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Polaritons are quasi-particles describing the coupling between a photon and a material excitation,
which can carry large momentum and confine electromagnetic fields to small dimensions, enabling
strong light-matter interactions. In the visible (VIS) to near-infrared (NIR) spectral ranges, the
intraband response of metals gives rise to surface-plasmon-polaritons (SPPs), which have practi-
cally governed polaritonic response and its utilization in nanophotonics. Recently, the concept of
interband-based VIS/NIR in-plane exciton polaritons has been introduced in two-dimensional ma-
terials, such as transition-metal-dichalcogenides (TMDs), thus providing an excitonic alternative
to plasmonic systems. Here, we compare the properties of such in-plane exciton polaritons sup-
ported by monolayer TMDs to the equivalent configuration of SPPs supported by thin metallic
films, known as the short-range-SPPs (SRSPPs). Taking into account both excitonic and plasmonic
nonlocal corrections, which play a major role in large momentum modes, we find that in-plane
exciton polaritons provide confinement factors that are an order of magnitude larger than those
of SRSPPs, and with six times lower propagation losses. In addition, we show that unlike SPPs,
in-plane exciton polaritons are coupled to the TMD’s valley degree of freedom, leading to directional
propagation that depends on the exciton’s valley. These properties make in-plane exciton polaritons
promising candidates for VIS/NIR nanophotonics and strong light-matter interaction.

I. INTRODUCTION

In-plane propagating polaritonic waves describe the
coupling between electromagnetic fields and matter ex-
citations that can be electronic, phononic or excitonic,
depending on the material properties. These polaritonic
waves can be supported and waveguided by interfaces
between two different materials, by thin layers, or in
the bulk. Examples of such polaritons include surface-
plasmon-polaritons (SPPs) at metal/dielectric interfaces
[1, 2], graphene-plasmons (GPs) supported by mono-
layer graphene [3–6], and hyperbolic phonon polaritons
(HPhPs) in bulk anisotropic materials [7–9]. SPPs
emerge as collective oscillations of conduction electrons in
metals, coupled with the electromagnetic oscillations of
the photons in the dielectric material. In a similar man-
ner, in semi-metallic graphene, the electromagnetic field
couples with the collective oscillation of the charge carri-
ers in the graphene, giving rise to GPs, and HPhPs arise
due to the coupling of photons with optical phonons and
lead to a hyperbolic dispersion for propagating modes in
the bulk.

The prerequisites for the existence of such polaritonic
waves is a negative real part of the permittivity for one
of the materials at the interface and a positive for the
other. For hyperbolic bulk waves, an anisotropic permit-
tivity is required between the in- and out- of-plane direc-
tions. Polaritonic waves of this nature are renowned for
their ability to confine light below the diffraction limit,
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supporting large momenta. These unique properties of
in-plane polaritons have lead to numerous exciting dis-
coveries and innovative applications in imaging beyond
the diffraction limit, light modulators, sensing, and on-
chip photonics [10–16].

Electronic response in material excitations may be di-
vided into two categories. Intraband, describing the
electronic behavior of metallic materials via their Drude
response, and interband transitions depicting electronic
transitions from one band to another, such as exciton
formation. SPPs, are a prime example of intraband po-
laritons, influenced by the properties of both the metal
and dielectric. Characterized by large in-plane momen-
tum, SPPs dominate the visible (VIS) to near-infrared
(NIR) spectral ranges, which can be traced back to the
inherent Drude response of metals [2, 17].

Considering a more complex configuration of a di-
electric/thin metallic slab/dielectric, two SPPs can be
supported by the two metal/dielectric interfaces. If
the metal slab thickness is comparable to the out-of-
plane decay length of each SPP, it leads to an over-
lap and hybridization of the two SPP modes, and the
formation of two new modes which are distinguishable
by even and odd parities of the in-plane electric field.
The even mode, is characterized by a longer propaga-
tion length than that of the single SPP but with smaller
confinement, while the odd mode, named short-range-
surface-plasmon-polaritons (SRSPP) is characterized by
larger confinement and higher losses [2, 18–22]. These
large losses dramatically hinder SPP-based technologies
[2, 23], together with difficulties in fabricating large-area,
high-quality, ultra-thin metal sheets or dielectric spacers
[20, 24, 25], with the current state-of-the-art being 3 nm

ar
X

iv
:2

40
2.

16
02

3v
1 

 [
ph

ys
ic

s.
op

tic
s]

  2
5 

Fe
b 

20
24

mailto:itaieps@tauex.tau.ac.il


2

ultra-thin single-crystalline Au sheets, supporting mid-
IR SPPs [26].

Recently, interband excitonic-based in-plane polari-
tons have drawn great scientific attention, achieving both
plasmonic and hyperbolic responses [27–30]. More specif-
ically, monolayer TMDs encapsulated by hexagonal-
boron-nitride (hBN) at cryogenic temperatures exhibit
negative real part of their permittivity, mirroring the
conditions in metals necessary for the propagation of sur-
face waves [27]. In achieving a plasmonic-like response,
they have been shown to foster 2D (in-plane) exciton po-
laritons (2DEPs) with large momentum and relatively
modest losses [27]. The fundamental difference being
that while metals involve electromagnetic field coupling
to electrons, TMDs facilitate a robust coupling with exci-
tons. However, a systematic comparative study between
2DEPs and their plasmonic counterparts, the SRSPPs,
remained unexplored until now.

Here, we study and compare the fundamental polari-
tonic properties of 2DEPs and SRSPPs in terms of their
confinement factors and propagation losses. For compar-
ison, we study the 2DEPs supported by monolayer TMDs
encapsulated by hBN and a benchmark case of SRSPPs
supported by a 3 nm single-crystalline Au slab. We in-
corporate nonlocal corrections for both the excitonic and
the plasmonic systems, arising from the pronounced mo-
mentum of these polaritonic modes, and find that 2DEPs
exhibit confinement factors up to an order of magnitude
greater and demonstrate losses reduced sixfold. Our in-
vestigation allows an in-depth understanding of the non-
local 2DEP dispersion relation, pivotal for studying and
realizing such polaritons in a lab environment. Moreover,
we show that unlike SRSPPs, the studied 2DEPs are cou-
pled to the monolayer semiconductor’s valley degree of
freedom, enabling access to directional, valley-controlled
polaritonic waves.

FIG. 1: Illustrated systems under investigation. (a)
Monolayer WS2, (b) 3 nm Au, both encapsulated with
semi infinite layers of hBN. Illustrated using VESTA.

II. NONLOCAL RESPONSE OF MONOLAYER
SEMICONDUCTORS

In its more general form, the susceptibility of a ma-
terial is a function of both frequency and momentum.
While it is always present in this general description, in
most cases the contribution of the momentum to the sus-
ceptibility can be neglected, as the momentum of the
modes is relatively small, i.e. residing around the light
line of the material. Thus, the susceptibility in these
cases can be described as dependent on frequency only
[2]. However, in cases where large momentum modes
are supported, such as polaritons with a dispersion re-
lation reaching momentum values that are much larger
than the light line, the momentum dependence cannot be
neglected, thus necessitating nonlocal corrections to the
susceptibility’s local response [5, 6, 31, 32].

The susceptibility of a monolayer TMD including its
excitonic response can be locally modeled as a summation
over Lorentzian resonances. This is a direct consequence
of each exciton behaving as an individual Lorentzian res-
onance, which takes the form:[27, 33, 34]

χ
TMD

(ω) = −
∑
j

cγr,0j
ω0jd0

(
ω − ω0j + i

(
γnrj/2 + γdj

)) ,
(1)

where c is the speed of light, ω0 is the exciton resonance
energy, d0 is the thickness of the TMD and γr0, γnr, γd
are the radiative, nonradiative, and pure dephasing de-
cay rates, respectively [28, 35]. Nonlocality stems from
effects an electric field at point r′ has on electric dis-
placement vector D(r) for r ̸= r′ in the medium [36].
The nonlocal corrections to Eq. 1 can be understood in
the classical analogy of allowing a coupling term between
neighbouring oscillators [37]. From a quantum mechani-
cal consideration, spatial dispersion is achieved by allow-

ing a kinetic energy term, Ek = ℏ2k2

2M , to the excitonic
energy in the Hamiltonian, where k is the exciton mo-
mentum and M is the exciton effective mass [34]. This
leads to a momentum dependent exciton eigenenergy in
the form of

Eex ≈ ω0 → ω0 +
ℏ2k2

2M
, (2)

and Eq. 1 becomes

χ
TMD

(ω, k) =

= −
∑
j

cγr,0j

ω0jd0
(
ω −

(
ω0j +

ℏ2

2M k2
)
+ i
(
γnr

2 + γdj

)) .
(3)

Focusing on the excitonic resonance ω0j′ , the contribu-
tion of other higher energy resonances in the summation
to the susceptibility can be lumped together into a sin-
gle constant background term, χBG, and written as (see
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supplementary information)

χ
TMD

(ω, k) =

= χBG−
cγr,0

ω0d0
(
ω −

(
ω0 +

ℏ2

2M k2
)
+ i
(
γnr

2 + γd
)) .
(4)

This formulation will be pivotal in deriving the nonlocal
dispersion for a 2DEP sustained by a WS2 semiconduc-
tor.

III. NONLOCAL RESPONSE OF METAL
SURFACES

An idealized metal can be described by free-moving
electrons within the bulk when subjected to an electro-
magnetic field, without mutual interactions. In this sce-
nario, the electron density at the metal’s surface can be
arbitrarily high. In a real metal, electrons close to the
surface experience collective interactions resulting in a
nonlocal behaviour, such as Coulomb interaction and the
quantum Pauli exclusion principle, which prevent elec-
trons from congregating indefinitely at the surface. In-
stead, they get distributed over a certain volume adja-
cent to the surface [38]. In ultra-thin metal films and
for large momentum modes, for which the wavelength is
much greater than the electron mean free path in the ma-
terial, these nonlocal effects play a decisive role. To ac-
curately account for these interactions, especially at the
surface, we employ a hydrodynamic model of light-matter
interactions. This model introduces a pressure-like term
to the free electron model, accounting for electron inter-
actions. It prevents infinitely high electron densities and
places a bound on confinement. The dynamics under this
hydrodynamic approach can be expressed as [39, 40]

−β2∇ (∇ ·P) + P̈+ γṖ = ε0ω
2
pE, (5)

where E is the electric field, P is the polarization vector,

ωp =
√

ne2

ε0me
is the plasma frequency, γ a damping factor

and β ∝ vF , is a nonlocal parameter from the Thomas-
Fermi theory of metals [41] where vF is the Fermi velocity.
For gold nanostructures β ≈ 1.27·106 m/s has been found
to be in good agreement with experimental data [38, 39]
accounting for nonlocal effects. Incorporating this with
Maxwell’s equations leads to a corrected Ampere’s law of
the form of

∇×H = −iωD(r)

= −iωϵ0

(
1−

ω2
p

ω2 + iγω

)
(E−

β2

ω2
p − ω2 − iγω

∇ (∇ ·E)).

(6)

The two sets of possible solutions for these equations cor-
respond to transverse and longitudinal modes satisfying

∇ · E = 0 and ∇ × E = 0 respectively. The transverse
mode is the familiar solution to Maxwell’s equation which

disregards nonlocality and satisfies ϵω
2

c2 = k2 while the
latter solution however, relates to electron oscillations
inside the bulk which yields the following dispersion:

ω2 − ω2
p + iγω

β2
= k2. (7)

The added solutions require an additional boundary con-
dition that has been shown [39] to be satisfied by de-
manding that no currents leave the metal surface, and is
expressed by

J⊥ = P⊥at each interface = 0, (8)

where ⊥ denotes the direction perpendicular to the sur-
face. Combining Eq. 8 with Eq. 6 yield a comprehensive
solution, encompassing both the transverse and longitu-
dinal contributions to the momentum dependent disper-
sion, while considering nonlocal effects.

IV. CONFINEMENT AND LOSS

FIG. 2: Susceptibility χ
TMD

of a hBN encapsulated
WS2 monolayer. (a) Real and imaginary parts of the
susceptibility in the local model. (b) The real part of

the susceptibility in color scale as a function of
frequency and momentum in the nonlocal model.

The systems under investigation are illustrated in Fig.
1, depicting a monolayer WS2 encapsulated by hBN on
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both surfaces (Fig. 1.a) and for comparison a similarly
encapsulated 3 nm slab of Au (Fig. 1.b). Fig. 2 presents
the obtained susceptibility of the TMD for both the local
(Fig. 2.a), and the nonlocal model (Fig. 2.b). For fre-
quencies ranging from 2.065 to 2.1 eV, encapsulated WS2
exhibits Re

(
χ
TMD

)
< 1 when cryogenically cooled, thus

supporting the 2DEP mode in both local and nonlocal
models [27]. In the nonlocal model, Re

(
χ
TMD

)
< 1 is

upheld for specific momenta in addition to specific spec-
tral range. The momenta which uphold this conditions
are considerably lower than those of the local model. To
obtain the mode’s dispersion, we numerically solve the
resulting equation for TM surface waves [42]:

2ε
hBN√

q22DEP − εhBN
ω2

c2

+ χ
TMD

d0 = 0, (9)

where εhBN ≈ 3.8756 is the hBN’s permittivity within
these frequencies, d0 is the WS2 monolayer thickness,
q2DEP is the 2DEP momentum component parallel to
the TMD surface, i.e., in the direction of propagation,
and χWS2

is the TMD’s susceptibility described by Eq.
4. The parameter values for the hBN encapsulated WS2
at 10K were taken from [27] (see supplementary informa-

tion). To describe the local solution, the ”ℏ2k2

2M ” term in
Eq. 4 was omitted.

To determine the dispersion of the encapsulated slab,
we numerically compute the SRSPP dispersion sup-
ported by the given structure. This was done by solv-
ing Maxwell’s equations with the revised Ampere’s law
(Eq. 6) for a TM wave in a hBN/Au/hBN structure us-
ing boundary conditions as in Eq. 8 and allowing both
longitudinal and transverse components as in Eq. 7 to
yield

0 = [CAuChBN (B +AhBN +AAu)]
2
+

− [ChBN (AAu −AhBN −B)]
2
+

− [CAu (AhBN +AAu −B)]
2
+

− 8CAuChBNAAuB + (AAu −AhBN +B)
2

, (10)

where

AhBN =

√
q2−εhBNk2

0

εhBN
AAu =

√
q2−εAuk2

0

εAu

B = q2√
q2+ 1

α

(
1

εAu
− 1
)

α = β2

ω2
p

(
1− 1

εAu

)
CAu = ed

√
εAuk2

0−q2 ChBN = ed
√

εhBNk2
0−q2

, (11)

where k0 = ω/c is the momentum in vacuum and d is the
Au slab thickness. The values for the permittivity of Au,
εAu (ω) were taken from Johnson and Christy [43]. The
values for ωp and γ were obtained by fitting the exper-
imentally measured values [43] to the Drude-like model

ε = 1 − ω2
p

ω2+iγω as in [39]. For the case without nonlo-

cal considerations the solution is similar for α = 0. The
modes and dispersion relations ω(k) of both polaritons
are achieved by numerically solving the dispersion rela-
tions given by Eq. 9 and 10.

FIG. 3: Confinement and loss 2DEPs and SRSPP
calculated for both local (dashed lines) and nonlocal
models (solid lines). (a) Confinement factor. (b)

Propagation losses figure of merit

Fig. 3.a presents the modes’ confinement factor, λ0/λ,
as a function of energy, where λ0 is the wavelength in vac-
uum, and λ is the modes’ wavelength. This quantity is an
indication of how strong the polaritonic modes are con-
fined since higher momenta modes translates to shorter
wavelengths and thus higher confinement factors. This is
done for both the local (dashed line) and nonlocal (solid
line) models for the 2DEP (red) and SRSPP (gold). It
can be seen that for most frequencies shown, the 2DEP
exhibits a higher confinement factor compared to that of
the SRSPP, by up to an order of magnitude. Fig. 3.b
shows the ratio between the real and imaginary parts of
the momentum, which is the figure of merit representing
the number of wavelengths a mode propagates before de-
caying [44]. Fig. 3.b shows the great advantage of the
2DEP by demonstrating that even at high momenta they
have six times less losses compared to the SRSPP at the
same frequency.

V. POLARITONIC COUPLING TO THE
VALLEY DEGREE OF FREEDOM

Next, we explore the possible effect of the valley de-
gree of freedom on the polaritonic modes. In monolayer
TMDs, the combination of lattice inversion asymmetry,
time reversal symmetry, and strong spin-orbit coupling
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FIG. 4: Valley coupled, highly directional 2DEPs on a
monolayer WS2. Illustrated system schematic depicting
the nano particle situated above the axis origin, tilted
at an angle. Circularly polarized excitonic dipole states
in the in-plane direction are presented by blue/yellow
curves. Red ribbons illustrate left/right propagating
2DEPs with left/right circular polarization in the
out-of-plane direction in orange. Side (a) and

perspective (b) views. Cross section in the y − z of the
magnitudes of the electric field for left (c) and right (d)
handed polarizations. (e) Same cross section view of the
magnitude of the electric field as a function of distance
in meters y for z = 0, from the nanoparticle’s center

position.

leads to different optical selection rules for excitons re-
siding at the different K and K ′ valleys [45]. Thus, ex-
citons in different valleys are optically accessible by the
associated left or right circular polarizations of the inci-
dent or emitted light [46, 47]. The excitons’ polarization
orientation is in-plane with respect to the 2D material
surface plane (yellow/blow curves in the x-y plane in Fig.
4.b). Since the excitons are coupled to the valley degree
of freedom, and the 2DEPs are coupled to the excitons,
we expect that the valley polarization will also affect the
2DEPs. In contrast, noble metals such as Au and Ag,
which support surface plasmons, do not posses a valley
degree of freedom property. However, a general attribute
of any surface polariton is that it is polarized in the out-
of-plane direction with respect to the surface plane, i.e.,

perpendicular to the TMD exciton’s polarization plane
(orange curves in Fig. 4.b). These polarizations are cor-
related with asymmetric directional propagation, such
that opposite circular polarizations (left/right) are di-
rectly tied with opposite directions of propagation, as
has been previously demonstrated for plasmonic modes
[48, 49]. To observe the valley dependency of the 2DEPs,
one needs to couple the exciton’s and the 2DEP’s elec-
tric fields from two different perpendicular planes (Fig.
4.a and 4.b). While coupling between the excitons’ val-
ley property to directional propagation has been previ-
ously observed by utilizing several asymmetric geometries
[24, 50, 51], here we show that 2DEPs are also coupled
to the valley degree of freedom. This, in turn, should
be reflected by an asymmetric directional propagation of
the 2DEP to either left or right side, according to ei-
ther left or right circular polarization (red curves in Fig.
4), as have been previously demonstrated for hyperbolic
exciton polaritons in few-layer TMDs [28, 29].
We achieve the coupling of the excitonic and polari-

tonic modes by means of a tilted asymmetrically aligned
ellipsoid nanoparticle excitation with regards to the sur-
face of the TMD (Fig. 4.a,b). In order to couple to such
modes accounting for the momentum-mismatch, and to
accurately predict and calculate its properties, nonlocal-
ity has to be considered, as in Eq. 3. This, will manifest
in the dispersion of the excited mode. To explore this
possibility, we have used COMSOL MULTIPHYSICS to
simulate the interaction of a circularly handed dipole,
representing excitonic emission from a specific valley in
the x− y plane, with the ellipsoid particle tilted around
ŷ in the x−z plane. The nanoparticle’s permittivity was
taken as ε = −18− 4j and for E = 2.08eV relating to a
specific mode a the 2DEP. Fig. 4.c,d show the absolute
value of the electric field in a y − z cross section for a
left and right handed circular polarization excitations re-
spectively, corresponding to different valleys. The prop-
agation direction of the launched 2DEPs’ electric field is
evident to be in the ∓ŷ directions and in correlation with
the left/right polarization handedness. In Fig. 4.e we
show the magnitude of the electric field along the z = 0
line, multiplied by the square root of the distance to ac-
count for the energy decay in a 2D surface wave. It can
be clearly seen that a preferable propagation in the left
or right direction from the center of the nanoparticle is
obtained from the left or right circularly polarized dipole
excitation. Thus, we find that unlike SPPs, 2DEPs are
coupled and affected by the valley degree of freedom in
TMDs.

VI. CONCLUSION

In this work, we have performed a comprehensive
study and comparison of the polaritonic properties of
2DEPs and SRSPPs, including the appropriate nonlo-
cal corrections to each system. Our findings clearly show
the advantages of 2DEPs over those of SRSPPs, offer-
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ing both high confinement and reduced losses, making
them promising candidates for nanophotonic applications
in the VIS/NIR spectral range. In addition, we have
demonstrated that unlike SPPs, 2DEPs are coupled to
the valley degree of freedom, harnessing this unique prop-
erty. The accurate nonlocal treatment of these two sys-
tems ensures a comprehensive understanding of the phe-
nomena at hand, with the precise predictions of their
actual polaritonic properties.
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