QGP phase.

Finally, along the T line and for small µq the chiral and the deconfine-
ment phase transition coincide (Tdec = Tc), while along the µq line and for
small T the chiral transition occurs for µq,c ∼ N0

c and the deconfinement
one for µq,dec increasing Nc.

In the recent work of Ref. [133] the effect of the chiral anomaly on the
phase diagram is discussed. Yet, anomaly terms decrease fast for increasing
Nc, thus they shall not modify the overall large-Nc picture outlined above.

3) Nuclear matter at large-Nc

Does nuclear matter bind at large Nc? This question was already posed
in the introduction, and at first put aside since quite (too?) philosophical.
Yet, is Nc = 3 somewhat special?

Indeed, the issue is quite subtle. In the easiest scenario, one considers a
standard σ-ω model coupled to the nucleon

V = gσN Ψ̄1Ψ1 + gωNωµΨ̄1γ
µΨ1 , (332)

with
gσN ∼ N1/2

c and gωN ∼ N1/2
c , (333)
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Fig. 51. Schematic and simplified representation of the QCD phase diagram for

large-Nc. For low T and µ, a confined and chirally broken (SSB) phase with

pressure proportional to N0
c is present. If the temperature is above Tc = Tdec, for

any chemical potential µ, a deconfined phase with pressure proportional to N2
c is

realized. Here, chiral symmetry is also restored. For large µ but T < Tdec = Tc, the

system is still confined but chiral symmetry is restored: the pressure is proportional

to Nc (as a gas of quarks would have). Important aspects: the type of the chiral

phase transition is a first-order one along T (solid line) and a cross-over along

µ (dashed line). Along T , the chiral and the deconfinement transitions coincide.

Along µ, they do not: the chiral one takes place for µq,c ∼ N0
c , the deconfinement

one ( moves toward infinity. The critical end point (red dot in the figure) also tends

to infinity along the µ direction. For more details, see Ref. [24].

where σ corresponds to f0(500) and ω to ω(782). If the masses of these
fields behave as N0

c (as quark-antiquark regular states), then the mean field
equations show that nuclear matter forms for any Nc (and becomes more
and more bound).

Yet, it is well known that f0(500) is not predominantly a q̄q [106]. Con-
sidering this fact, changes the picture completely: nuclear matter does not
form, already for Nc ≥ 4.

Indeed, for very large Nc the pion cannot be neglected and being ‘de
facto’ massless should generate a kind of loosely bound nuclear matter sim-
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ilar to atomic matter (basically an attractive almost Coulomb force would
act among nucleons in this limit). The detailed study of this hypothetical
state of matter is a task for the future.

4) Neutron stars at large-Nc

One may apply the previous discussion about baryonic and quark matter
to neutron stars, see Ref. [42] for details.

Using the baryonic equation of state of Eq. (323) that corresponds to
stiff matter (speed of sound equal 1), for Nc = 3 the maximal mass of a
neutron star turns out to be about

Mmax
NS ≃ 2.2M⊙ . (334)

Namely, for higher masses a phase transition to deconfined quark phase
takes place inside the neutron star, which is however unstable because quark
matter cannot sustain the gravitational pressure [136]. (The maximal value
quoted above can be increased if the vacuum pressure is increased).

When increasing Nc, the phase transition to quark matter takes place
at higher and higher density. Already for Nc ≳ 5.5, quark matter plays no
role, and the maximum mass of a neutron star is about 3M⊙.

6. Conclusions

In these lectures we have revisited the main features of QCD at large-
Nc for both mesons and baryons. To this end, we have used a bound-state
approach in which a simple separable Ansatz has been applied. This is in-
deed similar to certain approaches of QCD, such as the NJL model. Yet, the
large-Nc scaling laws that can be derived are fully general and do not depend
on this specific Ansatz. In this way, we could recover all the large-Nc scaling
behavior for regular mesons, for glueballs, and for hybrid mesons. Also their
mutual interactions, decays and mixing, could be properly described.

Many consequences of these results have been investigated, among which
the reason why certain mesons are narrow, how dominant and subdominant
interaction terms arise, and most importantly, how chiral models behave in
the large-Nc limit. Also the behavior of the dilaton/scalar glueball field and
its coupling to chiral models has been reviewed in some detail. An overall
nice and consistent picture of large-Nc QCD has emerged.

Four-quark states were briefly discussed. Molecular states and dynami-
cally generated states do not form in the large-Nc limit, as our bound-state
approach easily shows. Yet, the case of tetraquark objects is more com-
plicated. Our present results suggest that all of them share the same fate:
they do not form ion the large-Nc limit, but this last statement is not yet
conclusive.
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Baryons were presented following the same line applied to mesons, upon
interpreting them as bound states of a generalized diquark built with Nc−1
quarks, and a quark. Upon taking the mass of the generalized diquark as
increasing with Nc, it was possible to recover the known large-Nc results
for baryons. Chiral models have been studied for baryons as well: the
chirally invariant mass generation via the quark condensate and via the
dilaton condensate (the latter in the so-called mirror assignment) fulfill the
expected large-Nc properties.

Finally, we have discussed the main features of the phase diagram of
QCD in the large-Nc domain. Simple scaling laws show that at large Nc

gluons dominate if the temperature is high enough. The temperature for
confinement/deconfinement transition is Nc independent, but the chemical
potential increases for increasing Nc. This means that in the large-Nc limit
matter is confined below a certain Tdec and deconfined above, for any chem-
ical potential. Yet, for high density, one may have a confined and chirally
restored matter whose pressure is proportional to Nc, which well fits with
the concept of a quarkyonic phase. These results also imply that the phase
diagram at large Nc looks quite different than the one for the real Nc = 3
world.

Moreover, we have also discussed some related issues, such as the failure
of certain chiral models at large Nc and how to improve them, the formation
(or non-formation) of nuclear matter, and implications for neutron stars.

In conclusion, large-Nc QCD is an interesting theoretical framework,
often the only one available, to understand certain properties of QCD. It
offers a consistent picture, somewhat simplified from our physical one, but
definitely not trivial.

Coming back to our original question: is Nc=3 large? We have shown
that in most cases it is, but not in all of them. There is therefore not a
simple and always valid answer to that seemingly naive question but one
needs, case by case, to study the consequences of increasing Nc and see how
much the outcomes depart from the real world. Yet, in many cases the
lesson gained from large Nc is very useful for understanding our world with
Nc = 3.
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[107] J. R. Peláez, A. Rodas and J. Ruiz de Elvira, Eur. Phys. J. C 77 (2017) no.2,
91 doi:10.1140/epjc/s10052-017-4668-1 [arXiv:1612.07966 [hep-ph]].

[108] T. Wolkanowski, M. So ltysiak and F. Giacosa, K∗
0 (800) as a com-

panion pole of K∗
0 (1430), Nucl. Phys. B 909 (2016), 418-428

doi:10.1016/j.nuclphysb.2016.05.025 [arXiv:1512.01071 [hep-ph]].

[109] F. Giacosa, M. Piotrowska and S. Coito, X(3872) as virtual companion pole
of the charm–anticharm state χc1(2P ), Int. J. Mod. Phys. A 34 (2019) no.29,
1950173 doi:10.1142/S0217751X19501732 [arXiv:1903.06926 [hep-ph]].

[110] E. van Beveren, T. A. Rijken, K. Metzger, C. Dullemond, G. Rupp and
J. E. Ribeiro, A Low Lying Scalar Meson Nonet in a Unitarized Meson Model,
Z. Phys. C 30 (1986), 615-620 doi:10.1007/BF01571811 [arXiv:0710.4067
[hep-ph]].

http://arxiv.org/abs/2203.04327
http://arxiv.org/abs/2302.07687
http://arxiv.org/abs/2001.06106
http://arxiv.org/abs/hep-ph/0308129
http://arxiv.org/abs/0808.0705
http://arxiv.org/abs/2204.11269
http://arxiv.org/abs/hep-ph/0203149
http://arxiv.org/abs/1508.00372
http://arxiv.org/abs/hep-ph/0309292
http://arxiv.org/abs/1510.00653
http://arxiv.org/abs/1612.07966
http://arxiv.org/abs/1512.01071
http://arxiv.org/abs/1903.06926
http://arxiv.org/abs/0710.4067


102 aaamain printed on May 17, 2024

E. van Beveren, D. V. Bugg, F. Kleefeld and G. Rupp, Phys. Lett. B 641
(2006), 265-271 doi:10.1016/j.physletb.2006.08.051 [arXiv:hep-ph/0606022
[hep-ph]].
J. A. Oller and E. Oset, Chiral symmetry amplitudes in the S wave isoscalar
and isovector channels and the σ, f0(980), a0(980) scalar mesons, Nucl.
Phys. A 620 (1997), 438-456 [erratum: Nucl. Phys. A 652 (1999), 407-409]
doi:10.1016/S0375-9474(97)00160-7 [arXiv:hep-ph/9702314 [hep-ph]].
J. A. Oller, E. Oset and J. R. Pelaez, Meson meson interaction in a non-
perturbative chiral approach, Phys. Rev. D 59 (1999), 074001 [erratum:
Phys. Rev. D 60 (1999), 099906; erratum: Phys. Rev. D 75 (2007), 099903]
doi:10.1103/PhysRevD.59.074001 [arXiv:hep-ph/9804209 [hep-ph]].

[111] F. Giacosa, Dynamical generation and dynamical reconstruction, Phys.
Rev. D 80 (2009), 074028 doi:10.1103/PhysRevD.80.074028 [arXiv:0903.4481
[hep-ph]].

[112] Z. H. Guo, L. Y. Xiao and H. Q. Zheng, Is the f0(600) meson a dynamically
generated resonance? A Lesson learned from the O(N) model and beyond,
Int. J. Mod. Phys. A 22 (2007), 4603-4616 doi:10.1142/S0217751X0703710X
[arXiv:hep-ph/0610434 [hep-ph]].

[113] R. L. Jaffe, Multi-Quark Hadrons. 1. The Phenomenology of (2 Quark 2 anti-
Quark) Mesons, Phys. Rev. D 15 (1977), 267 doi:10.1103/PhysRevD.15.267

[114] R. L. Jaffe, Exotica, Phys. Rept. 409 (2005), 1-45
doi:10.1016/j.physrep.2004.11.005 [arXiv:hep-ph/0409065 [hep-ph]].

[115] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, A New
look at scalar mesons, Phys. Rev. Lett. 93 (2004), 212002
doi:10.1103/PhysRevLett.93.212002 [arXiv:hep-ph/0407017 [hep-ph]].

[116] F. Giacosa, Strong and electromagnetic decays of the light scalar mesons
interpreted as tetraquark states, Phys. Rev. D 74 (2006), 014028
doi:10.1103/PhysRevD.74.014028 [arXiv:hep-ph/0605191 [hep-ph]].

[117] F. Giacosa, Mixing of scalar tetraquark and quarkonia states in a chiral
approach, Phys. Rev. D 75 (2007), 054007 doi:10.1103/PhysRevD.75.054007
[arXiv:hep-ph/0611388 [hep-ph]].
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