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ABSTRACT

In noisy and low-data regimes prevalent
in real-world applications, an outstanding
challenge of machine learning lies in effec-
tively incorporating inductive biases that pro-
mote data efficiency and robustness. Meta-
learning and informed ML stand out as two
approaches for incorporating prior knowledge
into the ML pipeline. While the former re-
lies on a purely data-driven source of priors,
the latter is guided by a formal representation
of expert knowledge. This paper introduces
a novel hybrid paradigm, informed meta-
learning, seeking complementarity in cross-
task knowledge sharing of humans and ma-
chines. We establish the foundational compo-
nents of informed meta-learning and present a
concrete instantiation of this framework—the
Informed Neural Process. Through a series
of illustrative and larger-scale experiments,
we demonstrate the potential benefits of in-
formed meta-learning in improving data effi-
ciency and robustness to observational noise,
task distribution shifts, and heterogeneity.

1 Introduction

Designing machine learning models that generalize well
requires finding a balance between two critical properties
of a model: its support and inductive biases that guide the
learning algorithm towards specific solutions (Wilson and Iz-
mailov, 2020). Currently, the field favors models with large
support, such as deep neural networks—universal approxi-
mators capable of fitting any continuous function (Hornik
et al., 1989). However, these universal architectures lack
task-specific inductive biases, demanding vast amounts of
training data (Welling, 2019). In practical scenarios where
collecting a substantial training dataset is often impractical,
human expertise becomes indispensable. Drawing from past
experiences and contextual insights beyond observable data,
human experts may offer additional insights about inductive
biases needed for the task at hand.
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Conventionally, equipping ML models with prior knowl-
edge about the learning task has been a manual process
executed by practitioners based on their own knowledge and
intuition or in collaboration with domain experts. The sub-
field of informed machine learning specifically focuses
on integrating inductive biases based on knowledge that
is formally represented and explicitly integrated into the
ML pipeline (von Rueden et al., 2023a). Knowledge repre-
sentations may take various forms including mathematical
expressions (Karpatne et al., 2017; Qian et al., 2021), simu-
lation results (Rai et al., 2019; Shen et al., 2020), knowledge
graphs (Choi et al., 2017; Zhang et al., 2019), logic rules
(Yang et al., 2023; Richardson and Domingos, 2006), or
spatial invariances (Wu et al., 2018; Bogatskiy et al., 2020).

Despite many successes of informed ML, such methods
are limited by researchers’ abilities to comprehend and for-
malize expert knowledge and design a learning method
accordingly. Hand-crafted bias specification methods offer
control and explainability but demand extensive engineering
and communication efforts between domain experts and ML
practitioners. While some inductive biases can be easily
encoded (e.g. with convolutions), preferences over func-
tions can often be challenging to formalize and manually
integrate into ML methods; with the integration step often
forming the core contribution of ML papers (Goyal and
Bengio, 2020).

Meta-learning is an alternative approach imitating human
systematic generalization based on previously solved tasks.
This involves learning from a distribution of related tasks,
aka environment, allowing the learner to acquire inductive
biases suited for solving new tasks. The success of meta-
learning relies on the assumption that all tasks within the
environment are appropriately related. Yet, defining task
relatedness lacks clarity and often depends on the partic-
ular algorithm as well as the surrounding context beyond
the observable data. While there exist theoretical results
guaranteeing successful knowledge transfer and generaliza-
tion (Baxter, 2000; Guan and Lu, 2022), they rely on the
assumption that training and test tasks come from the same
distribution, which is hard to meet in practice. If the environ-
ment changes, model performance often drops significantly
(Chen et al., 2019; Li et al., 2019; Zhang et al., 2021).

While the need for integrating external knowledge in con-
ventional ML algorithms has been widely understood and
applied, we identify that a parallel argument can be applied
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Table 1: Comparison of ML paradigms. Solid lines in the
overview diagrams represent fixed components of the ML
pipeline. Dashed lines represent meta-learned components.
Different learning approaches are distinguished by the fol-
lowing factors: (1) Inductive biases of a model depend on a
formal representation of knowledge. (2) Inductive biases of
the learning algorithm are learned from a pre-defined task
distribution. (3) Inductive biases can be controlled by the
domain expert knowledge post model training.

Method Overview Prototypes (1) (2) (3)

C
on

v. Sup. D Aω f̂
NN, BNN,

GP ✗ ✗ ✗

Meta D Aω f̂
ProtoNet,

MAML, NP ✗ ✓ ✗

In
fo

rm
ed Sup.

D Aω f̂

K ι̇

PINN, BN,
G-CNN ✓ ✗ ✗

Meta
D Aω f̂

K ι̇

INP (Ours) ✓ ✓ ✓

to meta-learners, aiming to enhance their data efficiency and
robustness. To address this, we introduce informed meta-
learning, a new paradigm that aims to develop domain-
agnostic meta-learners integrating external knowledge as an
additional source of inductive biases. The complementarity
of informed ML and meta-learning is twofold:
▶ Formal knowledge representations condition the task dis-

tribution and thus inform about the similarity between
the learning tasks, mitigating the adverse effects of task
distribution shifts and heterogeneity.

▶ In contrast to conventional informed ML, the process of
knowledge integration is not fixed but meta-learned based
on the previously observed tasks and their corresponding
knowledge representations. This enables the integration
of prior knowledge of varying levels of formalism, in-
cluding knowledge represented in natural language.

Contributions: This paper proposes the development of
meta-learners with sources of prior knowledge extending
beyond the observable data. 1 We formalize this paradigm
as informed meta-learning, establishing connections with
both meta-learning and informed ML (see Section 2; ex-
tended related work section is relegated to Appendix C).
2 Within this framework, we present a concrete instan-

tiation of informed ML embodied in a novel, proof-of-
concept model—the Informed Neural Process (Section 3).
3 Through a series of illustrative and larger-scale exper-

iments, we demonstrate the potential benefits of informed
ML in improving data efficiency and robustness to observa-
tional noise, task distribution shifts, and task heterogeneity
(Section 4).

2 Formalising Informed Meta-Learning

We begin by formally describing two supervised learning
approaches: meta-learning and informed ML, before in-
troducing the concept of informed meta-learning. Table 1
provides a condensed overview of the methodological dis-
tinctions between these learning paradigms.

In a supervised setup, we are given a training dataset D =

{(xi, yi)}ni=1 and aim to fit a predictive function f̂ : X →
Y , or in a probabilistic setting, find a posterior distribution
over functions p(f | D). The learning algorithm A is a
mapping from the observation space to the hypothesis space,
represented as A : (X × Y)n → F ,D 7→ f̂ (stochastic
learners can be treated by assuming a distribution-valued
A). In this view, A is defined by all steps leading to the
final hypothesis f̂ , including i.a. data pre-processing, model
architecture, loss function, and regularization.

2.1 Meta-learning

The efficacy of A relies on the “how to learn” aspect—the
inductive biases induced by all of its components. Conven-
tionally, these are fixed and pre-specified. Meta-learning
is an alternative approach, in which parts of the learning
algorithm are learned by maximizing the expected perfor-
mance of A on a distribution of related tasks p(T ). Each
task T is defined by a data distribution on X × Y , from
which a task dataset D is sampled. We let ω denote the
learnable component of the algorithm and the dependence
of A on ω by a subscript Aω. To find a good choice of
ω, we assume access to a collection of meta-training tasks,
{Tj}j∈J , Tj ∼ p(T ) and frame “learning how to learn” as
an optimization problem (Hospedales et al., 2022):

ω∗ = argmax
ω

p (ω | {Tj : j ∈ J }) . (1)

ω∗ is commonly referred to as the meta-knowledge or cross-
task knowledge. Once chosen, ω∗ remains the same for
solving any task T ∼ p(T ) and solutions are obtained with
the learner Aω∗ , as f̂ = Aω∗(D). Popular examples of
meta-learning methods include MAML (Finn et al., 2017),
where ω is the initialization of a neural network or proto-
typical networks (ProtoNet by Sung et al. (2018)) where ω
stands for an embedding function shared among all tasks.
Importantly, the meta-learned representation ω is mostly
data-driven and contingent on the selection of the meta-
training tasks {Tj}j∈J . Consequently, the influence of
in-domain expert knowledge on the particular choice of the
learning algorithm remains minimal.

2.2 Informed Machine Learning

In contrast, in informed ML, the learning algorithm is explic-
itly dependent on expert knowledge given by a formal repre-
sentation, which we denote as K. Alongside the dataset D,
knowledge K creates an additional and independent source
of information that is explicitly integrated into the learn-
ing algorithm. Unlike empirical data, which may be noisy,
knowledge, is a form of true and already validated infor-
mation. Its meaning is assumed to be a priori understood
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and agreed upon by domain experts. The correctness of
knowledge and its relevance to a given learning task provide
grounding for the ML method, often leading to an improved
performance over purely data-driven models. Let ω denote
the part of the learning algorithm in which knowledge K
is integrated, then we may represent this explicit depen-
dence of A on K via a Aω, where ω = ι̇(K). Here ι̇ is
a loosely defined map from prior knowledge K to a part
of the learning algorithm. The knowledge integration pro-
cess, ι̇, is conventionally performed by the machine learning
practitioner. Representations of K and ω manifest in vari-
ous forms. In physics-informed neural networks (PINNs)
(Raissi et al., 2019) knowledge is represented by algebraic
equations and integrated with the means of an additional
regularization term; in Bayesian Networks (BNs) (Constanti-
nou et al., 2016) knowledge is represented by probabilis-
tic relations between random variables, constraining the
hypothesis space; knowledge represented by invariances
may define new model architectures like for example group-
equivariant CNNs (G-CNNs) (Cohen and Welling, 2016).

2.3 Informed meta-learning

Both approaches of meta-learning and informed ML aim
to integrate some form of prior knowledge into the learn-
ing algorithm. In meta-learning, this prior knowledge is
defined by a collection of meta-training tasks {Tj}j∈J . In
informed ML, task-specific prior knowledge is given by a
formal representation K. Informed meta-learning takes a
hybrid approach in which the process of prior knowledge in-
tegration, ι̇, is meta-learned based on a collection of training
tasks {Tj}j∈J and their corresponding knowledge repre-
sentations {Kj}j∈J . As previously, let ω represent the
part of the learning algorithm in which prior knowledge is
integrated, then informed meta-learning reduces to:

ι̇∗ = argmax
ι̇

p(ι̇ | {Tj ,Kj : j ∈ J }), (2)

where the solution to a learning task T and its correspond-
ing knowledge representation K is obtained via Aω∗ with
ω∗ = ι̇∗(K). Precise formulations of the objective in (2)
depend both on ω and ι̇. Section 3 introduces one particular
instantiation of informed meta-learning, based on a proba-
bilistic approach to meta-learning. Below, we elaborate on
our motivation behind this particular choice.

Perhaps the most popular meta-learning framework is that
of gradient-based optimization (Finn et al., 2017) with the
goal of finding an optimal weight initialization (ω = θ0)
for a model h(· ; θ) with parameters θ ∈ Θ. This involves
estimating θ0 based on the training tasks, where the solution
for each task is obtained by a few steps of gradient descent
with respect a loss function L evaluated on the task-specific
dataset D; i.e., Aω(D) = h(· ;ω − α∇L(D)). An alter-
native approach to meta-learning is that of inductive bias
learning, as originally formalized by Baxter (1997). This
method aims to choose a suitable prior pθ over the param-
eter space Θ from a predefined collection of priors using
hierarchical Bayesian inference.

While seemingly distinct, gradient-based meta-learning can
also be recast under the hierarchical Bayesian framework

Hypothesis space

(a) Concentrated meta distribution provides strong inductive
biases, as long as the task of interest belongs to the same envi-
ronment as the training tasks.

Hypothesis space

(b) Heterogeneous meta distribution supports a wider range of
tasks, at the cost of weaker inductive biases.

Figure 1: Probabilistic view on meta-learning. See Ap-
pendix D for a further discussion.

Knowledge space

Hypothesis space

Figure 2: Informed meta-learning allows to condition the
meta-distribution on prior knowledge K. In result, the meta-
distribution concentrates around the regions of the hypoth-
esis space surrounding the true solution, providing strong
inductive biases.

(Grant et al., 2018). We thus view the probabilistic approach
as more general. Abstracting away model parameterization
details†, the goal of meta-learning is then to estimate a prior
p(f) over the hypothesis space, F , based on the training
tasks {Tj}j∈J . In this view, the meta-learned ω represents
the prior distribution p(f), and the stochastic learner Aω

maps a task-specific dataset D to the posterior p(f | D).
Figure 1 illustrates the idea of learning a prior over the space
of functions via sampling a fixed number of tasks from the
environment. It also highlights the trade-offs between well-
concentrated and heterogeneous meta distributions.

In the context of informed meta-learning, probabilistic ap-
proaches may prove particularly advantageous. On one
hand, such methods enable the sampling of multiple solu-
tions, spanning a region of F , instead of returning a single
MLE estimate. On the other hand, we posit that expert
knowledge K is often conceptual in nature and thus corre-
sponds to entire regions of the hypothesis space rather than
precise solutions f̂ ∈ F . For instance, if K requires that the
fitted function is linear, this specification corresponds to a
subset Flinear ⊆ F . This observation motivates our focus on

†Let Θ be the parameter space of a model, with solutions
defined by f = h(· ; θ) for a specific choice of θ ∈ Θ. If pθ is
a prior distribution over Θ, then the distribution over f can be
defined as follows. Let g(θ)(·) := h(· ; θ), then f = g(θ) ∼
g∗(pθ), where g∗(pθ) is the push-forward of pθ defined by the
measurable function g : Θ → F , a mapping from parameters to
functions that is assumed to be measurable.
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probabilistic methods while establishing a first instantiation
of an informed meta-learner. Given a collection of training
tasks and knowledge representations, we will aim to find
a suitable prior p(f), and learn to condition it on various
forms of knowledge (see Fig. 2).

3 Informed Neural Processes

The family of Neural Processes (Garnelo et al., 2018a;b)
is one particular example of probabilistic, amortized meta-
learners, forming the foundation for our informed meta-
learner. We choose NPs as they reduce the cost of learning to
a feed-forward operation, eliminating the need for expensive
gradient-based optimization. They also offer functional
flexibility, being suited to both regression and classification
tasks. Moreover, the fact that NPs model a distribution
over functions, instead of returning a single, maximum-
likelihood estimate enables us to measure the reduction in
uncertainty about solutions given observed data, and in the
informed meta-learning scenario, reduction of uncertainty
given expert knowledge.

3.1 Setup

Let T represent a learning task consisting of a context DC =
{(xi, yi)}ni=1 and target DT = {(xi, yi)}mi=n+1 data sets,
aka training and validation sets. We assume that data are
generated according to the following process. Let p(f) be a
probability distribution over functions f , formally known as
a stochastic process, then for f ∼ p(f), set yi = f(xi)+ ϵi,
where ϵi stands for the observational noise.

3.2 Neural Process

NPs model the distribution over functions f through a fixed
dimensional latent variable z sampled from a variational
distribution q. That is, each sample z ∼ q corresponds to
one realization of the stochastic process. NPs model the
predictive posterior distribution as:

p(y | x,DC) := p(y | x, rC) :=
∫

p(y | x, z)q(z | rC)dz.
(3)

The variable rC is an aggregation of all observation in
DC , rC = 1

|C|
∑

i∈C h(xi, yi). The variational distribu-
tion q(z | r) is taken as Normal, q(z | r) = N (z;µz, σz),
with (µz, σz) = r. In the case of regression, we will assume
normal observational noise, i.e. p(y | x, z) = N (y;µy, σy),
with (µy, σy) = g(x, z), where g is a decoder network. In
this view, the meta-knowledge, ω, can be represented with
the tuple ω = (g, h). During meta-training, NPs estimate
the prior distribution over all functions, p(f) as well as the
conditionals p(f | DC). Learning a single task corresponds
to computing the posterior p(f | DC), which is obtained
with a single forward pass through networks h and g. The
parameters of these two networks are estimated by episodic
training over a distribution of tasks.

xi

yi z yi

xi

i ∈ C i ∈ T

(a) NP

xi

yi

K

z yi

xi

k

i ∈ C i ∈ T

(b) Informed NP
Figure 3: Graphical models. Comparison of NPs with INPs.
Dark grey nodes represent the observables.

3.3 Informed Neural Process

As discussed in section 2.3, external knowledge about a
given learning task should allow for concentrating the mass
of p(f) around the region of functions coherent with that
knowledge. To achieve this, we condition the variational
distribution q on K and model the predictive distribution as:

p(y | x,DC ,K) :=

∫
p(y | x, z)q(z | DC ,K)dz. (4)

Figure 3 compares the graphical models of NPs and INPs.
From the implementation point of view, similarly to NPs,
INPs are also constructed with two networks: g and h.
However, in INPs, the outputs of h that parameterize the
variational distribution, q, are dependent on expert knowl-
edge K. Connecting the concepts from section 2.3, we
have that ω = ι̇(K) = (g, h(· ;K)). In our implementa-
tion of INPs, the fusion of knowledge with data is real-
ized with h(· ;K) = a(h1(·), h2(K)), where h1 and h2

represent data and knowledge encoding networks, respec-
tively, and a is an aggregation operator. For precise im-
plementation details refer to Appendix A. As in NPs, we
define rC = 1

|C|
∑

i∈C h1(xi, yi). If we let k = h2(K) and
r′C = a(rC , k), INPs model (4) as:

p(y | x,DC ,K) := p(y | x, rC , k) (5)

= p(y | x, r′C) =
∫

p(y | x, z)q(z | r′C)dz. (6)

As in (Kim et al., 2019), if no data has been observed, we
can set the global data representation, rC , to a zero vec-
tor, approximating the prior distribution of f under expert
knowledge, p(f | K). Similarly, the conditioning on expert
knowledge can also be omitted by setting k = 0, resulting
in a purely data-driven, uninformed prediction p(f | DC).

3.4 Training

INPs are trained in an episodic fashion over a distribution
of learning task Tj and their associated knowledge represen-
tations Kj . To train and evaluate an INP model we sample
training, validation and testing collections of tasks. Each
task, (omitting the dependence on j for clarity), consists of a
labeled context dataset DC . and the target dataset DT . The
labels of the target dataset are the goal of each prediction
task. Denoting by rC and rT the context and target data
representations and by k the knowledge embedding vector
of a single task, parameters of the model are learned by
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maximising the expectation of ELBO over all training tasks,
log p(yT |xT , rC , k) ≥
Eq(z|rT ,k) [log p(yT | xT , z)]−DKL (q(z | rT , k) || q(z | rC , k))

(7)
At each training iteration, the number of context and target
data points are chosen randomly. We also randomly mask
knowledge representations by setting k = 0. This allows
for the possibility of knowledge being missing at test time.
Further details on the derivation and estimation of the ELBO
loss can be found in Appendix A.2.

4 Experiments

The experimental section is divided into two parts. First,
we anchor the key ideas of informed meta-learning on illus-
trative experiments with synthetic data, where knowledge
representations are well-structured and there exists an an-
alytic, closed-form expression linking knowledge with the
true data generating process (DGP). This serves to illustrate
the potential benefits of informed ML in terms of data effi-
ciency, uncertainty reduction, and robustness, and how these
can be measured. In the second part, we showcase possi-
ble applications on real-world data where the underlying
DGP is unknown and knowledge may be loosely formatted,
particularly, presented in a natural language format. Every
experiment starts with a brief introduction of the setup, with
full details presented in Appendix B.

4.1 Illustrative experiments

4.1.1 Data efficiency

Setup: For each task, T , context, and target data
points are sampled according to the following pro-
cess. A function f is sampled from the family of
sinusoidal functions with a linear trend and bias,
f(x) = ax + sin(bx) + c, for some randomly sam-
pled values of the parameters a, b, c. We introduce a
Gaussian observational noise, s.t. yi = f(xi) + ϵi,
ϵi ∼ N (0, 0.2). The parameters a, b, c are randomly
sampled according to: a ∼ U [−1, 1], b ∼ U [0, 6],
c ∼ U [−1, 1]. We let K to be a set encoding the
value of two, one or none (K = ∅) of the parameters
a, b, or c. The number of context points n ranges
uniformly between 0 and 10; the number of targets,
m = 100. This setup simulates a scenario, in which
K contains partial, incomplete information about f .
By training over distribution of tasks T , we expect
the model to learn how to put a strong prior on the
function’s slope, level of oscillations, bias, or a com-
bination of two of these properties. Since at most two
of the three parameters of f are revealed in K, the
remaining uncertainty about f should be gradually
reduced as the size of the context set increases.

Fig. 4 (left) shows the estimated log-likelihood (LL) on the
test tasks against the number of context data points for both
the original NP model and the INP. Results for INP are

0 5 10 15
Number of context points

−200

−150

−100

−50

0

L
og

lik
el

ih
oo

d

K =∅
K 6=∅
Informed NP
NP

0 5 10 15
Number of context points

−800

−600

−400

−200

0

L
og

lik
el

ih
oo

d

K =∅
K 6=∅
test
train

Figure 4: Average log likelihood vs. number of context
points. Left: Comparison of plain NPs and INPs. Knowl-
edge integration enhances data efficiency. Right: Perfor-
mance under distribution shift between meta-training and
testing tasks. Knowledge integration reduces the perfor-
mance gap between training and testing tasks.

shown with knowledge presented at test time (K ̸= ∅) and
when it is omitted (K = ∅). We observe that informing our
model significantly improves predictions. As the number
of context points decreases, the performance gap between
raw and informed predictions increases. Moreover, under
K = ∅, our implementation of INPs performs on par with
vanilla NPs. Thus, the ability to condition the prior on
expert knowledge is not at the cost of reduced performance
of purely data-driven predictions.

Drawing inspiration from von Rueden et al. (2023b), we
compute the estimate of the difference in the area under the
curve of a performance metric vs. the number of context
data points, n. Here, we take our performance metric as
the LL of the target data. For a better sense of scale, we
report normalized values with respect to the AUC of the
uninformed predictions:

∆AUC = E

[∫ nmax

nmin
p(DT | DC ,K)− p(DT | DC)dn∫ nmax

nmin
p(DT | DC)

]
, (8)

with expectation taken over all testing tasks. nmin, nmax

denote the minimum and maximum number of context obser-
vations. This single-valued metric summarizes the average
improvement in performance due to expert knowledge.

Fig. 5 shows the estimated ∆AUC depending on the type
of information contained in K. That is, which of the pa-
rameters a, b, or c have their values revealed at test time.
Intuitively, exposing more information about f should pro-
vide the model with stronger priors; thus, simplifying the
learning problem. As expected, when |K| = 2 the perfor-
mance gains are larger than when |K| = 1. Figure B.2 in the
Appendix shows qualitatively the impact of knowledge on
predicted functions and how it is integrated with observed
data. We note that K provides information about the global
behavior of functions while individual data points anchor
the predictions in the xy-plane.

Take-away: This experiment illustrates how a suc-
cessful integration of oracle knowledge about the
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{a} {b} {c} {a,b} {b,c} {a,c}
Format of K

0

50

100
∆

A
U

C
[%

]

Figure 5: Average relative improvement of informed predic-
tions vs. uninformed predictions by knowledge format.

learning task, impacts data efficiency. We also show
that in cases when such knowledge is not available,
INP does not fall short of the purely data-driven NP.
Finally, we show how data efficiency gains depend
on the type of information about f carried by K, and
how this can be measured quantitatively.

4.1.2 Task distribution shift

Setup: Performance of meta-learners often drops
drastically in the presence of a distribution shift be-
tween meta-training and testing tasks (Chen et al.,
2019). In this experiment, we simulate a distribution
shift of this type. Keeping everything else equal as
in the previous experiment, for the training tasks, we
sample b ∼ N (2, 1), and for the testing tasks, we
sample b ∼ N (3, 1). We let K to be a singleton
encoding the true value of b.

Fig. 4 (right) shows how the performance gap between train-
ing and testing tasks is significantly reduced upon informing
the model about the true value of b, which is the source of
the distribution shift between training and testing tasks.

Take-away: In real-world applications, domain ex-
perts may possess additional knowledge beyond the
observable data informing about the characteristics of
the learning task at hand. Such knowledge may prove
useful in mitigating the adverse effects of distribution
mismatch between training and testing tasks.

4.1.3 Knowledge and uncertainty reduction

NPs, chosen as the foundation for our informed meta-learner,
possess a key feature: the capability to sample from the so-
lution space, instead of providing a single point estimate.
This enables us to gauge the decrease in model uncertainty
when incorporating expert knowledge. Our focus is pri-
marily on measuring epistemic uncertainty—the uncertainty
stemming from a lack of knowledge about the true rela-
tionship between model inputs and outputs, rather than the
inherent randomness of the modeled process. By integrating
prior knowledge into the model, we anticipate a reduction
in epistemic uncertainty.

−2 −1 0 1 2
x∗

0

5

10

15
Reduction in epistemic uncertainty

Format of K
b

c

−2.5

0.0

2.5

Samples from p(f | K)

−2 0 2
x∗

−2.5

0.0

2.5

y
∗

Figure 6: Reduction in epistemic uncertainty across the
entire input range. K represents the exact values of parame-
ters b or c (in this case b = 2.5 and c = −0.5). Revealing
the value of the parameter c, is equivalent to proving the
information about the value that f takes at the origin. This
is represented by a spike in the uncertainty reduction at
x∗ = 0. In contrast, revealing the value of b provides infor-
mation about global characteristics of f , rather than local;
no significant spikes in uncertainty reduction are observed.

We calculate the predictive uncertainty as the conditional
entropy, H[p(y∗ | x∗,K)], at a specific location x∗ ∈ X
and knowledge K. It is important to note that, as predic-
tive uncertainty is measured in the observation space, it en-
compasses uncertainty associated with observational noise.
However, we can decompose it as:
H[y∗ | x∗,K] = I(y∗, f | x∗,K)︸ ︷︷ ︸

epistemic

+Ef∼p(f |K)[H[y∗ | x∗, f ]]︸ ︷︷ ︸
aleatoric

(9)

We approximate H[y∗|x∗,K] and Ef∼p(f |K)[H[y∗|x∗, f ]]
with MC estimation. The epistemic uncertainty is then ob-
tained as the difference of the two quantities (see Appendix
E for more details).

With the same setup as in section 4.1.1, we look at the
reduction in epistemic uncertainty for K ̸= ∅ vs. K = ∅,
i.e. I(y∗, f | x∗)−I(y∗, f | x∗,K). We compute this metric
for all values x∗ ∈ [−2, 2]. By averaging over the entire
input range we obtain a single-valued metric of the impact
of K on the reduction in uncertainty about f . Figures 6 and
7 summarize our observations.

Take-away: This example captures how different in-
formation represented by K can impact the inductive
biases of a model. By introducing knowledge, the
distribution of a priori likely functions concentrates
(c.f. Figure 2), leading to reduction in model uncer-
tainty. The method of INPs enable us to quantify the
magnitude of this effect.

4.2 Real data and loosely formatted knowledge

In the synthetic regression examples, the representations of
knowledge were highly structured and with a well-defined
relationship to the underlying DGP. Naturally, if the func-
tion’s symbolic representation is known and we have access

6
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{a} {b} {c} {a,b} {b,c} {a,c}
Format of K

2.5

5.0

7.5

10.0

Average reduction in epistemic uncertainty

Figure 7: Reduction in epistemic uncertainty averaged
across the input range. Knowledge that represents two
values of the parameters, results in a greater reduction in
uncertainty than knowledge about just a single parameter.
Due to the strong, local effect of c in determining the value
of f at the origin, knowledge formats including c have a
larger impact on uncertainty reduction.

to external information about the values of its parameters,
there exist more direct ways of incorporating such informa-
tion. However, the advantages of informed meta-learning
become evident when: a) the functions to be learned lack
a known, closed-form expression; b) knowledge about the
learning task is loosely formatted, making manual integra-
tion of prior knowledge challenging.

4.2.1 Informed Weather Predictions

Setup: We use the sub-hourly temperature dataset
from the U.S. Climate Reference Network, represent-
ing values of the air temperature measured at regular
5-minute intervals. For each task, target observations
are uniformly sampled from a 24h time range. Con-
text data points are selected by sub-sampling at most
10, chronologically first samples. This setup enables
us to assess the ability to extrapolate beyond the ob-
served data range with only a few initial observations
and additional knowledge. We use 507, 108, and 110
training, validation and testing tasks, respectively. We
perform independent experiments with two formats
of knowledge :

A: For each task, knowledge K is a vector encod-
ing two values: the minimum temperature and the
maximum temperature on the day.

B: For each task, knowledge K is a synthetically gen-
erated “weather forecast” presented in a natural lan-
guage format*. For illustrative purposes, these texts
were generated with GPT-4 (OpenAI et al., 2023).
The prompt used contains instructions to generate 2
sentences mimicking a weather forecast, based on val-
ues from the ground truth temperature measurements.

Fig. 8 shows representative examples of the daily tempera-
ture paths from the testing collection alongside purely data-
driven and informed predictions. The plain NP captures
the general trend of the temperature rising during the day,
and then falling down towards the night, but unsurprisingly,
fails to accurately extrapolate beyond the observed regions.

Table 2: Relative performance gap (%) between informed
and uninformed predictions. Numbers in brackets represent
the standard errors of the estimates based on 110 testing
tasks.

n = 0 n = 1 n = 3 n = 5 n = 10 ∆ AUC

A 57.7 (1.4) 21.2 (1.0) 18.8 (1.0) 15.0 (0.8) 2.9 (0.4) 23.0 (0.8)
B 48.1 (2.1) 15.6 (1.2) 14.8 (1.0) 11.1 (0.8) 2.1 (0.4) 17.0 (0.7)
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Figure 8: Sampled evolution paths of the temperature, given
3 context measurements. NP: raw predictions of the plain,
uninformed neural process. INP (A): predictions with the
informed neural process, given oracle knowledge about the
minimum and maximum temperature on the day. INP (B):
predictions with the informed neural process, given oracle
knowledge about the temperature, presented in a text format
(available in the Appendix B).

This is due to a high level of heterogeneity present in the
collection of meta-training tasks, which is reflected in the
high variability of the sampled functions outside of the ob-
served data range. In terms of the informed predictions,
we observe that the information contained in K enables
guided extrapolation beyond the observed range of values
and reduces the variance of the sampled functions. Table 2
compares the performance gap between informed and unin-
formed predictions. Notably, knowledge enables sensible,
0-shot predictions with an average improvement in LL of
57.7% and 48.1% for setups A and B, respectively. We also
note that the representation of knowledge, as presented in
setup A should, in the theoretically optimal case, impose
hard constraints on the maximum and minimum values of
the function’s range. However, given that INP is only a neu-
ral approximation of these constraints, the resulting curves
may sometimes exceed the specified range as opposed to
strictly adhering to it; as it could be possible with a custom-
designed model that explicitly incorporates such constraints
into its optimization objective.

Take-away: In practical scenarios, predictive func-
tions are difficult to model with closed-form mathe-
matical expressions, making the process of external
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knowledge integration a challenging task. The ben-
efit of neural, meta- approaches, is their functional
flexibility. In particular, NPs can learn non-trivial
‘kernels’ from the collection of training tasks directly.
INPs take this a step further, enabling the incorpora-
tion of non-trivially representable information about
the underlying function into the model.

4.2.2 Informed Image Classification

Setup: We apply INPs to few-shot classification on
the CUB-200-2011 dataset (Wah et al., 2011), con-
taining 11,788 images divided into 200 classes. We
use 100 bird categories for training, 50 for valida-
tion, and 50 for testing. We apply the standard N -
way, k-shot classification setup. Images in the testing
collection come from distinct classes as those seen
during training. We adjust the INP architecture to
suit the image classification task, employing CLIP
vision and text encoders (Fu et al., 2022) (details in
Appendix B.3). We perform independent experiments
with three formats of knowledge:

A: Knowledge represents characteristic features of a
given bird class, e.g. wing span, feather color. Class-
wide attributes are obtained by averaging the binary
attribute vectors associated with each image from the
CUB-200-2011 dataset. These attribute vectors are
stacked together to obtain N × 312 tensors.

B: Knowledge represents class-wide textual descrip-
tions of the N classes obtained by averaging sentence
embedding of individual image captions belonging to
the given class. We use human-generated captions as
collected in (Reed et al., 2016) and embed them with
CLIP. Per-class averaged text embeddings are then
stacked to form a N × 512 tensor.

C: Here knowledge represents a set of N individual
descriptions of each class. We generate these with
GPT-4 based on the captions from B* (prompt and
example descriptions available in the Appendix B.3).

Table 3 displays results for 5-way and 10-way classifica-
tion. Across all settings, we observe higher classification
accuracy when additional knowledge is utilized. This trend
holds for 1, 3, 5, and 10-shot tasks, with the performance
gap widening as the number of shots decreases. Moreover,
the information about characteristic elements of each class
contained in K proves sufficient for relatively good zero-shot
prediction performance. While the zero-shot performance
for setup C is lower than that of setups A or B, it is still
significantly higher than the accuracy of random guessing.

Take-away: INPs align the representations of im-
ages and knowledge about class-specific features to
construct latent representations that contain the essen-

Table 3: Accuracy (%) on N -way, k-shot classification
tasks for the CUB-200-2011 dataset. Numbers in brackets
represent the standard errors of the estimates based on 60
tasks per each setting. Individual tasks are constructed with
only previously unseen bird categories.

N k NP INP (A) INP (B) INP (C)

5

0 – 87.5 (0.7) 87.4 (0.5) 50.3 (0.6)
1 82.2 (0.6) 88.1 (0.6) 89.1 (0.5) 85.1 (0.5)
3 87.0 (0.5) 88.4 (0.6) 89.3 (0.5) 88.3 (0.5)
5 88.1 (0.5) 88.5 (0.6) 89.6 (0.5) 88.9 (0.4)

10 88.5 (0.5) 88.5 (0.6) 89.6 (0.5) 89.0 (0.4)

10

0 – 81.1 (0.4) 78.5 (0.4) 33.7 (0.3)
1 73.3 (0.4) 82.2 (0.4) 81.9 (0.4) 77.0 (0.5)
3 79.8 (0.4) 82.7 (0.4) 82.7 (0.4) 81.8 (0.4)
5 81.5 (0.4) 82.8 (0.4) 82.8 (0.4) 83.0 (0.4)

10 82.6 (0.4) 82.7 (0.4) 83.0 (0.4) 84.1 (0.4)

tial multi-modal information. This alignment facili-
tates robust generalization to new, previously unseen
classes, enabling both zero-shot classification and
improved few-shot classification accuracy.

5 Discussion and Limitations

In this paper, we have laid the groundwork for a novel
ML framework of inductive bias learning leveraging expert
knowledge expressible with varying levels of formalism.
Importantly, informed meta-learning enables the integration
of knowledge expressed in natural language—a primary
medium of communication between domain experts and
ML practitioners. By introducing the necessary formalism
generalizing informed ML and meta-learning approaches,
we enable the consideration of a hybrid approach. Our
proposal and discussion of the merits of informed meta-
learning pave the way for further research in this area.

It is important to note that our work primarily focuses on
illustrating the key motivations and principles of informed
meta-learning. It is important to note that our work pri-
marily focuses on the key motivations and principles of
informed meta-learning and the introduced class of INP
models serves as a foundational proof of concept within
this paradigm. As discussed by the previous works on NPs
(Garnelo et al., 2018a;b; Kim et al., 2019) on which our
informed meta-learner has been built, these models often
underfit the context observations and may not easily scale
to higher dimensional problems. Moreover, the improved
performance of INPs over the uninformed baseline relies on
a correct interpretation of knowledge. However, when the
number of available training tasks and knowledge represen-
tations is limited, or it is characterized by a high degree of
spurious correlations, our current implementation of INPs

*We release the GPT-generated texts from experiments 4.2.1
B and 4.2.2 C in supplementary materials. The code will be made
available upon publication.
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may be prone to overfitting, making it unable to general-
ize to new, previously unseen tasks and their knowledge
representations. Furthermore, we note that with the increas-
ing complexity of knowledge representations, more training
tasks are needed to effectively learn the mapping between
the space of knowledge representations and prior distribu-
tions over the hypothesis space. Experiments in Appendix
F.2-F.4 illustrate these points in controlled environments. To
address these issues, we anticipate future research to con-
sider alternative architectures improving on the expressive
power and robustness of INPs.

With the growing capabilities of LLMs, we envision that
informed meta-learning could offer significant benefits in
applications where prior knowledge is expressed by domain
experts in natural language. Looking ahead, a more pow-
erful instantiation of informed meta-learning could benefit
from exploiting semantic relationships among words and
their context, improving the efficiency of learning to in-
tegrate expert knowledge and enabling generalization to
new, previously unobserved statements expressing different
functional relations than those encountered during training.

In these complex scenarios, where knowledge is represented
in natural language, the ability to estimate model uncertainty
(as highlighted in section 4.1.3) becomes highly desirable.
A possible direction of future research is to consider the
reverse direction and identify regions of the knowledge
representation space linked to the largest uncertainty. This,
in turn, opens avenues for extensions to active learning.
Can the predictive ML model, with an LLM acting as an
intermediary, formulate a human-readable question whose
answer yields the largest reduction in uncertainty?

6 Impact Statement

Considering the evident shortcomings of the currently avail-
able ML methods in flexible out-of-distribution and sys-
tematic generalization compared to human abilities, we
propose a shift in focus towards parallel development of
domain-agnostic methods that seamlessly integrate expert
knowledge into learning systems. By doing so, these sys-
tems can operate effectively in heterogeneous task environ-
ments while benefiting from human expert knowledge and
intuition, ultimately leading to improved generalization ca-
pabilities.
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here
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A Architectural and training details for INPs

A.1 Model Architecture

The architecture of INPs consists of the following key components:
• A data encoder, h1 : X × Y → Rd that takes in pairs (xi, yi) and produces an order-invariant representation
r =

∑
i h1(xi, yi).

• A knowledge encoder, h2, a map from the knowledge representation space to the latent space Rd that takes in the
knowledge inputs K and extracts a latent knowledge vector k = h2(K).

• An aggregator, a, that combines the data representation, r, and the latent knowledge representation, k, into one
representation, r′ = a(r, k), that parameterizes the latent distribution q. We take q(z | r′) = N (z;µz, σz), where
(µz, σz) = r′.

• A conditional decoder, g, that takes in samples of the global latent variable z ∼ q(z | r′) and the new target
location x∗ to output the predictions parameterized by p(y∗ | x∗, z) = N (y;µy, σy), where (µy, σy) = r′

Figure A.1: Overview of the INP model architecture.

In all experiments any MLP is implemented with the GELU non-linearity (Hendrycks and Gimpel, 2016). We experiment
with different forms of aggregation, a:

1. sum & MLP: a(r, k) = MLP(r + k),
2. concat & MLP: a(r, k) = MLP([r||k]),
3. MLP & FiLM: a(r, k) = FiLM(k) [MLP(r)]. We use the idea of modulation parameters introduced by (Perez

et al., 2018). Here a is an MLP whose parameters are modulated with a modulated with the outputs of h2.
We find that in most cases, the first, least complex option performs the best.

A.2 Training

INPs are trained in an episodic fashion over a distribution of learning tasks consisting of context and target datasets, and
associated knowledge representations. Denoting by rC and rT the context and target data representations and by k the
knowledge embedding vector of a single task, we derive the evidence lower bound via:

p(yT | xT , rC , k) =

∫
p(yT |xT , z)q(z | rC , k)dz (10)

=

∫
p(yT | xT , z)

q(z | rC , k)
q(z | rT , k)

q(z | rT , k)dz (11)

= Eq(z|rT ,k)

[
p(yT | xT , z)

q(z | rC , k)
q(z | rT , k)

]
(12)

And therefore, by Jensen we obtain:

log p(yT | xT , rC , k) ≥ Eq(z|rT ,k) [log p(yT | xT , z)]−DKL (q(z | rT , k) || q(z | rC , k)) (13)

The parameters of the model are learned by maximising the ELBO in (13) for randomly sampled batches of tasks. During
training, we use one sample of q(z | rT , k) to form a MC estimate of the ELBO. For evaluation, we use 32 samples.
Additionally, during training, we randomly mask knowledge by setting k = 0, the frequency of masking is a hyperparameter
of the model.
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B Experimental details

Throughout all experiments we use the Adam optimizer (Kingma and Ba, 2015). During training, we use validation-based
early stopping. All experiments were run on a machine with an AMD Epyc Milan 7713 CPU, 120GB RAM, and using a
single NVIDIA A6000 Ada Generation GPU accelerator with 48GB VRAM.

B.1 1-D sinusoidal regression (Section 4.1)

For each task, T , context, and target data points are sampled according to the following process. A function f is sampled
from the family of sinusoidal functions with trend and bias, f(x) = ax + sin(bx) + c. We also introduce a Gaussian
observational noise, s.t. yi = f(xi) + ϵi, ϵi ∼ N (0, 0.2). The parameters a, b, c are randomly sampled according to:
a ∼ U [−1, 1], b ∼ U [0, 6], c ∼ U [−1, 1]. For each task, the context and target points are uniformly sampled from the range
[−2, 2]. The number of context points n ranges uniformly between 0 and 10; the number of targets, m = 100. We let K to
be a set encoding the value of two, one, or none (K = ∅) of the parameters a, b, or c.

The data encoder, h1, is implemented as a 3-layer MLP. The knowledge encoder, h2, is implemented with the DeepSet
architecture (Zaheer et al., 2017), made of two 2-layer MLPs. Each element of the set is represented by a one-hot encoding
of the parameter type with its value appended at the end. The decoder is a 4-layer MLP. We set the hidden dimension,
d = 128 and use the sum & MLP method for the aggregator, a. We use a learning rate of 1e-3 and set the batch size to 64.
During training, knowledge is masked at rate 0.3.

In section 4.1 we use this setup to demonstrate and discuss the impact of expert knowledge on enhanced data-efficiency,
reduction in uncertainty, and robustness to distribution shifts. Fig. B.2 shows sample predictions under 0, 1, or 3 observed
data points and different formats of knowledge K.
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Figure B.2: Sample predictions under varying formats of knowledge. Knowledge about the value of the slope or frequency
of oscillations provides global information about the overall shape of the function. Observing additional data points anchors
the curves in the xy-coordinate system. Based on a qualitative investigation we conclude that the INP successfully learned
how to integrate prior knowledge with observed data points.

B.2 Informed Weather Predictions (Section 4.2.1)

We use the sub-hourly temperature dataset from the U.S. Climate Reference Network (USCRN)*. The data contains values
of the air temperature measured at regular 5-minute intervals. For each task, the context and target datasets consist of
measurements from one day. Training, validation, and testing collections of tasks are created by randomly selecting 507,
108, and 110 days, respectively, between the years 2021 and 2022 in Aleknagik, Alaska. For each task, the target dataset
consists of all 288 measurements in the 24h range. Context observations are sampled by first uniformly sampling 10 data
points and then selecting the chronologically first n observations where n ∼ U [0, 10]. We perform independent experiments
with two formats of knowledge:

*https://www.ncei.noaa.gov/access/crn/qcdatasets.html
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The night will start off cold with temperatures falling to -8.9°C 
by late morning, and then gradually rise to a high of 1.6°C in 
the late afternoon. Temperatures will start to drop again in the 
evening, reaching -3.1°C by midnight.

The night will start off chilly with temperatures around 0.5°C, 
but it will drop to -1.7°C by early morning. The day will 
gradually warm up, reaching a high of 5.1°C in the afternoon 
before cooling off to 1.0°C by midnight.

The night will be bitterly cold with temperatures around -18 
degrees, gradually increasing to -14 degrees by late afternoon. 
The temperature will slightly drop again to -15 degrees in the 
evening, warming up a bit to -14 degrees at midnight.
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The night will start off cold with temperatures falling to -16.8°C 
by dawn, and the day will continue to get colder, reaching a 
chilly -23.0°C by midnight. Afternoon temperatures will hover 
around -18.5°C, so bundle up if you're heading out.

Figure B.3: Extended Figure 8 with GPT-4 generated “weather forecasts” for setup B.

A: For each task, knowledge K is a vector encoding two values: the minimum temperature and the maximum temperature
on the day. In this setup, the knowledge encoder, h2, is a simple 2-layer MLP .

B: For each task, knowledge K is a synthetically generated “weather forecast” presented in a natural language format. For
illustrative purposes, these weather descriptions were generated with GPT-4 (OpenAI et al., 2023). In total, 726 descriptions,
one per day were generated. The prompt used contains instructions to generate 2 sentences mimicking a weather forecast,
based on 48 values sampled at 30-minute intervals from the ground truth temperature values. We use the following prompt:

System: You are given a vector of values representing the temperature for the next 24h at
30-minute intervals, starting at 12 am. Your task is to present the weather forecast according
to these values. Keep it to max 2 sentences. Use descriptive words to refer to the times of the
day, e.g. morning, afternoon, evening.

User: «Temperature values»

In this setup, the knowledge encoder h2 is implemented with a RoBERTa language model (Liu et al., 2020) with all
weights frozen except for the layer norm weights, which are tuned during the end-to-end training. The latent knowledge
representation k is obtained as a pooled sentence embedding. Here, we use the last hidden state of the CLS token.

For both setups A and B, the data encoder h1 is implemented as a 3-layer MLP and the decoder g as a 4-layer MLP. We
used the MLP & FiLM aggregator a. We set the hidden dimension, d = 128. We use a learning rate of 1e-3 and set
the batch size to 64. The knowledge representation is randomly masked at a rate 0.3 by setting k = 0. Vanilla NPs are
known to underfit context observations and underestimate the variance, which became apparent with this more complex
and noisy dataset. To mitigate this issue, in this experiment, we have employed multi-head cross-attention during the
encoding of the data representation, r, as proposed by (Kim et al., 2019). Precisely, r =

∑n
i=1 Attih1(xi, yi), where

Att = MultiHead(Q,K, V ), with Q being a matrix of target inputs, K a matrix of context inputs and V a matrix consisting
of individual data representations ri = h1(xi, yi). We use 4 attention heads.

See the main body of the paper for a discussion of the results. Figure B.3, shows sample tasks and their corresponding
GPT-4 generated weather descriptions.

B.3 Few-shot and zero-shot image classification with CUB-200-2011 (Section 4.2.2)

We apply our model to zero and few-shot classification using the CUB-200-2011 dataset (Wah et al., 2011). It contains
11,788 images of 200 subcategories belonging to birds. Following Akata et al. (2015), we use 100 bird categories for
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training, 50 for validation, and 50 for testing. We generate the labels for N -way classification tasks by choosing N random
classes at each training step and arbitrarily assigning the labels 0, . . . , N − 1 to each. For each task, the number of shots k,
i.e. the number of example images per class ranges uniformly between 0 and 10. The target set consists of 20 images per
class. We perform independent experiments with three formats of knowledge:

A: Knowledge K represents attributes characteristic for a given class, e.g. wing span, feather color, shape of the beak. This
is obtained by a class-wide average of the binary attribute vectors from the original dataset associated with each image.
Knowledge representations, K, are constructed by stacking all N class attribute vectors into a N × 312 tensor. In this setup,
the knowledge encoder, h2, is a simple 2-layer MLP.

B: Knowledge K represents the average per class, natural language descriptions of the N classes. These are obtained by
averaging sentence embedding of individual image captions belonging to the given class. We use human-generated captions
as collected in (Reed et al., 2016) and encode them using CLIP embeddings (Fu et al., 2022). Averaged per class text
embeddings are then stacked to form a N × dmodel, where dmodel = 512. In this setup, the knowledge encoder, h2 is a
2-layer MLP.

C: We use GPT-4 to generate individual descriptions of each class based on the human-generated image captions. We
present 5 randomly sampled image captions pertaining to one class and prompt GPT-4 to generate short descriptions of
features characteristic of the given bird breed.To generate the class descriptions, we use the following prompt format:

System: You are given 5 descriptions of a bird breed. Based on this information generate one
comprehensive description of the bird breed. Keep it short and informative.

User: «List of 5 randomly sampled image captions»

In this setup, the knowledge encoder, h2 is the CLIP text encoder. The embeddings of class descriptions are obtained as the
average of all outputs from the last layer of CLIP. After stacking them together in a N × dmodel tensor, they are passed
through a linear projection layer.

For all setups, A, B, and C, the data encoder, h1 is implemented with a frozen CLIP vision model, followed by a linear
projection layer. Following the approach of Garnelo et al. (2018a), we only aggregate over inputs of the same class. The
aggregated class-specific representations are then concatenated to form the final representation of size N × d. We set
d = 512. We use the sum & 2-layer MLP aggregation a. We modify the decoder, g to return the logits of the categorical
distribution. For a N -way task with class labels c1, . . . , cN , we define p(y∗ | x∗, z) as:

p(y∗ = cj | x∗, z) =
exp(−wT

j x
∗)∑

j′ exp(−w′T
j x∗)

, [w1, . . . , wN ] = MLP(z), z ∈ RN×d,

where x∗ is a CLIP image embedding from the target set. In our experiments, we use the Hugging Face implementation of
the CLIP ViT-B/32 model (https://huggingface.co/openai/clip-vit-base-patch32). We use a learning rate or 1e-4, batch size
of 32 and knowledge is randomly masked at rate 0.5. For setups A and B, the INP model is trained end-to-end. For setups C,
the weights of the INP model from the trained weights of the already trained, plain NP, and all model components, including
the CLIP text encoder, are fine-tuned. As opposed to setup B, in setup C fine-tuning of the CLIP text encoder was necessary
to ensure alignment between the class-wide descriptions and image representations. Empirically, the two-stage training
resulted in improved convergence.

For the empirical results and short discussion, refer to the main body of the paper. In Table B.1 we present sample
human-generated captions (used in setup B) and their corresponding GPT-generated class descriptions (used in setup C).
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Table B.1: Example images, image captions and GPT-generated class descriptions.

Sample Images Sample image captions GPT-generated class description

1. A large bird with a white belly, black and white wings
with a long beak.

2. This bird is white and grey in color with a curved beak,
and black eye rings.

3. A large bird with a white belly and face, black back and
wings, and peach bill.

4. Bird has gray body feathers, white breast feather, and
long beak

5. A medium sized bird with black wings, and a bill that
curves downwards

This bird breed is a medium to large size,
characterized by its grey body feathers,
contrasting white belly and face, black
back and wings, distinctive black eye
rings, and a long, downward-curving
peach bill.

1. This big bird has a sharp beak and has black covering
its body.

2. An all black bird with a distinct thick, rounded bill.
3. This entirely black bird has long and wide rectrices

relative to the size of its body.
4. A black bird with a long tail and large beak.
5. This black bird has sparse plumage and a thick brown

beak.

This bird breed is large and entirely
black with sparse plumage, character-
ized by its thick brown beak, long tail,
and wide rectrices relative to its body
size.

1. This goofy looking bird sports webbed feet and a bright
orange bill, with piercing white eyes and a dull coat of
gray.

2. A black bird with a small, orange beak and a inverted
feather curl at the base of the beak.

3. A black body, white eye with stripe next to it, and an
orange bill are on this bird.

4. This black bird has a orange bill with hair coming out
of it, small pupils, and a white line across its face.

5. This bird has wings that are black and has an orange
bill

This bird breed is characterized by its
black body, webbed feet, a bright orange
bill with an inverted feather curl at the
base, piercing white eyes with a distinc-
tive stripe, and a dull grey coat.

1. This is a black bird with a white spotted belly and a
white eye.

2. This bird is black with white and has a very short beak.
3. This bird has wings that are black and white and has a

small bill
4. This small bird is white with black spots, a white neck,

and black around its eyes.
5. This is a short stocky bird with webbed feet, it is mostly

white with black wings and black speckles throughout.

This bird breed features a black body
with a white and black spotted under-
belly, a white and grey speckled chest, a
black crown, bright white eyes with very
small pupils, and a short, pointed, black
and orange bill.
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C Extended Related Work

Conditional generative models The goal of deep generative models (DGMs) is to learn a neural approximation of the
distribution of the data p(x) over a space X , most commonly the space of images. Popular DGMs include, VAEs (Kingma
and Welling, 2014), GANs (Goodfellow et al., 2014), and diffusion models (Ho et al., 2020; Song and Ermon, 2019).
Their conditional versions, e.g. CVAEs (Sohn et al., 2015), CGANs (Mirza and Osindero, 2014), and conditional diffusion
models (Ho and Salimans, 2022; Ramesh et al., 2022) model the conditional distribution p(x | c), where c is an additional
conditioning variable, e.g. a class label or a text sequence. A similar analogy can be drawn between NPs and INPs
which, as meta-learners, bring the idea of (conditional) generative modeling to the space of hypothesis f ∈ F . The goal
of NPs is to model the prior distribution over functions p(f); as well as the posterior predictive distribution p(f | DC).
Similarly to CVAEs and CGANs, INPs introduce an additional conditioning variable–the expert knowledge, and model the
conditional distribution p(f | K), guiding the prior over the space of functions, such that the informed predictions, dictated
by p(f | DC ,K) are concentrated around the region of functions agreeing with both the observed dataset DC and the expert
knowledge K.

Multimodal deep learning broadly refers to deep learning methods that can process and relate information from multiple
modalities simultaneously, such as image, audio, and text. Our framework assumes that the datasets D and knowledge
representations K may belong to two different data modalities (e.g. D contains input-output pairs for 1-D regression and K
contains a natural language description of the expected shape of the regression curve). This places informed meta-learning
in the area of multimodal methods. What makes it distinct is that standard multimodal strategies (e.g. Ngiam et al. (2011);
Srivastava and Salakhutdinov (2012); Ding and Tao (2015); Shi et al. (2021a;b)) consider finding a predictive function
f , where X is a multimodal input space X = X1 × . . . × XM , with each Xj , j ∈ [M ] corresponding to a different data
modalitly. In informed meta-learning, the learned functions f are typically unimodal, but the learning algorithm to fit each
function is conditioned on the knowledge representation K, belonging to a different modality.

Natural language priors LLMs trained on vast text corpora can be seen as databases of knowledge about the world. Recent
studies of Choi et al. (2022) and Li et al. (2023) explore utilizing LLMs as sources of prior knowledge in a non-meta setting.
With carefully designed prompts, a LLM outputs a prior distribution over the space of outcomes, which, when combined
with downstream ML models, leads to "informed" predictions. This strategy has been shown to be successful in many tasks
where semantic meta-data is available, including feature selection, reinforcement learning, causal discovery, and image
segmentation. However, using LLMs as a source of knowledge may raise ethical concerns, especially when querying a LLM
about sensitive attributes, potentially propagating harmful biases from their pre-training text corpora. In contrast to these
methods, our framework does not rely on a language model as a source of common-sense knowledge. Instead, LLMs are
merely used to generate sentence embeddings of the human expert’s knowledge presented in natural language.

Zero-shot and few-shot learning As presented in the experimental section, informed meta-learning enables sensible
zero-shot predictions guided by expert knowledge. For instance, in multi-class image classification, K may contain a list of
characteristic attributes of each class or class-wide descriptions in natural language. Seemingly similar ideas of utilizing
side information about each class for zero-shot learning have been explored in works of Al-Halah et al. (2016); Elhoseiny
et al. (2017); Paz-Argaman et al. (2020). In contrast to these methods, informed meta-learning does not focus on zero-shot
learning only, but on the process of integrating external knowledge (e.g. knowledge about what are the characteristic
features of each class) with observed few-shot or zero-shot (DC = ∅) data sample. In the image classification domain, the
idea of combining sample images with zero-shot attribute information was considered by Tsai and Salakhutdinov (2017)
in application to one-shot learning, and extended by Schönfeld et al. (2019) to few-shot learning. None of these works,
however, consider the meta-learning setup of N -way, k-shot classification and require that the class attribute information
is always present at training and test time, as it implicitly defines class labels. In our setup, the role of class information
contained in K lies in enhancing model performance by emphasising which visual features are most distinctive for a given
class, enabling zero-shot classification as a by-product. Contrary to Schönfeld et al. (2019), the additional information
contained in K is not necessary for few-shot predictions on previously unseen classes.

Domain knowledge infusion in deep learning Informed ML for deep learning aims to develop methods for explicit
knowledge integration into neural representations. This can be achieved by, for instance, designing specialized layers or
complete model architectures (Peng et al., 2019; Wu et al., 2018; Bogatskiy et al., 2020), introducing additional regularization
terms (Karpatne et al., 2017; Xu et al., 2017), or equipping the model with the ability to query external information (Annervaz
et al., 2018; Xu et al., 2015). In contrast to informed meta-learning, these methods only tackle a single-dataset setting. In
informed meta-learning the external information is not queried per each input xi, but per each learning task and pertains to
all inputs and outputs, often informing about global properties of the learned functions.
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D Probabilistic perspective on informed meta-learning

Figure D.4: Machine learning practitioners map
expert knowledge K ∈ K to a prior probability
over functions f ∈ F . The regions of F assigned
non-zero probability defines the hypothesis space
of a model. Knowledge about different learning
tasks is related to distinct regions of F .

From knowledge to inductive biases In conventional, single-task
learning settings, a machine learning practitioner, based on their own
understanding of the subject, or insights of a domain expert elicits
a ML model equipped with inductive biases tailored to the specific
task. This process can be seen as assigning a prior probability to the
space of all data generating processes, or alternatively the space of all
functions† mapping inputs to outputs, F . We will denote this prior
as p(f). The model’s support, or hypothesis space, is the subset of F
where the prior probability, p(f), is non-zero, F = {f ∈ F : p(f) >
0}. Inductive biases are then defined as the relative, prior probabilities
of possible solutions. Let f∗ denote the true state of nature according
to which our observed dataset D has been generated. The model is
well specified if f∗ is assigned a non-zero prior probability, i.e. it
belongs to the support of the model. If f∗ is within the support, the
model’s posterior p(f | D) will concentrate around f∗ as the model is
updated with an increasing number of observations. The effectiveness
of the inductive biases depends on how much mass is a priori assigned
to f∗ relative to all other solutions supported by the model, dictating
the convergence rate of p(f | D) to f∗. A perfect inductive bias is
one that completely solves the task, essentially represented by a delta
distribution centered at f∗.

What human machine learning researchers and engineers are skilled at
is 1) understanding the context of the given learning problem; 2) trans-
lating this acquired knowledge to the function space F and defining
adequate inductive biases. If we denote the relevant knowledge for a
specific machine learning problem as K, the actions of a machine learning practitioner can be abstractly viewed as a mapping
from K to the prior probability distribution over F , represented as p(f). To emphasize the dependency on K, we shall
write p(f | K), and the knowledge integration process as a map K 7→ p(f | K). For instance, if based on their knowledge,
a domain expert demands that the fitted function should be linear (K1 = "linear"), the machine learning practitioner, by
choosing a linear regression model assigns a non-zero probability to all linear functions and 0 otherwise. When faced with a
different learning problem, and new knowledge concerning it, e.g. K2 = "non-linear", a new model, perhaps a polynomial
regression model or a neural network, with different support and inductive biases will be defined through K2 7→ p(f | K2).

Knowledge and cross-task generalization Notably, humans have the powerful ability to generalize between different
learning tasks from various domains. This is possible as the information about the learning task that they are initially
presented with contains knowledge about the true DGP or functional properties that are independent of the task’s domain.
For example, the requirement for the function mapping inputs to outputs to be increasing is a universal property unaffected
by the specific learning problem. The same inductive biases can be applied whether modeling economic growth or the
dosage-response relationship in medicine. The word "increasing" conveys semantically meaningful information for the
machine learning practitioner, expressing a functional property that is domain-agnostic. This transcendence of knowledge
combined with semantically meaningful representations is what allows human ML practitioners to generalize across different
learning tasks. An ML practitioner, having the ability to construct models conforming to several forms of knowledge, gained
from previously solved tasks, can easily construct ML models that are in line with knowledge pertaining to a new learning
task.

Yet, the process of manually defining inductive biases of a model is constrained by the machine learning engineers’ and
researchers’ abilities to construct models that adhere to different prior specifications. While properties like linearity or
translation invariance are relatively easy to encode by e.g. constraining the hypothesis space to linear models or modeling
the problem with a convolutional neural network, more fine-grained or less formally defined priors may appear challenging
or even impossible to encode manually, in which case they often need to be disregarded and models with weak-inductive
biases and large support are used instead, necessitating vast amounts of training data to correctly recover f∗.

Meta-learning as inductive bias learning To address this challenge, meta-learning, viewed through the lens of inductive
bias learning (Baxter, 1997), suggests that the inductive bias can indeed be learned. This presupposes the ability to sample

†The two approaches of modeling the data distribution or learning a function from inputs x ∈ X to outputs in y ∈ Y can be seen
as equivalent if we assume that the observed dataset D = {(xi, yi)}ni=1 is generated according to yi = f∗(xi) + ϵi, where f∗ is a
realisation of a stochastic process indexed by X and each ϵi is an independent mean-zero random variable.
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Hypothesis space

(a) Well-concentrated meta-learned task distribution

Hypothesis space

(b) Heterogenous meta-learned task distribution

Figure D.5: Meta-learning under well-
concentrated and heterogeneous task distributions.
a) Concentrated meta distribution, provides strong
inductive biases, so long as the task of interest
belongs to the same environment as the tasks
used during meta-training. b) Heterogeneous
environments span a wide range of functions, and
thus support a wider range of tasks, at the cost of
weaker inductive biases.

from an environment of related problems, which induces a prior prob-
ability over our hypothesis space; the meta-learner estimates this prior
as p(f). Consider f∗

1 as the function defining the dataset for our task
of interest. If f∗

1 is likely to belong to the same environment as was
observed during the estimation of p(f), then p(f) will provide good
inductive biases for solving this task, as its mass will be concentrated
near f∗

1 (see Figure 5(a)). If, however, we are given a problem gen-
erated according to a different process, f∗

2 , that is "far away" from
most of the problems observed during meta-training, the meta-learned
distribution, p(f), may offer suboptimal inductive biases compared
to assuming a non-informative (e.g. uniform) prior over our hypoth-
esis space, a phenomenon known as negative transfer. To mitigate
this issue, one may try to meta-learn across more tasks that would
cover a larger region of F . This however would lead to p(f) that is
heterogeneous and dispersed, resulting in inductive biases that are not
sufficiently strong for learning with just a small, few-shot data sample.
Essentially, this presents a trade-off akin to the classic bias-variance
trade-off from a meta-perspective.

Informed meta learning as conditional inductive bias learning
This discussion brings us to conclude that neither the conventional
approaches nor automatic approaches of inductive bias specification

are self-sufficient; yet, each approach brings distinct advantages for enhancing data efficiency. Conventional methods rely on
human ML practitioners to establish the mapping K 7→ p(f | K). In meta-learning, prior knowledge about task relatedness is
crucial to ensuring that the meta-learned distribution, p(f), concentrates around the class of problems or a specific problem
of interest. On the positive side, conventional methods offer greater explainability, as the inductive biases of a model can be
(at least partially) traced back to the prior knowledge K, which is meaningful to humans. Whereas, meta-learning, provides
greater functional flexibility, enabling the model to learn non-trivial inductive biases, which otherwise may be impossible to
explicitly hard-code into the learning method.

Knowledge space

Hypothesis space

Figure D.6: Informed meta-learning allows to
condition the meta-distribution on the expert
knowledge K, concentrating the meta-distribution
around the regions of our hypothesis space close
to the true data generating functions.

Given the above, it is reasonable to consider a method that could bring
together the two schools of thought. We want to retain the possibility
of learning fine-grained or less formally stringent inductive biases,
while at the same time being able to guide the learner to the space of
solutions that conform to our prior knowledge. To that end, informed
meta-learning proposes that the mapping K 7→ p(f | K) is meta-
learned by training over multiple tasks and their associated knowledge.
This process induces a possibly heterogeneous meta distribution p(f),
that is conditioned on the expert knowledge K, thus concentrating the
mass of p(f) around the region of the hypothesis that conforms to K
(see Figure ??).

Knowledge vs. (meta-) data One may argue, that this proposed ap-
proach does not significantly differ from meta-learning with meta-data
or meta-features, where the meta-distribution could be conditioned on

additional meta-data instead of K. While from the learning method point of view, as presented in sections 3 and 4, this is to
some extent true, the key difference lies in the assumptions on the kind of information contained in K versus meta-data or
meta-features.

First of all, while the meaning of knowledge is an ongoing debate in philosophy, here we take the scientific perspective and
assume that knowledge is a form of information that has already been validated, a justified true belief. This means, that the
relationships between knowledge and the underlying DGP of a given task should be a prior known to hold true. In practice
this means that if K is the knowledge about the task for which the true data generating distribution is defined through f∗,
then p(f | K) should assign non-zero mass to a region around f∗. On the other hand, meta-data or meta-features are not
a priori known to contain relevant information for a learning task. The relationship between meta-data and the learning
task would need to be discovered by the learner during meta-training. Unlike knowledge, this relationship is unknown to
the human domain expert or ML practitioner and cannot be utilized for successful and explainable generalization to new,
previously unobserved learning tasks. This means that knowledge, in contrast to meta-data or meta-features is verifiable. If
a human expert, knowing K, is presented with a hypothesis f ′, they can easily identify whether f ′ is consistent with K (in
which case p(f ′ | K) > 0) or not (p(f ′ | K) = 0). This is not necessarily true for meta-data or meta-features.
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Furthermore, the knowledge space, K , is understandable for humans, while in contrast, the observation space is not,
and neither is the hypothesis space of a model, particularly in the context of deep learning. The meta-learned mapping
K 7→ p(f | K) can be seen as a new form of communication between humans and machines. For instance, suppose that
K is generated by a set of the two functional properties {”linear”, ”increasing”} that can be composed together through
negation and conjunction, e.g. ”Linear and not increasing”. The set of all possible knowledge representations in K
is then aligned with regions of F adhering to the meaning of each phrase. The set {”linear”, ”increasing”} creates an
“alphabet” that together with the operations of negation and conjunction create a “language”, that is human-readable. During
meta-training, the rules of this language should be learned and associated with the corresponding regions of the hypothesis
space of a model. This process ultimately establishes a communication channel between the human expert and a black-box
ML model, facilitating meaningful interaction and improved transparency.

Informed meta-learning: future perspectives The INP method, as introduced in Section 3 and the subsequent experiments
outlined in Section 4, offers just a glimpse into the broader goals of informed meta-learning. Looking ahead, we envision
that the knowledge representation space, K , corresponds to the space of human natural language, and the existing semantic
relationships between different words as well as their surrounding context can be leveraged for more effective learning of the
map K → p(f | K), requiring only a modest amount of training tasks. As a simple example, suppose that during training,
the word "increasing" was successfully mapped to all increasing functions supported by a black-box model of choice. At
test time, if the model is confronted with the word "decreasing" (unseen during training), the informed meta-learner, by
exploiting the semantic relationship between the two words ("increasing" implying "not decreasing"), should generalize,
consequently assigning a zero prior probability to all increasing functions.
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E Uncertainty quantification in Informed Neural Processes

One particularly appealing property of Neural Process, which motivated their choice for the basis of our informed meta-
learner, is the ability to estimate probabilities over the space of solutions, instead of returning a single point estimate. This
allows us to measure the reduction in model uncertainty given prior expert knowledge and/or observed data. We are mostly
interested in measuring the epistemic, rather than aleatoric uncertainty.

Aleatoric uncertainty refers to the notion of randomness seen as the variability in the outcomes which is due to inherently
random, unpredictable effects. As opposed to this, epistemic uncertainty refers to uncertainty caused by the lack of
knowledge about the true relationship between model inputs and outputs. By observing data, or by inserting prior knowledge
into the model, the epistemic uncertainty is reduced.

A natural choice for measuring the epistemic uncertainty would be the (conditional) entropy. By comparing H[p(f)] with
H[p(f | K)] or H[p(f | DC)] we can measure the impact of prior expert knowledge or observed data on the reduction in the
epistemic uncertainty for a single learning task. However, in INPs, we only have access to samples from the variational
distribution and since the decoder is implemented as a neural network, evaluating the distribution over functions is not
possible directly.

Instead, we need to resolve to measure the uncertainty in the observation space. Thus, we are interested in computing

H[y∗ | x∗, I], I ∈ {K,DC ,K ∪DC ,∅} (14)

at a particular location x∗ ∈ X in our input space, which can be then, for instance, averaged across uniformly distributed
points in X . The quantity in (14) is known as the predictive uncertainty. To approximate (14) for an input x∗, we rely on
Monte-Carlo estimation by sampling S functions based on our variational decoder.

H[y∗ | x∗, I] = −
∫

p(y∗ | x∗, I) log p(y∗ | x∗, I)dy∗

= −
∫ (∫

p(y∗ | x∗, f)p(f | I)df
)
log

(∫
p(y∗ | x∗, f)p(f | I)df

)
dy∗

≈ −
∫ (

1

S

S∑
s=1

p(y∗ | x∗, f (s))

)
log

(
1

S

S∑
s=1

p(y∗ | x∗, f (s))

)
dy∗ (15)

For each sample f (s), p(y∗ | x∗, f (s)) has a closed-form expression, as in the case of regression it is modeled with a normal
distribution. Thus (15) can be computed by numerically approximating the integral in the last line. Note that, since predictive
uncertainty is measured in the observation space, it also encompasses the uncertainty associated with the observational noise.
Depeweg et al. (2018) suggest that (14) can be decomposed as:

H[y∗ | x∗, I] = I(y∗, f | x∗, I)︸ ︷︷ ︸
epistemic

+Ef∼p(f |I)[H[y∗ | x∗, f ]]︸ ︷︷ ︸
aleatoric

(16)

The second part, Ef∼p(f |I)[H[y∗ | x∗, f ]], is the average entropy when the predictive function is known, thus can be
interpreted as the aleatoric uncertainty. If we model p(y | x, f) with a normal distribution, H[y∗ | x∗, f ] has a closed-form
expression, 1

2 log(σ(x
∗)2πe), where σ2(x) is the variance at location x∗.

The first part, I(y∗, f | x∗, I), representing the information gain can be interpreted as the epistemic uncertainty of interest.
This quantity can be computed as the difference of H[y∗ | x∗, I] and Ef∼p(f |I)[H[y∗ | x∗, f ]], where both quantities are
easy to estimate, as discussed above.
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F Additional experiments

F.1 2-D function regression
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As in the original works presenting Neural Processes of Garnelo et al. (2018a;b),
we carry out image completion as a regression task, where we provide some
of the pixels as context and do pixel-wise prediction over the entire image. In
this formulation the xi values correspond to the Cartesian coordinates of each
pixel and the yi values to the pixel intensity of each color channel. We train
the NP and INP models on the MNIST dataset (LeCun and Cortes, 2010). For
each task T we simply let K encode the digit, which is represented by the target
image. Figure F.7 shows the performance curves and Fig. F.8 a sample depicting
qualitative differences between the uninformed (K = ∅) and informed predictions.
In this example. knowledge representation K provides information about which
cluster of tasks, corresponding to one of the ten distinct digits, is the most relevant
to the current task. As demonstrated both quantitatively and qualitatively, this
information provides strong inductive biases, leading to improved data efficiency
as well as relatively accurate zero-shot predictions.
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Figure F.8: 2-D regression on MNIST. Sample predictions for increasing number of context points. Top to bottom: 0, 16, 32,
64 context pixels out of a total of 784 (= 28× 28). With only a few revealed pixels, the uncertainty about the shape of the
digit is high. Providing the oracle information about the number depicted on the image, results in a highly informative prior,
concentrated around the space of functions corresponding to the specified digit. Such informative prior enables better data
efficiency. With only a few observed pixels, predicted images are close to target images. As the number of revealed pixels
increases, uninformed and informed predictions converge.
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F.2 Model performance vs. number of training tasks

Setup: We follow the same setup as in the illustrative experiment from section 4.1.1. We create multiple training
collection of tasks with a varying number of total training tasks, N train ∈ {25, 50, 75, 100, 200, 1000}, with the
upper limit being the number of tasks used in the original experiment 4.1.1. For each training collection of tasks, we
train independent INP and NP models. The INP models receive information about two, one or none of the parameters
a, b or c via knowledge representations, K. All models are validated and tested on the same collection of validation /
testing tasks.
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Figure F.9: Log likelihood of target data vs. number of context data points (higher is better). Comparison across varying
number of all training tasks, N train. Left - model performance on training tasks, Right - model performance on test tasks.

Figure F.9 shows the performance of all models on training (left) and testing (right) tasks. We observe that: 1) Both for
the NP and INP models as the number of training tasks decreases the performance gap between training and testing tasks
increases. However, we note that this performance gap is already at a (subjectively) reasonable level with only as few as
75 training tasks. 2) For all INP models trained with N train ≥ 50 tasks we also observe that the additional knowledge
presented for each task improves the performance over the plain, uninformed NP. However, when the number of training
tasks is too small, here N train = 25, we observe a “knowledge overfitting” effect. With insufficient number of training
tasks our model is unable to appropriately capture the relationship between knowledge and empirical data, and thus fails to
generalize to new, previously unseen tasks and their corresponding, also previously unseen, knowledge representations.

Take-away: We tested the robustness of the INP model to the reduction in the number of training tasks. We showed
that in the experimental setup of section 4.1.1, adding external knowledge continues to deliver noticeable performance
gains over the uninformed NP when dropping from 1000 to as few as 50 training tasks. We also noted that with too
few training tasks, the INP may fail to generalize. To prevent this effect from occurring in real-world deployment, we
advise testing the model on held-out validation tasks and comparing its performance against an uninformed baseline,
monitoring the knowledge overfitting effect.
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F.3 Model performance and knowledge complexity

Setup: To assess the impact of knowledge complexity on the efficacy of learning the relationship between knowledge
and the model hypothesis space, we again follow the same setup as in section 4.1.1. We create multiple training
collection of tasks with a varying number of total training tasks, N train ∈ {25, 50, 75, 100, 200, 1000}, with the
upper limit being the number of tasks used in the original experiment 4.1.1. All models are validated and tested on the
same collection of validation / testing tasks. For each setting of N train we train an uninformed NP and 3 independent
INP models with different knowledge representations used during training:

• Mabc is a model where for each task its corresponding knowledge encodes, at random, one of the three
parameters, a, b, or c;

• Mab is a model where for each task its corresponding knowledge encodes, at random, one of the two
parameters: a or b (the value of c is never revealed);

• Mb is a model where for each task its corresponding knowledge encodes the value of a (the values of
parameters a and c are never revealed).

Knowledge representations are constructed by one-hot encoding the type of the revealed parameter with its value
appended at the end. We note that for the INP models Mb, Mab, Mabc, the complexity of knowledge representations
gradually increases; the knowledge space is 1, 2 and 3 dimensional, respectively. We hypothesise that as the complexity
of the knowledge space grows, more training tasks are needed to effectively learn the mapping from knowledge
representations to prior distributions over functions. Given the same number of training tasks, the INP model Mab

needs to learn how to disentangle the information about the function’s oscillations (parameter b) from the information
about the function’s slope (parameter a). Model Mabc additionally needs to discover the meaning of knowledge
about the intercept (parameter c). Therefore, we expect that, given the same number of context points and the same
information contained in K, the relative performance gains of the INP models Mb, Mab, Mabc over the uniformed
NP model should decrease as the complexity of knowledge space increases.
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Figure F.10: Log-likelihood of target data vs. number of context data points (higher is better). Comparison across a varying
number of tasks used for training N train. Complexity of knowledge space grows from left to right. All INP models are
presented with the same knowledge about each task–the value of the parameter b.

Figure F.10 shows the log-likelihood of the target data evaluted on 500 testing tasks. For every INP model at test time we
reveal the same information via knowledge representations—the value of the parameter b. Firstly, we observe the same two
effects as in experiment F.2. With more training tasks, model performance improves. 2) An insufficient number of training
tasks may lead to the “knowledge overfitting” effect; here at N train = 25 the INP performs worse than the NP. Secondly,
we look at the performance gap between the INP and the NP (the gap between solid and dashed lines). We observe that as
the complexity of the knowledge space grows (left to right) the performance gap between the INP and the NP decreases.
This is summarised through the ∆AUC metric, presented in the Table F.2. From Figure F.10 we can also conclude that the
more complex the the knowledge space is the more training tasks are needed to effectively train an INP model. For instance,
performance of the INP model Mb trained with N train = 75 tasks is comparable to the performance of the INP Mabc

trained wtih N train = 100 tasks.
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N train 1000 500 200 100 75 50 25
model

Mb 81.74 83.51 64.52 79.1 44.78 39.71 -8.52
Mab 65.3 67.45 43.46 54.66 22.41 6.67 -18.67
Mabc 71.76 57.51 2.02 26.46 9.48 8.05 -5.6

Table F.2: Average relative performance improvement (%) between informed and uninformed predictions. The performance
gains become smaller as the complexity of the knowledge space grows (top to bottom). N train is the number of training
tasks used. INP performs better than the NP for all settings of N train ≥ 50 indicating effective transfer between knowledge
representations and functional priors. INP overfits with not enough training tasks, here at N train = 25.

Take-away: The above experiment confirms our hypothesis about the complexity of the information conveyed in
knowledge representations and the hardness of learning the mapping between knowledge representations and the
model hypothesis space. As the complexity of knowledge increases, more training tasks are needed to effectively
learn the relationship between knowledge representations and the functional priors.
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F.4 Correlation in training data and knowledge disentanglement

Setup: For each task, context and target data points are sampled according to a similar process as in the experiments
from section 4.1. A function f is sampled from the family of sinusoidal functions with a linear trend, f(x) =
ax+ sin(bx). As previously, we also introduce a Gaussian observational noise, s.t. yi = f(xi) + ϵi, ϵi ∼ N (0, 0.2).
In this experiment. we simulate a scenario in which the training data exhibits a potentially spurious correlation. We
sample the parameters a and b from a multivariate Guassian,[

a
b

]
∼ N

([
0
3

]
,

[
1 σ
σ 2

])
We create 6 training and validation collection of tasks, one for each value of the covariance between a and b,
σ ∈ {0.0, 0.3, 0.6, 0.9, 1.2, 1.4}. We then train 6 independent INP and NP models. For the INP models we let K
encode the value of one of the two parameters a or b. The number of context points n ranges uniformly between 0 and
10; the number of targets is set to m = 100. The testing collection of tasks is created by sampling functions where a
and b are independent (i.e. σ = 0.0). This setup aims to test the robustness of the INP model to spurious correlations
in the training data. We want to investigate whether the INP model is able disentangle the meanings of parameters a
and b.

Table F.3: Average log-likelihood on test tasks vs. correlation in training data (higher is better). ρ - the correlation coefficient
between random parameters a and b. n - number of context data points per task. Model results for which the log likelihood
is higher by a statistically significant margin highlighted in bold. Values in brackets are the estimated standard errors.

ρ 0.00 0.21 0.42
model INP NP INP NP INP NP

n = 0 -139.1 (10.2) -209.2 (8.3) -174.4 (13.7) -196.5 (7.7) -266.1 (19.6) -221.7 (9.2)
n = 1 -99.0 (10.6) -102.1 (6.5) -73.1 (6.2) -120.4 (5.4) -95.0 (9.4) -108.6 (4.4)
n = 4 -16.9 (1.7) -30.9 (2.6) -34.8 (3.9) -41.0 (3.4) -29.2 (3.8) -38.2 (3.4)
n = 5 -12.1 (2.0) -11.9 (2.0) -15.7 (1.8) -17.8 (2.6) -12.4 (2.5) -21.7 (2.9)

n = 10 1.3 (1.1) 1.8 (1.4) -0.5 (1.2) 2.1 (0.9) 0.2 (0.9) -4.5 (2.0)
n = 15 3.5 (0.7) 5.4 (1.4) 0.8 (0.8) 2.6 (1.6) 3.1 (0.6) -2.2 (2.1)

ρ 0.64 0.85 0.99
model INP NP INP NP INP NP

n = 0 -356.4 (22.2) -214.0 (9.2) -795.6 (38.9) -321.8 (14.8) -1367.3 (63.6) -410.7 (15.2)
n = 1 -108.1 (7.1) -160.3 (7.4) -234.4 (9.3) -200.0 (9.9) -830.9 (40.9) -527.3 (19.2)
n = 3 -26.2 (2.2) -64.6 (4.4) -149.0 (6.6) -118.6 (6.3) -551.5 (32.5) -360.1 (10.6)
n = 5 -18.3 (2.0) -30.3 (3.0) -101.4 (4.9) -94.0 (5.1) -404.2 (13.2) -319.9 (9.0)

n = 10 -6.2 (1.2) -18.2 (2.6) -81.2 (4.4) -70.6 (4.5) -342.7 (11.1) -324.9 (9.3)
n = 15 -4.3 (1.2) -11.6 (2.3) -74.1 (4.3) -66.2 (4.3) -332.2 (11.1) -313.0 (8.9)

Results presented in table F.3 show that when the correlation between the parameter a and b increases, the test-time
performance of both the INP and NP models downgrades. This is due to the train-test distribution shift. Moreover, when the
correlation is moderate (ρ ≤ 0.64), the INP model outperforms or mathces the performance of the NP. We note, however,
that for ρ >= 0.42, the zero-shot predictions (n = 0) are better for the uninformed model than the INP. This is also true
for all values of n at higher correlation levels (ρ ≥ 0.85). We hypothesise that this is because the INP has overfitted to
the correlation between the parameters a and b. In the training dataset, revealing the information about the value of one
parameter gives information about the value of the other, unrevealed parameter. INP exploits this dependency.

Take-away: INPs learn the meaning of knowledge based on its relationship with the empirical data. If this relationship
changes at test time, good performance of the INP can no longer be guaranteed. This characteristic may be especially
dangerous when there are spurious correlations in the dataset. The INP is prone to overfitting to these correlations,
“misunderstaning” the true meaning of knowledge, and thus failing to generalize to new knowledge representations
and their corresponding tasks, where the spurious correlations are no longer present.
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