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Abstract

The high temperatures reached in a proto-neutron star or during the post-merger phase of a binary neutron star coalescence lead to
non-negligible thermal effects on the equation of state (EOS) of dense nuclear matter (NM). Here we study these effects within the
covariant density functional theory employing the posteriors of a Bayesian inference, which encompasses a large sample of EOS
models. Different densities and temperatures are considered. We find that for a number of quantities thermal effects are strongly
correlated with the Dirac effective mass (m∗) of the nucleons and/or its logarithmic derivative as a function of density. These results
can be explained within the low temperature approximation though they survive beyond this limit.
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1. Introduction

Numerical simulations of core-collapse supernovae and the
subsequent evolution of the proto-neutron star into a mature
cold neutron star (NS), simulations of the formation of stellar
black holes and of binary neutron star (BNS) mergers require
detailed knowledge of the equation of state (EOS) over wide
domains of baryon number density 10−14 fm−3 ≲ nB ≲ 2 fm−3,
temperature 0 ≤ T ≲ 100 MeV and electron fraction 0 ≤ Ye ≲
0.6 [1, 2].

More than a hundred different EOS models considering non-
zero temperatures have been developed so far, see, e.g., those
available in tabulated form on CompOSE [3, 4]1. The huge ma-
jority of them rely either on a non-relativistic potential model
or on the covariant density functional (CDF) theory to describe
dense nuclear matter (NM). They assume that the effective in-
teractions have the same functional form at zero and finite tem-
peratures.

In default of constraints from nuclear experiments, and await-
ing third generation gravitational wave detectors which might
be able to constrain thermal effects in the post-merger phase of
a BNS, see, e.g., Ref. [5], insights into the thermal behavior of
NM can be gained by confronting the predictions of available
models against each other and by comparison with ab initio cal-
culations. Pioneering works of Constantinou et al. [6, 7] have
proved that, in non-relativistic potential models, the thermal re-
sponse functions are controlled by the Landau effective masses
of the nucleons and their derivatives with respect to density.
This feature has, for instance, been used to assess the impor-
tance of thermal effects in the post-merger remnant in Ref. [8].
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Models with finite range interactions have been further shown
to present traits distinct from those obtained by models with
zero-range interactions [7, 9]. Non-relativistic models with finite-
and zero-range interactions differ in the predictions for the spe-
cific heat at constant volume (CV) and the thermal index (Γth)
as functions of density. While Skyrme models predict for CV
a behavior similar to the one of free Fermi gases, where the
maximum value of 1.5 is obtained for vanishing densities, non-
relativistic models with more involved momentum dependen-
cies lead to a non-monotonic behavior of CV as a function of
density, with a maximum, in excess of 1.5, occurring at fi-
nite density. Besides, in standard Skyrme models Γth has a
strong and monotonic increase with the density, while in models
with finite range interactions it is almost flat. All these differ-
ences originate from the differences in the density dependence
of effective masses which, for finite-range interactions, also de-
pend on temperature [9]. Qualitative differences among non-
relativistic and CDF-based models are obvious in the density
dependence of thermal contributions to pressure (p) and chem-
ical potential (µ) as well as in the density dependence of the
thermal index. The thermal contribution to a state variable is
defined as the difference between the values that the quantity
takes at finite and zero temperatures, i.e. Xth = X(T,n,Yp)−
X(0,n,Yp), where n is the density and Yp = Ye is the proton
fraction. The thermal index, Γth = 1+ pth/eth, quantifies the de-
parture from the ideal gas behavior (eth stands for the thermal
energy density). Non-relativistic models predict for pth and µth
a steep (zero-range interactions) or gentle (finite-range interac-
tions) increase with the density, while in CDF models these two
quantities reach their maxima at finite densities and then satu-
rate. The latter feature entails a strong decrease of Γth at high
densities. Analytic formulas derived at next-to-leading order
in an expansion in temperature have further shown that, for all
these types of models, temperature corrections to thermal state
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variables can be expressed in terms of the level density param-
eter, Fermi momentum, effective mass and its derivative with
respect to density [9]. The sophistication degree of the model
gets reflected into the complexity of these formulas. The sim-
plest expressions correspond to Skyrme interactions.

Ref. [10] systematically confronted the thermal behavior
of a selection of mean field models frequently used in astro-
physical numerical simulations. It came out that constrain-
ing a Skyrme potential to reproduce the density dependence
of the effective mass in ab initio models results in a thermal
behavior deviating from the one of standard models, see, e.g.,
the high density increase of eth and related decrease of Γth of
NRAPR [11] in Ref. [10]. On the other hand, the thermal re-
sponse of CDF models has been shown to strongly depend on
the mesonic couplings, with pth being the most affected quan-
tity. The role of non-nucleonic degrees of freedom has been
further investigated in Ref. [12], whose most preeminent results
are the increase (decrease) of thermal energy density (pressure)
with the number of species and the fact that, under certain con-
ditions, the thermal pressure (pth) can become negative. The
analytic intractability of CDF models and the temperature de-
pendence of Dirac effective mass along with the usage of mod-
els with different types of couplings, i.e., density-dependent,
non-linear, mixed, nevertheless prevented Ref. [10] from easily
tracking the “ingredients” which govern the thermal behavior
of NM in CDF models, as has been done for the non-relativistic
ones [6, 7].

The aim of this letter is to bridge this gap and verify numer-
ically some of the assumptions done in the analytical calcula-
tions in Ref. [9]. The thermal behavior is studied for a large
sample (105) of EOS models belonging to run 1 in Ref. [13].
These models assume only nucleonic degrees of freedom, rely
on a modified version of the CDF model with simplified den-
sity dependent couplings [14] and have been generated within a
Bayesian approach. The latter aspect is essential for a thorough
sampling of the huge parameter space of this kind of model.
Compliance with most current constraints available for cold
matter at various densities and isospin asymmetries is fulfilled
by accounting for information from nuclear physics, ab initio
calculations of pure neutron matter and observations of NSs,
for details see Ref. [13]. Throughout this paper natural units
will be used (ℏ = kB = c = 1).

2. The model

2.1. CDF

The theoretical framework implemented in this work is the
CDF theory with density dependent couplings [15, 16]. Nu-
cleons are treated as fundamental particles and the interaction
is described by the exchange of σ-, ω- and ρ-“mesons”. The
name of the meson thereby determines the quantum numbers
for the interaction channel. For the sake of brevity in the fol-
lowing we provide only the most relevant information. Note
that, in spite of being omitted in the equations, the contribution
of anti-particles is accounted for in the numerical calculations.

At finite temperature (T ) the scalar and number densities of
nucleons (i = n,p) are given by

ns
i =

1
π2

∫ ∞

o
dkk2 m∗i

Ei(k)
fFD

(
Ei(k)−µ∗i

)
, (1)

ni =
1
π2

∫ ∞

o
dkk2 fFD

(
Ei(k)−µ∗i

)
, (2)

where k and Ei(k) =
√

k2+m∗2i stand for the wave number and
kinetic part of the single particle energy, respectively. The Dirac
effective masses (m∗i ) and effective chemical potentials (µ∗i ) are
related to the nucleon mass (mN) and the chemical potential (µi)
via m∗i = mN −gσiσ̄ and µ∗i = µi −gωiω̄−gρit3iρ̄−ΣR, where M̄
and gMi represent the mean field expectation value of the cor-
responding field M = σ,ω,ρ and its coupling to the nucleon i;
t3i represents the third component of isospin of species i with
the convention that t3p = 1/2; ΣR is the “rearrangement” term;
fFD (x) = 1/

[
1+ exp(x/T )

]
represents the Fermi-Dirac distribu-

tion function.
The energy density and pressure can be cast as sums of a

kinetic term, an interaction term and, in the case of pressure,
also a “rearrangement” term,

e = ekin+ eint, (3)
p = pkin+ pint+ prearrang. (4)

The kinetic terms in eqs. (3) and (4) account for the kinetic
contributions of all species,

ekin =
∑
i=n,p

1
π2

∫ ∞

0
dkk2Ei(k) fFD

(
Ei(k)−µ∗i

)
, (5)

pkin =
1
3

∑
i=n,p

1
π2

∫ ∞

0

dkk4

Ei(k)
fFD

(
Ei(k)−µ∗i

)
. (6)

The interaction terms exclusively depend on mean field ex-
pectation values of the mesonic fields

eint =
m2
σ

2
σ̄2+

m2
ω

2
ω̄2+

m2
ρ

2
ρ̄2, (7)

pint = −
m2
σ

2
σ̄2+

m2
ω

2
ω̄2+

m2
ρ

2
ρ̄2, (8)

with mM representing the mass of meson M.
The “rearrangement” term in eq. (4) is given by

prearrang = nΣR = n
∑
i=n,p

(
∂gωi

∂ni
ω̄ni+ t3i

∂gρi
∂ni
ρ̄ni−

∂gσi

∂ni
σ̄ns

i

)
(9)

and arises from the density dependence of the couplings. It is
essential for thermodynamic consistency.

The mean-field expectation values of the meson fields are
given by

m2
σσ̄ =

∑
i=n,p

gσins
i , m2

ωω̄ =
∑
i=n,p

gωini, m2
ρρ̄ =

∑
i=n,p

gρit3ini.

(10)

Computed from the thermodynamic identity T s = e+ p−∑
i µini, the entropy density takes the form:

s =
ekin+ pkin−

∑
i=n,p µ

∗
i ni

T
. (11)
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Table 1: Values of selected nuclear matter (NM) parameters corresponding to
the EOS models used in this work. Provided are the saturation density (nsat);
energy per nucleon (Esat), compression modulus (Ksat), skewness (Qsat) and
kurtosis (Zsat); the symmetry energy (Jsym), its slope (Lsym), compressibil-
ity (Ksym), skewness (Qsym) and kurtosis (Zsym); Dirac effective mass of the
nucleons (m∗sat), all values given for symmetric nuclear matter (SNM) at nsat.
Columns 3 and 4 list the medians and the 68% confidence interval (CI) of 105

EOS models in the DDB∗ set, which corresponds to run 1 in Ref. [13]. Charac-
teristics of models with extreme values of m∗sat are itemized on columns 5 and
7, respectively. Column 6 corresponds to a model with an intermediate value of
m∗sat.

Par. Unit Median 68% CI DDB∗min DDB∗med DDB∗max

nsat fm−3 0.153 +0.0049
−0.0049 0.147 0.152 0.160

Esat MeV −16.1 +0.2
−0.2 −15.7 −15.9 −15.7

Ksat MeV 247 +33
−28 344.5 228.7 195.9

Qsat MeV −39.9 +160
−130 153.9 −124.5 −268.2

Zsat MeV 1360 +410
−830 −3756.3 1258.5 1985.2

Jsym MeV 32.1 +1.8
−1.8 32.6 33.9 33.7

Lsym MeV 42.3 +15
−13 47.8 59.8 87.8

Ksym MeV −105 +27
−24 −86.1 −129.5 −34.3

Qsym MeV 932 +360
−420 605.6 556.1 74.8

Zsym MeV −6440 +3100
−3800 −8225.5 −3087.0 −765.5

m∗sat mN 0.657 +0.041
−0.045 0.516 0.648 0.751

2.2. EOS models
For our analysis, we investigate dense matter at finite tem-

perature within each of the 105 EOS models in run 1 of Ref. [13],
hereafter dubbed DDB∗, and which has been obtained within a
Bayesian approach.

For information, the values of some selected NM parame-
ters corresponding to the set DDB∗ of EOS models are provided
in Table 1. The large dispersions in the values of the higher or-
der parameters Qi, Zi are representative of current uncertainties
in the behavior of the EOS at high densities, see, e.g., Refs. [17–
19]. Values of NM parameters for three particular EOS mod-
els within the set are listed, too. Two of them correspond to
EOS models with extreme values of the nucleon Dirac effec-
tive mass at nsat; the third model corresponds to a EOS model
with an intermediate value of m∗sat. The criterion by which the
first of these models have been selected explains why their val-
ues of Ksat and Lsym fall outside the domains recommended in
Refs. [1, 17] even if this is of no relevance for the present work.

2.3. Sommerfeld pseudo-expansion
In non-relativistic potential models [6], for a given density

and composition, the temperature dependence and, thus, ther-
mal effects arise exclusively from the kinetic contributions. In
CDF models, the only explicit T -dependence arises from the ki-
netic contributions, too, but there is an additional implicit tem-
perature dependence via the effective masses, the scalar mesonic
field in the interaction terms and, for pressure, the “rearrange-
ment” term. All these latter quantities thus contribute to the
thermal effects, too.

Figure 1: Correlations between the nucleon effective mass (m∗) and effective
chemical potential (µ∗) in SNM for various thermodynamic conditions. Models
correspond to the DDB∗ set of effective interactions.

In order to understand these effects in the different EOS re-
lated quantities, we will now consider a low temperature expan-
sion of the EOS. At low temperatures (T ≪ µ∗ −m∗) integrals
involving the Fermi-Dirac distribution function can be cast into
a series of even powers of T using the so-called Sommerfeld
expansion. In the case of CDF models, this expansion has the
generic form:

I =
∫ ∞

0
G(e) fFD

(
e−µ∗

)
de

≈

∫ µ∗

0
G(e)de+

π2

6
T 2 dG

de

∣∣∣∣∣
e=µ∗
+

7π4

360
T 4 d3G

de3

∣∣∣∣∣∣
e=µ∗
+ ... ,

where G depends on m∗ and both m∗ and µ∗ depend on tempera-
ture. This means that in this limit all quantities whose structure
fits the one in the equation above can be expressed in terms of
m∗, µ∗ and T only. We emphasize that due to the T -dependence
of m∗ and µ∗ our following discussion regarding the terms of
different orders in temperature is not strictly accurate as the T -
dependence of m∗ and µ∗ is not considered in the expansion
(hence, pseudo-expansion).

The expressions for the resulting low T expansions for par-
ticle number density, scalar density, density of kinetic energy,
kinetic pressure, entropy density and specific heat within CDF
models are provided in Appendix A.

Considering now that m∗ and µ∗ are strongly correlated, see
Fig. 1, thermal effects are governed by only one quantity in
addition to T itself, which is conveniently chosen to be m∗. This
figure also shows that m∗ increases with T whereas µ∗ decreases
with T ; T -effects on µ∗ and m∗ are equally important.

The validity of the low-T approximation is investigated in
Fig. 2, where thermal contributions to kinetic energy density,
kinetic pressure and interaction energy density are plotted as a
function of T . The results of eqs. (A.3) and (A.4) are compared
with those of eqs. (5) and (6). In the interaction energy, for
a given density and composition thermal effects arise due to
the dependence on the scalar density. We thus show results for
eint;th, with ns

i provided by eq. (A.2), and those obtained when
eq. (1) is used instead. For this comparison, we have considered
symmetric nuclear matter (SNM) with n = 0.15 fm−3 and n =

3
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Figure 2: Test of validity of the low-T approximation. Thermal kinetic en-
ergy density (ekin;th), thermal kinetic pressure (pkin;th) and thermal interaction
energy density (eint;th) are represented as functions of temperature in bottom,
middle and top panels, respectively. Solid lines are used to illustrate the pre-
dictions of eqs. (5), (6) and (7) with ns

i computed according to eq. (1); pre-
dictions of eqs. (A.3), (A.4) and (7) with ns

i computed according to eq. (A.2)
are depicted with dashed lines. Left and right panels correspond to SNM with
n= 0.15 fm−3 and n= 0.45 fm−3, respectively. EOS models under consideration
are DDB∗min, DDB∗med and DDB∗max.

0.45 fm−3, and show results for the three models in Table 1,
with minimum, maximum and intermediate values of m∗sat.

The following aspects are worth noticing: i) for fixed T ,
thermal effects depend on m∗, ii) the validity domain of the low-
T approximation shrinks with m∗, iii) for a fixed temperature,
m∗ effects on eint; th are more pronounced than on ekin; th, iv)
ekin; th and pkin; th are positive and increase with T , v) eint; th =

m2
σ[σ̄2(T )− σ̄2(T = 0)]/2 = −pint; th is negative and its absolute

value increases with T , vi) |eint; th| < ekin; th and the higher the
temperature the less important the contribution of interactions,
vii) pint; th ≈ pkin; th.

These results can be understood considering that the predic-
tions of eqs. (A.2)–(A.4) are the result of the interplay among
the different terms entering the low-T expressions. For the ther-
modynamic conditions considered here the terms without ex-
plicit T -dependence in ns, ekin and pkin decrease with T while
those ∝ T 2 increase with T . The terms ∝ T 4 do not present a
universal behavior. In particular, the contribution to pkin can be
increasing or decreasing. This means that even if each of these
terms increases with m∗, since they are alternating, their sum
does not necessarily increase. The opposite T -dependence of
terms without explicit T -dependence and ∝ T 2 in ns explains
why the m∗-dependence of eint; th is not the same at low and
high densities. The reduced validity domain of the low-T ap-

proximation in models with large m∗ is merely due to the much
steeper increase of the terms ∝ T 2, especially for ns and ekin.
For DDB∗med and DDB∗max the high temperatures bending
of pkin; th computed according to eq. (A.4) is caused by the de-
crease with T of the term ∝ T 4.

3. Thermal effects on state variables, thermal coefficients
and speed of sound

Let us now consider the full set of EOS models and inves-
tigate thermal effects for different quantities. As above, only
SNM will be considered. Generalization to NM with various
degrees of isospin asymmetry, i.e., neutron to proton ratios, is
straightforward.

Figs. 3, 4 and 5 show different thermal quantities as func-
tions of m∗ with the aim of identifying potential correlations.
Correlations with

q =
m∗2

µ∗2

(
1−

3n
m∗

dm∗

dn

)
, (12)

that appears in the Constantinou’s et al. next to leading order
corrections to thermal state variables [9], e.g., pth, µth, CP, are
examined in Figs. 6, 7 and 8. Please note that at variance with
Ref. [9], we consider here the finite-T values of m∗ and µ∗.
This choice takes into account the small increase of m∗ with
temperature (at T = 50 MeV: ∼ 2% to 8% depending on the
model). In particular, we noticed that the stronger increase of
m∗ with temperature corresponds to the models with low val-
ues of m∗(T = 0). While not illustrated here, correlations with
the zero-temperature values of m∗ and q have been analyzed,
too, and found to be qualitatively quite similar and of compa-
rable strength as those depicted here. This result is not surpris-
ing given the magnitude of the above-mentioned increase of m∗

with temperature. Largely different thermodynamic conditions
are considered:

I (n = 0.15 fm−3, T = 20 MeV)
II (n = 0.15 fm−3, T = 50 MeV)

III (n = 0.60 fm−3, T = 20 MeV)
IV (n = 0.60 fm−3, T = 50 MeV)

The third set of conditions (III) thereby lies within the valid-
ity domain of the low-T approximation for all EOS models,
whereas the others do not.

The different quantities we are studying here are the thermal
energy density (eth), thermal pressure (pth), thermal chemical
potential (µth;N), entropy per baryon (S/A), thermal index (Γth),
heat capacities per nucleon at constant volume

CV = T
(
∂ (S/A)
∂T

)∣∣∣∣∣∣
V,{Ni}

, (13)

and at constant pressure

Cp = T
(
∂ (S/A)
∂T

)∣∣∣∣∣∣
P,{Ni}

=CV+
T
n2

(
∂P
∂T

∣∣∣
n

)2

∂P
∂n

∣∣∣
T

; (14)

4
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Figure 3: Joint probability density plots for eth, pth and µN;th vs m∗ for the case of SNM under different thermodynamic conditions, as mentioned in each panel.
DDB∗ set of EOSs.
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Figure 4: The same as in Fig. 3 but for S/A, CV and CP.
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Figure 5: The same as in Fig. 3 but for Γth, ΓS and c2
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Figure 6: Joint probability density plots for eth, pth and µN;th vs q, eq. (12), for the case of SNM under different thermodynamic conditions, as mentioned in each
panel. DDB∗ set of EOSs.
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Figure 7: The same as in Fig. 6 but for S/A, CV and CP.
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Figure 8: The same as in Fig. 6 but for Γth, ΓS and c2
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adiabatic index,

ΓS =
∂ ln P
∂ lnn

∣∣∣∣∣
S
=

CP

CV

n
P
∂P
∂n

∣∣∣∣∣
T

; (15)

and speed of sound squared (in units of squared speed of light)

c2
S =

dP
de

∣∣∣∣∣
S ,A,Yp

= ΓS
P

e+P
. (16)

In eqs. (13) – (16) S , V , Ni and A denote the total entropy,
volume, total number of i-particles and total number of particles
A =

∑
i Ni.

For all thermodynamic conditions, eth, S/A and CV per-
fectly scale with m∗. eth and S/A feature strong, positive and
almost linear correlations with m∗. Yet, this almost perfect scal-
ing of eth with m∗ is, in fact, an out-turn of a complicated in-
terplay between ekin; th and eint; th. The latter quantities manifest
strong correlations with m∗, too. The sign of these correlations
is opposite for ekin; th and eint; th and, moreover, changes with the
density. Within the validity domain of the low-T approximation
the behavior of eth, S/A and CV is perfectly understandable.
The results corresponding to n = 0.15 fm−3 show that these cor-
relations survive even beyond the domain of validity of that
approximation. The situation of CV is particularly interesting
as the shape and sign of the correlation changes. This is at-
tributable to the behavior of ekin; th and eint; th mentioned above.
For condition II, CV has values in excess of 1.5. While the same
happens in the case of non-relativistic models with finite-range
interactions [7], here the explanation might be different. Condi-
tion II approaches the limit of a relativistic ideal gas, for it CV
can exceed the value of 1.5. Whenever the degenerate gas limit
is approached, i.e., at low temperatures, S/A ≃CV ≃CP, which
is confirmed for condition III, see Fig. 4. For large n-values,
strong and positive correlations between CP and m∗ occur also
at high temperatures. The fact that the correlations between pth
and m∗ are weaker than the correlations between eth and m∗ is
attributable to the “rearrangement” term. Indeed, pkin; th and
pint; th show strong correlations with m∗ that, as it is the case of
ekin; th and eint; th, change sign with the density. However, the ex-
tra dependencies introduced by the couplings and their density
derivatives result in a “scattering” of the pth dependence on m∗.
We note that correlations between pth and m∗ manifest only at
high densities. A sizable dependence of µn;th on m∗ manifests
as well, though it qualitatively changes with n and T .

A number of strong correlations with q occur as well, see
Figs. 6, 7 and 8. Those involving pth and µth;N at (n = 0.6 fm−3,
T = 20 MeV) are expected given that in this case the system
is close to being degenerate [9]. In this limit non-negligible
positive correlations among q and eth; S/A; CV; CP are to be
noticed as well. The remaining panels show that some of those
correlations, e.g., q−µth;N, persist even outside the validity do-
main of the low-T approximation. Particularly interesting is the
case of Γth, for which a strong positive linear correlation with
q is obtained under all circumstances. With the exception of
(n = 0.15 fm−3, T = 20 MeV) this result can be ascribed to the
good correlations between q and eth; pth. At n = 0.15 fm−3, a
clear correlation exists between q and c2

S. This means that at

finite temperatures the EOS stiffness around saturation density
is regulated by the density dependence of m∗.

4. Summary

In this work, we have addressed the EOS dependence of
finite-T effects in hot and dense matter built within a CDF frame-
work with density dependent couplings. 105 EOS models pre-
viously generated within a Bayesian approach [13] to cold NM
have been employed. They comply with current constraints
from nuclear physics, ab initio calculations of pure neutron mat-
ter and NS observations and ascertain a thorough sampling of
the parameter space of this type of EOS models. Note that other
constraints from nuclear structure or heavy ion collisions could
be used to constrain cold NM. While this might change the NM
and NS properties, we do not expect any strong impact on our
finite temperature conclusions.

We found that thermal contributions to state variables and
thermal coefficients depend mainly on the Dirac effective mass
of the nucleons, with the thermal energy density and entropy per
baryon showing very strong correlations. This behavior can be
understood within the low-T approximation but extends beyond
its validity domain. While the specific heat at constant volume
also shows a strong correlation with m∗, the sign of this correla-
tion changes with thermodynamic conditions. Correlations be-
tween µN;th, Γth, ΓS and q have been identified as well. All these
correlations consider the values that m∗ and q take at finite-T .
Correlations of similar shapes and strengths have been found
with the T = 0 values of m∗ and q. Such correlations have been
previously discussed by Constantinou et al. [9], who carried
out a full Sommerfeld expansion, i.e., an expansion in actual
powers of T . Note, however, that to obtain such elegant expres-
sions, Constantinou et al. [9] have assumed that the variation of
m∗ with temperature can be neglected compared to the varia-
tion of µ∗. We have explicitly verified that these variations are,
in fact, comparable. Nevertheless, we observed that the correla-
tion patterns are robust with respect to switching between zero
and finite temperature values of m∗ and q. This behavior may be
seen as the trivial consequence of the relatively small tempera-
ture effects on m∗. From this perspective, our numerical study
complements the work done in Ref. [9] and checks its validity
under wider thermodynamic conditions. We expect all the cor-
relations found here to manifest also in other versions of CDF
models. It remains nevertheless to check what exactly deter-
mines the magnitude of finite temperature effects and whether
effects stronger than those seen here are realistic.

Numerical simulations of the dynamics of core-collapse su-
pernovae performed with non-relativistic Skyrme-like EOS mod-
els showed that the Landau effective mass governing the ther-
mal effects impacts the contraction of the proto-NS and the
neutrino and gravitational wave signals [20–22], as well as the
evolution of proto-NS in failed core-collapse supernovae and
subsequent formation of black holes [23]. Numerical simula-
tions of the post-merger dynamics of a BNS have been car-
ried out too, establishing links between m∗, the properties of
the merger and those of the GW signal [8, 24]. These BNS
simulations have employed either Skyrme-like EOS models or
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a phenomenological model of the density dependence of the
effective mass [25]. The common feature of all these simula-
tions is that they use parameterized effective interactions that
allow independent tuning of various NM parameters and disre-
gard the T -dependence of m∗. We conjecture that a similar sen-
sitivity to the Dirac effective mass and its density dependence
will manifest should simulations with EOSs derived within the
CDF approach be done. What remains to be tested is whether
the T -dependence of m∗ enhances the m∗ sensitivity of dynam-
ical astrophysics phenomena. Confrontation with the results
produced by using EOSs derived within dissimilar theoretical
frameworks, e.g., relativistic vs non-relativistic mean field, will
be beneficial in many respects. First, this will help to verify the
robustness of the finite-T imprints on observational signatures
of EOS. Then, it will contribute to assess the uncertainties re-
lated to hot matter properties and their importance with respect
to uncertainties related to cold matter, which is an important
question to answer in connection with ongoing planning for fu-
ture GW detectors.
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Appendix A. The low temperature expansion for CDF

In this limit, the CDF expressions for particle number den-
sity, scalar density, density of kinetic energy, kinetic pressure
and entropy density take the forms:

π2n (T ) =
∫ ∞

0
de

√
e2+2em∗

(
e+m∗

)
fFD

(
e− (µ∗−m∗)

)
≈

1
3

(
µ∗2−m∗2

)3/2
+
π2T 2

6
2µ∗2−m∗2√
µ∗2−m∗2

(A.1)

+
7π4T 4

360
3m∗4(

µ∗2−m∗2
)5/2 ,

π2

m∗
ns (T ) =

∫ ∞

0
de

√
e2+2em∗ fFD

(
e− (µ∗−m∗)

)
≈
µ∗

2

√
µ∗2−m∗2−

m∗2

2
ln

 √
µ∗2−m∗2

m∗
+
µ∗

m∗

 (A.2)

+
π2T 2

6
µ∗(

µ∗2−m∗2
)1/2 +

7π4T 4

360
3m∗2µ∗(
µ∗2−m∗2

)5/2 ,

ekin (T ) =
1
π2

∫ ∞

0
de

(
e+m∗

)2
√

e2+2em∗ fFD
(
e− (µ∗−m∗)

)
≈
µ∗

8π2

(
2µ∗2−m∗2

) √
µ∗2−m∗2

−
m∗4

8π2 ln

 √
µ∗2−m∗2

m∗
+
µ∗

m∗

 (A.3)

+
1
6

T 2
µ∗

(
3µ∗2−2m∗2

)
(
µ∗2−m∗2

)1/2

+
7π2

120
T 4µ∗

2µ∗4−5m∗2µ∗2+4m∗4(
µ∗2−m∗2

)5/2 ,

pkin (T ) =
1

3π2

∫ ∞

0
de

(
e2+2em∗

)3/2
fFD

(
e− (µ∗−m∗)

)
≈
µ∗

24π2

(
2µ∗2−5m∗2

) √
µ∗2−m∗2

+
1

8π2 m∗4 ln

 √
µ∗2−m∗2

m∗
+
µ∗

m∗

 (A.4)

+
1
6

T 2µ∗
(
µ∗2−m∗2

)1/2

+
7π2

360
T 4µ∗

2µ∗2−3m∗2(
µ∗2−m∗2

)3/2 ,

s =
T
3
µ∗

√
µ∗2−m∗2+

7π2T 3

90
µ∗

2µ∗2−3m∗2(
µ∗2−m∗2

)3/2 . (A.5)

The first terms in eqs. (A.1) and (A.2) along with the sums
of the first two terms in eqs. (A.3) and (A.4) have the same func-
tional forms as at zero temperature. The values of µ∗ and m∗

are nevertheless different. Indeed, the T - and n-dependencies
of these two quantities have been omitted for notational sim-
plicity.

From eq. (A.5) one can compute the specific heat at constant
volume,

cV = T
∂s
∂T

∣∣∣∣∣
{Ni},V

(A.6)

=
T
3
µ∗

√
µ∗2−m∗2+

T 2

3
∂µ∗

∂T

∣∣∣∣∣
{ni}

√
µ∗2−m∗2

+
T 3π2

90
µ∗

22µ∗2−53m∗2(
µ∗2−m∗2

)3/2 . (A.7)

Here V , Ni stand for the total volume and total number of par-
ticles belonging to the i-species. We see that, up to the lowest
order in T , cV = s; this result is identical to the degenerate limit
of a Fermi gas. To cast eq. (A.7) we have used the relation

m∗
∂m∗

∂T

[
µ∗2−m∗2

π2 −
m∗2

6
(
µ∗2−m∗2

)T 2
]
=

µ∗
∂µ∗

∂T

[
µ∗2−m∗2

π2 +
2µ∗2−3m∗2

6
(
µ∗2−m∗2

)T 2
]

(A.8)

+
T
3

(
2µ∗2−m∗2

)
+

7π2

30
T 3 m∗4(
µ∗2−m∗2

)2 ,
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which was obtained from eq. (A.1) by requiring that ∂n/∂T = 0
and keeping terms up to the third order in T .
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