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Abstract. The Bin Packing Problem is one of the most important prob-
lems in discrete optimization, as it captures the requirements of many
real-world problems. Because of its importance, it has been approached
with the main theoretical and practical tools. Resolution approaches
based on Linear Programming are the most effective, while Constraint
Programming proves valuable when the Bin Packing Problem is a com-
ponent of a larger problem.

This work focuses on the Bin Packing constraint and explores how GPUs
can be used to enhance its propagation algorithm. Two approaches are
motivated and discussed, one based on knapsack reasoning and one using
alternative lower bounds. The implementations are evaluated in compar-
ison with state-of-the-art approaches on different benchmarks from the
literature. The results indicate that the GPU-accelerated lower bounds
offers a desirable alternative to tackle large instances.
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1 Introduction

The Bin Packing Problem (BPP) consists of packing a set of items into the
minimal number of bins, each with a fixed capacity. It has a fundamental role
in logistics and resource management applications, making it one of the most
important optimization problems.

The BPP is NP-Hard in the strong sense [16] and it is challenging to solve
even for a fixed number of bins [19] or a constant number of different item sizes
[17]. Over the last eighty years, numerous approaches to solve the BPP have been
developed; we refer the interested reader to [9,31] for a comprehensive review.
Techniques based on Integer Linear Programming (ILP) are highly effective and
represent the state-of-the-art for solving the BPP. However, when the BPP is a
component of a larger problem, applying such techniques becomes challenging,
and Constraint Programming (CP) emerges as a valuable alternative. In these
cases, the BPP appears in its decision version, where the items must be packed
into a fixed number of bins.
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The decision version of the BPP is modeled in CP using the bin packing

constraint [33]. Its filtering algorithm employs knapsack reasoning, to exclude or
commit items to bins, and a feasibility check to prune the search if the remaining
unpacked items cannot fit in the residual space of the bins. This check is per-
formed using a lower bound on the number of bins necessary to pack the items.
Typically, a combinatorial lower bound, named L2, is used, but [3] has shown
that employing a tighter lower bound from the linear relaxation of a strong ILP
formulation, known as Arc-Flow, greatly enhances the pruning.

This work explores the use of Graphical Processing Units (GPUs) for prop-
agating the bin packing constraint. The contributions of this paper include: 1)
an enhanced feasibility check achieved by replacing L2 with a collection of lower
bounds; 2) the use of GPUs to parallelize the calculation of such lower bounds;
3) an empirical evaluation of sequential and GPU-accelerated lower bounds,
compared to L2 and to the lower bound from the Arc-Flow model.

The rest of the paper is organized as follows. Section 2 contains some general
background about Constraint Satisfaction Problems and General-purpose com-
puting on Graphics Processing Units (GPGPU). Section 3 summarizes related
works on the bin packing constraint. Section 4 details the design and implemen-
tation of the feasibility check enhanced with the GPU-accelerated lower bounds.
Section 5 presents the results of our approach and the other techniques in the
literature. Finally, Section 6 concludes the paper.

2 Background

2.1 Constraint Satisfaction/Optimization Problems

A Constraint Satisfaction Problem (CSP) is defined as P = ⟨V,D,C⟩, where
V = {V1, . . . , Vn} is a set of variables, D = {D1, . . . , Dn} is a set of domains,
and C is a set of constraints. A constraint c ∈ C, involves a set of m variables
depending on its semantic. Such set is vars(c) = {Vi1 , . . . , Vim} ⊆ V , and defines
a relation c ⊆ Di1 × · · · × Dim . A solution is an assignment σ : V →

⋃n
i=1 Di

such that σ(Vi) ∈ Di holds for every variable, and ⟨σ(Vi1), . . . , σ(Vim)⟩ ∈ c holds
for every constraint. A Constraint Optimization Problem (COP) is a quadruple
⟨V,D,C, f⟩ where ⟨V,D,C⟩ is a CSP and f : D1 × · · · × Dn → R is an objec-
tive function to be minimized. The goal is to find a solution σ that minimizes
f(σ(V1), · · · , σ(Vn)).

A constraint solver searches for solutions of a CSP/COP by alternating
non-deterministic choices and constraints propagation. The first is employed to
choose the next variable and which value, from its current domain, to assign to
it. The second is a method to filter the domain of the variables, removing values
that are not part of any solution. Non-deterministic choices are typically im-
plemented through backtracking and heuristic decisions that follow an ordering
among variables and values. Constraint propagation is commonly implemented
through a queue that tracks constraints that need to be re-evaluated. When a
value is removed from a variable’s domain, the constraints involving such vari-
able are enqueued. The re-evaluation consists of extracting the constraint from
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Fig. 1: High level architecture of a NVIDIA GPU.

the queue and applying the associated filtering algorithm or propagator. This
iterative cycle continues until the queue is empty [21].

Different filtering algorithms offer different trade-offs between filtering power
and computational complexity. Highly effective algorithms have been developed
for global constraints. These constraints model a substantial portion of a CSP/-
COP and naturally arise in various problems.

2.2 General-Purpose Computing on Graphics Processing Units

The computational power of modern GPUs facilitates the resolution of classes of
problems that are too large to be effectively handled by CPUs. This advantage
arises from GPUs massive parallelism, featuring thousands of computing units
capable of efficiently processing vast amounts of data. However, to harness such
computing power, it is crucial to employ approaches and algorithms that align
with the underlying architecture of the GPU. Recent studies indicate that GPUs
can be used for computational logic, including applications like SAT [8,7], ASP
[11,12], and CP [34,35].

Most GPU-accelerated applications are developed using CUDA[24], a C/C++
API that exposes parallel computing primitives on NVIDIA GPUs. The part
of an application executed by the CPU contains instructions for moving data
to/from the GPU and offloading computation to the GPU.

The sample architecture of an NVIDIA GPU is illustrated in Figure 1. A
modern high-end GPU is equipped with 128 Streaming Multiprocessors (SM),
each accommodating 128 computational units named CUDA Cores. In the lower
and middle tiers of the memory hierarchy, there is the global memory with a
capacity of 24 GB, and an L2 cache of 72 MB. At the top, there are 128 KB
of fast memory serving as L1 cache and/or scratchpad memory (referred to as
shared memory).

The CUDA execution model is Single-Instruction Multiple-Thread (SIMT),
where a C/C++ function known as kernel is executed by many threads. Each
thread utilizes its own unique index to identify the data to use or to modify
its control flow. When different threads follow distinct control flows, it leads to
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Fig. 2: Graph underling the Arc-Flow model for an instance with c = 9 and
W = [4, 4, 3, 3, 2, 2].

thread divergence. In such scenarios, threads are serialized, potentially causing
significant performance deterioration. Threads are organized into blocks, which
are dispatched to the Streaming Multiprocessors. Each Streaming Multiproces-
sor executes the threads using its CUDA Cores, allowing efficient intra-block
operations through shared memory. Communication between blocks is possible
only through the use of global memory.

To successfully GPU accelerate an application, it is crucial to achieve good
load balance, optimize memory access, and mitigate thread divergence [18]. This
may require reformulating the problem to expose parallelism or exploiting shared
memory to reduce the overhead of costly global memory accesses.

3 Bin Packing

Let I = (c,W ) be an instance of the Bin Packing Problem (BPP) with n items
of weights W = [w1, . . . , wn], and bins of capacity c. The textbook Integer Linear
Programming (ILP) model is:

minimize

n∑
j=1

yj

subject to

n∑
i=1

wixij ≤ cyj j = 1, . . . , n

n∑
j=1

xij = 1 i = 1, . . . , n

yj ∈ {0, 1} j = 1, . . . , n

xij ∈ {0, 1} i, j = 1, . . . , n

where the Boolean variable yj indicates whether the jth bin is used and the
variable xij indicates whether the ith item is packed in the jth bin.

A strong ILP formulation, known as Arc-Flow [4], is obtained by approaching
the BPP from a graph-theoretical perspective. Given a BPP instance, a graph
is built in such a way that arcs represent items, and a path from the source
node s to the sink node t represents a set of items that can be packed into a
bin (see fig. 2). A solution corresponds to a minimum flow that uses one arc
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In: c, W = [w1, . . . , wn], k
InOut: X = [x1, . . . , xn], L = [l1, . . . , lk]

1 for j ← 1 to k do // Basic filtering

2 doLoadCoherence(j,X,W,L)
3 doBasicLoadTightening(j,X,W,L)
4 for i ∈ {i | j ∈ xi ∧ |xi| > 1} do
5 doBasicItemEliminationCommitment(i, j,X,W,L)

6 for j ← 1 to k do // Knapsack filtering

7 if ¬isBinPackable(j,X,W,L) then
8 Fail

9 doKnapsackLoadTightening(j,X,W,L)
10 for i ∈ {i | j ∈ xi ∧ |xi| > 1} do
11 doKnapsackItemEliminationCommitment(i, j,X,W,L)

12 lb← getLowerBound(c,W, k,X) // Feasibility check

13 if lb > k then
14 Fail

Algorithm 1: Simplified propagator for the bin packing constraint.

for each w ∈ W . The ILP formulation of this flow problem has a strong linear
relaxation, but it comes at the cost of a pseudo-polynomial number of variables
and constraints.

In CP, the decision version of the BPP, where the items must be packed in
at most k bins, is modeled as:

xi = {1, . . . , k} i = 1, . . . , n

lj = {0, . . . , c} j = 1, . . . , k

bin packing([x1, . . . , xn], [w1, . . . , wn], [l1, . . . , lk])

where the variable xi represents the bins in which the ith item can be packed,
and the variable lj represents the loads that the jth bin can have.

The bin packing constraint was introduced in [33] and a simplified version
of its filtering algorithm is listed in algorithm 1. Following a brief description of
each method:

Load coherence The minimum/maximum load of a bin is adjusted considering
the total weight of the items and the load of the other bins.

Basic load tightening The minimum/maximum load of a bin is adjusted con-
sidering the sum of the items that are/can be packed in the bin.

Basic item elimination and commitment An item is committed to a bin if
it is needed to reach a valid load. An item is excluded from a bin if packing
it would lead to an excessive load.

Bin packability check A bin is considered packable if an approximated knap-
sack reasoning shows that it is possible to reach an admissible load.

Knapsack load tightening The minimum/maximum load of a bin is adjusted
using an approximated knapsack reasoning.
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Fig. 3: Illustration of a partial packing (left) and its reduction (right). Virtual
items are highlighted in blue.

Knapsack item elimination and commitment An item is committed or ex-
cluded from a bin using an approximated knapsack reasoning.

Feasibility check A partial packing is considered feasible if a lower bound on
the number of bins does not exceed the available bins. The lower bound is
calculated on a reduced instance derived from the current partial packing
(see fig. 3). This instance is obtained by considering all the unpacked items
and introducing one virtual item per bin to represent the items packed in
that bin. Typically, the lower bound L2 is used (see section 3.1).

The literature contains various extensions of the bin packing constraint. The
authors of [30,25,10] introduce and refine a cardinality reasoning, well suited
when there are constraints on the number of items in each bin or when the
items have similar weights. In [13], the lower bound is enhanced by considering
alternative reductions. Finally, [3] achieves notable results using the lower bound
derived from the linear relaxation of the Arc-Flow model.

3.1 Lower bounds

Given an instance I = (c,W ) of the BPP, a lower bound L(I) estimates the
minimum number of bins necessary to store the items. The simplest lower bound
is referred to as L1, and is calculated as follows:

L1(I) =

⌈
1

c

∑
w∈W

w

⌉

where the total weight of the items is divided by the bin capacity, and the
ceiling function is applied. This approach is equivalent to naively packing the
items, cutting those that do not entirely fit.

An improvement of L1, called L2, is introduced in [23] and addresses the
cases where big items cannot be packed together. It is defined as:

L2(I) = max
0≤λ≤ c

2

L2(I, λ)
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cλ c− λ w

fMT(w, λ)

Fig. 4: Illustration of fMT for λ = c 4
15 . Weights that have been increased/de-

creased are highlighted in green/red.

where

L2(I, λ) = |W1|+ |W2|+max

(
0,

⌈
1

c

( ∑
w∈W3

w −

(
c |W2| −

∑
w∈W2

w

))⌉)

W1 = {w | w ∈ W ∧ c− λ < w}

W2 = {w | w ∈ W ∧ c
2 < w ≤ c− λ}

W3 = {w | w ∈ W ∧ λ ≤ w ≤ c
2}

The lower bound L2(I, λ) is equivalent to first classifying the items as big (W1),
medium-big (W2), and medium-small (W3), while smaller items are ignored.
Each of the big and medium-big items is packed in a different bin, since they are
bigger than c

2 . Finally, the medium-small items are packed as in L1, using the
available space in the bins where there is a medium-big item before considering
other bins. A direct implementation of L2 is pseudo-polynomial, since L2(I, λ)
has to be calculatedO(c) times. More efficient algorithms are described in [22,20],
achieving linear complexity when the items are sorted in decreasing weight.

A general approach to enhance L1 is based on Dual Feasible Functions
(DFFs). These functions alter the weights of items. In the example below,
fMT (w, λ) will either increase (when w > c − λ), decrease (when w < λ) or
not change (when λ ≤ w ≤ c−λ) the original weight w. Note how increasing the
weight to be c requires a dedicated bin for the item, while decreasing its weight
to 0 says the item is ignored. The function is illustrated in fig. 4 and depends
on an integer parameter λ:

fMT(w, λ)
0≤λ≤ c

2

=


c if c− λ < w

w if λ ≤ w ≤ c− λ

0 if w < λ
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The lower bound obtained by combining L1 with fMT is:

LMT(I) = max
0≤λ≤ c

2

⌈
1

fMT(c, λ)

∑
w∈W

fMT(w, λ)

⌉

and it is equivalent to L2 [15]. Several other DFFs have been proposed, each with
a different design. For brevity, we report only some of them and refer interested
readers to [6,2] for a comprehensive review, and to [26,27] for further insights.

fRAD2(w, λ)
c
4<λ≤ c

3

=


0 if w < λ⌊
c
3

⌋
if λ ≤ w ≤ c− 2λ⌊

c
2

⌋
if c− 2λ < w < 2λ

c− fRAD2(c− w, λ) if 2λ ≤ w

fFS1(w, λ)
1≤λ≤100

=

{
wλ if w(λ+1)

c ∈ N⌊
w(λ+1)

c

⌋
c otherwise

fCCM1(w, λ)
1≤λ≤ c

2

=


2
⌊
c
λ

⌋
− 2

⌊
c−w
λ

⌋
if w > c

2⌊
c
λ

⌋
if w = c

2

2
⌊
w
λ

⌋
if w < c

2

fVB2(w, λ)
2≤λ≤c

=


2max

(
0,
⌈
cλ
c

⌉
− 1
)
− 2max

(
0,
⌈
cλ−wλ

c

⌉
− 1
)

if w > c
2

max
(
0,
⌈
cλ
c

⌉
− 1
)

if w = c
2

2max
(
0,
⌈
wλ
c

⌉
− 1
)

if w < c
2

fBJ1(w, λ)
1≤λ≤c

=

{⌊
w
λ

⌋
(λ− c mod λ) if w mod λ ≤ c mod λ⌊

w
λ

⌋
(λ− c mod λ) + w mod λ− c mod λ otherwise

4 Design and Implementation

A strategy for leveraging the GPU in constraint propagation involves utilizing
it for strong filtering at a reduced computational cost [35]. This approach can
be extended to the bin packing constraint by employing the GPU to perform a
complete knapsack reasoning instead of an approximated one. With the exception
of load coherence, all the basic and knapsack filterings in algorithm 1 can be
performed using the Dynamic Programming (DP) approach presented in [36]. We
have developed a GPU-accelerated implementation of this method, leveraging
bitwise operations and processing each bin in parallel. Initial tests did not reveal
significant differences in terms of explored nodes compared to the approximated
reasoning. Scalability tests indicate that the GPU-accelerated implementation
becomes faster than an optimized implementation of the approximated filtering
when the number of bins is in the order of hundreds. Although the underlying DP
tables are calculated very efficiently, this approach is hindered by the overhead
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In: c, W = [w1, . . . , wn], k, X = [x1, . . . , xn]
Out: lb

1 [w′
1, . . . , w

′
r]← getReduction(W,X)

2 WR ← [w′
1, . . . , w

′
r]

3 lb← 0
4 for f ∈ {fMT, fRAD2, fFS1, fCCM1, fVB2, fBJ1} do
5 Lf ← 0

6 λ, λ← getMinMaxParameter(f, c)

7 for λ← λ to λ do
8 sum← 0 // Calculate L1-like lower bound

9 for w ∈WR do
10 sum← sum+ f(w, λ)

11 lb′ ←
⌈

sum
f(c,λ)

⌉
12 Lf ← max(Lf , lb

′)

13 lb← max(lb, Lf )
14 if lb > k then
15 return lb

16 return lb
Algorithm 2: Sequential DFFs-based getLowerBound function.

resulting from the transfer of the variables to/from the GPU, the identification
of the items that can be packed in each bin, and the atomic commit/elimination
of the items. These results lead us to discard this approach and stick with the
standard approximated knapsack reasoning.

Another strategy to leverage the GPU in constraint propagation is to employ
it to enhance the pruning. This translates into improving the feasibility check by
utilizing the GPU to obtain the tightest lower bound at a reduced computational
cost. Since the best lower bound is derived from a linear relaxation, it would
reduce to solving a sparse linear system, a task notoriously hard to effectively
accelerate by the GPU [18]. The next tightest lower bounds are obtained using
Dual Feasible Functions (DFFs), and as demonstrated later in this section, these
bounds are well-suited for GPU acceleration. The feasibility check can be easily
adapted to make use of the DFFs-based lower bound listed in algorithm 2.
The order in which the DFFs are considered impacts how quickly an infeasible
partial packing is detected, and DFFs leading to a generally good lower bound
should be prioritized. Table 1 presents a summary of the lower bounds derived
from different DFFs on the Falkenauer and Scholl instances (see section 5). The
column ‘Only Opt’/‘Only Best’ indicates the number of instances for which the
DFF was the only one to lead to the optimal/best lower bound, while the ‘Sum’
column represents the sum of all the lower bounds calculated from the DFF.
The optimal number of bins was found for 1305 out of 1370 total instances. The
results confirm fCCM1 as the best overall function [6]. Interestingly, the generally
weak fRAD2 proves effective when stronger functions are suboptimal [26].
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DFF Only Opt Total Opt Only Best Total Best Sum

fMT 2 1151 0 55 120184
fRAD2 10 189 0 36 105345
fFS1 2 742 0 45 119504
fCCM1 40 1219 1 60 120270
fVB2 1 973 0 40 119786
fBJ1 47 1101 0 50 120039

Table 1: Statistics of different DFF-based lower bounds.

Parallelization The GPU-accelerated feasibility check is outlined in algorithm 3.
The core of the parallelization is a kernel named calcDffLowerBound, which is re-
sponsible for calculating the lower bounds derived from the different parameters
of a DFF and keeping track of the tightest one (see algorithm 4). Concurrently
running different copies of the kernel, each working with a different DFF, paral-
lelizes the first outermost loop of algorithm 2. Using the threads to calculate the
lower bounds parallelizes the second outermost loop (see fig. 5). Each thread is
responsible for a distinct parameter value, requiring that nThreads ≥ λ−λ+1.

This condition is satisfied by launching each kernel with
⌈
λ−λ+1
#CS

⌉
blocks of size

#CS , where #CS is the number of CUDA Cores per Streaming Multiprocessors.
With a bin capacity of 2000, a current high-end GPU achieves full parallelization
of up to 8 DFFs, with a linear performance penalty for each additional DFF.

Implementation details The calcDffLowerBound kernel includes a couple of mem-
ory optimizations not represented in the pseudocode. First, each block initially
copies [w′

1, . . . , w
′
r] into shared memory, ensuring fast accessibility for the sub-

sequent lower bounds calculations. Second, the shared memory is also used to

Thread

Block

λ λ. . .

calcDffLowerBound(fMT, . . . )

. . . . . .

λ λ. . .

calcDffLowerBound(fBJ1, . . . )

. . .

CPU

GPU

LMT LBJ1

Fig. 5: Sequential (top) and parallel (bottom) execution of the DFFs-based
getLowerBound functions.
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In: c, W = [w1, . . . , wn], k, X = [x1, . . . , xn]
Out: lb

1 [w′
1, . . . , w

′
r]← getReduction(W,X)

2 WR ← [w′
1, . . . , w

′
r]

3 lb← 0
4 cudaMemcpyCpuToGpu(c,WR, lb) // Asynchronous APIs

5 λ, λ← getMinMaxParameter(fMT, c)

6 cudaLaunchKernel(calcDffLowerBound ,nThreads, [fMT, λ, λ, c,WR, k, lb])
7 · · ·
8 λ, λ← getMinMaxParameter(fBJ1, c)

9 cudaLaunchKernel(calcDffLowerBound ,nThreads, [fBJ1, λ, λ, c,WR, k, lb])
10 cudaMemcpyGpuToCpu(lb)
11 waitGpu() // Synchronous API

12 return lb
Algorithm 3: Parallel DFFs-based getLowerBound function.

In: f , λ, λ, c, WR = [w′
1, . . . , w

′
r], k

InOut: lb
1 if lb ≤ k then
2 Lf ← 0 // Only one thread

3 threadsBarrier()
4 tIdx ← getThreadIndex ()
5 λ← λ+ tIdx

6 if λ ≤ λ then
7 sum← 0 // Calculate L1-like lower bound

8 for w ∈WR do
9 sum← sum+ f(w, λ)

10 lb′ ←
⌈

sum
f(c,λ)

⌉
11 Lf ← max(Lf , lb

′) // Atomic operation

12 threadsBarrier()
13 lb← max(lb, Lf ) // Only one thread, atomic operation

Algorithm 4: Pseudocode of the calcDffLowerBound kernel.

store Lf , allowing faster atomic operations that can run concurrently between
blocks and reducing the number of atomic operations performed in the slower
global memory.

Another optimization is employed at a higher level and consists of batching
the memory operations and kernel launches to be called using a single API call.
Depending on the instance, this technique provides a speedup up to 2x.

Finally, a note on numeric overflows. When the capacity is large, the interme-
diate values in the lower bound derived from fVB2 can exceed UINT MAX. To ad-

dress this problem, we limit the maximum parameter of fVB2 to
⌊

UINT MAX
r·max(w′

1,...,w
′
r)

⌋
.
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5 Experiments

This section presents the results of a comparison between propagators that use
different lower bounds for the feasibility check. We evaluate our implementation
of L2

3, algorithm 2, algorithm 3, and the implementation from [3] which uses
the Arc-Flow based lower bound. We refer to them as L2, DFFs-CPU, DFFs-GPU,
Arc-Flow.

We select two classic BPP benchmarks from the literature [14,32], and gen-
erate new instances similar to the ones proposed in [5]. This results in a total of
1, 922 instances organized as follows:

Falkenauer These instances are divided into two classes, each consisting of
80 instances. The ‘U’ instances contain items with weights uniformly dis-
tributed in the range [20, 100], n ∈ {120, 250, 500, 1000} and c = 150. The
‘T’ instances are more difficult, characterized by triplets of items that must
be packed in the same bin in any optimal solution. For this class, n ∈ {60,
120, 249, 501} and c = 1000.

Scholl These instances are divided into three sets of 720, 480, and 10 instances.
Set 1 contains instances where the item weights are uniformly distributed
to expect a number of items per bin not larger than three, n ∈ {50, 100,
200, 500}, c ∈ {100, 120, 150}. Set 2 contains more difficult instances where
the item weights are uniformly distributed to expect between three and nine
items per bin, n ∈ {50, 100, 200, 500}, c = 1000. Set 3 contains hard instances
with weights uniformly distributed in the range [20000, 35000], n = 200 and
c = 100000.

Weibull These instances are based on the Weibull probability distribution.
It can model various distributions found in different problem domains by
adjusting the shape parameter k > 0 and the scale parameter λ > 0.
We generated 92 sets of weights W with the parameters n ∈ {100, 200},
k ∈ {0.5, 0.6, . . . , 5.0}, and λ = 1000. For each set W , we generate 6 in-
stances (c,W ) with c = σ · max(W ) for σ ∈ {1.0, 1.2, . . . , 2.0}. The total
number of instances is 552, with capacity ranging between 1300 and 92500.

The resolution procedure that we use is the same as in [33,3], where a mini-
mum number of bins is established and an attempt to find a solution is made. If
such a solution does not exist, the number of bins is increased, and a new attempt
is made. All implementations use the decreasing best fit search heuristic. In this
strategy, the items are considered in descending order of weight and assigned to
the first bin within their domain that has the smallest residual capacity suffi-
cient to accommodate the item. Additionally, two symmetry-breaking rules are
applied on backtracking: first, the bin is removed from the domain of all items
of the same size, and second, all the bins with the same load are removed from
the domains of these items. Finally, a dominance rule is applied before a choice
point: if an item completely fills the remaining capacity of a bin, it is assigned
to that bin.

3 Algorithm with linear complexity time.
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Benchmark Lower Bound Solved Avg Time [s] Tot Time [s] Nodes

L2 38 11 408 1244813
DFFs-CPU 58 64 3677 891909
DFFs-GPU 58 21 1196 891909
Arc-Flow 68 20 1327 5235

L2 31 20 628 8091399
DFFs-CPU 59 60 3568 584459
DFFs-GPU 60 59 3559 698451
Arc-Flow 79 9 690 15990

L2 640 7 4457 34421873
DFFs-CPU 700 6 4374 3397547
DFFs-GPU 703 6 3985 7901777
Arc-Flow 717 3 2492 115520

L2 336 5 1620 34401378
DFFs-CPU 437 9 3950 596417
DFFs-GPU 440 4 1951 2400806
Arc-Flow 436 61 26800 278695

L2 0 – – –
DFFs-CPU 3 316 947 8221
DFFs-GPU 3 1 3 8221
Arc-Flow 0 – – –

L2 375 70 26301 55122362
DFFs-CPU 402 9 3432 722730
DFFs-GPU 418 9 3652 35003432
Arc-Flow 292 95 28022 11437

Falkenauer T

Falkenauer U

Scholl 1

Scholl 2

Scholl 3

Weibull

Table 2: Statistics for the solved instances of different lower bound methods.

The implementations L2, DFFs-CPU, and DFFs-GPU include additional tech-
niques. First, another dominance rule is applied before a choice point: if at most
one item fits in the residual capacity of a bin, the heaviest among such items is
assigned to the bin [29]. Second, the feasibility check uses all three reductions
described in [13]. Finally, the symmetry breaking described in [28] is enforced
with an additional constraint. We discuss the impact of these techniques later
in this section.

The experiments are performed with a time limit of 10 minutes to ensure a
reasonable benchmark time. The system used for the tests is equipped with an
Intel Core i7-10700K processor, 32 GB of RAM, and an NVIDIA GeForce RTX
3080. It runs Ubuntu 22.04, CUDA 11.8, Open JDK 11.0 and CPLEX 22.1.

5.1 Results and Analysis

The analysis focuses on instances solved within the time limit. Table 2 reports,
for each approach and benchmark, the number of solved instances, the average
time per solved instances, the total time to solve them, and the total number of
visited nodes.
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Fig. 6: Solve time for the Scholl 2 and Weibull instances. Note the logarithmic
scale in the time axe. The DFFs-GPU points are colored in green.

The Falkenauer T instances highlight the contrast between fast but weak and
slow but strong pruning. L2 quickly solved almost half of the instances, while
Arc-Flow solved 85% of them, taking on average twice the time per instance.
The DFFs-based approaches fall in the middle, with the GPU-accelerated im-
plementation being three times faster than the sequential version.

In the Falkenauer U and Scholl 1 instances, Arc-Flow demonstrated a good
balance between speed and strength, solving almost all instances in a small
amount of time. The DFFs-based approaches follow by number of solved in-
stances, and L2 comes last. Notice how the gap between Arc-Flow and the
DFFs-based approaches shrinks from small (Falkenauer U) to larger (Scholl
1) bin capacities. The additional instances solved by DFFs-GPU compared to
DFFs-CPU accounted for 15% (Falkenauer U) and 29% (Scholl 1) of the total
solving time.

The results for the Scholl 2 instances (see fig. 6) show that DFFs-GPU is a
competitive approach, solving a larger number of instances with the minimum
average time. Closely following is DFFs-CPU, which is twice slower compared to
the GPU version, and Arc-Flow that requires significantly more time. Finally,
L2 comes last, with a good average resolution time but fewer solved instances.

The Scholl 3 instances, characterized by their huge capacities, highlight the
convenient trade-off between tight bounds and computational speed offered by
DFFs. These approaches are the only ones able to solve some instances, with
the GPU-accelerated implementation showing remarkable speedups.

The results obtained from the Weibull instances (see fig. 6) confirm the
effectiveness of the DFFs-based approaches, especially for large bin capacity.
DFFs-GPU solved more instances than it sequential counterpart, which accounts
for 96% of the solving time. In third place is L2 with a significantly larger average
solving time, and last comes Arc-Flow with significantly fewer solved instances.
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Version Solved Time [s] Nodes

DFFs-GPU 1631 1847 4653344
DFFs-GPU-NoDom 1598 2515 16420684

DFFs-GPU-NoAltRed 1623 2597 12986578
DFFs-GPU-NoSymBrk 1591 5970 53424505

Table 3: Statistics for DFFs-GPU without optimizations.

In conclusion, the DFFs-based approaches offer an interesting tradeoff be-
tween pruning strength and computational speed that becomes more valuable
as the bin capacity increases. The speedups provided by the GPU depend on
both the capacity of the bins and the characteristics of the instance. As the cal-
culation of the lower bound is the only GPU-accelerated operation, the benefits
are proportional to the number of times the feasibility check is performed. This
count can be significantly smaller than the number of propagator calls, since
failures can occur earlier in the knapsack reasoning.

To assess the impact of the different optimizations we employed, an ablation
study has been conducted on the instances solved by DFFs-GPU in less than 60
seconds. The results are presented in table 3, where each entry represents a ver-
sion of DFFs-GPU with a disabled optimization. The most effective techniques are
the dominance rule [33] and symmetry breaking [28]. In general, we strongly en-
courage the use of the latter since it is implementable as a standalone constraint
and applicable to variations of the BPP with precedences or conflicts.

6 Conclusions and Future works

This paper discusses the Bin Packing Problem, presenting a feasibility check
using different lower bounds derived from Dual Feasible Functions. While these
lower bounds may not be the fastest or the tightest, the substantial parallelism
offered by modern GPUs changes this position, making the approach effective,
particularly for large problem instances.

This work raises several research questions that could be explored in future
studies. From an analytical standpoint, it would be interesting to identify func-
tions that lead to tight bounds in cases where the current ones fall short. On
a practical note, a valuable extension would be to explore the effectiveness of
multidimensional Dual Feasible Functions [1] on the Multidimensional/Vector
Bin Packing Problem.
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