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Abstract

Dynamic parameterization of acoustic environments has drawn widespread atten-
tion in the field of audio processing. Precise representation of local room acoustic
characteristics is crucial when designing audio filters for various audio rendering
applications. Key parameters in this context include reverberation time (RT60)
and geometric room volume. In recent years, neural networks have been exten-
sively applied in the task of blind room parameter estimation. However, there
remains a question of whether pure attention mechanisms can achieve supe-
rior performance in this task. To address this issue, this study employs blind
room parameter estimation based on monaural noisy speech signals. Various
model architectures are investigated, including a proposed attention-based model.
This model is a convolution-free Audio Spectrogram Transformer, utilizing patch
splitting, attention mechanisms, and cross-modality transfer learning from a
pretrained Vision Transformer. Experimental results suggest that the proposed
attention mechanism-based model, relying purely on attention mechanisms with-
out using convolution, exhibits significantly improved performance across various
room parameter estimation tasks, especially with the help of dedicated pretrain-
ing and data augmentation schemes. Additionally, the model demonstrates more
advantageous adaptability and robustness when handling variable-length audio
inputs compared to existing methods.

Keywords: Acoustic Environments, Blind Room Parameter Estimation, Pure
Attention Mechanisms
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1 Introduction

In recent years, there has been a growing focus on the dynamic parameterization of
evolving acoustic environments. The parameters that describe local rooms or other
acoustic spaces hold significance as they can be harnessed in the modelling and design
of audio filters for a diverse range of applications. Understanding the specific acoustic
properties of the surrounding room can be applied to improve speech signals and sup-
port dereverberation algorithms, ultimately improving word error rate for Automatic
Speech Recognition (ASR) and the clarity of voice communication systems [1–3]. Addi-
tionally, spatial sound reproduction systems could leverage this data to enhance their
performance in tasks related to acoustic room equalization either using predefined
filters [4, 5] or in an adaptive manner [6].

Furthermore, the successful realization of audio augmented reality (AAR) necessi-
tates the seamless integration of virtual acoustic objects into the physical environment.
This integration underscores the importance of achieving a harmonious alignment
between the acoustical properties of virtual elements and the characteristics of the
local space [7]. In pursuit of this goal, a significant challenge lies in the accurate esti-
mation of related acoustical parameters of a room to enhance the realism of immersive
audio. Notably, Jot et al. [8] introduced the concept of a “reverberation fingerprint”,
comprising the room’s volume and its frequency-dependent diffuse reverberation decay
time. This innovative concept was proposed to characterize rooms specifically for the
realistic binaural rendering achievable with audio augmented reality headphones. It’s
worth noting that this fingerprint primarily focuses on the part of reverberation that
is independent of the position, treating a room’s acoustic characteristics in isolation
from the orientation and directivity of sound sources and receivers.

Conventionally, room parameters like reverberation time (RT60) and direct-to-
reverberant ratio (DRR) are typically obtained through a direct analysis of measured
Room Impulse Responses (RIRs). Meanwhile, room volume is closely linked to the
determination of a concept known as the “critical distance.” This critical distance is
defined as the distance at which the direct and reverberant power components of a
sound source become equal, effectively making the DRR reach 0 dB. In cases where
we assume an ideal diffuse soundfield, the relationship between these parameters is
mathematically described by Sabine’s well-known equation [9]:

RT60(b) ≈ 0.16
V

α(b) · S
, (1)

where S denotes the total area of the room’s surfaces and α(b) is the area-weighted
mean absorption coefficient in octave band b.

In practical applications, conducting in-situ measurements of RIRs and deter-
mining the volumes of users’ local acoustic spaces can often present significant
challenges. A compelling alternative involves blind estimation of room acoustic param-
eters from audio recordings obtained using microphones, even when the sound sources
are unknown and in the presence of background noise. The 2015 ACE challenge
[10] established a benchmark for blind estimation of RT60 and DRR from noisy
speech recordings. The leading systems in this challenge primarily relied on signal
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modeling-based approaches [11, 12]. Meanwhile, room volume estimation has long
been formulated as a classification problem [13, 14]. Audio forensics systems described
in [13, 14] make use of Mel-frequency cepstral coefficients (MFCC)-based features to
identify the specific room associated with an environmental sound or speech recording,
typically within a predefined closed set of possibilities.

Due to the recent advancements in Deep Neural Networks (DNNs), there is a grow-
ing trend to reframe the challenge of blind room acoustic parameter estimation as
a regression problem. This approach leverages Convolutional Neural Network (CNN)
models in combination with time-frequency representations, offering an increasingly
relevant and effective solution. Gamper et al. [15] introduced a CNN designed to
directly estimate RT60 from a four-second recording of reverberant speech. The exper-
imental results demonstrate that this CNN outperforms other methods in the ACE
challenge, offering both superior performance and higher computational efficiency. The
same approach was also applied to blind volume estimation in [16] and results show
that it can estimate a broad range of volumes from real-measured data (with average
estimated errors typically ranging from half to twice the actual values). CNN-based
systems with similar methodologies have been put forward for the blind estimation
of room acoustic parameters, utilizing either single-channel [17–19] or multi-channel
speech signals [20]. These systems have showcased promising outcomes in terms of
both accurate parameter estimation and resilience to temporal variations in dynamic
acoustic environments. Notably, in contrast to the conventional approach of log-energy
calculations for spectro-temporal features used in prior studies, Ick et al. [21] intro-
duced a set of phase-related features. Their research demonstrated clear improvements
in the context of estimating reverberation fingerprints for real-world rooms that had
not been previously seen, highlighting the enhanced efficacy of this method.

CNNs are widely considered in the fore-mentioned approaches due to their suit-
ability for learning two-dimensional time-frequency signal patterns for end-to-end
modelling. CNNs can be extended by a recurrent layer to form convolutional recur-
rent neural networks (CRNN) that exploit sequential dependencies in the data [22]
and improve the capability of processing input sequences of variable length [23].
To further enhance the capture of long-range global context, hybrid models com-
bining Convolutional Neural Networks (CNNs) with self-attention mechanisms have
yielded state-of-the-art results in a range of tasks, including acoustic event classifica-
tion [24, 25] and various audio pattern recognition endeavors [26, 27]. Gong et al. [28]
pushed the boundaries even further by introducing purely attention-based models for
audio classification. Their creation, the Audio Spectrogram Transformer (AST), was
evaluated on several audio classification benchmarks, achieving new state-of-the-art
results. This underscores that CNNs may not always be essential in this particular
context.

Building on the inspiration derived from the research presented in [28], our study
introduces a convolution-free, purely attention-based model for the blind estimation
of acoustic room parameters by extending our previous work in [29]. To the best of
our knowledge, this marks the inaugural application of an attention-based system in
the field of blind acoustic room parameter estimation. The proposed system utilizes
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Gammatone magnitude spectral coefficients as well as the low-frequency phase spec-
trogram as inputs and captures long-range global context, even in the lower layers of
the model. Furthermore, to enhance system performance, we apply transfer learning
through the use of a pretrained transformer model from ImageNet. For the evaluation
of the proposed method, we curate a RIR corpus that includes publicly available RIRs,
synthesized RIRs, and RIRs obtained through in-house measurements of real-world
rooms. Experimental results clearly demonstrate the superiority of our proposed model
when compared to CNN-based blind acoustic parameter estimation systems, partic-
ularly when dealing with previously unseen real-world rooms using single-channel
recordings of variable length.

The remainder of the article is organized as follows.
Section 2 introduces the construction of RIR datasets, including real-world and

simulated datasets. Section 3 demonstrates the generation of audio data with rever-
beration and noise using constructed RIR datasets, followed by data preprocessing,
augmentation, and feature extraction schemes for neural network training. Section
4 details the model structures of a CNN-based model, a CRNN-based model, the
proposed attention-based systems. Section 5 conducts a comprehensive evaluation of
the proposed system against state-of-the-art methods in various room parameter esti-
mation tasks and its performance under variable-length inputs. Section 6 draws the
conclusion.

2 Data generation pipeline

Applying neural network methods to address blind room parameter estimation is a
challenging task, as it generally requires a substantial amount of data. Since this
task necessitates the need of having audio samples from rooms with various acoustic
characteristics, manually creating a suitably diverse dataset would incur exorbitant
costs and time. In this work, audio samples are created from public real-world RIR
datasets, the BJUT Reverb dataset, and a room-simulation-based RIR dataset.

2.1 Public real-world RIR datasets

In this study, six publicly available real-world RIR datasets that include 44 authentic
rooms are considered, with the aim of encompassing a wide range of acoustic room
parameters.

The majority of the data targets at geometrically regular rooms, including spaces
like offices, classrooms, and auditoriums/lecture halls. These datasets include the ACE
Challenge dataset [10], the Aachen Impulse Response (AIR) dataset [30], the Brno
University of Technology Reverb Database (BUT ReverbDB) [31], the C4DM dataset
[32], and the dEchorate dataset [33]. Additionally, the OpenAIR dataset [34] primarily
covers larger acoustic spaces, such as churches, nuclear reactor halls, and other sub-
stantial structures. As a result, a large variety of real-world room configurations with
different volume parameters are incorporated.

Furthermore, RT60 values vary widely, ranging from less than half a second to over
ten seconds, and these values are calculated using the Schroeder method [35].
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Fig. 1: Room Measurement Layout Diagram

In addition to the public datasets described above, RIRs from 11 distinct rooms
at the campus of Beijing University of Technology were measured, including elevator
shafts, classrooms, auditoriums, seminar rooms, and more. The parameters of these
selected rooms were recorded. The aim of this endeavor is to bridge the natural gap in
available real-world acoustic spaces within the volume range of 12m3 to 7000m3. Three
RIR measurements were conducted at different positions within the selected rooms.
Specifically, measurements were taken at the geometric center of the room, a location
near the wall, and a position near the corner, to capture the RIR with a sequence
length of 4 seconds. The microphone and loudspeaker positions are illustrated in Fig.
1.

2.2 Simulated RIR Dataset

The real-world data is supplemented by introducing 30 simulated RIRs derived from
virtual rooms with various geometries. This aims to enhance the dataset’s repre-
sentation of less frequently encountered room volumes, thereby achieving a normal
distribution of total volume.

The specific approach involves simulating a single sound source positioned near
the center of each virtual room and evenly distributing five-point receivers throughout
the volume of each room. To create this synthetic dataset, the pyroomacoustics [36]
software package is deployed, which utilizes the image-source model to simulate RIRs
for rooms with specific volumes. Although this geometric model does not account
for phenomena like diffraction and scattering, empirical evidence demonstrates that
the utilization of simulated data contributes to enhancing the model’s performance,
enabling it to effectively generalize to real-world data [16].

3 Preprocessing

In this section, we provide a detailed explanation of how audio data with reverberation
and noise is generated. We started with convolving acoustic response with audio signals
and adding various types of noises for subsequent neural network comparisons.
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To ensure the quality and consistency of the dataset, we performed a series of data
preprocessing. Firstly, we partitioned the audio signals into training, validation, and
test sets. Only real-world RIRs were selected in the test set to asses system performance
on unseen non-simulated rooms.

Furthermore, we employed a data augmentation technique called SpecAugment
that aims to enhance the neural network’s ability to generalize in unknown rooms and
noisy environments.

Lastly, we discussed the method for audio feature extraction. Gammatone ERB fil-
terbank was used to generate time-frequency representations. After processing, these
features resulted in a two-dimensional feature block used as input to the neural net-
work, allowing it to handle various datasets and provide accurate blind room parameter
estimation performance.

3.1 Audio generation

In the acquired RIR dataset, a total of 55 real-world rooms and 30 simulated rooms
are included, comprising a total of 570 RIRs. The volume labels span from 11.88m3

to 21,000m3, while the range of RT60 varies from 0.41s to 19.68s. Due to the signifi-
cant differences in volume labels spanning multiple orders of magnitude, we chose to
represent them using a logarithmic base 10 scale. Additionally, to ensure consistency
across all datasets, all RIRs were downsampled to 16 kHz. The distribution of volume
and RT60 in different datasets is shown in Fig. 2.

From a given RIR dataset with room parameter labels, we generated audio data
with reverberation and noise for the purpose of feeding it into different neural networks
for comparison. To achieve this, we mapped the acoustic response r(t) of different
types of rooms in the RIR dataset onto the audio signal y(t).

We used source speech signals x(t) recorded in anechoic chambers without rever-
beration and convolve them with r(t) in the time domain. The source speech signals
x(t) are obtained from the ACE dataset [10], where samples are recorded without
reverberation, and include both male and female speakers. In the RIR dataset, some
rooms have more RIR measurements than others. To ensure a uniform representation,
each room is equally sampled, so that the distribution of audio samples in our dataset
matches the volume distribution in our RIR dataset.

Additional noise signals n(t) were added to simulate recordings at four different
signal-to-noise ratio (SNR) levels, including [+30, +20, +10, +0] decibels. The noise
n(t) comprises two types of noise, namely white noise and babble noise [37].

In summary, the audio signal y(t) is constructed by convolving source speech signals
x(t) with room impulse response r(t) and adding additional noise n(t), represented as:

y(t) = x(t) ∗ r(t) + n(t)

= s(t) + n(t) (2)

Here, t represents the discrete time index. s(t) represents the reverberation audio
signal without noise.

6



Fig. 2: The distribution graphs of volume and RT60 in different datasets.

Table 1: Summary of Data Splits for Datasets I & II

Data # of # of Real Simulated
Split Dataset I Dataset II Rooms Rooms
Train 19200 24000 34 18

Validation 6400 6400 21 12
Test 6400 6400 21 0

We split 32,000 audio signals y(t) into training, validation, and test sets in a 6-
2-2 ratio. During the training process, we randomly sampled a subset from both real
and simulated rooms for room validation. A subset was also extracted from real-world
unseen rooms for room testing. Rooms with these specific parameters were not included
in the training set. The purpose of this step is to assess whether the model, when
confronted with room parameters not encountered during the training process, can still
demonstrate robust predictive performance under noisy and reverberant conditions.
Overall, Dataset I is formulated as listed in Table 1.

3.2 Audio augmentation

To enhance the generalizability of neural networks in unknown rooms and noisy
environments, we employed the widely-used data augmentation technique known
as SpecAugment [38]. This method enhances the model’s robustness to unknown
conditions through modifications and augmentations to the available training data.
Specifically, we selected reverberation signals without noise s(t) as described in
equation 2. Subsequently, these audio signals were transformed into log Mel-frequency
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Fig. 3: Augmentation schemes applied to reverberation signals without noise.

spectrograms and subjected to time warping, frequency masking, and time masking,
as shown in Fig. 3.

Time warping was implemented using TensorFlow’s sparse image warping function.
For a log Mel-frequency spectrogram with τ time steps, we treated it as an image with
the time axis horizontal and the frequency axis vertical. In the image, we randomly
selected points within the interval [Wm, τ − Wm] located between time steps and
applied random warping. The warping distance, w, was chosen uniformly from the
range [0,Wm], where Wm is the time warp parameter. Six anchor points were fixed
at the boundaries of the image, including the four corners and the midpoints of the
vertical edges.

Frequency masking was applied as follows: a continuous set of Mel frequency chan-
nels [f0, f0 + f1) is masked, where f1 is initially chosen from a uniform distribution
[0, Fm], and f0 is chosen from [0, ν − f1), where Fm is the frequency mask parameter,
and ν is the number of Mel frequency channels.

Time masking was applied in a similar manner: a continuous set of time steps
[t0, t0+t1) is masked, with t1 being initially chosen from a uniform distribution [0, Tm],
and t0 chosen from [0, τ − t1), where Tm is the time mask parameter, and τ is the
total number of time steps. The Mel-frequency spectrogram with masking applied is
then converted back to the time-domain signal.

Finally, 4800 speech sequences with these masking effects were added to the original
training dataset for neural network training, and this dataset is labeled as Dataset II,
as shown in Table 1. Constrained by computational resources, it is important to note
that SpecAugment is not applied on-the-fly during each epoch. Instead, it undergoes
offline processing on the data and is subsequently integrated directly into the training
set. This approach aims to strike a balance between computational costs and the
effectiveness of data augmentation. This comprehensive data augmentation strategy
aims to help the neural network better adapt to various environments and conditions,
ultimately improving its generalization performance.
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3.3 Featurization

Audio feature extraction is crucial in convolutional neural networks, as it directly
influences the model’s performance. However, combining multiple feature extraction
methods into one model led to complex models and requires a substantial amount of
data and expensive training costs. Therefore, it is necessary to balance the addition
of feature extraction methods while retaining key acoustic information to ensure that
the model can handle a variety of datasets and provide general and accurate blind
room parameter estimation performance.

Prior works in [15, 16, 39] emphasize the importance of low-frequency informa-
tion for room acoustic parameter estimation. Consequently, feature representation is
restricted to the relatively low-frequency range (<2000 kHz). The Gammatone ERB
filterbank is used to generate time-frequency representations, comprising 20 frequency
bands covering the frequency range from 50 Hz to 2000 Hz. The audio is computed
using a 64-sample Hann window with a 32-sample hop size, resulting in a 20 × 1997
complex Gammatone spectrogram.

Furthermore, the phase information extracted from the audio is also retained
following the work in [21]. Phase angles are computed for each time-frequency bin
to generate phase features. These features are then truncated to include only the
frequency bands associated with frequencies below 500 Hz (i.e., 5× 1997) since lower-
frequency components generally carry more information related to room volume.
Additionally, the first-order derivatives of the phase coefficients along the frequency
axis are calculated (i.e., 5×1997). This feature configuration aligns with the “ +phase”
model described in [21], which has been proven to outperform methods based solely
on amplitude spectrogram features.

By combining spectral features, phase features, and first-order derivatives of phase
coefficients, a two-dimensional feature block is obtained. The dimension of the feature
block is 30×1997, where 30 represents the feature dimension (F ), and 1997 represents
the time dimension (T ).

4 Model architecture

In this section, different architectures for audio data processing models are described
for blind room parameter estimation tasks. These models include a CNN-based model,
a CRNN-based model, and proposed attention-based systems.

Firstly, the CNN-based model utilizes multiple convolution and pooling layers to
capture features of the audio data through convolution operations, followed by reduc-
ing the parameter count using pooling operations. Secondly, the CRNN-based model
combines CNN and LSTM networks, designed to handle time series data better, cap-
turing both time and frequency features of the audio data. Finally, the proposed model
employs a completely different approach, relying solely on attention mechanisms with-
out using convolution. This model has a unique structure, breaking inputs into patches,
processing data through embedding layers and positional encoding layers, ultimately
extracting features and producing results using Transformers. Additionally, the study
also employs transfer learning by utilizing pretrained image models to process audio
data, improving performance and efficiency.
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Fig. 4: The system architecture of the CNN-based model.

Fig. 5: The system architecture of the CRNN-based model.

4.1 Convolutional neural network

In this section, a model based on a CNN following the “+phase” model in [21] is intro-
duced, for processing two-dimensional feature blocks extracted from audio data. The
model comprises six convolutional layers with corresponding average pooling layers,
and each convolutional layer is followed by a Rectified Linear Unit (ReLU) activation
function. To prevent overfitting, dropout layers, which discard 50% of the connec-
tions, are introduced within the network structure. Taking the estimation of room
volume parameters as an example, the final output layer is a fully connected layer,
mapping the output dimension to downstream tasks. In particular, the structure of
its last layer is dynamically adjusted according to the requirements of the blind room
parameter estimation task to meet the performance needs of different tasks. Its system
architecture is illustrated in Fig. 4.

4.2 Convolutioanl recurrent neural network

CRNN is designed to capture both temporal and frequency features in audio data
while also having a memory to handle time series data. CRNN efficiently extracts fea-
tures from data and models sequences, better accommodating variable-length inputs,
making it highly suitable for practical blind room parameter estimation problems.

A CRNN-based model is introduced in this section as it combines the parameteric
efficiency of CNNs with the capability of sequential modelling from gated RNNs. The
system architecture of CRNN is illustrated in Fig. 5.

Overall, the model consists of six convolutional layers with ReLU activation, fol-
lowed by an LSTM layer, a max-pooling layer, a dropout layer, and a time-distributed
fully connected layer.
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Convolutional blocks gradually reduce the size and dimensions of the feature maps,
allowing more sequences to enter the network. Simultaneously, the max-pooling layer
is applied to extract useful features from the raw audio data.

The LSTM layer, which serves as a key component of the CRNN, is used for
processing time series data, capturing the temporal relationships and sequence infor-
mation in the input data. The hidden layer size of the LSTM is set to 64, and can be
adjusted based on the size of the input fed into the LSTM. Prior to the dense layer, a
max-pooling layer is employed to reduce the parameter count, with a pooling size set
to 2, similar to [40].

Subsequently, the model includes a dropout layer with rate of 0.5 before the dense
layer. The data is then flattened and passed to the fully connected layer, whose output
size can be adjusted as needed. Considering that the estimated room parameters are
positive values, an additional ReLU activation function is added to the final output
layer.

Finally, the model outputs the estimated room parameters from the last time
step. In this example, blind indoor volume estimation is used as the task, which is
a regression task with an output size of 1. The structure can be adapted to specific
application scenarios and datasets.

4.3 In-depth: convolution-free audio spectrogram transformer

4.3.1 Audio spectrogram transformer

In this section, we introduce a model based purely on attention mechanisms without
convolution for blind room parameter estimation. The design of this model is inspired
by the workings of the Audio Spectrogram Transformer described in [28], which has
shown remarkable performance in end-to-end audio classification tasks. However, it is
noted that this purely attention-based approach has not been extensively explored in
other domains, especially in the realm of blind room parameter estimation.

The primary goal of this section is to apply the proposed model that is purely
attention-based to the blind room parameter estimation problem and compare its
performance with traditional CNN and CRNN models.

In this work, two-dimensional feature block with dimensions of 30× 1997 as input
for the proposed model is used. To better capture local information in the audio, the
two-dimensional feature block is divided into P patches, each sized 16× 16. The goal
of patch split is to ensure a better capture of local features within the audio signal.
Additionally, to maintain consistency in both feature and time dimensions, each patch
has a 6-feature dimension and 6-time dimension overlap with its surrounding blocks.
As a result, the number of patches P is determined to be 398, shown as:

P =
⌈F − 16

10

⌉⌈T − 16

10

⌉
, (3)

where F represents the feature dimension, and T represents the time dimension.
To further process these patches, we introduced a linear projection layer. This

layer’s role is to flatten each 16 × 16 patch into a one-dimensional patch embedding
with a dimension of 768, referred to as the patch embedding layer. This embedding
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Fig. 6: The system architecture of the proposed model.

process helps reduce the data’s dimensionality, making it more suitable for subsequent
processing in the model.

Since these patches are not arranged in chronological order, and traditional Trans-
former architectures do not directly handle input sequences, we introduced trainable
positional embeddings of dimension 768 in each patch. By introducing these trainable
positional embeddings, the model is better able to understand the spatial structure of
the audio spectrogram and grasp the positional information between patches.

Furthermore, the feature sequence is fed into the Transformer. Similar to [28], each
feature sequence begins with a [CLS] token. In this model, the encoding and feature
extraction of the input sequence only utilizes the encoder part of the original Trans-
former architecture [41]. The advantage of using the original Transformer structure is
that it is a standard architecture already available in PyTorch and TensorFlow, mak-
ing it easy to reproduce. Secondly, we plan to apply transfer learning to this task, and
the standard architecture facilitates transfer learning. Specifically, the embedding size
of the Transformer encoder we use is 768, with 12 layers and 12 heads, which are the
same as those in [42, 43].

We adjusted the output of the encoder based on the type of room parameters
being estimated. Taking room volume estimation as an example, the input consists of
a sequence formed by a feature block with the dimensions of 30×1997, and the output
is a single label used for volume prediction. The entire output of the Transformer
serves as the feature representation for the two-dimensional audio feature block, which
is subsequently mapped to labels for volume estimation using a linear layer with a
Sigmoid activation function. The system architecture of the proposed model is depicted
in Fig. 6.
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In summary, traditional convolutional neural networks typically have multiple lay-
ers, small kernels, and stride sizes. In contrast to the proposed model, which includes
patch embeddings (viewed as a single convolutional layer with large kernels and strides)
and projection layers within Transformer blocks (viewed as 1 × 1 convolution). The
proposed model used in this study can be referred to as a convolution-free model,
distinguishing it from CNN and CRNN [42, 43].

4.3.2 ImageNet pretraining

Many researchers have noted that Transformers lack some of the inductive biases
inherent to CNNs, such as translation equivariance and locality [44]. Consequently,
they exhibit poorer generalization capabilities under conditions of limited training
data, compared to simpler models like CNNs and CRNNs [42].

To achieve accurate blind room parameter estimation, a substantial amount of
publicly available data with correctly labeled room parameters is required to train the
network. Therefore, two approaches are adopted:

1) As introduced in Section 2.2, the use of an image-source model to synthesize
RIR datasets.

2) Transfer learning.
Transfer learning has been widely explored in previous research, particularly in

transferring from visual tasks to audio tasks. This transfer often focuses on using
CNN-based models [25, 45–47], where ImageNet-pretrained CNN weights are used
as initial weights for audio classification tasks. However, the computational cost of
training state-of-the-art visual models could be relatively high. Fortunately, some
common architectures like ResNet [47] and EfficientNet [48] offer readily available
ImageNet-pretrained models for TensorFlow and PyTorch, making transfer learning
more convenient.

For image classification tasks, research indicates that Transformer models start to
outperform traditional models in performance when the dataset size exceeds 14 million
[42]. However, audio datasets for blind room parameter estimation tasks typically
cannot provide such massive amounts of data, posing a challenge. Therefore, we have
decided to explore cross-modality transfer learning for the task of audio spectrogram
processing, leveraging the similar format between image and audio data.

In this study, we use a pretrained off-the-shelf Vision Transformer (ViT) model
from ImageNet [43] to simplify the transfer learning process. Afterward, we make
appropriate adjustments to adapt it to the blind room parameter estimation task.
Although both ViT and the proposed model employ the standard Transformer with the
same patch and embedding sizes, their architectural similarities require adjustments to
the structure before migration to ensure compatibility with the blind room parameter
estimation task. Three adjustments are implemented:

1) One challenge is that the proposed model’s input is a single-channel feature
block, whereas ViT’s input is a three-channel image. To overcome this issue, we
adopted an approach to calculate the average weights corresponding to each of the
three input channels of the ViT patch embedding layer. This averaging method helps
integrate the information from the three channels into a single channel. We then used
these averaged weights for the patch embedding layer. This essentially extends the
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single-channel spectrogram to a three-channel image with the same content but higher
computational efficiency. This approach helps us better adapt to the differences in
model input, thus improving the efficiency and performance of the research.

2) Another issue encountered in this study is that the input dimensions of ViT are
fixed, whereas in practical tasks, the model needs to adapt to variable-length audio
inputs. As the audio length changes, the dimensions of the feature block also change.
While the Transformer naturally supports variable input lengths and can be directly
transferred from ViT to the proposed model, special handling of positional encodings
was required. This is because the ViT model learns to encode spatial information dur-
ing ImageNet training. Therefore, we used the ‘Cut and bi-linear interpolate’ method
[25] to adjust the input size and manage positional encodings. This way, even with dif-
ferent input shapes, we can pass on the two-dimensional spatial knowledge obtained
from the pretrained ViT to the proposed method, allowing the model to adapt to audio
inputs of varying lengths. This method helps us better handle data under different
input conditions.

3) To adapt to different sub-tasks in blind room parameter estimation, we take the
example of blind room volume estimation. We reinitialize the final classification layer
of ViT to output corresponding volume labels in the proposed model.

These adjustments are crucial to ensuring that the pretrained ViT model can be
effectively used for the specific task of blind room parameter estimation and achieve
improved efficiency and performance.

5 Experiment

In this section, an in-depth exploration of blind room parameter estimation tasks
is conducted, utilizing two different datasets (Dataset I and Dataset II ) to assess
the performance of various models. We employed log-scaled and normalized data to
better handle the magnitude differences between room parameters and utilized mul-
tiple evaluation metrics to comprehensively assess the accuracy and robustness of the
models.

We employed various model architectures (CNN-based model, CRNN-based model,
and the purely attention-based method in Section 4.3) and conducted a detailed
comparison of their performance on different tasks and datasets.

Overall, through these experiments, we examined the performance of different mod-
els in various blind room parameter estimation tasks and assessed their adaptability
in handling variable-length audio inputs.

5.1 Datasets

In the task of blind room parameter estimation, Dataset I and Dataset II mentioned
in sections 3.1 and 3.2 were utilized. In the preprocessing phase, room volume labels
(in m3 units, in logarithmic scale) were exclusively read, and four models, CNN-based
model, CRNN-based model, the Proposed Method, and the “proposed method w/
pretrain” model, were individually evaluated for their performance on Dataset I and
Dataset II. For the blind room parameter estimation with variable-length audio input,
Dataset II was employed. Similarly, in the preprocessing phase, only room volume
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labels (in m3 units, in log-scaled) were considered. However, a modification was made
to the test set of Dataset II. Specifically, samples were extracted from 1 to 4 seconds
with a step size of 0.5 seconds, and zero padding was applied to different lengths of
audio samples to match the original length. This was done to assess the performance
of different models in handling blind room parameter estimation under audio inputs
with different length.

Finally, in the task of joint estimation of room parameters, Dataset II was used.
In the preprocessing phase, the model simultaneously reads room RT60 (in seconds)
labels and room volume labels (in m3 units). In order to overcome the significant scale
differences between these two parameters, we adopted an approach where we mapped
the values of RT60 to volume values and applied a logarithmic scaling to them. It
is worth emphasizing that this data processing method is reversible, allowing us to
revert all parameters to standard units at any time. The advantage of mapping the
parameter relationship rather than standard normalization is that it eliminates the
need for frequent adjustment of hyperparameters when dealing with different blind
room parameter estimation tasks, as it effectively addresses the differences in units
and magnitudes among the parameters. This is done to evaluate the performance of
different models in joint room parameters estimation.

5.2 Evaluation metrics and loss function

As shown in Fig. 2, due to large span of room volume and RT60 ranges, the estimation
error could be related to its order of magnitude. Therefore, a log-10 estimation is more
suitable than a linear estimation. This way, larger acoustic spaces in training are not
disproportionately affected due to the relatively high contribution of error estimation.
Using a logarithmic estimation better handles estimation errors of different orders of
magnitude.

Four evaluation metrics using a base-10 logarithm are considered. They are as fol-
lows: 1) Mean Squared Error (MSE): MSE is the average of the squared differences
between estimated room parameters and ground truth room parameters. It is used to
measure the degree of dispersion between estimated values and ground truth values.
The smaller the average of squared differences, the closer the estimated values are to
the ground truth values. 2) Mean Absolute Error (MAE): MAE represents the average
of the absolute differences between estimated values and ground truth values. It pro-
vides the average deviation between estimated values and ground truth values and is
commonly used to measure the accuracy of estimated values. 3) Pearson Correlation
Coefficient (ρ): The Pearson correlation coefficient is used to measure the strength and
direction of the linear relationship between two variables. It is used to describe the
relationship between estimated room parameters and ground truth room parameters,
with values ranging from -1 to 1. Negative values indicate a negative correlation, posi-
tive values indicate a positive correlation, and 0 indicates no correlation. 4) MeanMult
MM : MM is the mean absolute logarithm of the ratio between the estimated room
volume and the ground truth room volume. This metric provides an overview of the
mean error in the ratio between estimated room parameters and ground truth room
parameters. Taking the logarithm of the ratio helps reduce the impact of data points
with significant differences. For example, for the estimated volume parameter, given
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the estimated volume V̂n and the ground truth volume Vn:

MM = e
1
N

∑N
n=1 | ln

(
V̂n
Vn

)
|
, (4)

where “n” represents the sample index, and “N” represents the total number of
samples.

During model training stages, MSE was used as the loss function to minimize the
error between estimated room parameters and ground truth room parameters. In the
“Estimation of room parameter” and “Room parameter estimation under variable-
length audio input” tasks, the loss function L1 formula was as follows:

L1 =
1

B

B∑
n=1

(V̂n − Vn)
2, (5)

where “n” represents the sample index, and “B” represents the batch size during
training.

In contrast, for the task of “Joint estimation of room parameters,” which involves
the simultaneous estimation of RT60 and volume parameters. To avoid differences in
units and orders of magnitude between different parameters, as well as the impact of
parameter scaling methods, the normalized MSE was used instead of the MSE in Eq.
5. The loss function L2 was formulated as follows:

L2 = λ1 ∗
∑B

n=1(Ûn − Un)
2

B
∑B

n=1(Un)2
,+λ2 ∗

∑B
n=1(V̂n − Vn)

2

B
∑B

n=1(Vn)2
, (6)

where Ûn and Un represent the estimated and the ground truth RT60, respectively.
λ1 and λ2 are weights used to control the balance between the RT60 and volume
normalized MSE loss functions. These weights are employed to adjust the relative
importance of these two functions during model training. Based on empirical evidences
and experimental results, λ1 is set to 1, and λ2 is set to 2. This weight configuration
can be adjusted according to the specific task and model performance to better meet
the training requirements.

5.3 Experiment configurations

Different MSE loss functions were chosen based on the task’s requirements. Each
model utilized the Adam optimizer from PyTorch. During the training process, L2
regularization was applied to prevent overfitting. Simultaneously, an adaptive learn-
ing rate strategy was employed to ensure the convergence of the model. If the model’s
validation set did not improve for ten consecutive epochs, an early stopping criterion
was triggered, leading to the cessation of the training process to prevent further over-
fitting. Furthermore, to select the optimal-performing model, we monitored the MSE
values on the validation set during grid search and optimized hyperparameters, includ-
ing initial learning rate as well as batch size. The hyperparameter configuration that
demonstrated the best performance was chosen as the final model parameters.

For the “Estimation of room parameter” task, to facilitate comparative testing,
we switched between Dataset I and Dataset II as well as determined whether to

16



use a pretrained model from ImageNet. To ensure consistency in model configura-
tions, hyperparameters were kept constant. CNN-based and CRNN-based models were
trained for 1000 epochs with an initial learning rate of 5e-4, a batch size of 128.

The proposed attention-based method and the “proposed method w/ pretrain”
model were trained for 150 epochs with an initial learning rate of 5e-6, a batch size of
16. For the “Joint estimation of room parameters” task, CNN-based and CRNN-based
models were trained for 2000 epochs with an initial learning rate of 2e-4, a batch size
of 128. The proposed method and the “proposed method w/ pretrain” model were
trained for 300 epochs with an initial learning rate of 2e-6, a batch size of 16.

To ensure fairness, all models were trained on devices equipped with an Intel Core
i9 processor and an NVIDIA GeForce 4090 GPU.

6 Results and discussion

6.1 Estimation of room volume parameter

To investigate whether comparable performance similar to that of CNN and CRNN
can be achieved by using a pure attention mechanism, we extracted audio data from
Dataset I for the purpose of estimating room volume parameter. We transformed audio
data into a feature block, as described in Section 3.3. Subsequently, we separately
input these feature blocks into the CNN-based model, CRNN-based model, and the
proposed method (the base version without ImageNet pretraining) for training. We
then compared the predicted volume labels to the ground truth values. The results of
these three models are presented in Table 2. Note that in this section we mainly focus
on estimation of room volumes as this task has been shown to be more challenging
than RT60 estimation in the literature [15, 16, 21].

In addition, the table includes information on the model’s memory consumption
and computational complexity, such as the number of parameters (#Param) and Mul-
tiply–Accumulate Operations (MACs). To ensure fairness, we conduct tests using the
PyTorch profiler [49] in the same GPU environment. A comprehensive comparison
of the data in the table reveals that CNN models have fewer parameters and rel-
atively low memory consumption but perform worse in various evaluation metrics.
While the CRNN model shows an increase in parameter count compared to CNN and
some improvement in evaluation metrics, it still falls short of our proposed method.
In contrast, although our method has relatively higher parameter count and memory
consumption, it demonstrates significant advantages in all evaluation metrics. Specif-
ically, our method outperforms in terms of MSE, MAE, ρ, MM, and MACs. Despite
the relatively higher memory consumption, considering the performance improvement,
this increase can be deemed acceptable.

Based on experimental results above, we can see that the proposed method using
the pure attention mechanism significantly outperforms both CNN and CRNN-based
approaches, even with a lower-layer network configuration and relatively fewer training
epochs. This suggests that the proposed method can accurately capture the acoustic
characteristics in the audio data, thereby improving the accuracy and stability of room
volume estimation.
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Table 2: The comparison between the CNN-based model [21], the CRNN-based
model, and the base version of the proposed method.

Method
# Params

Evaluation Metrics Memory
MACs

(M)
MSE MAE ρ MM

Consumption (G)
(GB))

CNN [21] 0.013 0.3863 0.4837 0.6984 3.0532 1.81 0.237
CRNN 0.494 0.3572 0.4265 0.7262 2.6701 1.95 0.236

Proposed
85.256 0.2650 0.3432 0.8077 2.2039 4.55 34.083

method

Meanwhile, the four evaluation metrics show that the CRNN-based model performs
better than the CNN-based model. This can be attributed to the advantages of CRNN,
which combines CNN with LSTM. CRNN can better handle the time series audio data
while capturing local features, which is crucial for blind room parameter estimation
tasks.

Table 3: Performance comparison of different models with and without the application
of SpecAugment.

Method
Dataset I Dataset II

MSE MAE ρ MM MSE MAE ρ MM
CNN [21] 0.3863 0.4837 0.6984 3.0532 0.3154 0.4136 0.7678 2.5921
CRNN 0.3572 0.4265 0.7262 2.6701 0.2818 0.3684 0.7898 2.3471

Proposed
0.2650 0.3432 0.8077 2.2039 0.1981 0.2884 0.8580 1.9427

method
Proposed

0.2157 0.3111 0.8529 2.0470 0.1541 0.2423 0.8929 1.7470method
w/pretrain

To further investigate the impact of ImageNet pretraining on the proposed
method’s performance, the “proposed method w/ pretrain” model was trained on
Dataset I. Simultaneously, to examine the effect of the SpecAugment data augmen-
tation method on the performance of existing models, we retrained the existing four
models on Dataset II. The results of the above experiments are shown in Table 3.

Based on the training results of different models on Dataset I, we can observe
a significant improvement in the performance of the proposed method in the “Esti-
mation of room parameter” task with the use of the ImageNet pretraining method.
Furthermore, when the four models were retrained on Dataset II, the application of
the SpecAugment method elevated the models’ performance to a new level. In partic-
ular, this method demonstrates a significant improvement in the performance of the
“proposed method w/ pretrain” model. It confirms the effectiveness of SpecAugment
in mitigating overfitting and enhancing model generalizability.

Meanwhile, in order to provide a more illustrative example, we rescaled the exper-
imental results to a linear scale. In this experiment, the test set room volume ranges
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Table 4: Comparison of median and mean abso-
lute error for volume parameters among the best-
performing models.

Method
Median Mean absolute error
(m3) (m3)

CNN [21] 353 1919
CRNN 257 1644

Proposed method
155 1219

w/pretrain

from 12 to 21,000 m3. We compared the performance of the best-performing models,
namely the CNN-based model, CRNN-based model, and the “proposed method w/
pretrain” model. They were trained on Dataset II, and their model’s median as well
as mean absolute error are shown in Table 4.

From the table, the “proposed method w/ pretrain” model exhibits the best per-
formance in terms of both median and mean absolute error, having the lowest error
values.

(a) CNN-based model (b) CRNN-based
model

(c) The “proposed
method w/ pretrain”

model

Fig. 7: Confusion Matrices for the best-performing models trained on Dataset II in
the “Estimation of room volume parameter” task

The Fig. 7 displays the confusion matrices for these three best-performing mod-
els in the “Estimation of room volume parameter” task, with the x-axis and y-axis
representing the log-10 exponent of volume size. From the visualization, it is evident
that the “proposed method w/ pretrain” model exhibits excellent performance across
the entire test range. Its distribution consistently closely surrounds the ground truth,
clearly outperforming the CNN-based and CRNN-based models.

Results in this section indicate that the proposed purely attention-based model
is capable of capturing relevant features and representations in the context of room
volume regression efficiency. More importantly, it demonstrates remarkable general-
ization capabilities, effectively applying the patterns learned from the training data
to real-world rooms, even for rooms the model has not encountered before, resulting
in accurate volume estimates. This outcome provides a strong theoretical foundation
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for our approach and underscores its potential in more blind estimation practical
problems, which will be addressed in the following section.

6.2 Room parameter estimation under variable-length audio
input

In this section, model performances under variable-length audio inputs are evaluated
for the “Room parameter estimation” task. The selected models were tested with
different lengths of audio inputs, and their performances were assessed using four
objective evaluation metrics as shown in Fig. 8. It is evident from the figure that the
accuracy of the models in predicting room volume parameter significantly depends
on the length of the input audio. As the input audio length shortens, the estimation
performance of all models inevitably experiences degradation.

By observing the curves of MSE and MAE metrics in Fig. 8, it can be noted that
the CRNN-based model, the proposed model, and the “proposed method w/ pre-
train” model exhibit smaller decay slopes. This suggests that, compared to CNN-based
models, they can better handle time sequences of variable length. The smaller decay
slopes of the evaluation metrics can be considered an indication that the models bet-
ter maintain performance stability, even when the input length decreases, maintaining
relatively good performance.

Results in Fig. 8 also indicate that the “proposed method w/ pretrain” model
performs the best at the same input length. For the shortest input sample, i.e., when
the input length is 1 second, the MSE for the “proposed method w/ pretrain” model is
0.6458. In comparison, to achieve the same performance level, the CNN-based model,
CRNN-based model, and the proposed model would require input audio lengths of
approximately 2.8 seconds, 2.0 seconds, and 1.2 seconds, respectively. This advantage
facilitates the proposed attention-based models to outperform both CNN and CRNN
systems with significantly less temporal context, which can be a valuable merit when
dealing with speech-based blind estimation problems in practice.

6.3 Joint estimation of room parameters

This section aims to address the “Joint estimation of room parameters” task, which
involves training a single model to simultaneously estimate multiple room parame-
ters. Specifically, due to the shared acoustic characteristics of room volume and RT60

parameters, it is possible to estimate them concurrently by extracting reverberation-
related information. Considering difficulties in collecting groundtruth of real data for
other room parameters, such as total surface area and average surface absorption coef-
ficient in real-world room datasets, this experiment focuses on the joint estimation of
room volume and RT60.

In this task, we selected three models, namely the CNN-based model, CRNN-
based model, as well as the “proposed method w/ pretrain” model, and trained them
on Dataset II. Their network architectures were fundamentally similar to those used
for the “Estimation of room volume parameter” task, with minor modifications. In
the “Joint estimation of room parameters” task, the three models are required to
output two parameters, i.e. room volume and RT60, instead of a single parameter.
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Fig. 8: Performance comparison of different models under the “Room parameter
estimation under variable-length audio input” task.

Consequently, the final output layers of the models were modified to include two fully
connected layers for estimating different room parameters. During the training process,
hyperparameters were fine-tuned (as described in Section 5.3), and the loss function
was adjusted (as shown in Eq.6).

It is worth noting that, in order to mitigate issues related to different units and
scales among parameters, as well as the impact of parameter scaling during normaliza-
tion, we chose to use only the ρ as the evaluation metric. This helps ensure consistency
among the estimated parameters. The corresponding results are presented in the Table
5.

Table 5: Pearson correlation coefficients of best-performing models in “Joint estima-
tion of room parameters” task.

Method
CNN [21] CRNN

Proposed method
w/ pretrain

vol RT60 vol RT60 vol RT60

ρ 0.6187 0.9133 0.6584 0.9488 0.8287 0.9681
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From these results, it can be clearly seen that the “proposed method w/ pretrain”
model outperforms the other models, achieving the highest ρ for both room volume
and RT60, indicating its effectiveness in jointly estimating these room parameters.

In this experiment, the test set room volume ranges from 12 to 21,000 m3 while
the RT60 range from 0.41 to 19.68 seconds. We rescaled the experimental results to a
linear scale. The median, as well as mean absolute error for the three models regarding
volume and RT60, are displayed in Table 6.

Furthermore, we conducted a comparative study between the volume estimation
in the joint model and the estimation of volume results for the “Estimation of room
volume parameter” task by comparing results in Table 3 and Table 5, as well as Table
4 and Table 6. Despite the fact that the joint estimation models aim to simultaneously
handle multiple parameters, it is clear that their volume estimation results, while
experiencing some degree of attenuation, are overall very similar to the results obtained
from estimating only a single parameter. This suggests that the performance of the
joint model is in par with that of models designed for estimating a single parameter.

Table 6: Comparison of median and mean absolute error for volume as well as RT60

parameters among the best-performing models.

Method
Median Mean absolute error

vol RT60 vol RT60

(m3) (seconds) (m3) (seconds)
CNN [21] 728 0.64 2481 1.32
CRNN 329 0.39 2265 0.71

Proposed method
294 0.31 2208 0.61

w/pretrain

Fig. 9 shows confusion matrices for volume and RT60 parameter estimation in the
“Joint estimation of room parameters” task, highlighting the best-performing models.
The x-axis and y-axis represent the log-10 exponent of room parameters (volume and
RT60). From the visualization results, it can be observed that estimation performances
of the CNN-based model, CRNN-based model, and the “proposed method w/ pretrain”
model gradually improves, and their fitting capabilities increase progressively.

The comprehensive analysis of experimental results in this study demonstrates
the effectiveness of the joint estimation model for the blind room parameter estima-
tion task. This method involves utilizing a single model to simultaneously estimate
both room volume and RT60 parameters, providing a more holistic understanding of
acoustic environmental characteristics. Particularly, the “proposed method w/ pre-
train” model achieves the highest ρ for both room volume and RT60 parameters. This
highlights the model’s capability of capturing the intricate characteristics of acoustic
environments through the joint estimation of room parameters.
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(a) CNN-based
model(volume)

(b) CRNN-based
model(volume)

(c) The “proposed
method w/ pretrain”

model(volume)

(d) CNN-based
model(RT60)

(e) CRNN-based
mode(RT60)

(f) The “proposed
method w/ pretrain”

model(RT60)

Fig. 9: Confusion Matrices for the best-performing models trained on Dataset II in
the “Joint estimation of room parameters” task

7 Conclusion and future work

In this study, we aim to explore the feasibility of using attention-based models to
address audio processing tasks, specifically including the “Estimation of room volume
parameter,” “Room parameter estimation under variable-length audio input,” and
“Joint estimation of room parameters” tasks. We employ different training strategies
to evaluate performances of a CNN-based model, a CRNN-based model, the proposed
attention-based model, and the “proposed method w/ pretrain” model.

Experimental results based on unseen real-world rooms and realistic noise scenario
indicate that our proposed method shows significant superiority in terms of accurately
capturing the acoustic characteristics of audio data. This demonstrates that neural
networks based on pure attention mechanisms can effectively handle regression prob-
lems related to audio and exhibit potential advantages in handling joint estimation
tasks and variable-length inputs.

Future research directions will focus on optimizing and enhancing the performance
of attention-based audio processing models in real-world applications. We plan to
further improve the model structure, including considering more efficient variants, to
better capture the complex features of audio data. Additionally, we will strive to collect
more comprehensive and diverse room data to enhance the model’s generalization
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capabilities. We also aim to update robust and state-of-the-art RT60 estimators [50–
52] to obtain more accurate ground truth. These efforts will contribute to advancing
the application of attention-based audio processing models in real-world scenarios.
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