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Artificial monopoles have been engineered in various systems, yet there has been no systematic
study of the singular vector potentials associated with the monopole field. We show that the
Dirac string, the line singularity of the vector potential, can be engineered, manipulated, and made
manifest in a spinor atomic condensate. We elucidate the connection among spin, orbital degrees of
freedom, and the artificial gauge, and show that there exists a mapping between the vortex filament
and the Dirac string. We also devise a proposal where preparing initial spin states with relevant
symmetries can result in different vortex patterns, revealing an underlying correspondence between
the internal spin states and the spherical vortex structures. Such a mapping also leads to a new
way of constructing spherical Landau levels, and monopole harmonics. Our observation provides
insights into the behavior of quantum matter possessing internal symmetries in curved spaces.

Introduction — Despite of the lack of unambigu-
ous experimental evidence for their existence, magnetic
monopoles have a central place in our understanding of
quantum matter and modern cosmology [1-4]. Remark-
ably, recent theories and experiments have provided am-
ple evidences for the emergence of artificial monopoles
in various physical systems [5-16]. It is well known that
the vector potential associated with the monopole field
contains line singularities (known as Dirac strings) that
terminate at the monopole, even though the monopole
magnetic field itself is smooth everywhere (except at the
position of the monopole) [17]. This does not pose any
problem as the vector potential, unlike the field, is not
“real” in the sense that it cannot be directly measured.
This is also reflected in the fact that the positions of these
Dirac strings are gauge dependent.

This conventional wisdom, however, is not necessar-
ily true in systems with artificial gauge fields. In such
systems, one often directly realizes and controls the ar-
tificial gauge potential, rather than the associated ‘mag-
netic’ field, rendering the former directly measurable. In-
deed, the physical effects of artificial gauge potentials on
time-of-flight images of cold atoms have been reported in
several experiments [18-22].

One widely used platform to realize artificial gauge
field is spinor Bose-Einstein Condensates (BECs). When
the atomic spin [23] adiabatically follows an external
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FIG. 1. Conceptual plot showing the connection among spin,
orbit degrees of freedom, and the artificial gauge field.

magnetic field, the system accumulates a geometric
phase [24], which induces an artificial gauge potential
governing the spatial wave function; a manifestation
of the spin-orbit coupling. If the atoms occupy a
spatial region that contains a degenerate point with
vanishing magnetic field, the artificial gauge potential
can develop a line singularity, which can be regarded
as an analog of the Dirac string and a consequence of
the local spin-gauge symmetry [9, 25]. The purpose of
this work is to elucidate the relationship among spin,
orbit and the artificial gauge field. As conceptually
represented in Fig. 1, through the spin-orbit coupling
and the spin-gauge symmetry, there exists a mapping
between the vortex filament and the Dirac string. This
directly leads to a novel adiabatic scheme for preparing
vortex configurations on a sphere where some initial
spin state is prepared for the spinor condensate, and
then the artificial magnetic field strength is turned on
adiabatically. As a result of conservation of the total
angular momentum, some of the initial spin angular mo-
mentum is transferred to the orbital degrees of freedom,
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resulting in the formation of vortices. Preparing different
initial spin states can therefore result in different vortex
patterns. From the point of view of the artificial gauge
field, this amounts to different gauge choices that lead
to different Dirac strings.

Spin, vortex, and Dirac strings — Let us consider
a spin-F atom of mass M confined in an isotropic har-
monic trapping potential with frequency w, subjected to
a hedgehog magnetic field B(r) « 7. The realization
of the hedgehog field has been proposed in our earlier
work [26]. Working in units where h = M = w = 1, the
single-particle Hamiltonian of the system reads
2 2
Ho(r) = -~ 4+ _ari . F. (1)
2 2
Here « characterizes the strength of the hedgehog field,
which we assume can be dialled from zero to large val-
ues. In the limit of large field strength ar, the lowest
spin state follows the local magnetic field and satisfies
(7 - F)|F;) = F|Fp), where |Fz) can be obtained from
|Fz) (the spin state polarized along the z-axis) via rota-
tions: |Fp) = e 2= |F,). Here 0 and ¢ are the
polar and azimuthal angles respectively. The total wave
function, ¥(r), can be written as ¥(r) = ¢(r)|Fz), with
the effective Hamiltonian of the scalar wave function ()
being:

a2F2
2

= %(—z’V—FA)Q + %(r—aF)Q v 2 (2)

Heff + 27‘2 N

Here the effective vector potential A = i(F:|VEF:) =
é, Fcosf/(rsinf) reflects a ‘magnetic’ monopole (of
magnetic charge F') at the origin. Furthermore, the last
term in Eq. (2) dictates that this monopole is also ‘elec-
trically polarized’; with an electric dipole moment F/2.
The vector potential A is singular for § = 0 and m,
which corresponds to two antipodal Dirac strings. It
can be seen that the effective system realises a Haldane’s
sphere [27]: atoms of unit ‘electric charge’, are confined
within a thin spherical shell (of order unity width in
units of ~ \/h/Mw) centered at ro ~ oF (in units of

~ y/h/Muw), in the presence of an ‘electrically polarized
magnetic monopole’ at the origin.

If we rewrite 'the scalar function above as
P(r) = /n(r)e®™ where n(r) represents the

local atomic number density, then the total wave-
function can be written as ¥(r) = /n(r)|F:), where
|Fp) = €®®|F:). In other words, we have absorbed
the phase factor of the scalar function into a redef-
inition of the radial spin state. The corresponding
vector potential associated with |Fz) is given by
A = i(F;|VF;) = A + V¢, which is related to A by a
gauge transformation. This is just a manifestation of
the spin-gauge symmetry in spinor gases [25]. On the
other hand the velocity field associated with the total
wavefunction W(r) is given by v™®% = —-V¢ - A = — A,
which allows us to clearly see the connection between

FIG. 2. The single-particle energy spectrum Ej;r (shifted
by a?F?/2) as a function of «, for the F = 1 case. Upon
increasing «, different oscillator levels approach each other,
and a crossover from the 3D isotropic oscillator levels to Lan-
dau levels is seen. The inset shows the lowest energy Fopi11 in
the adiabatic regime, which is obtained from GP equations
(circle), numerical diagonalization (star) and the analysis in
Eq. (5) (solid).

mass) and line singularities

vortices (line singularities of v
of A. As we will show in the following, by preparing
different initial spin configurations in the absence of the
monopole field followed by its adiabatic turn on, we may
result in final states with different phase structure ¢(r),
and hence different vortex or Dirac string orientations.
In a sense, changing the initial spin configuration
amounts to choosing a different gauge for the vector
potential A.

Engineering Dirac Strings — To substantiate the ar-
gument we laid out above, here we provide a more quan-
titative description.

Single-particle spectrum Let us first consider
the single-particle spectrum for the Hamiltonian (1). It
can be seen that while for « = 0 both L and F are
conserved, for a # 0 only the total angular momen-
tum (TAM) J = L + F is conserved. This means that
the energy eigenstates are also eigenstates of {J2,J.}.
These are the well-known spinor harmonics |X§§1> =
S ComrYE L (#)mps) (28], where, c's are the
Clebsch-Gordan coefficients, Y’s are the usual spherical
harmonics, and |mp3) are the spin multiplicity states (in
the z basis). Furthermore, while F? is conserved, L? is
not. Summing over the ¢ quantum number then (and
with 72 as the radial quantum number), the eigenstates
take the form

J+F
ijmpe(r) = Y fhir(r)X5m () - (3)
|

t=|j—F



With (j,m) being good quantum numbers, and since
a = 0 corresponds to a simple 3D harmonic oscillator
(with an intrinsic hyperfine spin), we can find the energy
spectrum for any « by projecting the Hamiltonian Hy
onto the (n,£) subspace. Here, n and ¢ = j+mp are the
radial and orbital quantum numbers for the oscillator.
This gives a tri-diagonal matrix, which can be numeri-
cally diagonalized by incorporating enough 3D oscillator
levels [29]. See [30] for details. In Fig. 2 we provide dif-
ferent energy curves as a function of «a, for different n
and j values.

More importantly, from the point of view of the adi-
abatic flow of local spin, at large « the radial part of
the scalar function 1 approaches the 1D harmonic os-
cillator centered at radius ro (c.f. Eq. (2)), while the
angular structure is dictated by the Hamiltonian Hg =
[(rx(p+A))2+F]/(202F?). That is, ¥(r) — r~tha(r—
10) 97+ ;(0, ), where hj are the 1D harmonic oscillator
states and g ; are the eigenstates of the angular Hamilto-
nian Hq (known as the monopole harmonics [31]). Then
with the ansatz f% 2ir(r) =77 ha(r — o) ﬁF in Eq. (3),
the 8 coeflicients must be such that the followmg holds

Jj+F

Z ﬁF,j|ij _gFj(7

=|j—

@) F7) - (4)

This is the radial spin flow correspondence (which holds
for any j > F'). Using this, the energy spectrum comes
out to be [30]

a2 F2 ~

i(j+1)—F(F -1
Eqjr + 5 ~n+ iU ) ( )

202 F2 ’

+

1
; 5)
where the last term is just the spherical Landau levels
(LLs) [27], plus a shift F/(2a2F?) owing to the ‘electric
dipole moment’. We note that the radial spin flow cor-
respondence (4), without any reference to Hg, fetches
both the g functions and the g coefficients, giving us all
the LLs on the sphere [30]. Our construction therefore
reveals an alternative approach of constructing spherical
LLs. It is clear from the energy spectrum that all the
different j levels approach one another as « increases,
because the energies of different states get increasingly
dominated by the Zeeman term. As an explicit exam-
ple, consider the spin-1 case. For the j = 1 level, we get

fl ={v2,V3,1} /6 for £ = {0,1, 2}, and the following

three degenerate states

31
{‘I’m—n, Y101, ‘I’mn} ~\ ;hﬁ(r —a) x
L, [0\ _. sind 0\ |
{Sln2 <2) e <p7 W, COS2 <2> (& gp} |F»,ﬁ> . (6)

The inset in Fig. 2 compares the energy with the Gross-
Pitaevskii (GP) equation, and numerical diagonalization.
It is evident that the radial spin flow correspondence
holds well within ~ 0.1% for a = 4.
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FIG. 3. Upper panel: Majorana representations of spin-1
(a) ferromagnetic state ¢ = (1,0,0)7, (b) polar state ¢¥ =
(0,1,0)", and (c) mixed state (" = (,/7,0,/I—n)" with
n = 1/4 on the Bloch sphere. Lower panel: corresponding
density profiles on the sphere of radius 1o = a = 8. Black
lines represent the vortex lines, with the intersection points
with atomic cloud at ro being Majorana stars.

Creating vortices from different spin states:
Conservation of J can be exploited to create vortex pat-
terns/Dirac strings, as follows. Starting at a = 0, we
can prepare the system in its ground state, carrying zero
orbital angular momentum (OAM) (L)iy; = 0 and any
desired spin configuration |(*) carrying spin angular mo-
mentum (SAM) (F)n;. Then « is increased adiabatically,
and in the process some of the SAM gets transferred to
the OAM while keeping the total (J) fixed. At sufficiently
large o owing to adiabatic spin flow, we converge to a vor-
tex pattern in the final state carrying final OAM (L)g, =
(F)ini/(1+ F), and SAM (F)sn = F(F)ini/(1 + F) [30].

We can also predict the orientation of these Dirac
strings (which are lines of singularities) by considering
the geometric/Bloch sphere representation for spin-F.
We note that at points where the strings/vortices inter-
sect the sphere, the ‘wavefunction’” must vanish. Then,
owing to the transfer of initial SAM to final TAM during
the adiabatic spin flow, these intersection points should
be where the initial spin configuration |(*) was orthog-

onal to the final spin configuration |F3). With |(*) =
Z:@szp ¢z Impz) and |Fp) = e”"F=e= 0y |Fy), this

means those points (6, ¢) on the sphere where (¢*|Fz) =

0:
2F
$ o o) () e ()0

k=0

Note that these points are nothing but the so called Ma-
jorana stars, and our engineering of the Dirac strings
reveals the connection between spin and real space. This
connection is embodied in the SO(3) symmetry in both
the spinor Boson gas and the simulated monopole sys-
tem. More explicitly, the symmetries of |¢*) correspond
to the operations under which the set of vortex locations
{(6;, i)} on the Haldane sphere are invariants.



As explicit examples, consider the following ferromag-
netic, polar and mixed states to begin with: |[¢F) =
(I,O,O)T, ‘<P> = (0, 170)Ta and [(") = (\/ﬁvoa V31— TI)T~
Based on our discussion above and Eq. (7), each would
correspond to two Dirac strings/vortices at large «, orig-
inating from the origin. Their locations are calculated
to be 8 = m, 7 for ferromagnetic, 8 = 0, 7 for polar, and
(0,) = (2arctan[n/(1 — n)]*/*, 7 £ 7/2) for the mixed
state. The full final states, written in terms of the low-
est LL (LLL) wavefunction in (6) are: W¥ = gy,
UP = Wo101, and ¥ = /M Vo111 + VT=7¥g1-11. In
the lower panel of Fig. 3, we show these states obtained
using the normalized gradient flow method of [32]. The
upper panel displays the Majorana representations of (¥,
¢? and (7, respectively, where the highlighted points on
the sphere correspond to (7).

Using the integrator i-SPin 2 [33], in Fig. 4 we show
the real time implementation of our idea, for the mixed
state [¢"=1/4). Starting with the 3D harmonic oscillator
ground state dressed with the spin texture |[(7=1/4), we
adiabatically increase a from 0 to 6 [30]. As « increases,
the initial mass density at the origin is pushed outwards,
with the spin density aligning radially outwards. At
large enough «, two vortices intersecting the atomic cloud
at (0,¢) = (2arctan[1/3]"/4 7 + 7/2), become appar-
ent. One can also get these locations by means of the
vortex Dirac string connection: Rewriting the state as
U = |¢p"||Fp) where |Fp) = exp(iargy")|F;), it can be
shown that the effective gauge potential A = i(Fs|VF;)
contains two singularities located at (2tan='[1/3]'/4 7+
m/2) when n = 1/4.

To summarize, we have established a one-to-one
mapping between the spinor state and the vortex state
on a sphere.

Effects of Interaction and Experimental Feasibility —

Now we briefly discuss the effects of the mean-field
interaction. The associated energy functional is i, =
(co/2) [ d3rn2(r)+(c2/2) [ dr F(r)-F(r), where F(r)
is the local spin density, and the first and the sec-
ond terms correspond to the spin-independent and -
dependent interaction, respectively. Typically the two
interaction strengths satisfy |co| > |co|. Figure 5 illus-
trates the final density profiles for the mixed state (with
1 = 1/4), for attractive, non-interacting and repulsive in-
teraction cases, when starting from the respective ground
states in the absence of the spin-dependent interaction
we ramp up « from 0 to 6. While some of the quali-
tative physics remains the same, there are some impor-
tant distinctions worth pointing out: (1) Without inter-
actions, it can be seen that all single-particle states V'
(or linear combinations thereof), are left invariant un-
der SO(2)1,+¢ (here ¢ corresponds to gauge transforma-
tions). Including the interaction breaks this invariance
and the states get rotated along the z axis, as reflected
by the rotation of vortex pairs. (2) In the final state,
the angular momenta are not evenly distributed in the
spin and the orbital sector. This is because the spin tex-

FIG. 4. Evolution of the mixed state ¢"='/* when the field
strength « is increased adiabatically from 0 to 6. The density
profile (background color) and local spin expectation vector
(F(r)) (arrows) in the = 0 plane are plotted at four different
times with the instataneous values of « indicated in the plots.
For each plot, the length of the box along each direction is
25, and the calculation is done with a grid size N® = 713, A
simulation animation is available here.

ture becomes more (an-)isotropic under the (attractive)
repulsive interaction [34].

For N = 10* 8Rb atoms (F = 1) in a trap with
frequency w = 27w x 100 Hz, and Zeeman field Bir
with strength By = 1 G cm™!, a = 79 ~ 6 is large
enough where the spin flow correspondence holds well.
Furthermore, the energy scale of the contact interaction
(per particle) is &, ~ co/(8ma?) =~ 0.7, and is only
comparable with the corresponding LL gap AFEy, =~ 1.
Therefore in such an experimental setup, the analytical
results presented for non-interacting system remain
qualitatively correct [30].

Conclusions — The simulation of singular monopole
potentials and the concomitant correspondence between
the spin and the real space is a new feature of the spinor
system under hedgehog magnetic field. The key ingre-
dient is the rotational invariance of the Zeeman term
r - F. These will persist even when the S manifold is
deformed, as long as J, remains conserved. Due to this
rationale, we can investigate such features in other SO(3)
systems, such as the isotropic spin-orbital-coupling term
p - F, where bent vortex lines in solitons have been dis-
covered [35]. Remarkably, the correspondence presented
in this paper allows us to reveal symmetries within the
internal degrees of freedom, as manifesting in coordinate
space.

In this work, we have found the spin real correspon-
dence in the LLLs. Since stronger interactions may make
the atoms occupy higher LLLs [36], correspondence in
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FIG. 5. Snapshots of the mixed state atomic cloud for n =
1/4 at a = 6, for the three cases of attractive interaction
(co = —6 and co = —0.1, left column), no interaction (co =
c2 = 0, middle column), and repulsive interaction (co = 6
and ¢z = 0.1, right column), respectively. Other parameters
are the same as in Fig. 4. The upper panel shows a 3D view,
whereas the bottom panel shows the slice in the plane where
the vortices intersect the atomic cloud (at polar angle 6 =
2tan"1(1/3)1/4 ~ 74.46 degrees). Our results also confirmed
that for the values of c2 used here, the effect of the spin-
dependent interaction is negligible.

these states may be found. The investigation in Hal-
dane’s spherical geometry was originally proposed for
the study of the fractional quantum Hall effect. Thus,
fertile vortex configurations may enrich the exploration
of many-body quantum matter in curved spatial geome-
try [37-44].
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Appendix A: Constructing Landau levels and monopole harmonics using radial spin flow correspondence

As discussed in the main text, adiabatic spin flow gives the following correspondence

j+F

Z ﬂF]

l=|j—

F,j (9a<)0)|F’f‘> ’ (Al)

where j > F (cf. Eq. (4)). Since the sum over ¢ runs from |j — F| to j + F, for any j > F we have 2F + 1 5%,]'
coefficients to determine (which are independent of m). Also since —j < m < j, we have 2j + 1 gy ; functions to
determine. So we have (2F + 1)(2j + 1) unknowns. Now since the above equation is a set of 2F + 1 equations (as
mp € [—F, F]) for any m € [—j, j], we have (2F + 1)(2j + 1) equations in total as well. So, we have a deterministic
system and both the 8 coefficients and the ¢ functions (which will turn out to be monopole harmonics) can be
determined. This, for any j > F, will thus fetch the spherical Landau levels (LLs). While there are multiple ways
to construct LLs, here we present an explicit approach to first see that gy; are nothing but monopole harmonics

. (i.e. with monopole charge ¢ = F and total angular momentum 5), which then can be used to obtain the
coefficients.

From the left hand side of the above radial spin correspondence, which is an eigenstate of J2, we note that the right
hand side must be too. Using J = L + F to operate on the right hand side, where |Fy) = e~z e71Fs we get the
following PDE after some algebraic manipulations

1 0 0 1 92 cosf 0O 1
__- 7 0 2 4R T A F?2 | g™mo= (4 1)g™. . A2
[ sin @ 96 (sm 30) sin? 6 02 s sin20350+ sin® g |75 U+ 19, (42)

This is exactly the PDE for monopole harmonics, with monopole charge F' and total angular momentum j [31]. That
is

95 (1) = V(7). (A3)
To get to (A2) using J? = (L + F)2, we used spherical forms for both L and F. That is, L = i((6/sin6)d,
@0p) and F = 7Fs + 0F45 + ¢F,, where Fz = sinf cospFg + sinf sinpFy + cosfFz, Fg = cosf cospFz +
cosf sinpFy —sinfFz, and Fg = —sinpFz 4 cos o Fy. We also used rotation relationships for spin matrices such as
e P2 Fy ei?fs = —sinpFy + cos p Fy = Fy, and also eigen-equations Fz|Fp) = F|Fy), and F?|Fp) = F(F +1)|F).

With the above correspondence with the monopole harmonics established, we can obtain the 5 coefficients by simply
taking the inner product of the right hand side of Eq. (A1) with spinor harmonics | X%):

8, = [ 00, 0¢nIm) = [ a0y 0dhim). (A9
As explicit examples, for F' = 1 we get ﬁe {0.1.2) _ {\[ 2.V3, 1}/\[ with
g =1/ 3 sin?(0/2) e~ P = Ui sin g1, =1/ 3 cos?(0/2) e'? (A5)
1 4 ’ ! 8T ’ ! 4T
for the lowest LLs (j = F = 1). For the next LLs (j = F + 1 = 2), we get BZ (128} = {V3,V/5,v2}/V/10 with
g =1/ k2 sin?(0/2) sin 0 e~ 2% )y =1/ = sin 20 92 = —1/ k2l cos?(0/2) sin  €*'#
12 dr ’ 2 32m ’ 2 4r

gy = i(cos 6 — cos20) e g1y = > ——(cos 4 cos 20) ¢ (A6)

127V 16x ’ 127\ 167

Similarly for F' = 2, we get ﬁl {0.1.2,3.4) _ {\/ﬁ,\/ﬁ,\/ﬁﬂﬁ,l}/\/ﬁ with

; 1 )
o \/E sin(0/2) e~ 2%, 9% =1/ 325 sin? @), gay =1/ % cos?(6/2) €%

92_21 = \/E 51113(0/2) cos(6/2) e ', g%Q = \/E 6053(9/2) sin(6/2) e'? (A7)



for the lowest LLs (j = F' = 2). For the next LLs (j = F+1 = 3), we get 553{1’2’3’4’5} = {V6,V15,/14,1/6,1} //42
with /

- , o /105 , [21 o
Gos = 8— sin?(6/2) sin § e ~3%, 9% = o cos @ sin? 6, gos = — 87 cos?(0/2) sin f e3¢

_ [7 ,
sin®(60/2)(3cos O + 2) e 2%, Ga3 = o cos?(0/2)(3 cos O — 2) 2
m

[\
715

-2
9a3 =

&l 5]~

512_31 = \/: sin3(9/2) cos(0/2) (3cos +1)e %%, 9%3 = \/i cos3(0/2) sin(6/2) (3cosf — 1) e (A8)

(0]

And so on. It can also be noted that in general, g5 (0, ¢) = (1) g0 = 0+ 1,0 = —p).

Appendix B: Calculations in the adiabatic regime

In this section, we provide details of our calculations of the energy spectrum, and ratio of orbital to spin angular
momentum, in the adiabatic regime.

1. Energy spectrum

In order to get the energy spectrum, we can take the expectation value of the Hamiltonian (1) with respect to the
energy levels W, ;.. Rewriting the Hamiltonian in spherical coordinates together with a shift by a?F?/2 (in order
to complete the square on the right hand side), we get

a’F? 1 9 1 9 . 15
Hy + 5 z—ﬁ&(r 8T)+§(r—ozF) —ozr(r-F—F)—&—ﬁL . (B1)
Then taking its expectation with respect to the state
1
Vnjmr(r) = —hn(r —aF)gg; (0. ¢)|F) (B2)

where h, (r — aF) are the 1D oscillator (centered at r = oF') levels, gp; are the monopole harmonics Vi';, and |F#)
is the radially outward pointing spin state, gives

a’F? 1 (L?)
E,: — oy B3
A A R Ry (B3)
To get to the above, we have also used (7 - F) = F. Now since the energy eigenstates are also eigenstates of both J?
and F? with eigenvalues j(j + 1) and F(F + 1) respectively, we have

(%) =4 +1) = (L) + F(F +1) +2(F - L). (B4)

To evaluate (F - L), note that it is given by

1) = [ a0gp; (B IFIE) - (LoR,) + g, (FIF - (LIFS)). (B5)

In the above, the first term is trivially zero since average spin points in the radial direction, while angular momentum
lies along the sphere. For the second term, let us write |F3) = M|F:) (where M = e~ #¥F2¢=#Fs ig the rotation

6 0o

operator), and now we are interested in the operator M'(F - L)M. Using L =i (W%

aF

— gba%), writing everything

in terms of Cartesian variables, and using rotation identities like e~?*Fs F; e!*¥s = F; cos a + Fg sin a (and similarly
for rotations along other axes), we get MT(F-L)M = F2 — F2 + FzF; cot 0 after some algebra. Only the first two
terms contribute towards the expectation with respect to the state |F:), giving F? — F(F +1) = —F. Since 9F.;
were normalized by definition, we get (F-L) = —F. Using this together with (B4) in (B3), fetches the desired energy

levels, Eq. (5).



2. Ratio of orbital to spin angular momentum

In our adiabatic evolution, we are confined within the lowest energy states, i.e. the j = F lowest Landau levels.
With arbitrary initial spin dressing, the final state takes the general form

P P
1 .
U, rr(r) = ;hn(r —afF) Z cm Vgt p i—r(0,0)|F7) with Z lem? =1, (B6)

m=—F m=—F

which is the same as (B2) with 9Fj= (0, ) replaced by a sum over monopole harmonics with different magnetic
quantum number m. With this and (Fi|F|F:) = F'#, we have for the full expectation

(J) = (L) + F(7), (B7)
where
(F) = > chom / dQ Vi Vip. (B8)
With the general form
m _ 2141 2F F+m s F—m imep
J}F}F(H,cp) = \/ = (F—i—m) cos (0/2) sin (0/2)e , (B9)

we have for 74 =7 -& +i7 - g =sinf e and 7, = 7 - 2 = cos b, the following

F
1 1
)= > & 1)— )= ——
1 < 1
5 — — 2 = — . B1
)= gy 3 mlenlt = g (B10)

The second equalities in each of the two expressions above is simply due to V! #(7) being eigenstates of {J2,J.}, and
can be obtained straightforwardly using angular momentum operator algebra. Therefore, from (B7), we have that

1 1

(L) = =(F) = 5. (B11)

In our adiabatic evolution, the total angular momentum J is conserved throughout, with all of it initially being in the
spin sector, (J) = (F)ini. Eq. (B11) then dictates that F//(F + 1) of the total initial spin remains in the spin sector,
with the remaining 1/(F + 1) is transferred to the orbital sector.

Appendix C: Energy spectrum using the su(1,1)xSO(3) group algebra

Following the steps of [29], we can numerically diagonalize the Hamiltonian. To begin with, using creation and
annihilation operators a;( and a; where i = {z,y, 2z}, we note that it is possible to get generators of both su(1,1)s and
SO(3)1.. Rewriting ax = F(az F iag)/\/ﬁ and az = ag, we have the following

1

St = 5(a})? —alal, Ly = V2 (olao +aaf) (€L
1

S_ = 5 (a0 —ava, L_=V2 (a+a$ + alao) (€2)
1 3

So = 3 (GLCM +ata_ +alag+ 2) ; Lo = ai‘“r —ala_. (C3)

It can be checked that the set of S and L obey the desired Lie algebra of the su(1,1)s and SO(3)y, respectively:

[SJ,_, S_] = —280, and [807 Si] = :I:Si
[Ly,L_]=2Lo, and [Lo,Li]=+Ly, (C4)
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with [S,,L,] = 0. Using the fact that » - L = 0 and J = F + L, the full Hamiltonian can then be written as
H=Sy—ar-F =S¢y —ar-J, where we further decompose the Zeeman term as

J 1 J+G/T7_J70/1
r- - —_— T
V2 V2

f 4+ h.c.
+Joa) +hec. EA%C. (C5)

Here, r = (a +al)/Vv2, Jo = Jz + iJy and Jo = J;. With o = 0, we simple have a 3D oscillator with an intrinsic
(hyperfine-)spin, the Hamiltonian for which is just H = Sp. The energy eigenstates are common eigenstates of the
operators Sp, the Casimir S = S2 — (S;S_ +S_S4)/2, L2, and L,. These can be labelled by the quantum numbers
(n,€,my), with eigenvalues 2n + £+ 3/2. We shall denote them by |n, £, m,), and can be obtained by repeated actions
of S and L™ and (ai)é [29].

Including the o dependent Zeeman term, couples the different 3D oscillator states. The quantum numbers associated
with the full Hamiltonian are (7, j, m, F'), and the eigenstates are some n and ¢ superpositions (with [j—F| < { < j+F
as required by the triangle inequality) of the basis set

F
n,gym, Fof) =y cFln, bom —mp) © lmp,) - (C6)
mpsz
Here |n,£,m — mp) are the 3D oscillator states as stated above. With this, and noting that J is conserved in the

system, we wish to find the matrix elements of = - J for a fixed (j,m). These should be independent of m since J is
conserved. To find these matrix elements, we first recapitulate the action of aL on a state |n, £, mg) [29]:

aL In, £,mg) = b*(n,l) d:(ﬂ, mye) [n, €4+ 1,me + p) + b7 (n, £) d,, (6,mye) [n+ 1,6 —1,me + p) (Cn

where

013/2)(0+1/2)

_ n+1
bn, 0 = \/(£+ 1/2)(0—1/2)

b+(n,€):\/( n+0+3/2

1\ Ml VI+me+2)(+me+1) p=+1
df (€, mg) = (\@) Vi+me+1D)(I—me+1) p=0
\/(l—me+2)(l—mg+1) w=-1

1 1+|p] \/(l + mé)(l +my — 1) p=-1
d, (£, me) = (=1)" (\/5) (I +mg)(l —my) =0 .
\/(Z—Mg)(l—mg—l) w=+1.

For our purposes, my = m — mp in the above. The above can be obtained using the various commutation re-
lations between a, and S,, and a, and L, (which can be obtained straightforwardly using the commutation re-
lations (C4)). The action of a, on |n,¢,m,) can be obtained in a similar fashion. Also for convenience/better
illustration, 4 = &= — 41 in the expressions for d/jf. Next, the action of J on a state |n, j,m, F, £) is Jx|n, j,m, F,{) =

\/.7(] + 1) - m(m + 1) |n,j,m + 15F7£> and Jo‘n?j7maFa€> = m‘nvjamaF7£>'
With the above, we can work out the matrix elements of A and A, in the subspace of fixed (j,m):

[AT(]7 F)]n’,n;@,@’ = <n/7jama F?£/|AT|najamaF7 £>
F

= b+(7’l,€) Z C?j_nl’mF*C+(j,m,€, mF) 5n’,n 5@/7@_’_1
szfF
F
Hb(n,0) Y T C_(fom, lmp) s Ot (C8)

mp:—F
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where

1
Ci(j,m,l,mp) = 2—\/5[\/](3 +1)—m(m+ 1)\/(€—m+mp + 1)(£_m+mF)C§Tnil

—ViG+ 1) =m(m =1/l +m—mp+ 1) +m—mp)cnr,

—|—2m\/(€+m—mp+1)(€—m—|—mp+1)cz»mF}

J,m

C_(j,m,l,mp) = 2—\1/5{—\/]’(3' + 1) —m(m+ 1)/ +m—mp+ 1)(€+m—mp)c§Tnﬂl

+ VG +1) = mim =DV =m+mp +1)(0 —m+mp) 7
+2m\/(£+m—mF)(é—m—i—mF)csz} . (C9)

Jm

Summing over mp results in the following explicit form

St nOpr
22 (C+3/2)(0+1/2) | ™m0t

VOHI—F)F+j 0+ 0)F—j+OF +5+0+1) n+1
22 (L+1/2)(¢—-1/2)

AT (G, F)]w WZ:l\/(j—€+F)(F—j+€+1)(]—F+£+1)(j+F+é+2)\/ n+0+3/2

| 5n’,n+155’,£71 )
(C10)

and is indeed independent of m. The matrix elements of A are simply obtained through conjugation. Along with the
triangle inequality |j — F| < £ < j+ F, the obtained matrix elements of A" and A fetch the following matrix elements
for the Hamiltonian in (n,¢) subspace:

3 a
1 ’ P! = —_ ’ ’ —_— T 1 mn! P! L. .
[H(JaF)]n ROHAN) <2n+€+ 2>5n n 6[ N/ \/i([A (]7F)]n RN + h C) (Cll)

This is a tridiagonal matrix, and can be numerically diagonalized by including a lot of 3D oscillator states. Using the
triangle inequality to write £ = j + mp, we do this rather in the (n, mp) subspace, for N = 2n + j + mp < 100. The
spectrum for F' = 1, as a function of «, is shown in Fig. 2 of the main text.

Appendix D: Numerical Analysis
1. Obtaining ground states by minimizing the energy functional

With all the physical parameters intact, the Gross-Pitaevskii equation characterizing our 3D system is

0 K2 1 1 1
B0 = | w2 e B-F+-¢ ~& (F)-F| 0. D1
mat 2MV +2er UBIF +200n(7°)+202< ) (D1)

Here, M is the mass of the particle/atom; w is the external trap frequency; up is the Bohr magneton; g is the hyperfine
g-factor of the atom; B = 2B r is the effective magnetic field in the rotating frame, with By being the amplitude
parameter of the quadruple magnetic field in the lab frame [26]; ¢q = 47h?(as + 2ag)/3M and é; = 4wh?(az — ag)/M
are effective 2 body interaction parameters where ag and ay are the s-wave scattering lengths for the total spin equal to
0 and 2 channels; and the “wave function” is normalized as [ d3z UTW = N where N is the total number of particles.

With the re-scalings ¢t — t/w, r — rls, and ¥ — UV/NI;*?, where I, = h/ (Mw), we get the dimensionless GPE
equation
0 vZ o2

1 1
-V =|——+— —ar-F+= —co(F)-F| ¥ D2
i o tg ar +2con(r)+2cQ< ) , (D2)

where o = 2upgrBils/ (hw) = wp/w with wp being the Larmor frequency wp = 2grupBils/h, and the interaction
parameters are ¢g = 47N (ag + 2a9)/3ls and ¢; = 47N (a2 — ag)/3ls. Two main conserved quantities, associated with
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Eq. (D2) include the total particle number N, and the total angular momentum

() = (L) + (F) = / dr D U LW+ W (B Yo | - (D3)

mpg m;.,

The ground state ¥, of the system can then be obtained by minimizing the energy functional

el n)= [dr {Z (; V24V (1) an> —ar-(F) + sen® (r) + 502 <F>2} , (D4)

subjected to the two constraints of number and angular momentum conservation. This can be simply done by
introducing Lagrange multipliers p and A for the 4 conserved numbers, meaning one minimizes the following

ELV(D] =E[W(H] —pN=A-(J), (D5)

using the continuous normalized gradient flow method (imaginary time evolution), as described in Ref. [32]. Setting
both ¢y = ¢; = 0, in Fig. 3 of the main text, we show the single particle ground states (for F' = 1) for the three
different spin configurations considered there.

2. Full, real time simulations

We have performed real time adiabatic flow simulations of our rescaled system (D2), to confirm and validate our
results in this paper. We used the integrator i-SPin 2 [33] developed by some of us, in order to perform these real
time simulations. In general, the pseudo-spectral algorithm in i-SPin 2 is time-reversible, along with norm and spin
preserving to machine precision. It can also handle self-interactions as well as couplings to time-dependent external
fields. For the interested reader, the details of the algorithm and numerical implementation can be found in that
paper.

For our present purpose, we begin by constructing the ground state of the initial system (with @ = 0 and ¢o = 0).
For ¢y = 0 this is simply a 3D oscillator ground state (with an overall desired spin structure), whereas for ¢y # 0 it
is not. In general, we get to this state by using imaginary time evolution of the system (keeping the total particle
number fixed, say N = 1). Taking this initial state, we then perform real time evolution of the system wherein « is
increased from 0 to some large number adiabatically. For this, we used a hyperbolic tangent function:

a(t) = p1 tanh[(t —to)/7] + p2, (D6)

where the parameters p;, to, and 7 are chosen such that «(0) = 0 and the final value approaches some desired number.
For the simulations presented in the paper, we set a(ty) = 6. The time step used was At ~ 0.04 with ¢; ~ 107. This
meant ¢y ~ 53.5 and 7 &~ 23 in the above parameterization. Finally, the total box was a 713 grid, with the length of
the box in each direction being 25.

Starting with different ground states (with ¢y and different spin textures) with co = 0, we have performed real time
simulations for both the cases when co was kept to zero, and was turned on to some small but finite value. In the
main text, we show simulation results for the mixed state. Fig. 4 shows the time evolution for the “single particle”
case (cg = 0). Fig. 5 shows the same for ¢y # 0, with ¢; turned on during real time evolution.

Appendix E: Experimental Feasibility

To estimate the energy and the observability of vortices, we take 8"Rb atoms as an example (atomic mass 87u).
For a harmonic trapping potential with typical frequency of w, ’Rb atoms have typical length scales I, = \/h/Mw ~
1.1 (2m x 100 Hz/w)'/?2pum. With wp = 29pupBils/h ~ 2 x 103gx(B1/Gem™1) (27 x 100 Hz/w)'/?Hz as the Larmor
frequency, strength of the Zeeman coupling is

B 21 x 100 Hz \ */?
a=2wp/w~3gp (Gcrr111> ( - > . (E1)
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The 2-body interaction scattering lengths are as ~ 100ap and ay ~ 102ap, where ag ~ 5.3 x 10~ 2nm is the
Bohr radius. This gives ¢y ~ 6.7 x 1072 um/87u and & ~ —4.4 x 10~* um/87u for the interaction parameters (spin
interactions are suppressed by ~ 6.5 x 1073 as compared to density interactions). Their re-scaled versions are

N w 1/2 N w 12
~ 2 (25 =z . ~ E
co=6.3x10 (104> <27T><100HZ> ' 2 41(104) (27TX100HZ> (E2)

where N is the total number of atoms in the condensate. The energy scale of the contact interaction per particle on
the sphere (of radius ro = lsaF and width ), is &, ~ 0.5 ¢y (4mrd)ls(N/(4nrdls))? /N:

2% (N w 12
PO (e Y (A . E
Eo = g (104) (27T>< 100Hz> o (E3)

On the other hand, the energy gap per particle, between the lowest (72 = 0) and next (2 = 1) Landau levels is
AFEry, ~ hw. We see that for the chosen parameters N = 10* and w = 27 x 10 Hz for 8’Rb atoms (F = 1), having
a > b renders £, < AEypy,. In this case, the effect of interactions can be neglected, and the simpler “single particle”
analysis becomes valid.
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