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The Kardar-Parisi-Zhang (KPZ) equation describes a wide range of growth-like phenomena, with
applications in physics, chemistry and biology. There are three central questions in the study of
KPZ growth: the determination of height probability distributions; the search for ever more precise
universal growth exponents; and the apparent absence of a fluctuation-dissipation theorem (FDT)
for spatial dimension d > 1. Notably, these questions were answered exactly only for 1+1 dimensions.
In this work, we propose a new FDT valid for the KPZ problem in d + 1 dimensions. This is done
by rearranging terms and identifying a new correlated noise which we argue to be characterized by
a fractal dimension dn. We present relations between the KPZ exponents and two emergent fractal
dimensions, namely df , of the rough interface, and dn. Also, we simulate KPZ growth to obtain
values for transient versions of the roughness exponent α, the surface fractal dimension df and,
through our relations, the noise fractal dimension dn. Our results indicate that KPZ may have at
least two fractal dimensions and that, within this proposal, a FDT is restored. Finally, we provide
new insights into the old question about the upper critical dimension of the KPZ universality class.

I. INTRODUCTION

Many major advances in physics have involved
a clear understanding of the connections between
physical laws and geometry. For instance, the clas-
sical mechanics revolution led by Galileo and New-
ton became possible with the development of cal-
culus applied to Euclidean geometry. Similarly,
in the realm of quantum mechanics, fundamental
concepts such as symmetry and groups are linked
to geometric principles. In general relativity, the
connection between physics and geometry is so pro-
found that one determines the other.

However, Mandelbrot’s fractal revolution in
complex systems [1] is somewhat incomplete. This
incompleteness is related to the intricate nature
of complex systems, which can span various spa-
tial and temporal scales, often exhibiting diverse
regimes of relaxation processes. The issue is that,
in general, we do not know how to deal with fractal
geometries exactly. In fact, exact fractal dimen-
sions are known only for some deterministic ob-
jects with previously defined scaling rules. Even
approximate numerical methods should be used
carefully [2, 3]. For stochastic variables, such scal-
ing rules are typically unknown and valid only sta-
tistically. Nevertheless, concepts of fractality con-
tinue to arise in physics [4]. In particular, fractal

∗ faooliveira@gmail.com

dimensions often emerge in the fundamental phe-
nomenon of diffusion [5]. Fractals also emerge in
problems of growing surfaces, as discussed in this
work.

In many physical systems, growth processes can
occur as particles or aggregates of particles reach a
surface through diffusion or some other form of de-
position process, or even an injection beam. To in-
vestigate this growth, one tracks the height h(x⃗, t)
of the growing surface, where t is time, and x⃗ is the
position in a space of dimension d. Since h(x⃗, t)
typically exhibits scaling properties different from
x⃗, we refer to (h(x⃗, t), x⃗) as forming a d+ 1 dimen-
sional space. Field equations have been proposed
for the dynamics of h(x⃗, t), such as the Kardar-
Parisi-Zhang (KPZ) equation [6]:

∂h(x⃗, t)
∂t

= ν∇2h(x⃗, t)+λ

2 [∇⃗h(x⃗, t)]2+η(x⃗, t). (1)

The coefficient ν is a surface tension parameter
that controls a diffusive-like term associated with
the so-called Laplacian smoothening mechanism.
The term with λ is nonlinear and related to the tilt
mechanism (lateral growth). The Gaussian white
noise, η(x⃗, t), has zero mean ⟨η(x⃗, t)⟩ = 0 and vari-
ance

⟨η(x⃗, t)η(x⃗′, t′)⟩ = 2Dδ(d)(x⃗− x⃗′)δ(t− t′), (2)

where D controls the noise intensity [6, 7] and
⟨· · · ⟩ denotes an ensemble average. For λ = 0,
the Edwards-Wilkinson (EW) equation is recov-
ered [7]. The KPZ equation describes and connects
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a broad spectrum of significant stochastic growth-
like processes in physics, chemistry, and biology,
spanning from classical to quantum systems (see
discussions and references in [8, 9]). From time to
time, a new system is discovered to belong to the
KPZ universality class.

A large number of such growth-like phenom-
ena [9–15] can be understood by defining a few
physical quantities such as the average height ⟨h⟩
and the roughness or surface width

w(L, t)2 = ⟨h2(t)⟩ − ⟨h(t)⟩2, (3)

where L is the linear sample size. We are interested
in physical systems in which the roughness grows
with time and then saturates at a maximum value
ws [9]:

w(L, t) ≈

{
ctβ , if t ≪ t×
ws, if t ≫ t×,

(4)

with ws ∼ Lα and t× ∼ Lz, where t× is a crossover
time. The critical exponents z, α and β satisfy the
scaling relation [16, 17]

z = α

β
. (5)

Also, the one-loop renormalization group approach
preserves Galilean invariance, which results in
to [6]

α+ z = 2, (6)

and therefore there is only one independent expo-
nent.

II. THE FLUCTUATION-DISSIPATION
THEOREM

Our starting point is to try to understand
the fluctuation-dissipation theorem (FDT) in KPZ
growth systems. Since there is a long history of vi-
olation of the FDT in some complex systems such
as structural glasses [18–21], proteins [22], meso-
scopic radioactive heat transfer [23] and ballistic
diffusion [24–28], it has been suggested that for
KPZ, the FDT should always fail at dimension
d > 1 [6, 8, 29–31] (for a review, see [32]).

More recently, we demonstrated the existence of
a FDT for KPZ growth in 1+1 dimensions [30],
leading us to find the corresponding KPZ expo-
nents for 2 + 1 dimensions analytically [31]. We
explored the idea that the fractal dimension of the
surface, denoted df , is connected to the KPZ ex-
ponents at the saturation of the growth process.
This connection allowed us to derive precise expo-
nents compared to numerical and experimental re-
sults, particularly for 2+1 dimensions [8]. Here, we

discuss a new emergent fractal dimension directed
associated to the noise of the process, denoted as
dn, which emerges from the dynamics, and how
both fractal dimensions are related to the critical
exponents.

This apparent violation of the FDT at higher
dimensions motivates us to look more carefully
into the KPZ equation. First, note that since
[∇⃗h(x⃗, t)]2 > 0, the nonlinear term always car-
ries the sign of λ, contrasting with the Laplacian
and noise contributions, which in turn fluctuate
between positive and negative. Note as well that
the average growth velocity vg is given by [9]

vg = λ

2 ⟨[∇⃗h(x⃗, t)]2⟩. (7)

Our time is measured in deposition layer units in
such a way that vg is constant. Thus, we rewrite
Eq. (1) as

∂h(x⃗, t)
∂t

= ν∇2h(x⃗, t) + vg + ϕ(x⃗, t), (8)

which results in an Edwards-Wilkinson equation
[33] with constant velocity and effective noise

ϕ(x⃗, t) = η(x⃗, t) + ψ(x⃗, t) (9)

where

ψ(x⃗, t) = λ

2 [∇⃗h(x⃗, t)]2 − vg. (10)

ψ(x⃗, t) is just the fluctuation of the nonlinear term.
Observe that the original noise η(x⃗, t) is uncorre-
lated in time and space as presented in Eq. (2),
whereas ψ(x⃗, t) is a noise strongly correlated in
space with first neighbors, which can be concluded
from its definition. Note that, by construction,
⟨ϕ(x⃗, t)⟩ = 0.

We note that, since the growth process usually
starts with a flat surface h(x⃗, t = 0) = 0, the initial
noise is just ϕ(x⃗, t = 0) = η(x⃗, t = 0) and the
first state of the growth is just a random walk.
It is followed by a correlation such that w(t) ∝
tβ , where distinctions between Edwards-Wilkinson
and KPZ appear. The distribution of heights P (h),
which has been obtained exactly only for 1 + 1
dimensions and shows universal behavior [11, 34–
37], will dynamically affect the noise ϕ(x⃗, t) and
the roughness of the interface.

A. Fractals

While the KPZ dynamics is defined in an Eu-
clidean space of dimension d+ 1, the growing sur-
face shows fractal features observed in experiments



3

on SiO2 films [13] or in the rough interface gener-
ated by simulations of the 2 + 1 single-step (SS)
model [38]. The existence of an associated fractal
dimension is widely known [9, 39].

For these self-affine growth processes, the grown
surface has a fractal dimension df , which obeys [9]

df =
{

2 − α, if d = 1, 2
d− α, if d ≥ 2.

(11)

Therefore, KPZ growth is a phenomenon intri-
cately linked to fractality. Moreover, dynamics
of complex systems like KPZ can exhibit various
length scales and, consequently, different fractal
dimensions. With our current knowledge, we cer-
tainly cannot specify how many. Nevertheless, our
primary focus here is to highlight two specific frac-
tal dimensions: the previously mentioned df and
a new fractal dimension dn associated with the ef-
fective noise ϕ.

To motivate the need for a description in terms
of a new fractal dimension, let us first recall that
the system is defined in a space with dimension
d + 1, where “1” is associated with the height co-
ordinate h. However, notice that the dynamical
evolution of the KPZ equation leads to structures
with effective dimension lower than d + 1 — this
becomes apparent in the long-time behavior asso-
ciated with w, which scales as Lα, with α < 1.
Since this consideration only involves coordinate
h, it is reasonable to consider an effective descrip-
tion in which the dynamics is embedded in a space
with a putative lower dimension dn + 1, so that
d ≤ dn + 1 ≤ d+ 1, i.e. d− 1 ≤ dn ≤ d.

The argument above suggests the existence of
a new fractal dimension, but it does not provide
a workable definition for measuring or calculating
dn. One possibility to incorporate dn is partly mo-
tivated by recent results (see e.g. [40]), and consists
in replacing d-dimensional Dirac delta functions by
dn-dimensional fractional delta functions [41, 42],
which naturally incoporate non-locallity and cor-
relations in space. Recall that our new noise vari-
able ϕ must be correlated, so we make the simple
conjecture that the two-point correlation function
⟨ϕ(x⃗, t)ϕ(x⃗′, t′)⟩ can be written as

⟨ϕ(x⃗, t)ϕ(x⃗′, t′)⟩ = 2Deff(t)δ(dn(t))(x⃗− x⃗′)δ(t− t′),
(12)

where both dn(t) and Deff(t) are functions of time,
reflecting the fact that surface roughness evolves
over time. If we start with a flat interface, implying
initial roughness w(t = 0) = 0, it will evolve until
saturation at t ≫ t×. Therefore, one has that
w(t) → ws, Deff(t) → Ds

eff and dn(t) → ds
n, where

“s” indicates saturation values. In Sec. II B, we will
use simple ideas based on dimensional analysis to

connect the fractal dimension dn with the exponent
α.

Through this new perspective, there is actually
no violation of the FDT: Eq. (12) is understood as
a real representation of fluctuations in the system.
At saturation, the balance represented by the new
FDT is an equilibrium between the dissipation of
roughness ∇2h and the fluctuation ϕ. In Eq. (8),
vg is a constant that does not contribute to this
balance. We can now seek to associate α with dn

for d+ 1 dimensions.

B. Dimensional analysis

A powerful tool in physics is dimensional anal-
ysis, which we apply now to get important infor-
mation about the interface geometry. Although
ws ∼ Lα as seen in Eq. (4), it has the same physical
dimension as the height h, that is, [ws] = [h] = [L].
In other words, in experiments they are both mea-
sured in units of length, as it must be from defini-
tion (3). The physical dimensions involved in the
parameters that control ws are [ν] = [L2][T−1],
[Ds

eff ] = [Ldn+2][T−1], where [T ] is the time di-
mension. Since time is not present in the dimen-
sions of ws, it needs to be eliminated. Therefore,
both Ds

eff and ν must appear under the same expo-
nent in the form Ds

eff/ν. Thus, the FDT balance
gives ws ∝ (Ds

effL/ν)α, whose dimensional analy-
sis yields

α = 1
dn + 1 , (13)

with d − 1 ≤ dn ≤ d as previously discussed. For
d = 1, we have dn = d = 1. This is because if
d < 1, there would be no continuous border. Thus,
for 1 + 1 dimensions, our analysis yields the exact
exponent α = 1/2.

III. DETERMINATION OF EXPONENTS
AND FRACTAL DIMENSIONS

Originally, there were three exponents and two
equations, namely Eqs. (5) and (6). We have now
introduced Eqs. (11) and (13). However, they in-
volve two extra unknowns, df and dn, both associ-
ated with fractal dimensions. Although introduc-
ing these variables might seem pointless, it has the
advantage of shifting our attention to the fractal
geometry of the problem.

In the absence of a formal theory to determine
at least one of the fractal dimensions, we will use
computer simulations to obtain some information
regarding the critical exponents. Knowing α, we
can then obtain the fractal dimensions dn and df
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using the above relations. The surface roughness
measured by the exponent α has important in-
formation on properties of the surface and of the
growth process. Its evolution can be obtained from
the correlation function:

C(r) =
〈
[h(x⃗+ r⃗, t) − h(x⃗, t)]2

〉
∝ r2α, (14)

where r is the modulus of the vector r⃗ with r < ξ,
where ξ is the correlation length [39]. Note that
this can be viewed as a time-independent correla-
tion function for each time t.

Simulations using lattice models in the KPZ uni-
versaility class can be used to determine the time
evolution of α(t), which in turn can be found by
fitting the correlation function [2, 8]. From that,
we can obtain dn from Eq. (13) and df from Eq.
(11) as functions of time. To achieve this, we sim-
ulate the well-known SS model as described below.
The results are shown in Figures 2 to 4.

The SS lattice model is defined in such a way
that the height difference between two neighboring
heights, η = hi − hj , is always η = ±1. Let us
consider a hypercube of side L and volume V =
Ld. We will select a site i and compare its height
with that of its neighbors j, applying the following
rules [38, 43, 44]:

1. At time t, randomly choose a site i ∈ V ;

2. If hi(t) is a local minimum, then hi(t+∆t) =
hi(t) + 2, with probability p;

3. If hi(t) is a local maximum, then hi(t+∆t) =
hi(t) − 2, with probability q.

For all simulations presented here, we chose p =
1 and q = 0 to reduce computational time. Note
that, if we implemented a simpler growth model
based on rule (1), one would have a white noise in
d + 1 dimensions. However, due to rules (2) and
(3), only a fraction of that noise will be effectively
realized.

We show in Figure 1 the time evolution of the
roughness exponent α for the SS model in 1 + 1
dimensions. The values are obtained from the cor-
relation function (14) for a system of size L =
4096. To do that, we average over the lattice
[Eq. (3)] and then over 1000 experiments. We ob-
serve that the value of α increases with time un-
til it stabilizes, fluctuating around the stationary
theoretically-exact value of 1/2.

Having validated our simulations by comparison
with the exact values, we now show in Figure 2 the
evolution of both fractal dimensions as functions of
time for the SS model in 1+ 1 dimensions, with df

obtained from Eq. (11) and dn from Eq. (13). The
simulation data are the same as used in Figure 1.

We highlight that, since α increases over time
and then saturates, the fractal dimensions df and
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FIG. 2. Fractal dimensions df and dn as a function
of time t for the SS model in 1 + 1 dimensions. The
dashed lines represent the stationary theoretical values
for each fractal dimension (see text).

dn consequently decrease over time and then sta-
bilize. The stabilization occurs when the system
reaches the saturation region where w ≈ ws. As
t → ∞, the value of α tends towards 1/2. Conse-
quently, df → 2 − α = 3/2 and dn → 1/α− 1 = 1.
These theoretical values are marked as dashed lines
in Fig. 2.

In Figure 3 (top), we show the evolution of the
fractal dimension as a function of time t for the SS
model in 2+1 dimensions. The case of 2+1 dimen-
sions is the most relevant one. Besides correspond-
ing to our real world, growth phenomena in these
dimensions are associated with surface science and
the development of new technological devices, such
as those involving thin films. Moreover, for 2 + 1
dimensions there are more simulation results avail-
able and one can get more precise exponents than,
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say, for 3 + 1. Furthermore, for 2 + 1 dimensions
there are experimental results. We use a squared
lattice of lateral size L = 2048 and average over 10
experiments. We also calculate the average over
time windows of 500 time steps. We determine
α(t) and, from that, df and dn. Surprisingly, after
the transient, the two values agree. Figure 3 (bot-
tom) shows their difference df − dn. In the inset,
we see that, for a long time, the difference df − dn

fluctuates around zero. Indeed, its mean value in
the inset region is ∆df = df − dn = −0.0011(3).
This yields |∆df/df | = 7 × 10−4. Similar results,
not presented here, hold for the etching model [45–
47].

Motivated by numerical evidence, we assume
that dn = df for 2 + 1 dimensions, which allows
us to write down exact values for the exponents α,
β, z, as well as the fractal dimensions df and dn.
Combining Eqs. (11) and (13), we obtain

α = 3 −
√

5
2 ; β =

√
5 − 2; z = df = 1 +

√
5

2 ,

(15)
which corresponds to df = 1.61803... (see inset of
Figure 3, top), and α = 0.381966011..., in agree-
ment with simulations (see compilations of simula-
tion results in reference [30]). Moreover, accurate
experiments give z = 1.6(2) [12], z = 1.6(1) [13],
z = 1.61(5) [48], and z = 1.61 [49] in agreement
with our value of z = df = 1+

√
5

2 = 1.61803....
Since the final fate of a theory is decided by ex-
periments, these results strongly indicate that our
proposal is on the right track. For completeness,
we mention that, recently, Luis et al. [2, 3] have
used the Higuchi method (HM) [50, 51] and the
three-point sinuosity method [52] to obtain df =
1.6179(3) for the SS model and df = 1.61813(5)
for the etching model [2] and discuss its theo-
retical and experimental accessibility during film
growth [3].

For 3 + 1 dimensions the distinction between dn

and df becomes clear again. In Figure 4 we use
a cube of side L = 512 and we average over 3
experiments and time windows of 50 time steps.
The figure exhibits the evolution of both fractal
dimensions. There is no doubt they correspond to
different fractal dimensions.

IV. ADDITIONAL DISCUSSION

A. Upper critical dimension

For d ≥ 2, no exact results for the KPZ expo-
nents have been widely accepted. Equation (13)
may shed some light on the issue. From d − 1 ≤
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dn ≤ d, we obtain:

1
d

≥ α ≥ 1
d+ 1 . (16)

Therefore, α will keep changing with the dimension
d. As a consequence, within our framework, there
is no upper critical dimension . Note that if we
choose the bounds allowed by the Hausdorff fractal
dimensions [9], not the above restriction, we have
d− 1 ≤ dn ≤ d+ 1, and therefore Eq. (13) implies

1
d

≥ α ≥ 1
d+ 2 . (17)
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Both sets of inequalities suggest the nonexistence
of a UCD. However, α = (d + 1)−1, is the well-
known Wolf-Kertesz relation [53], which is broadly
recognized as a lower bound for α. Furthermore,
the upper bound of d− 1 ≤ dn ≤ d gives the exact
result α = 1/2 for d = 1 as already mentioned.
Thus, Eq. (16) establishes the appropriate bounds
and we do not need relation (17).

B. Renormalization

Equation (13) also sheds light on a crucial aspect
of the one-loop renormalization approach [6]. For
d = 1, where the noise dimension dn = 1 aligns
with the Euclidean dimension, this renormaliza-
tion approach is correct. However, for d ≥ 2, where
dn differs signifcantly from d, it does not work.
This mismatch between the two dimensions sug-
gests an explanation as to why the one-loop renor-
malization approach is incorrect.

The main relationships between exponents are
the result of scaling, Eq. (5), and renormalization
approaches, Eq. (6). Recent results [17] generaliz-
ing the Family-Vicsek relation to all d dimensions
would be a hopeful starting point for a generaliza-
tion of a renormalization group (RG) approach to
KPZ. Thus, a new approach involving a suitable
renormalization with a fractal dimension for the
noise would be desired. However, that is not an
easy task.

C. A possible connection between growth
and phase transitions

We discuss above the violation and necessary
modification of the FDT in growth. The first clear
indication of FDT violation appeared in phase
transition studies. For example, let us define
the fluctuation of the order parameter m(r⃗, t) as
δm(r⃗, t) = m(r⃗, t)−⟨m(r⃗, t)⟩. We define as well the
correlation function, G(r) = ⟨δm(r⃗ + i⃗, t)δm(⃗i, t)⟩,
which for small fluctuations in the continuous limit
yields [54]

G(r) ∝

{
r2−d exp(−r/ρ), if r > ρ,

r2−d−η, if r ≪ ρ,
(18)

where ρ is the correlation length. At this point the
Fisher exponent η is introduced empirically, argu-
ing that the FDT does not work. Part of this is
empirical, motivated by experiments and simula-
tions. But η is also exactly calculated in some few
exactly solvable models (e.g. η = 1/4 for Ising
in 2D). A recent fractal analysis [40] close to the

phase transition shows that G(r) is the appropriate
response function with

η = d− df . (19)

Thus, the Fisher exponent in the correlation func-
tion, G(r), represents the deviation from the inte-
ger dimension. Note the similarity with Eq. (11).
Such similarity is remarkable since we are compar-
ing non-equilibrium growth phenomena with equi-
librium phase transitions.

V. CONCLUSION

In this work, our objective was to give a new
insight into the fluctuation dissipation theorem
for the KPZ equation. To do this, we consider
the fluctuation of a combination of the nonlinear
term with the white noise. Our theory suggests a
new emergent noise which obeys a new FDT with
fractal dimension dn. The balance at saturation
w ≈ ws gives a new equation relating dn to the
exponent α. This new relation indicates when one-
loop RG should work or not. For 2 + 1 dimensions
the noise dimension and the fractal dimensions are
the same within a great precision, dn ≈ df , which
allows us to obtain accurate values of the growth
exponents in 2 + 1 dimensions for the KPZ equa-
tion.

Finally, the discussions presented here open a
new scenario for further investigation of different
forms of growth both theoretical and numerical.
For example, the RG approach applied to the frac-
tal interface will probably lead to new important
results. As mentioned above, one-loop expansion
preserves the Galilean invariance (6). However, it
deserves further developments. The attempt to
obtain exact height fluctuations for the station-
ary KPZ equations, as well as for most of KPZ
growth physics in 2 + 1 dimensions, is still in its
beginning. These theoretical methods will benefit
from the fixed points obtained by precise KPZ ex-
ponents, and from the idea of a fractal geometry
that must be associated with them [31]. We ex-
pect as well that new methods would confirm our
results. Therefore, our work suggests new horizons
for KPZ research.
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