
1

Imbalanced Data Clustering using Equilibrium
K-Means

Yudong He

Abstract—Traditional centroid-based clustering algorithms,
such as hard K-means (HKM, or Lloyd’s algorithm) and fuzzy
K-means (FKM, or Bezdek’s algorithm), display degraded per-
formance when true underlying groups of data have varying
sizes (i.e., imbalanced data). This paper introduces equilibrium
K-means (EKM), a novel fuzzy clustering algorithm that has
the robustness to imbalanced data by preventing centroids from
crowding together in the center of large clusters. EKM is simple,
alternating between two steps; fast, with the same time and space
complexity as FKM; and scalable to large datasets. We evaluate
the performance of EKM on two synthetic and ten real datasets,
comparing it to other centroid-based algorithms, including HKM,
FKM, maximum-entropy fuzzy clustering (MEFC), two FKM
variations designed for imbalanced data, and the Gaussian mix-
ture model. The results show that EKM performs competitively
on balanced data and significantly outperforms other algorithms
on imbalanced data. Deep clustering experiments on the MNIST
dataset demonstrate the significance of making representation
have an EKM-friendly structure when dealing with imbalanced
data; In comparison to deep clustering with HKM, deep clus-
tering with EKM obtains a more discriminative representation
and a 35% improvement in clustering accuracy. Additionally, we
reformulate HKM, FKM, MEFC, and EKM in a general form of
gradient descent, where fuzziness is introduced differently and
more simply than in Bezdek’s work, and demonstrate how the
general form facilitates a uniform study of KM algorithms.

Index Terms—K-means, fuzzy clustering, imbalance learning,
deep clustering

I. INTRODUCTION

Imbalanced data refers to the true underlying groups of data
having different sizes, which is common in datasets of medical
diagnosis, fraud detection, and anomaly detection. Imbalanced
data poses a challenge for learning algorithms because these
algorithms tend to be biased towards the majority group [1].
While there is a considerable amount of research on supervised
learning (e.g., classification) from imbalanced data [2]–[4],
unsupervised learning has not been as thoroughly explored,
because the unknown cluster sizes make the task more dif-
ficult [5]. Methods like resampling and boosting frequently
used in supervised learning cannot be applied in unsupervised
learning.

Clustering is an important unsupervised learning task in-
volving grouping data into clusters based on similarity. K-
means (KM) is the most popular clustering technique, val-
ued for its simplicity, scalability, and effectiveness with real
datasets. It can also be used as an initialization method for
more advanced clustering techniques, such as the Gaussian

Y. He is with the Department of Industry Engineering and Decision
Analytics, The Hong Kong University of Science and Technology, Hong Kong
(e-mail: yhebh@connect.ust.hk).

(a) (b) (c) (d)
Fig. 1. Clustering results of a highly imbalanced dataset. (a) Ground truth. The
colors represent the labels of the data points. (b) Clustering by hard K-means.
(c) Clustering by fuzzy K-means. (d) Clustering by the proposed equilibrium
K-means. They are all two-step alternating algorithms that iteratively compute
centroids.

mixture model (GMM) [6], [7]. KM starts with an initial set
of centroids (cluster centers) and iteratively refines them to
increase cluster compactness. The hard KM (HKM, or Lloyd’s
algorithm) [8], [9] and fuzzy KM (FKM, or Bezdek’s algo-
rithm) [10] are the two most representative KM algorithms.
HKM assigns a data point to only one cluster, while FKM
assigns a data point to multiple clusters with varying degrees
of membership.

Research on HKM and FKM has been ongoing. For exam-
ple, the possibilistic FKM (PFKM) [11] was proposed to ad-
dress the sensitivity of FKM to noise and outliers. FKM-σ [12]
was proposed to improve FKM’s performance on data points
with uneven variations or non-spherical shapes in individual
clusters. Fuzzy local information K-means (FLIKM) [13] was
designed to promote FKM’s performance in image segmenta-
tion. Deep clustering, a technique that combines deep neural
networks (DNNs) with HKM and FKM, was proposed to
cluster high-dimensional data [14]–[17].

Although many variations based on HKM and FKM have
been developed to deal with different situations, most of them
display degraded effectiveness in cases of imbalanced data.
This is due to the so-called “uniform effect” that causes the
clusters generated by these algorithms to have similar sizes
even when input data has highly varying group sizes [18]. An
illustration of the uniform effect of HKM and FKM is given
in Fig. 1 where we can observe that the centroids of HKM
and FKM crowd together in the large true cluster.

A. Existing Efforts to Overcome Uniform Effect

To the best of our knowledge, there are two popular methods
to overcome the uniform effect in the field of fuzzy systems.
The first method is to introduce more weight on the data
points in small clusters at each updating iteration, biasing
learning towards them, like a modified FKM called cluster-size
insensitive FKM (csiFKM) developed by Noordam et al. [19].
Later, Lin et al. [20] proposed a size-insensitive integrity-based

ar
X

iv
:2

40
2.

14
49

0v
2

 [
cs

.L
G

]
 2

8
M

ar
 2

02
4

2

FKM (siibFKM) based on csiFKM to reduce the sensitivity of
csiFKM to the distance between adjacent clusters. However,
weighting based on cluster size inadvertently increases the
influence of outliers, making these algorithms sensitive to
noise [21].

The second method is called multiprototype clustering. This
method first groups data into multiple subclusters with similar
sizes and the final clusters are obtained by merging adjacent
subclusters. Liang et al. [22] proposed a multiprototype clus-
tering algorithm that employs FKM to generate subclusters.
Later, Lu et al. [5] proposed a self-adaptive multiprototype
clustering algorithm that automatically adjusts the number
of subclusters. However, multiprototype clustering algorithms
have a complex process and high time complexity of O(N2),
where N is the number of data points in the dataset. Thus,
they are computationally expensive for large datasets. We
should additionally mention that Zeng et al. [23] recently
proposed a soft multiprototype clustering algorithm with time
complexity linear to N . However, their clustering process
remains complex and is aimed at clustering high-dimensional
and complex-structured data rather than imbalanced data.

B. Our Contributions

In this paper, we propose equilibrium K-means (EKM)
to address the issue of imbalanced data clustering and the
aforementioned algorithms’ limitations. Our contributions can
be summarized in three main aspects.

First, we reformulate HKM, FKM, the maximum-entropy
fuzzy clustering (MEFC) [24], [25], and EKM in a general
form of gradient descent. We show that these algorithms aim to
optimize different approximations of the same objective. This
general form facilitates the uniform study of KM algorithms.

Second, we develop EKM based on the first contribution.
EKM belongs to the family of fuzzy clustering and member-
ship defined in EKM has a clear physical meaning. Repulsive
forces appear among centroids of EKM, successfully reducing
the uniform effect by preventing centroids from crowding
together in a large cluster (see Fig. 1d for an example).
Therefore, EKM is effective in dealing with imbalanced data
and is not sensitive to noise. Similar to HKM and FKM, EKM
is a two-step alternating algorithm that iteratively computes
centroids. In addition to having the same time (O(N)) and
space complexity as FKM, EKM has a batch-learning version
that can be applied to large datasets. We demonstrate the
effectiveness of EKM on balanced and imbalanced data by
conducting numerical experiments on two synthetic and ten
real datasets from different domains. Due to space limita-
tions, quantitative performance metrics are provided in the
supplementary material. The scatter plots of partial clustering
results we provide in the paper are sufficient to demonstrate
the superiority of EKM on imbalanced data.

Finally, we investigate the joint learning of DNNs and EKM.
We find that mapping high-dimensional data via DNNs to an
EKM-friendly space can result in more discriminative low-
dimensional representation than mapping to an HKM-friendly
space. When tested on an imbalanced dataset derived from
MNIST, joint learning of DNNs and EKM improves clustering

accuracy by 35% compared to joint learning of DNNs and
HKM.

C. Organization

We introduce HKM, FKM, and MEFC in Section II. In
Section III, we derive their general form and the proposed
EKM. The properties of EKM are studied in Section IV. We
evaluate the performance of EKM on classic clustering tasks
in Section V and on deep clustering in Section VI. Finally, we
conclude in Section VII.

II. K-MEANS AND ITS VARIATIONS

A. The Hard K-Means Algorithm (Lloyd’s Algorithm)

KM aims to partition N data points into K clusters,
minimizing the sum of the variances within each cluster.
Mathematically, the objective can be expressed as:

argmin
S1,··· ,SK

K∑
k=1

∑
x∈Sk

∥x− µk∥22, (1)

where Sk represents the set of data points in the k-th cluster,
x ∈ Sk denotes a data point belonging to Sk, µk is the centroid
of Sk, expressed by

µk =
1

|Sk|
∑
x∈Sk

x, (2)

|Sk| signifies the size of Sk, and ∥ · ∥2 is the l2 norm.
This optimization problem is NP-hard [26] and is commonly
solved heuristically by Lloyd‘s algorithm [9]. Given K points
(c(1)1 , · · · , c(1)K) as initial centroids, Lloyd’s algorithm alter-
nates between two steps:

1) Assign each data point to the nearest centroid, forming
K clusters:

S(τ)k = {x : ∥x− c
(τ)
k ∥

2
2 ≤ ∥x− c

(τ)
i ∥

2
2 ∀i, 1 ≤ i ≤ K}

(3)
2) Recalculate the centroid of each cluster by taking the

mean of all data points assigned to it:

c
(τ+1)
k =

1

|S(τ)k |

∑
x∈S(τ)

k

x. (4)

Lloyd’s algorithm converges when the assignment of data
points to clusters ceases to change, or when a maximum
number of iterations is reached. The time complexity of
one iteration of the above two steps is O(NK). The HKM
algorithm mentioned in this paper refers to Lloyd’s algorithm.

B. The Uniform Effect of K-Means

The uniform effect refers to the propensity to generate
clusters of similar sizes, which is implicitly implied in the
objective (1) of KM. For simplicity, kindly consider a case
with two clusters (i.e., K = 2). Minimizing the objective func-
tion (1) is equivalent to maximizing the following objective
function [27]:

max
S1, S2

N1N2∥µ1 − µ2∥22, (5)

3

where N1 and N2 denote the sizes of S1 and S2, respectively.
By isolating the effect of ∥µ1 −µ2∥22, maximizing the above
objective leads to N1 = N2 = N/2, indicating KM tends to
produce equally sized clusters.

C. The Fuzzy K-Means Algorithm (Bezdek’s Algorithm)

FKM attempts to minimize the sum of weighted distances
between data points and centroids, with the following objective
and constraints [10]:

min
c1,··· ,cK ,{ukn}

N∑
n=1

K∑
k=1

(ukn)
m∥xn − ck∥22

subject to ukn ∈ [0, 1] ∀k, n,
K∑

k=1

ukn = 1∀n,

0 <

N∑
n=1

ukn < N ∀k,

(6)

where xn represents the n-th data point, ck denotes the
k-th centroid, ukn is a coefficient called membership that
indicates the degree of xn belonging to the k-th cluster, and
m ∈ (1,+∞) is a hyperparameter controlling the degree
of fuzziness level. Similar to the HKM algorithm, the FKM
algorithm operates by alternating two steps:

1) Calculate the membership value of the n-th data point
belonging to the k-th cluster:

u
(τ)
kn =

1∑K
i=1

(
∥xn−c

(τ)
k ∥2

∥xn−c
(τ)
i ∥2

) 2
m−1

. (7)

2) Recalculate the weighted centroid of the k-th cluster by:

c
(τ+1)
k =

∑
n(u

(τ)
kn)

mxn∑
n(u

(τ)
kn)

m
. (8)

The time complexity of one iteration of the above two steps
is O(NK2). The higher time complexity of FKM than HKM
is due to the extra membership calculation.

D. Maximum-Entropy Fuzzy Clustering

Karayiannis [24] added an entropy term to the objective
function of FKM, resulting in MEFC. The new objective
function is given as follows:

min
c1,··· ,cK ,{ukn}

η

N∑
n=1

K∑
k=1

ukn lnukn

+ (1− η)
1

N

N∑
n=1

K∑
k=1

ukn∥xn − ck∥22

subject to ukn ∈ [0, 1]∀k, n,
K∑

k=1

ukn = 1∀n,

(9)

where η ∈ (0, 1) is a hyperparameter, controlling the transition
from maximization of the entropy to the minimization of

centroid-data distances. MEFC is similar to FKM but with
a different definition of membership:

u
(τ)
kn =

exp (−λ∥xn − c
(τ)
k ∥22)∑K

i=1 exp (−λ∥xn − c
(τ)
i ∥22)

, (10)

where λ = 1
N

1−η
η . The time complexity of MEFC is the same

as FKM, which is O(NK2) for one iteration.

III. SMOOTH K-MEANS - A UNIFIED FRAMEWORK

A. Objective of Smooth K-Means

We propose a novel framework called smooth K-means
(SKM) and demonstrate that the three KM algorithms intro-
duced in the previous section are special cases of SKM.

Denote the squared Euclidean distance1 between the k-th
centroid and the n-th data point as

dkn =
1

2
∥xn − ck∥22, (11)

and define the within-cluster sum of squares (WCSS) as the
sum of squared Euclidean distances between data points and
their nearest centroids, i.e.,

WCSS :=

N∑
n=1

min(d1n, · · · , dKn). (12)

The goal of SKM is to find K centroids that minimize an
approximated WCSS, resulting in the following optimization
problem:

arg
c1,··· ,cK

min

N∑
n=1

h(d1n, · · · , dKn), (13)

where h(d1n, · · · , dKn) is a smooth approximation to
min(d1n, · · · , dKn) and is referred to as the smooth minimum
function. Below we reveal the relationship between the SKM
and the GMM.

B. The Relationship Between SKM and GMM

The centroids obtained by minimizing WCSS are maxi-
mum likelihood estimators (MLEs) of parameters of “hard”
GMM. The derivation is as follows. Assuming that the dataset
(x1, · · · ,xN) is sampled from K independent multivariate
normal distributions. We denote the mean vector and co-
variance matrix of the k-th normal distribution as µk and
Σk, respectively. The standard GMM has the following well-
known likelihood

L(µ,Σ, p |x) ∝
N∏

n=1

K∑
k=1

pkn det(Σk)
−1/2

exp
(
−1

2
(xn − µk)

TΣ−1
k (xn − µk)

)
,

(14)

where pkn is the probability that the n-th data point is
generated from the k-th normal distribution. The standard
GMM assumes that data points are generated from multiple

1Other distance metrics, such as the absolute difference and the angle
between points, can also be used to define dkn. Considering the derivation
process is the same, we use the Euclidean distance in the paper for simplicity.

4

normal distributions based on a certain probability distribution.
On the other hand, the hard GMM assumes that a data point
is generated from a single normal distribution. Accordingly,
for all n, pkn = 1 for one k ∈ {1, · · · , N} and pin = 0 if
i ̸= k. We further assume that all normal distributions have
the same covariance matrix, specifically an identity matrix.
Under these assumptions, the MLEs of {pkn} are p̂kn = 1 if
k = argmini∈{1,··· ,K} ∥xn − µi∥22, and p̂kn = 0 otherwise.
By substituting Σk = I and p̂kn into (14) and taking the
logarithmic value, we obtain the log-likelihood:

l(µ |x) ∝ −
N∑

n=1

min(∥xn − µ1∥22, · · · , ∥xn − µK∥22). (15)

Now it is clear that the MLEs of {µ1, · · · ,µK} are the
centroids minimizing WCSS.

The hard GMM model simplifies the standard GMM by
only considering the impact of a data point on its closest
centroid. However, as seen in the success of FKM, it can be
more advantageous to consider the impact of a data point on
all centroids. This can be accomplished in SKM by applying
an approximation function to smooth WCSS. Hence, SKM
can be viewed as a model between hard and standard GMM.
In the following sections, we will introduce three common
smooth minimum functions and explore the resulting distinct
clustering algorithms.

C. Three Common Smooth Minimum Functions

Assume a monotonically increasing and differentiable func-
tion f : [0, +∞) 7→ [0, +∞) satisfies

lim
x→+∞

x

f(x)
→ 0, (16)

or equivalently

lim
x→+∞

1

f ′(x)
→ 0, (17)

where f ′ is the first derivative of f . Let g(x) = 1/f(x), a
smooth minimum function h1 : [0, +∞)K 7→ [0,+∞) can be
constructed by

h1(x1, · · · , xK) = g−1(g(x1) + · · ·+ g(xK)). (18)

Let f(x) be defined as eλx, then the function h1 takes on
a specific form known as LogSumExp:

h1(x1, · · · , xK) = LSEλ(x1, · · · , xK)

= − 1

λ
ln(e−λx1 + · · ·+ e−λxK),

(19)

where λ is a parameter controlling the degree of approxima-
tion, with LSEλ → min as λ→ +∞.

Define f(x) = xp, we can have another common smooth
minimum function, called p-Norm, which has the following
specific form

h1(x1, · · · , xK) = PNp(x1, · · · , xK)

= (x−p
1 + · · ·+ x−p

K)−1/p,
(20)

and converges to min(x1, · · · , xK) as p→ +∞. An additional
definition is necessary for the domain of the p-Norm function

to legally include zeros: PNp(x1, · · · , xK) = 0 if some xi = 0
where 1 ≤ i ≤ K.

Smooth minimum functions can also be constructed by

h2(x1, · · · , xK) =
x1g(x1) + · · ·+ xKg(xK)

g(x1) + · · ·+ g(xK)
. (21)

A specific example is the Boltzmann operator, where g(x) =
e−αx. The Boltzmann operator takes on the form of

h2(x1, · · · , xK) = boltzα(x1, · · · , xK)

=

∑K
i=1 xie

−αxi∑K
i=1 e

−αxi

,
(22)

and converges to the minimum function as α→ +∞.

D. Clustering by Minimizing Smoothed WCSS

1) The relationship between LogSumExp and Maximum-
Entropy Fuzzy Clustering: Approximating WCSS (12) by
LogSumExp (19), we have the following objective:

min
c1,··· ,cK

JLSE(c1, · · · , cK) =

N∑
n=1

− 1

λ
ln (

K∑
k=1

e−λdkn). (23)

The differentiable objective function JLSE has the first-order
partial derivative:

∂ck
JLSE =

∂JLSE

∂ck
=

N∑
n=1

e−λdkn∑K
i=1 e

−λdin

∂dkn
∂ck

= −
N∑

n=1

e−λdkn∑K
i=1 e

−λdin

(xn − ck).

(24)

The minimizer of JLSE can be found by gradient descent
iteration:

c
(τ+1)
k = c

(τ)
k − γ

(τ)
k ∂ck

JLSE(c
(τ)
k), (25)

where γ
(τ)
k is the learning rate at the τ -th iteration. This

updating procedure (25) is equivalent2 to the MEFC algorithm
if one set

γ
(τ)
k = 1/

N∑
n=1

(
e−λd

(τ)
kn∑K

i=1 e
−λd

(τ)
in

)
. (26)

Such learning rate value is related to the second-order partial
derivative of JLSE, which we will discuss later. The member-
ship (10) of MEFC is identical to ∂JLSE/∂dkn.

2) Towards Lloyd’s algorithm: In the limit of λ → ∞,
e−λdkn∑
i e

−λdin
→ 1 if dkn ≤ din ∀i ∈ {1, · · · ,K}, and

e−λdkn∑
i e

−λdin
→ 0 otherwise3. In this case, the learning rate

γ
(τ)
k → 1/N

(τ)
k where N

(τ)
k is the number of data points

closest to c
(τ)
k , and the updating procedure (25) approaches

to Lloyd’s algorithm.

2It should be noted that the equivalence mentioned in this paper is in the
sense of the algorithm level, not in the criterion level.

3We assume ∀n, if k ̸= i, then dkn ̸= din.

5

3) Lloyd’s algorithm and Newton’s method: The smooth
objective function JLSE possesses the second-order partial
derivative given by

∂2
ck
JLSE =

∂2JLSE

∂ck2
= −

N∑
n=1

(
e−λdkn∑
i e

−λdin

∂2dkn
∂c2k

+
−λe−λdkq

∑
i̸=k e

−λdin

(
∑

i e
−λdin)2

∂dkn
∂ck

(
∂dkn
∂ck

)T
)

=

N∑
n=1

e−λdkn∑
i e

−λdin
(I+ ξknDkn)

(27)
where ξkn =

λ
∑

i̸=k e−λdin∑
i e

−λdin
and Dkn = (xn− ck)(xn− ck)

T.
By employing Newton’s method, the minimizer of JLSE can
be iteratively found using

c
(τ+1)
k = c

(τ)
k − [∂2

ck
JLSE(c

(τ)
k)]−1∂ck

JLSE(c
(τ)
k). (28)

As λ → +∞, ∂2
ck
JLSE(c

(τ)
k) → N

(τ)
k I, and the updating

procedure (28) approaches Lloyd’s algorithm. This indicates
that Lloyd’s algorithm is essentially Newton’s method, which
aligns with the perspective presented in [28]. There is a
close relationship between the learning rate value (26) and
the second-order partial derivative of JLSE (27): the gradient
descent with the learning rate of (26) is equivalent to an
approximated Newton’s method in the sense that one term
(the rank-1 matrix Dkn) in (27) is ignored. A discussion of
the pros and cons of optimizing JLSE using gradient descent
or Newton’s method would be valuable, but it is beyond the
scope of this paper. In the following section, we will observe
the same connection between Newton’s method and FKM.

4) The relationship between p-Norm and fuzzy K-means:
By substituting the minimum function in WCSS with the p-
Norm function (20), we have

min
c1,··· ,cK

JPN(c1, · · · , cK) =

N∑
n=1

(d−p
1n + · · ·+d−p

Kn)
−1/p. (29)

The objective JPN has the first partial derivative of

∂ck
JPN =

∂JPN

∂ck
= −

N∑
n=1

d−p−1
kn

(
∑K

i=1 d
−p
in)1/p+1

(xn − ck). (30)

The minimizer of JPN can be located using gradient descent
iteration

c
(τ+1)
k = c

(τ)
k − γ

(τ)
k ∂ck

JPN(c
(τ)
k). (31)

When setting p = 1/(m− 1) and

γ
(τ)
k = 1/

N∑
n=1

(d
(τ)
kn)

−p−1

(
∑K

i=1(d
(τ)
in)−p)1/p+1

, (32)

this gradient descent iteration is equivalent to the FKM algo-
rithm. The membership (7) of FKM is equivalent to a power
exponent (1/m) of ∂JPN/∂dkn.

The connection between FKM and Newton’s method be-
comes evident by taking the second-order partial derivative of
JPN, which is

∂2
ck
JPN =

∂2JPN

∂ck2
=

N∑
n=1

d−p−1
kn

(
∑

i d
−p
in)1/p+1

(I+ ζknDkn), (33)

where ζkn = (p + 1)
∑

i̸=k d−p
in

dkn

∑
i d

−p
in

. Hence, FKM can also be
viewed as an approximated Newton’s method that ignores the
term of the rank-1 matrix Dkn.

E. From Boltzmann Operator to A Novel Clustering Algorithm

Employing the Boltzmann operator to smooth WCSS results
in

min
c1,··· ,cK

JB(c1, · · · , cK) =

N∑
n=1

∑K
i=1 dine

−αdin∑K
i=1 e

−αdin

. (34)

The objective JB possesses the first-order partial derivative
of

∂ck
JB =

∂JB

∂ck
= −

N∑
n=1

e−αdkn∑
i e

−αdin

[
1− α(dkn

−
∑

i dine
−αdin∑

i e
−αdin

)
]
(xn − ck).

(35)

The minimizer of JB can be found using gradient descent
iteration

c
(τ+1)
k = c

(τ)
k − γ

(τ)
k ∂ck

JB(c
(τ)
1 , · · · , c(τ)K), (36)

where

γ
(τ)
k = 1/

(N∑
n=1

e−αd
(τ)
kn∑

i e
−αd

(τ)
in

[1− α(d
(τ)
kn −

∑
i d

(τ)
in e−αd

(τ)
in∑

i e
−αd

(τ)
in

)]
)
.

(37)
This updating procedure can be reformulated into a two-step
iteration procedure akin to FKM, that is

c
(τ+1)
k =

∑
n w

(τ)
kn xn∑

n w
(τ)
kn

, (38)

where weights w
(τ)
kn are calculated by

w
(τ)
kn =

e−αd
(τ)
kn∑K

i=1 e
−αd

(τ)
in

[1− α(d
(τ)
kn −

∑K
i=1 d

(τ)
in e−αd

(τ)
in∑K

i=1 e
−αd

(τ)
in

)].

(39)
The time complexity of one iteration is O(NK2). Although
the sum of weights equals one, i.e.,

K∑
k=1

w
(τ)
kn = 1, ∀n, (40)

it is worth noting that these weights cannot be interpreted
as probabilities or memberships since some weight values are
negative. The membership of EKM is defined in Section III-G.

F. Physical Interpretation of Equilibrium K-Means

The second law of thermodynamics asserts that in a closed
system with constant external parameters (e.g., volume) and
fixed entropy, the internal energy will reach its minimum value
at the state of thermal equilibrium. The objective (34) of EKM
follows this minimum energy principle. This connection can
be established by envisioning data points as particles with
discrete/quantized energy levels, where the number of energy
levels is equivalent to the number of centroids, and the energy

6

value corresponds to the squared Euclidean distance between
a data point and a centroid.

Boltzmann’s law tells that at the state of thermodynamic
equilibrium, the probability of a particle occupying a specific
energy level decreases exponentially with the increase of the
energy value of that level. Hence, the objective function (34)
equals the expectation of the entire system’s energy, and EKM
seeks centroids to minimize this energy expectation. Due to
this connection, we refer to the proposed algorithm (alternating
between (38) and (39)) as equilibrium K-means.

G. Membership Defined in Equilibrium K-Means

According to the physical interpretation of EKM, the ex-
ponential term e−αdkn can be interpreted as the unnormalized
probability of the n-th data point belonging to the k-th clusters.
Hence, the membership of the n-th data point to the k-th
cluster can be defined as

ukn =
e−αdkn∑K
i=1 e

−αdin

. (41)

Note that, although the membership formula of EKM is the
same as that (10) of MEFC, the values are different because
centroids are calculated using distinct formulas. We have
no intention in this paper to compare membership defined
in different fuzzy clustering algorithms; therefore, we only
define membership in EKM and leave the further discussion
to subsequent research.

H. Convergence of Smooth K-Means

HKM, FKM, MEFC, and EKM are special cases of SKM,
which can be generalized as the following gradient descent
algorithm:

c
(τ+1)
k = c

(τ)
k − γ

(τ)
k ∂ck

J(c
(τ)
1 , · · · , c(τ)K), (42)

where J(c
(τ)
1 , · · · , c(τ)K) =

∑N
n=1 h(d

(τ)
1n , · · · , d(τ)Kn), h is a

smooth minimum function, d
(τ)
kn = 1

2∥xn − c
(τ)
k ∥22, and the

learning rate γ
(τ)
k is given by

γ
(τ)
k = 1/

N∑
n=1

(
∂h

∂dkn
(d

(τ)
1n , · · · , d(τ)Kn)

)
. (43)

Different KM algorithms can be obtained by taking h the cor-
responding explicit form (refer to Section III-D to III-E). This
general form facilitates the uniform study of KM algorithms.
Below we give a convergence guarantee conditioning on the
properties of h:

Theorem 1 (Convergence Condition): The centroid sequence
obtained by (42) converges to a (local) minimizer or saddle
point of the objective function J if the following conditions
can be satisfied:

1) (Concavity) The function h is a concave function at its
domain [0, +∞)K .

2) (Boundness) The function h has a lower bound, i.e., h >

−∞, and the learning rate set {γ(τ)
k }τ,k has a positive

lower bound, i.e., ∃ϵ > 0, such that γ(τ)
k ≥ ϵ for all τ

and k.

(a) (b) (c) (d)
Fig. 2. Objectives as a function of the second centroid moving along the
x-axis (the first centroid is fixed at µ1). The yellow, purple, green, and blue
curves are reformulated objective functions of HKM, FKM, MEFC, and EKM,
respectively. (a), (b), (c), and (d) present objective functions under different
data distributions.

Proof: See the Appendix for the proof, which generalizes the
proof of convergence of fuzzy K-means in [29]. ■

It can be easily verified that when the smooth minimum
function h is LogSumExp (19) and p-Norm (20) in which
case SKM (42) is equivalent to MEFC and FKM, respectively,
the above convergence condition can be satisfied with any
initial centroids. Although the Boltzmann operator (22) is not
concave, it is a smooth approximation of a concave function
(the minimum function). Hence, EKM also exhibits good
convergence behavior in numerical experiments.

IV. COMPARISON OF DIFFERENT SMOOTHED OBJECTIVES

A. Case Study

This section presents an empirical analysis of the behavior
of different KM algorithms by examining their reformulated
objective functions in some examples with well-designed data
structures. Datasets comprising two classes of one-dimensional
data points are generated by sampling from two normal
distributions, drawing N1 samples from a distribution with
mean µ1 and unit variance, and N2 samples from another
with mean µ2 and unit variance. Using different parameter
combinations, we generate four datasets: 1. A balanced, non-
overlapping dataset (N1 = N2 = 50, µ1 = −5, and µ2 = +5;
Fig. 2a); 2. A balanced, overlapping dataset (N1 = N2 = 50,
µ1 = −0.5, and µ2 = +0.5; Fig. 2b); 3. An imbalanced,
non-overlapping dataset (N1 = 5000, N2 = 50, µ1 = −5,
and µ2 = +5; Fig. 2c); 4. An imbalanced, overlapping dataset
(N1 = 2000, N2 = 50, µ1 = −2, and µ2 = +2; Fig. 2d).

We fix the first centroid at µ1, and plot the reformulated
objectives of HKM (WCSS (12)), FKM (JPN (29)), MEFC
(JLSE (23)), and EKM (JB (34)) as a function of the position
of the second centroid in Fig. 2. The four objective functions
behave similarly on the first two balanced datasets, but it is
worth noting that the last two imbalanced datasets. Fig. 2c
and Fig. 2d show that the local and global minimum points of
the objective functions of HKM, FKM, and MEFC are biased
towards the center of the large cluster, i.e., µ1. In contrast,
EKM does not have an obvious local minimum and its global
minimum point aligns with the true cluster center, i.e., µ2,
highlighting EKM’s superiority in handling imbalanced data.

B. The Analysis of EKM’s Effectiveness on Imbalanced Data

We analyze the effectiveness of EKM on imbalanced data
based on the gradient of its objective. The gradient of the

7

(a) (b) (c) (d)
Fig. 3. Gradients as a function of a data point moving along the x-axis. (a)
Gradients of WCSS, JPN, JLSE, and JB with fixed smoothing parameters.
(b), (c), and (d) are gradients of JPN, JLSE, and JB with varied smoothing
parameters, respectively.

smoothed WCSS with respect to the data-centroid distance
(i.e., ∂J/∂dkn) can be interpreted as the force exerted by a
spring. A positive gradient value represents an attractive force,
while a negative value represents a repulsive force.

A simple example is given to plot the gradient values of
different KM’s objectives. We fix two centroids at −1 and
+1, respectively, and move a data point along the x-axis. In
Fig. 3a we display the gradients of WCSS, JLSE, JPN, and
JB with respect to the distance between the data point and
the second centroid. As evident from the figure, data points
on the side of the first centroid do not impact the second
centroid of HKM, but they do attract the second centroids of
FKM and MEFC. This finding supports the statement in [30]
that FKM has a stronger uniform effect than HKM. On the
other hand, data points near the first centroid have repulsive
forces on the second centroid of EKM, which compensate for
the attraction from other data points, effectively reducing the
uniform effect. It is worth noting that data points near the
second centroid of EKM have the strongest attraction forces
to this centroid. Consequently, EKM’s centroids are anchored
by their surrounding data points, making their position less
influenced by noise and outliers.

C. The Choice of α

The smoothing parameter α impacts the performance of
EKM, but the optimal choice remains unknown. This is
not a difficulty unique to EKM. The FKM algorithm also
struggles with selecting the optimal fuzzifier value, m. Despite
numerous studies discussing the selection of m, a widely
accepted solution has yet to be found [31].

As a rule of thumb, when the dimension of the data space is
less than or equal to three, setting α = 1 appears effective after
normalizing the data to have a zero mean and unit variance
for each dimension. As the data space dimension increases, the
data-centroid distance dkn increases, necessitating a decrease
in α to ensure that the exponential term e−αdkn falls within a
normal range. Hence, in the case of a higher dimensional data
clustering, we suggest initially setting α to ten times the data
variance and gradually reducing it until a sudden increase in
centroid-centroid distance is observed. Because the increase
in centroid distance implies the emergence of repulsive forces
that reduce the uniform effect. This strategy is applied in deep
clustering on the MNIST dataset in Section VI. An adaptive
selection formula of α and its validation are given in the
supplemental material.

V. NUMERICAL EXPERIMENTS

Numerical experiments are conducted to compare the per-
formance of our proposed EKM algorithm with six other
centroid-based algorithms: (1) HKM, (2) FKM, (3) MEFC,
(4) csiFKM [19], (5) siibFKM [20], and (6) the GMM.
Multiprototype-based algorithms such as [5], [22] are not
appropriate as baseline models because they are too complex
to be benchmarks for gauging the efficiency of the proposed
EKM.

To avoid local optima convergence, each clustering algo-
rithm is executed ten times, and the result with the lowest
objective value is presented. Centroids are initialized indepen-
dently for each replication by the K-means++ algorithm [32].
Convergence is achieved when the relative moving distance of
centroids between successive iterations is less than 1e−3, i.e.,(∑K

k=1 ∥c
(τ)
k − c

(τ−1)
k ∥22

)1/2

(∑K
k=1 ∥c

(τ)
k ∥22

)1/2
≤ 1e−3. (44)

The maximum number of iterations is set to 100. FKM,
csiFKM, and siibFKM employ a typical fuzzifier value of
m = 2 [33]. The fuzzifier value of MEFC is set to λ = 1
and the smoothing parameter of EKM is set to α = 1. We
evaluate EKM’s performance on 12 datasets, including two
synthetic and ten real datasets. Besides, we also apply EKM
to the application of image segmentation. Because of space
limitations, experiment results from six datasets and the image
segmentation are shown in the paper. Full experiment results
can be found in the supplemental material. The six datasets
and the test image are introduced below.

A. Datasets

1) Synthetic 2-D Ball: We generate data from three distinct
normal distributions, each having different means: (−2, 2),
(2,−2), and (4, 4), and the same identity covariance matrix.
The dataset consists of 2,100 samples, of which 2000 samples
from the normal distribution with means (−2, 2), and 100 sam-
ples from the other two normal distributions (each distribution
for 50 samples). The clustering results are shown in Fig. 4.

2) Synthetic 2-D Noisy Ball: We add 100 uniformly dis-
tributed noise data (around 5% of the number of clean sam-
ples) to the synthetic 2-D ball dataset in order to test the
algorithms’ robustness against noise. The clustering outcomes
are displayed in Fig. 5.

3) Fisher’s Iris Data: The Fisher’s Iris dataset [34], [35]
is a well-known dataset for evaluating the performance of
clustering algorithms. It comprises 50 samples from each of
three iris species (Iris setosa, Iris virginica, and Iris versicolor).
Two features, the width and the length of the sepals, are
utilized as clustering features and normalized to have zero
means and unit variance. Fig. 6 depicts the clustering results.

4) Imbalanced Fisher’s Iris Data: Because the instance
distribution in the Iris dataset is balanced. To examine the
capability of imbalanced data clustering, we generate an im-
balanced Fisher’s Iris dataset by removing the first 30 instances
of Iris setosa, and merging the other two species (Iris virginica

8

and Iris versicolor) into a single class. The clustering results
of this imbalanced dataset are presented in Fig. 7.

5) Wisconsin Diagnostic Breast Cancer: Wisconsin Diag-
nostic Breast Cancer (WDBC) [36] comprises 30 features of
cell nuclei from diagnostic benign and malignant breast tu-
mors, obtained from digitized images of fine-needle aspiration
of breast masses. This database contains 569 instances, with an
instance distribution of 357 benign and 212 malignant cases.
We use the first three features (mean radius, mean texture,
and mean perimeter) for clustering, each normalized with zero
mean and unit variance. Fig. 8 presents the clustering results
where the mean radius and the mean texture are used as
coordinates for visualization.

6) Imbalanced Wisconsin Diagnostic Breast Cancer: The
data distribution in WDBC is quite balanced. To examine the
ability of imbalanced data clustering, we remove the first 200
malignant instances in WDBC, resulting in an imbalanced
WDBC database with a distribution of 357 benign and 12
malignant instances. We still use the first three features for
clustering, each normalized with zero mean and unit variance.
The clustering results are shown in Fig. 9.

7) Color-based image segmentation: The test image col-
oredChips.png is chosen from Matlab’s image gallery (shown
in Fig. 10a). The number of clusters is set to five to expect
the segmentation of the four colored chips and the background
(i.e., the desk surface). Clustering is conducted in the RGB
color space and the segmentation results can be viewed in
Fig. 10b - 10e.

B. Discussion of Results

In general, these results demonstrate that the proposed EKM
algorithm performs competitively on balanced data and out-
performs the other clustering algorithms on imbalanced data.
In particular, HKM, FKM, and MEFC suffer from the uniform
effect when data has an imbalanced distribution. The csiFKM
and siibFKM algorithms are sensitive to noise data: Fig. 5c
and Fig. 5d show that their centroids are highly deviated from
the correct positions in the presence of noise. In comparison,
EKM is more robust to noise because of the anchoring effect
produced by the positive gradients (see Section IV-B), as seen
in Fig. 5e.

The strong performance of EKM shown in Fig. 9 demon-
strates its ability to identify clustered anomalies. This makes
up a missing function of HKM and FKM in anomaly detection:
they are typically used to detect isolated anomalies, not
clustered anomalies [37]–[40].

The results of color-based image segmentation are shown in
Fig. 10b - 10e. HKM, FKM, and MEFC erroneously separate
the background (the desk surface) into two clusters. This
happens because the background comprises most pixels, and
splitting it into two clusters better balances the number of
pixels within each clusters. On the other hand, EKM produces
the expected segmentation result.

VI. DEEP CLUSTERING

Clustering algorithms using Euclidean distance for defining
similarity face a challenge when clustering high-dimensional

data, such as images, due to the small distance differences
between various point pairs in high-dimensional space [41].
Deep clustering is a technique that addresses this issue by
employing DNNs to map high-dimensional data to low-
dimensional representation. Many deep clustering methods
combine DNNs with HKM, e.g., [15]–[17]. However, this
design is less favorable to imbalanced data [16]. In this section,
we show the promise of EKM in the deep clustering of
imbalanced data by replacing HKM with EKM in a popular
deep clustering framework.

A. Optimization Procedure

Deep clustering network (DCN) [15] is a popular deep clus-
tering framework. As illustrated in Fig. 11, DCN maps high-
dimensional data to low-dimensional representation through
an autoencoder network. An autodecoder follows the autoen-
coder, mapping the representation back to the original high-
dimensional space (i.e., reconstruction). To ensure that the
low-dimensional representation maintains the primary infor-
mation of the original data, the autoencoder and the autode-
coder are jointly trained to minimize the reconstruction error.
Additionally, to make the low-dimensional representation have
a clustering-friendly structure, a clustering error is minimized
along with the reconstruction error. DCN uses an alternating
optimization algorithm to minimize the total error, and the
optimization process is described below.

First, the autoencoder and the autodecoder are jointly trained
to reduce the following loss for the incoming data xn:

min
θe,θd

Ln = l(g(f(xn)),xn) + β∥f(xn)−Csn∥22, (45)

where f(·) and g(·) are simplified symbols for autoencoder
f(·; θe) and autodecoder g(·; θd), respectively. The function
l(·) is the least-squares loss l(x̂,x) = ∥x̂ − x∥22 to measure
the reconstruction error. The assignment vector sn ∈ RK×1

has only one non-zero element and 1Tsn = 1, indicating
which cluster the n-th data belongs to, and the k-th column
of C = [c1, · · · , cK] is the centroid of the k-th cluster.
The parameter β balances the reconstruction error versus the
clustering error. Then, the network parameters {θe,θd} are
fixed, and the parameters {sn} are updated as follows:

sj,n ←

{
1, if j = argmink={1,··· ,K} ∥f(xn)− ck∥2,
0, otherwise,

(46)
where sj,n is the j-th element of sn. Finally, C is updated by
the batch-learning version of the HKM algorithm:

ck ← ck + (1/mn
k)(f(xn)− ck)sk,n, (47)

where mn
k is the number of samples assigned to the k-th cluster

before the incoming data xn, controlling the learning rate of
the k-th centroid. Overall, the optimization procedure of DCN
alternates between updating networks parameters {θe,θd} by
solving (45) and updating HKM parameters {C, {sn}} by (46)
and (47).

However, the centroid updating rule (47) is problematic
for imbalanced data due to the uniform effect. To address

9

(a) (b) (c) (d) (e)
Fig. 4. (a) Synthetic 2-D ball data. (b) Clustering by HKM. (c) Clustering by FKM. (d) Clustering by MEFC. (e) Clustering by EKM.

(a) (b) (c) (d) (e)
Fig. 5. (a) Synthetic 2-D noisy ball data. (b) Clustering by FKM. (c) Clustering by csiFKM. (d) Clustering by siibFKM. (e) Clustering by EKM.

(a) (b) (c) (d) (e)
Fig. 6. (a) Fisher’s Iris data. (b) Clustering by HKM. (c) Clustering by FKM. (d) Clustering by MEFC. (e) Clustering by EKM.

(a) (b) (c) (d) (e)
Fig. 7. (a) Imbalanced Fisher’s Iris data. (b) Clustering by HKM. (c) Clustering by FKM. (d) Clustering by MEFC. (e) Clustering by EKM.

(a) (b) (c) (d) (e)
Fig. 8. (a) Wisconsin Diagnostic Breast Cancer dataset. Three features are used for clustering and two of them are used for visualization. (b) Clustering by
HKM. (c) Clustering by FKM. (d) Clustering by GMM. (e) Clustering by EKM.

(a) (b) (c) (d) (e)
Fig. 9. (a) Imbalanced Wisconsin Diagnostic Breast Cancer dataset. (b) Clustering by HKM. (c) Clustering by FKM. (d) Clustering by GMM. (e) Clustering
by EKM.

10

(a)

(b)

(c)

(d)

(e)
Fig. 10. (a) coloredChips.png. (b) Segmentation by HKM. (c) Segmentation
by FKM. (d) Segmentation by MEFC. (e) Segmentation by EKM.

Fig. 11. Illustration of the DCN framework [15]. The parameters of the
encoder, decoder, and clustering model are optimized jointly to minimize the
reconstruction error and clustering error.

this issue, we propose to replace (47) with the batch-learning
version of EKM:

ck ← ck − (1/mn
k)∂ck

JB(c1, · · · , cK)

= ck + (1/mn
k)

e−αdkn∑K
i=1 e

−αdin

[
1− α(dkn

−
∑K

i=1 dine
−αdin∑K

i=1 e
−αdin

)
]
(f(xn)− ck),

(48)

where dkn = 1
2∥f(xn) − ck∥22. There are other details and

tricks to implement DCN, such as the initialization of the net-
works. We only introduce the part related to our contribution,
and kindly refer to [15] for more implementation details.

B. Clustering Performance on MNIST

To implement DCN, we refer to the code one of its
authors provided, available at https://github.com/boyangumn/
DCN-New. We use the default neural network structure and

TABLE I
EVALUATION ON FULL MNIST

Methods SAE+HKM DCN+HKM SAE+EKM DCN+EKM
NMI 0.725 0.798 0.711 0.813
ARI 0.667 0.744 0.642 0.731
ACC 0.795 0.837 0.782 0.808

hyperparameters. In particular, the dimension of the low-
dimensional representation is set to ten, and the parameter
β is set to one. The smoothing parameter α is tuned on
the representation obtained by the initialized DCN networks
according to the strategy introduced in Section IV-C. We
evaluate clustering performance using three widely accepted
metrics: including normalized mutual information (NMI), ad-
justed Rand index (ARI), and clustering accuracy (ACC). NMI
and ACC range from 0 to 1, with zero representing the worst
and one representing the best. ARI ranges from -1 to 1, with
minus one representing the worst and one representing the
best.

We first evaluate the algorithm’s performance on the full
MNIST dataset [42], which contains 70,000 gray images of
handwritten digits from 0 to 9. Each image has 28×28 = 784
pixels. We set the smoothing parameter of EKM to α = 5e−3.
The clustering results are presented in TABLE I. We compare
the proposed DCN+EKM with DCN+HKM and stacked au-
toencoder (SAE). SAE is a specific version of DCN that only
minimizes the reconstruction error. Thus, the learned represen-
tation by SAE does not have a clustering-friendly structure.
The results show that DCN outperforms SAE, highlighting
the importance of a clustering-friendly structure. We can also
see that DCN+EKM performs similarly to DCN+HKM. We
omit the results of DCN+FKM and DCN+MEFC due to space
limitations. Their performance is not better than DCN+HKM.

MNIST contains 60,000 training images and 10,000 testing
images. To evaluate the performance of imbalanced data
clustering, we generate an imbalanced MNIST dataset by
removing the training images of digits 1 to 9. This imbalanced
dataset contains 15,923 images, of which approximately 6,900
are digit 0, while the remaining digits (1 to 9) each have about
1,000 images. We set the smoothing parameter of EKM to
α = 3.8e − 3. The results are summarized in TABLE II.
In conclusion, we find that an EKM-friendly representation
structure is crucial for deep clustering of imbalanced data.
We map the ten-dimensional representation obtained by DCN
to a two-dimensional space by t-SNE [43] for visualization.
The results are displayed in Fig. 12. The visualization result
implies that the deep representation obtained by DCN+EKM
is more discriminative than that obtained by DCN+HKM.
We observe that EKM successfully identifies the large class
(number 0) from other small classes without referring to the
true labels, while HKM incorrectly divides the large class into
four clusters.

VII. CONCLUSION

This paper presents equilibrium K-means (EKM), a novel
clustering algorithm effective for both balanced and imbal-
anced data. EKM is simple, interpretable, scalable to large

https://github.com/boyangumn/DCN-New
https://github.com/boyangumn/DCN-New

11

TABLE II
EVALUATION ON IMBALANCED MNIST

Methods SAE+HKM DCN+HKM SAE+EKM DCN+EKM
NMI 0.551 0.584 0.583 0.701
ARI 0.317 0.325 0.396 0.826
ACC 0.413 0.434 0.497 0.784

(a) (b) (c) (d)
Fig. 12. Visualization of DCN representations by t-SNE. (a) Representations
obtained by DCN+HKM, colored by true labels. (b) Representations obtained
by DCN+HKM, colored by labels generated by HKM. (c) Representations
obtained by DCN+EKM, colored by true labels. (d) Representations obtained
by DCN+EKM, colored by labels generated by EKM.

datasets, and capable of creating unequal-sized clusters. Ex-
perimental results on real datasets from various domains
show that EKM outperforms HKM, FKM, and other popular
centroid-based algorithms on datasets with imbalanced data
and performs comparably on datasets with balanced data. In
the same deep clustering framework, compared with HKM and
FKM, the clustering accuracy of imbalanced data using EKM
has been noticeably improved. Furthermore, we reformulate
HKM, FKM, and EKM in a general form of gradient descent.
We encourage readers to study more properties of this general
form to develop new K-means algorithms with non-heuristic
memberships to address different issues.

APPENDIX A
PROOF OF THEOREM 1

For concise and tidy, we denote the partial derivative
∂h
∂dk

(d
(τ)
1n , · · · , d(τ)Kn) as ∂h

∂dk
|n,τ . Since h is a concave function

at [0, +∞)K , we have

h(d1n, · · · , dKn)

≤ h(d
(τ)
1n , · · · , d(τ)Kn) +

K∑
k=1

∂h

∂dk

∣∣∣∣
n,τ

· (dkn − d
(τ)
kn),

(49)

which holds for any n ∈ {1, · · · , N} and d1n, · · · , dKn ∈
[0, +∞). Summing over n, it follows that

J(c1, · · · , cK)

≤
N∑

n=1

[
h(d

(τ)
1n , · · · , d(τ)Kn) +

K∑
k=1

∂h

∂dk

∣∣∣∣
n,τ

· (dkn − d
(τ)
kn)

]

= J(c
(τ)
1 , · · · , c(τ)K) +

1

2

K∑
k=1

N∑
n=1

(
∂h

∂dk

∣∣∣∣
n,τ

·
(
∥xn − ck∥22

− ∥xn − c
(τ)
k ∥

2
2

))
. (50)

Denote the function on the right side of the inequal-
ity as M(c1, · · · , cK). With the boundness condition, we
have

∑N
n=1

∂h
∂dk

∣∣
n,τ

> 0 for any k and τ , thus, M is a
quadratic function and strictly convex, with the unique global

minimizer at (c
(τ+1)
1 , · · · , c(τ+1)

K) defined by (42). Denote
J(c

(τ)
1 , · · · , c(τ)K) as J (τ), M(c

(τ)
1 , · · · , c(τ)K) as M (τ), and

∂ck
J(c

(τ)
1 , · · · , c(τ)K) as ∂ck

J (τ). Each iteration of the centroid
will reduce the objective function by

J (τ) − J (τ+1)

≥ J (τ) −M (τ+1)

=
1

2

K∑
k=1

N∑
n=1

∂h

∂dk

∣∣∣∣
n,τ

·
(
∥xn − c

(τ)
k ∥

2
2 − ∥xn − c

(τ+1)
k ∥22

)
substituting (42)

=
1

2

K∑
k=1

N∑
n=1

∂h

∂dk

∣∣∣∣
n,τ

·
(
∥xn − c

(τ)
k ∥

2
2 − ∥xn − c

(τ)
k

+ γ
(τ)
k ∂ck

J (τ)∥22
)

=
1

2

K∑
k=1

N∑
n=1

∂h

∂dk

∣∣∣∣
n,τ

·
(
− (γ

(τ)
k)2∥∂ck

J (τ)∥22

− 2γ
(τ)
k (xn − c

(τ)
k)T∂ck

J (τ)
)

using γ
(τ)
k =

1∑N
n=1

∂h
∂dk
|n,τ

and ∂ck
J (τ) = −

N∑
n=1

∂h

∂dk
· (xn − c

(τ)
k)

=

K∑
k=1

−1

2
γ
(τ)
k ∥∂ck

J (τ)∥22 +
K∑

k=1

γ
(τ)
k ∥∂ck

J (τ)∥22

=

K∑
k=1

1

2
γ
(τ)
k ∥∂ck

J (τ)∥22

with the boundness condition of γ(τ)
k

≥ 1

2
ϵ

K∑
k=1

∥∂ck
J (τ)∥22,

(51)
where ϵ is a positive number. Hence, the sequence

(J (1), J (2), · · ·) is non-increasing, and with the boundness
condition that h > −∞, we have limτ→+∞(J (τ)−J (τ+1))→
0. If the left side of the inequality (51) converges to zero, the
right side of the inequality also converges to zero since it is
non-negative. Consequently, we have limτ→+∞ ∂ck

J (τ) → 0

for all k. Therefore, the sequence (c
(τ)
k) converges to a station-

ary point of the objective function J . Because (J (1), J (2), · · ·)
is non-increasing, only (local) minimizers or saddle points
appear as limit points.

REFERENCES

[1] B. Krawczyk, “Learning from imbalanced data: open challenges and
future directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp.
221–232, 2016.

[2] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[3] D. Ramyachitra and P. Manikandan, “Imbalanced dataset classification
and solutions: a review,” International Journal of Computing and
Business Research (IJCBR), vol. 5, no. 4, pp. 1–29, 2014.

[4] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, “Boosting
methods for multi-class imbalanced data classification: an experimental
review,” Journal of Big Data, vol. 7, pp. 1–47, 2020.

12

[5] Y. Lu, Y.-M. Cheung, and Y. Y. Tang, “Self-adaptive multiprototype-
based competitive learning approach: A k-means-type algorithm for
imbalanced data clustering,” IEEE transactions on cybernetics, vol. 51,
no. 3, pp. 1598–1612, 2019.

[6] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Gaussian
mixture models and k-means clustering,” Numerical recipes: the art of
scientific computing, pp. 842–850, 2007.

[7] E. Shireman, D. Steinley, and M. J. Brusco, “Examining the effect
of initialization strategies on the performance of gaussian mixture
modeling,” Behavior research methods, vol. 49, pp. 282–293, 2017.

[8] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA, 1967, pp. 281–297.

[9] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[10] J. C. Bezdek, Pattern recognition with fuzzy objective function algo-
rithms. Springer Science & Business Media, 2013.

[11] N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, “A possibilistic fuzzy
c-means clustering algorithm,” IEEE transactions on fuzzy systems,
vol. 13, no. 4, pp. 517–530, 2005.

[12] D.-M. Tsai and C.-C. Lin, “Fuzzy c-means based clustering for linearly
and nonlinearly separable data,” Pattern recognition, vol. 44, no. 8, pp.
1750–1760, 2011.

[13] S. Krinidis and V. Chatzis, “A robust fuzzy local information c-means
clustering algorithm,” IEEE transactions on image processing, vol. 19,
no. 5, pp. 1328–1337, 2010.

[14] A. Coates and A. Y. Ng, “Learning feature representations with k-
means,” in Neural Networks: Tricks of the Trade: Second Edition.
Springer, 2012, pp. 561–580.

[15] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-
means-friendly spaces: Simultaneous deep learning and clustering,” in
international conference on machine learning. PMLR, 2017, pp. 3861–
3870.

[16] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 132–149.

[17] M. M. Fard, T. Thonet, and E. Gaussier, “Deep k-means: Jointly clus-
tering with k-means and learning representations,” Pattern Recognition
Letters, vol. 138, pp. 185–192, 2020.

[18] H. Xiong, J. Wu, and J. Chen, “K-means clustering versus validation
measures: a data distribution perspective,” in Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2006, pp. 779–784.

[19] J. Noordam, W. Van Den Broek, and L. Buydens, “Multivariate image
segmentation with cluster size insensitive fuzzy c-means,” Chemometrics
and intelligent laboratory systems, vol. 64, no. 1, pp. 65–78, 2002.

[20] P.-L. Lin, P.-W. Huang, C.-H. Kuo, and Y. Lai, “A size-insensitive
integrity-based fuzzy c-means method for data clustering,” Pattern
Recognition, vol. 47, no. 5, pp. 2042–2056, 2014.

[21] S. Askari, “Fuzzy c-means clustering algorithm for data with unequal
cluster sizes and contaminated with noise and outliers: Review and
development,” Expert Systems with Applications, vol. 165, p. 113856,
2021.

[22] J. Liang, L. Bai, C. Dang, and F. Cao, “The k-means-type algorithms
versus imbalanced data distributions,” IEEE Transactions on Fuzzy
Systems, vol. 20, no. 4, pp. 728–745, 2012.

[23] S. Zeng, X. Duan, J. Bai, W. Tao, K. Hu, and Y. Tang, “Soft multi-
prototype clustering algorithm via two-layer semi-nmf,” IEEE Transac-
tions on Fuzzy Systems, 2023.

[24] N. B. Karayiannis, “Meca: Maximum entropy clustering algorithm,” in
Proceedings of 1994 IEEE 3rd international fuzzy systems conference.
IEEE, 1994, pp. 630–635.

[25] R.-P. Li and M. Mukaidono, “A maximum-entropy approach to fuzzy
clustering,” in Proceedings of 1995 IEEE International Conference on
Fuzzy Systems., vol. 4. IEEE, 1995, pp. 2227–2232.

[26] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of
euclidean sum-of-squares clustering,” Machine learning, vol. 75, pp.
245–248, 2009.

[27] J. Wu, Advances in K-means clustering: a data mining thinking.
Springer Science & Business Media, 2012.

[28] L. Bottou and Y. Bengio, “Convergence properties of the k-means
algorithms,” Advances in neural information processing systems, vol. 7,
1994.

[29] L. Groll and J. Jakel, “A new convergence proof of fuzzy c-means,” IEEE
Transactions on Fuzzy Systems, vol. 13, no. 5, pp. 717–720, 2005.

[30] K. Zhou and S. Yang, “Effect of cluster size distribution on clustering:
a comparative study of k-means and fuzzy c-means clustering,” Pattern
Analysis and Applications, vol. 23, pp. 455–466, 2020.

[31] A. Gupta, S. Datta, and S. Das, “Fuzzy clustering to identify clusters at
different levels of fuzziness: An evolutionary multiobjective optimization
approach,” IEEE transactions on cybernetics, vol. 51, no. 5, pp. 2601–
2611, 2019.

[32] D. Arthur and S. Vassilvitskii, “K-means++ the advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, 2007, pp. 1027–1035.

[33] M. Huang, Z. Xia, H. Wang, Q. Zeng, and Q. Wang, “The range of
the value for the fuzzifier of the fuzzy c-means algorithm,” Pattern
Recognition Letters, vol. 33, no. 16, pp. 2280–2284, 2012.

[34] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[35] E. Anderson, “The species problem in iris,” Annals of the Missouri
Botanical Garden, vol. 23, no. 3, pp. 457–509, 1936.

[36] W. Wolberg, M. Olvi, N. Street, and W. Street, “Breast Cancer Wis-
consin (Diagnostic),” UCI Machine Learning Repository, 1995, DOI:
https://doi.org/10.24432/C5DW2B.

[37] S. Chawla and A. Gionis, “k-means–: A unified approach to clustering
and outlier detection,” in Proceedings of the 2013 SIAM international
conference on data mining. SIAM, 2013, pp. 189–197.

[38] Z. Zhang, Q. Feng, J. Huang, Y. Guo, J. Xu, and J. Wang, “A local
search algorithm for k-means with outliers,” Neurocomputing, vol. 450,
pp. 230–241, 2021.

[39] P. Verma, M. Sinha, and S. Panda, “Fuzzy c-means clustering-based
novel threshold criteria for outlier detection in electronic nose,” IEEE
Sensors Journal, vol. 21, no. 2, pp. 1975–1981, 2020.

[40] H. Yadav, J. Singh, and A. Gosain, “Experimental analysis of fuzzy
clustering techniques for outlier detection,” Procedia Computer Science,
vol. 218, pp. 959–968, 2023.

[41] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
“nearest neighbor” meaningful?” in Database Theory—ICDT’99: 7th
International Conference Jerusalem, Israel, January 10–12, 1999 Pro-
ceedings 7. Springer, 1999, pp. 217–235.

[42] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[43] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

1

Supplemental Materials: Imbalanced Data
Clustering using Equilibrium K-Means

SUPPLEMENT

We evaluate the clustering performance of the proposed
equilibrium K-means (EKM) on ten real datasets. Four datasets
(Iris, Imbalanced Iris, Wisconsin Diagnostic Breast Cancer
(WDBC), and Imbalanced WDBC) are introduced in detail in
the main text. Herein we supplement the results for the remain-
ing six datasets. They are from the UCI repository (available
at https://archive.ics.uci.edu/datasets), which are: Wine, Ecoli,
Image Segmentation (IS), Htru2, Rice, and Dry Bean. A
detailed description of all ten datasets are summarized in
TABLE SI, ordered according to the imbalance level measured
by CV0, which we will define later. The dataset with a lower
order has a higher CV0 value, indicating a higher imbalance
level. In the “Feature” column of TABLE SI, the format “x (y)”
indicates that the dataset has y features, of which x features
are used for clustering. For instance, the Iris dataset has four
features, of which two are used for clustering. Partial features
are used for the sake of visualizing clustering results. In the
“CV0” column, we calculate the coefficient of variation (CV)
of the dataset to measure the level of data imbalance. CV is
defined as the ratio of the standard deviation to the mean.
Mathematically, given the number of instances in each class
as N1, · · · , NK , we have

CV = std(N)/mean(N),

where

mean(N) =

∑K
k=1 Nk

K
,

and

std(N) =

√∑K
k=1(Nk −mean(N))2

K − 1
.

In general, the larger the CV value, the greater the imbalance
of the data.

Each dataset is normalized so that each feature has zero
mean and unit variance. The number of clusters is assumed to
be equal to the number of classes for all datasets. For the
supplementary six datasets, the smoothness parameter α is
chosen adaptively as follows:

α = 2/d̄0n,

where d̄0n = 1
2

∑N
n=1 ∥xn∥22/N , xn is the n-th data point,

and N is the total number of data points. The value d̄0n
can be interpreted as a data variance after the normaliza-
tion of zero data mean. The normalized mutual information
(NMI), adjusted Rand index (ARI), and clustering accuracy
(ACC) of each algorithm on the ten datasets are presented
in TABLE SII. Bold values indicate the best results. We also
include three metrics: “CV1”, ”DCV” and ”Running time”
for readers’ interest. “CV1” is the CV value of the clustering
result. “DCV” is the difference between CV0 and CV1, i.e.,
DCV = CV0−CV1. A positive DCV value indicates that the
data distribution of the true classes is more imbalanced than
that of the generated clusters, while a negative DCV value

TABLE SI
DETAILED DESCRIPTION OF REAL-WORLD DATASETS

Dataset Instance Feature Class CV0
Iris 150 2 (4) 3 0
IS 2310 19 (19) 7 0

Wine 178 13 (13) 3 0.1939
Rice 3810 7 (7) 2 0.2042

WDBC 569 3 (30) 3 0.3604
Dry Bean 13611 16 (16) 7 0.4951

Imbalanced Iris 120 2 (4) 2 0.9428
Ecoli 336 7 (7) 8 1.1604

Imbalanced WDBC 369 3 (30) 2 1.3222
Htru2 17898 8 (8) 2 1.4142

means the data distribution of the true classes is more uniform
than that of the generated clusters. “Running time” is the sum
of the running time of ten replicates.

We observe that the proposed EKM generally outperforms
the other six algorithms on the last four datasets with CV
values greater than 0.5. EKM outperforms other algorithms on
two of the top six datasets with CV values less than 0.5. On the
rest of the datasets, EKM still has a competitive performance.
Overall, these results demonstrate that EKM is an efficient
clustering algorithm for both balanced and imbalanced data.

https://archive.ics.uci.edu/datasets

2

TABLE SII
EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS ON REAL-WORLD DATASETS

Dataset Measurement HKM FKM MEFC csiFKM siibFKM GMM EKM

Iris

NMI 0.5945 0.5671 0.5194 0.5671 0.5675 0.6775 0.5457
ARI 0.5462 0.5328 0.5291 0.5328 0.5281 0.5354 0.5134
ACC 0.7867 0.7800 0.7933 0.7800 0.7800 0.7000 0.7733
CV1 0.0346 0.0200 0.1217 0.0200 0.1442 0.8902 0.0346
DCV -0.0346 -0.0200 -0.1217 -0.0200 -0.1442 -0.8902 -0.0346

Running time 0.0113 0.0111 0.0305 0.0142 0.1844 0.0715 0.0328

IS

NMI 0.5864 0.5953 0.6222 0.5971 0.5997 0.5657 0.6463
ARI 0.4605 0.4973 0.4995 0.4962 0.3214 0.4456 0.5161
ACC 0.5455 0.6455 0.5944 0.6433 0.5861 0.5641 0.5944
CV1 0.8246 0.2450 0.6433 0.4617 1.0377 0.5037 0.6582
DCV -0.8246 -0.2450 -0.6433 -0.4617 -1.0377 -0.5037 -0.6582

Running time 0.0321 0.4714 0.2616 0.7913 49.5369 1.0463 0.7205

Wine

NMI 0.8759 0.8759 0.8759 0.8610 0.3361 0.8466 0.8920
ARI 0.8975 0.8975 0.8975 0.8804 0.1355 0.8649 0.9134
ACC 0.9663 0.9663 0.9663 0.9607 0.5562 0.9551 0.9719
CV1 0.1242 0.1242 0.1242 0.1219 1.1513 0.1070 0.1403
DCV 0.0696 0.0696 0.0696 0.0720 -0.9574 0.0868 0.0535

Running time 0.0075 0.0153 0.0088 0.0126 1.6469 0.0515 0.0094

Rice

NMI 0.5685 0.5688 0.5699 0.5554 0.5415 0.4891 0.5653
ARI 0.6815 0.6824 0.6833 0.6642 0.6394 0.5649 0.6772
ACC 0.9129 0.9131 0.9134 0.9076 0.9000 0.8759 0.9115
CV1 0.2442 0.2183 0.2309 0.2977 0.3623 0.0163 0.2643
DCV -0.0401 -0.0141 -0.0267 -0.0935 -0.1581 0.1878 -0.0601

Running time 0.0200 0.0438 0.0357 0.1032 2.1275 0.2303 0.0397

WBDC

NMI 0.4920 0.4870 0.5005 0.4423 0.2951 0.4618 0.4906
ARI 0.5844 0.5963 0.6257 0.4402 0.2797 0.5722 0.5340
ACC 0.8840 0.8875 0.8963 0.8366 0.7750 0.8787 0.8682
CV1 0.5990 0.5393 0.4051 0.8227 0.9768 0.2461 0.7133
DCV -0.2386 -0.1790 -0.0447 -0.4623 -0.6164 0.1143 -0.3529

Running time 0.0156 0.0226 0.0171 0.0385 1.7632 0.0894 0.0160

Dry Bean

NMI 0.7138 0.7055 0.7050 0.6990 0.6673 0.7429 0.6859
ARI 0.6687 0.6676 0.6565 0.6607 0.6170 0.6914 0.5792
ACC 0.7865 0.8373 0.7834 0.8001 0.8032 0.8160 0.7478
CV1 0.5616 0.4697 0.5441 0.5154 0.5394 0.5480 0.6385
DCV -0.0666 0.0254 -0.0491 -0.0203 -0.0444 -0.0529 -0.1434

Running time 0.2186 1.3271 0.6290 1.8517 139.5876 3.4712 0.8499

Imbalanced Iris

NMI 0.0001 0.0247 0.0061 0.6414 0.6870 0.9101 0.9101
ARI -0.0053 0.0049 -0.0023 0.7421 0.7865 0.9582 0.9582
ACC 0.5250 0.5500 0.5250 0.9500 0.9583 0.9917 0.9917
CV1 0.1179 0.0471 0.0236 1.0842 1.0607 0.9664 0.9664
DCV 0.8250 0.8957 0.9192 -0.1414 -0.1179 -0.0236 -0.0236

Running time 0.0057 0.0121 0.0142 0.0257 0.1474 0.0146 0.0115

Ecoli

NMI 0.6370 0.5837 0.6087 0.5999 0.6026 0.6015 0.6530
ARI 0.4953 0.4113 0.4704 0.4176 0.4468 0.6149 0.5202
ACC 0.6310 0.5863 0.6190 0.6012 0.6012 0.6964 0.6458
CV1 0.6871 0.4671 0.7517 0.4482 0.7770 1.0893 0.7001
DCV 0.4733 0.6933 0.4087 0.7123 0.3835 0.0711 0.4604

Running time 0.0255 0.2672 0.0760 0.1770 5.3315 0.1939 0.0886

Imbalanced WBDC

NMI 0.0966 0.0848 0.0828 0.6846 0.3893 0.3038 0.6907
ARI 0.0337 0.0184 0.0158 0.7855 0.5156 0.3323 0.8308
ACC 0.6260 0.5827 0.5745 0.9892 0.9539 0.9051 0.9892
CV1 0.2644 0.1418 0.1188 1.3529 1.2073 1.0540 1.3069
DCV 1.0578 1.1804 1.2034 -0.0307 0.1150 0.2683 0.0153

Runing time 0.0141 0.0234 0.0094 0.0959 1.2488 0.0870 0.0535

Htru2

NMI 0.4068 0.4101 0.4076 0.0547 0.3854 0.2611 0.5869
ARI 0.6071 0.5798 0.6076 0.0217 0.5967 0.3504 0.7331
ACC 0.9366 0.9253 0.9366 0.9097 0.9428 0.8473 0.9660
CV1 1.0891 1.0125 1.0882 1.4107 1.1813 0.7805 1.2342
DCV 0.3251 0.4017 0.3260 0.0035 0.2329 0.6337 0.1800

Running time 0.0825 0.2913 0.1094 2.0558 68.3254 0.4956 0.1119

	Introduction
	Existing Efforts to Overcome Uniform Effect
	Our Contributions
	Organization

	K-Means and Its Variations
	The Hard K-Means Algorithm (Lloyd's Algorithm)
	The Uniform Effect of K-Means
	The Fuzzy K-Means Algorithm (Bezdek's Algorithm)
	Maximum-Entropy Fuzzy Clustering

	Smooth K-Means - A Unified Framework
	Objective of Smooth K-Means
	The Relationship Between SKM and GMM
	Three Common Smooth Minimum Functions
	Clustering by Minimizing Smoothed WCSS
	The relationship between LogSumExp and Maximum-Entropy Fuzzy Clustering
	Towards Lloyd's algorithm
	Lloyd's algorithm and Newton's method
	The relationship between p-Norm and fuzzy K-means

	From Boltzmann Operator to A Novel Clustering Algorithm
	Physical Interpretation of Equilibrium K-Means
	Membership Defined in Equilibrium K-Means
	Convergence of Smooth K-Means

	Comparison of Different Smoothed Objectives
	Case Study
	The Analysis of EKM's Effectiveness on Imbalanced Data
	The Choice of

	Numerical Experiments
	Datasets
	Synthetic 2-D Ball
	Synthetic 2-D Noisy Ball
	Fisher's Iris Data
	Imbalanced Fisher's Iris Data
	Wisconsin Diagnostic Breast Cancer
	Imbalanced Wisconsin Diagnostic Breast Cancer
	Color-based image segmentation

	Discussion of Results

	Deep Clustering
	Optimization Procedure
	Clustering Performance on MNIST

	Conclusion
	Appendix A: Proof of Theorem 1
	References

