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1. Let glM|N be the general linear Lie superalgebra over the complex field C .
Here both M and N are positive integers. The Yangian of glM|N was introduced

in [20] by extending the definition of the Yangian Y(glN) of the general linear
Lie algebra glN , see for instance [23]. The Yangian of glM|N is a deformation
of the universal enveloping algebra of the polynomial current Lie superalgebra
glM|N [u] in the class of Hopf algebras, see [24] for further details.

Let pN be the periplectic Lie superalgebra over C . This is a subalgebra of
glN|N preserving a non-degenerate odd symmetric bilinear form on the Z2-graded

vector space CN|N . The Lie superalgebra glN|N acts on CN|N in the natural way.
Equivalently, the Lie superalgebra pN can be defined as a fixed point subalgebra
of glN|N with respect to a certain involutive automorphism. This automorphism
is denoted by ω , see Section 3 for an explicit definition of pN in these terms.

The corresponding Yangian Y(pN) was briefly introduced in [21]. Note that
the construction of Y(pN) therein involved the periplectic Brauer algebra which
was later studied in by other authors, see for instance [8,9,14,19].

According to the general scheme of [11], the Yangian of the Lie superalgebra
pN cannot be defined as a deformation of the universal enveloping algebra of the
polynomial current Lie superalgebra pN [u] in the class of Hopf algebras. This
is because by [25] the only supersymmetric pN -invariant element of p⊗2

N is zero.
Consequently, there is no natural Lie co-superalgebra structure on pN [u] .

Remarkably, there is a natural Lie co-superalgebra structure on the twisted
polynomial current Lie superalgebra g = { g(u) ∈ glN|N [u] : ω(g(u)) = g(−u)} .

The Yangian Y(pN) is a deformation of the universal enveloping algebra U(g)
in the class of Hopf algebras. See [21] for further discussion of this fact.

The definition of the Yangian Y(pN) is given in our Section 10. It is based on
a new solution of the quantum Yang-Baxter equation constructed in [21]. This
solution is a rational function of two variables u ,v with values in the periplectic
Brauer algebra. Unlike other rational solutions discovered before [21] this is not
a function of only the difference u− v of the variables, see our Section 5.

Our Theorem1 is stated in [21] without proof. We prove it here. We also prove
an analogue for Y(pN) of the Poincaré-Birkhoff-Witt Theorem for U(g) , see [17].
This analogue is our Theorem 2 which was also stated in [21] without proof. We
sketch its proof here. Its Corollary 1 describes Y(pN) as a vector space explicitly.

Unlike its analogues [3] for the Yangians of the symplectic and orthogonal Lie
algebras, Theorem 2 cannot be proved by using the method of [22]. The reason
for it is explained in our Section 11. We use the Diamond Lemma of [6] instead.

The Lie superalgebra pN is a subalgebra of g . It consists of all those elements
of g which do not depend on the variable u . So the universal enveloping algebra
U(pN) is a Hopf subalgebra of U(g) . We also have an embedding of U(pN ) to the
Yangian Y(pN) as a Hopf subalgebra, see Corollary 2 to our Theorem 2.

There also is a subalgebra of g isomorphic to glN [u] . It consists of all g(u) ∈ g
taking values only in the even part of glN|N . Hence there is a Hopf subalgebra of

U(g) isomorphic to U(glN [u]) . We have an embedding of Y(glN) to Y(pN) as an
associative subalgebra, see Corollary 3. But it is not a Hopf algebra embedding.

Our Theorem 3 yields an explicit description of the centre of Y(pN) . We use
an analogue for Y(pN) of the quantum Berezinian [20] for the Yangian of glM|N .
To define it we construct a family of one-dimensional subquotient representations
of the algebra Y(pN) depending on a complex parameter, see Sections 15 and 25.

Irreducible finite-dimensional representations of the Lie superalgebra pN were
recently studied by several authors, see for instance [1,2,4,7,10,12,13]. It would
be interesting to study irreducible finite-dimensional representations of Y(pN).
For the Yangian of glM|N this was done in [27] and more recently in [15,16,26].
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2. We shall use the following general conventions. Let A and B be associative
Z2-graded algebras. Their tensor product A⊗B is also an associative Z2-graded
algebra such that for any homogeneous elements X,X ′ ∈ A and Y, Y ′ ∈ B

(X ⊗ Y )(X ′ ⊗ Y ′) = XX ′ ⊗ Y Y ′ (−1) degX′ deg Y ,

deg (X ⊗ Y ) = degX + deg Y .

Furthermore, for any two Z2-graded modules U and V over A and B respectively,
the vector space U ⊗ V is a Z2-graded module over A ⊗ B such that for any
homogeneous elements x ∈ U and y ∈ V

(X ⊗ Y )(x⊗ y) = Xx⊗ Y y (−1) deg x deg Y , (1)

deg(x⊗ y) = deg x+ deg y . (2)

A homomorphism α : A → B is a linear map such that α(XX ′) = α(X)α(X ′)
for all X,X ′ ∈ A . But an antihomomorphism β : A → B is a linear map such
that for all homogeneous X,X ′ ∈ A

β(XX ′) = β(X ′) β(X) (−1) degX degX′

. (3)

Let n be any positive integer. If the algebra A is unital, let ιp be its embedding
into the tensor product A⊗n as the p-th tensor factor:

ιp(X) = 1⊗(p−1) ⊗X ⊗ 1⊗(n−p) for p = 1, . . . , n .

We will also use various embeddings of A⊗m into A⊗n for m = 1, . . . , n. For any
choice of m pairwise distinct indices p1 , . . . , pm ∈ {1, . . . , n} and of an element
X ∈ A⊗m of the form X = X(1) ⊗ . . .⊗X(m) we will denote

Xp1...pm
= ιp1

(X(1)) . . . ιpm
(X(m)) ∈ A⊗n.

We will then extend the notation Xp1...pm
to all elements X ∈ A⊗m by linearity.

3. Let the indices i , j , k , l run through ± 1, . . . , ±N . Put ı̄ = 0 if i > 0 and
ı̄ = 1 if i < 0 . Now consider the Z2-graded vector space CN|N . Let ei ∈ CN|N

be an element of the standard basis. The Z2-grading on CN|N is defined by
deg ei = ı̄ . We will be using the bilinear form 〈 , 〉 on CN|N defined by setting
〈 ei, ej 〉 = δ i,−j for any indices i and j . This form is clearly symmetric.

Let Eij ∈ End CN|N be the standard matrix unit, defined by Eij ek = δjk ei .

The associative algebra End CN|N is Z2-graded so that degEij = ı̄ + ̄ . Hence

C
N|N is a Z2-graded module over End C

N|N . For any n we can also identify the
tensor product (End CN|N )⊗n with the algebra End((CN|N )⊗n) acting on the
vector space (CN|N )⊗n by repeatedly using the conventions (1) and (2).

We can define an antiautomorphism τ of End CN|N by mapping

τ : Eij 7→ Eji (−1)
ı̄ ̄ + ı̄

.

Note that τ is not involutive, while τ 2 is the parity automorphism of End CN|N

Eij 7→ Eij (−1)
ı̄ + ̄

. (4)
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We can also define an involutive automorphism π of End C
N|N by mapping

π : Eij 7→ E−i,−j .

The compositions τ π and π τ again differ by the automorphism (4). Hence both
τ π and π τ are involutive antiautomorphisms of End CN|N . Explicitly,

τ π : Eij 7→ E−j ,−i (−1)
ı̄ ̄ + ̄

.

Consider the Lie superalgebra glN|N . To avoid confusion, denote by eij the

element of glN|N corresponding to Eij ∈ End CN|N . Then deg eij = ı̄ + ̄ and

[ eij , ekl ] = δjk eil − δli ekj (−1)
( ı̄+ ̄ )(k̄+ l̄ )

. (5)

It follows that both π and − τ are automorphisms of the Lie superalgebra glN|N .
Let ω = − τ π be their composition. The automorphism ω is involutive. Further,

〈Z x, y 〉+ 〈 x, ω(Z) y 〉(−1) deg x degZ = 0

for any homogeneous x, y ∈ CN|N and Z ∈ glN|N . The Lie superalgebra glN|N

acts on the vector space CN|N via the above identification with End CN|N .
Now the periplectic Lie superalgebra pN is the fixed point subalgebra of glN|N

with respect to the automorphism ω . It can also be defined as the subalgebra
of glN|N preserving the form 〈 , 〉 on CN|N . This subalgebra is spanned by the
elements

fij = eij + ω(eij) = eij − e−j ,−i (−1)
ı̄ ̄ + ̄

. (6)

4. Take the element of the algebra (End CN|N )⊗2

P =
∑

i,j

Eij ⊗Eji (−1) ̄ . (7)

It acts on the vector space (CN|N )⊗2 so that ei ⊗ ej 7→ ej ⊗ ei (−1)
ı̄ ̄

. Here we

identify the algebra (End CN|N )⊗2 with the algebra End((CN|N )⊗2) using (1).
Note that P 2 = 1 . Also note that (τ π ⊗ τ π)(P ) = −P . Now let

Q = (− τ π ⊗ id )(P ) = ( id⊗ τ π)(P ) . (8)

Explicitly,

Q =
∑

i,j

Eij ⊗ E−i,−j (−1)
ı̄ ̄ + ı̄ + ̄

. (9)

The image of the action of Q on (CN|N )⊗2 is one-dimensional and is spanned by
∑

i

ei ⊗ e−i (−1)
ı̄
. (10)

Here we regard Q as an element of End((CN|N )⊗2) by once again identifying the
latter algebra with (End CN|N )⊗2 using (1). Also note that

P Q = −Q , QP = Q and Q2 = 0 . (11)

By [19, Theorem 4.5] the supercommutant of the image of pN in (End CN|N )⊗n

for any n is generated by all elements P pq and Q pq where 1 6 p < q 6 n . Here
we use the standard comultplication on the universal enveloping algebra of pN .



Yangian of the periplectic Lie superalgebra 5

5. Consider a function of complex variables u ,v with values in (End C
N|N )⊗2

R(u ,v) = 1−
P

u− v
+

Q

u+ v
.

By (8) we have
(τ π ⊗ 1)(R(u ,v)) = R(u ,−v) , (12)

(1⊗ τ π)(R(u ,v)) = R(−u ,v) . (13)

We also have

R(u,v)R(−u ,−v) = 1−
1

(u− v)2
. (14)

Indeed, due to the relation P 2 = 1 and to (11)
(

1−
P

u− v
+

Q

u+ v

)(

1 +
P

u− v
−

Q

u+ v

)

=

1−
P 2

(u− v)2
+

P Q+QP

(u− v)(u+ v)
−

Q2

(u+ v)2
= 1−

1

(u− v)2
.

Theorem 1. The rational function R(u ,v) satisfies the Yang-Baxter equation

in the algebra (End CN|N )⊗3(u, v, w)

R12(u ,v)R13(u ,w)R23(v ,w) = R23(v ,w)R13(u ,w)R12(u ,v) . (15)

Proof. Using the definition of R(u ,v) the equality in (15) will follow from the
relations in the algebra (End C

N|N )⊗3 displayed below:

P12 P13 = P23 P12 = P13 P23 , (16)

P13 P12 = P12 P23 = P23 P13 , (17)

Q13 Q12 = −P23 Q12 = −Q13 P23 , (18)

Q12 Q13 = −Q12 P23 = −P23 Q13 , (19)

Q12 P13 = −Q12 Q23 = −P13 Q23 , (20)

P13 Q12 = −Q23 Q12 = −Q23 P13 , (21)

P12 Q13 = Q23 P12 = Q23 Q13 , (22)

Q13 P12 = P12 Q23 = Q13 Q23 , (23)

P12 P13 P23 = P23 P13 P12 , (24)

P12Q13 Q23 = Q23 Q13 P12 , (25)

Q12Q13 P23 = P23 Q13 Q12 , (26)

Q12 P13 Q23 = 0 , (27)

Q23 P13 Q12 = 0 , (28)

P12 P13 Q23 = P23 Q13 P12 = Q12 P13 P23 = −Q12 Q13 Q23 , (29)

Q23 P13 P12 = P12 Q13 P23 = P23 P13 Q12 = −Q23 Q13 Q12 . (30)
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To prove (15), the relations (16) and (17) are used along with the identity

1

u− v

1

u− w
−

1

u− v

1

v − w
+

1

u− w

1

v − w
= 0 (31)

which is easy to verify. The relations (18) and (19) are used with the identity

1

u+ v

1

u+ w
+

1

u+ v

1

v − w
−

1

u+ w

1

v − w
= 0

which is obtained from (31) by changing the sign of u . The relations (20) and
(21) are used with the identity

1

u+ v

1

u− w
+

1

u+ v

1

v + w
−

1

u− w

1

v + w
= 0

which is obtained from (31) by changing the sign of v . The relations (22) and
(23) are used with the identity

1

u− v

1

u+ w
−

1

u− v

1

v + w
+

1

u+ w

1

v + w
= 0

which is obtained from (31) by changing the sign of w . Finally, the relations
(29) and (30) are used along with another identity which is easy to verify:

1

u− v

1

u− w

1

v + w
−

1

u− v

1

u+ w

1

v − w
+

1

u+ v

1

u− w

1

v − w
−

1

u+ v

1

u+ w

1

v + w
= 0 .

Let us verify the relations (16) to (23). The relations (16) and (17) follow from
the description of the action of P on the vector space (CN|N )⊗2 as provided in
the beginning of Section 4. Due to (8), the relations (18) and (19) can be obtained
by applying the antiautomorphism τ π of End CN|N to the relations (16) and
(17) relative to the first tensor factor of (End CN|N )⊗3. Similarly, the relations
(20) and (21) can be obtained by applying τ π to the relations (16) and (17)
relative to the second tensor factor of (End CN|N )⊗3. The relations (22) and
(23) can be obtained by applying τ π to the relations (16) and (17) relative to
the third tensor factor of (End CN|N )⊗3.

Next let us verify the relations (24) to (30). The above mentioned description
of the action of P on (CN|N )⊗2 shows that either side of (24) equals P13 . This
description also implies (25) and (26). It also implies that

Q12 P13 Q23 = Q12 Q21 P13 = Q12 P12 Q21 P13 = Q12Q12 P12 P13 = 0

where we also used (11). So we get the relation (27). Similarly, we get (28):

Q23 P13 Q12 = P13 Q21 Q12 = −P13 Q21 P12 Q12 = −P13 P12 Q12Q12 = 0 .

Also similarly, each of the first three products in (29) is equal to −P13 Q23 . By
using the first equality in (19) and then the second equality in (20),

−Q12 Q13Q23 = Q12 P23 Q23 = −Q12 Q23 = −P13 Q23 .

Hence we get the last equality in (29). The proofs of all three equalities in (30)
are very similar to those in (29) and are omitted here. ⊓⊔
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6. We will first define the extended Yangian of the Lie superalgebra pN . This is
a complex associative unital algebra X(pN) with a countable set of generators

T
(r)
ij where r = 1, 2, . . . and i , j = ± 1, . . . , ±N . (32)

The algebra X(pN) is Z2-graded so that deg T
(r)
ij = ı̄ + ̄ for all r . To write down

defining relations for the generators (32) of X(pN) we will use the formal power
series in u−1 with coefficients from X(pN)

Tij(u) = δij · 1 + T
(1)
ij u−1 + T

(2)
ij u−2 + . . . . (33)

Now combine all the series (33) into a single element

T (u) =
∑

i,j

Eij ⊗ Tij(u) ∈ (End C
N|N )⊗ X(pN)[[u

−1]] . (34)

For any n and any p = 1, . . . , n we will denote

Tp(u) = (ιp ⊗ id)(T (u)) ∈ (End C
N|N )⊗n ⊗ X(pN) [[u

−1]] . (35)

By using this notation for n = 2 the defining relations of X(pN) are

(R(u ,v)⊗ 1) T1(u)T2(v) = T2(v)T1(u) (R(u ,v)⊗ 1) . (36)

Namely, after multiplying each side of (36) by u2 − v2 it becomes an equality of
formal Laurent series in u−1, v−1 with coefficients in (End CN|N )⊗2 ⊗ X(pN) .
By expanding the relation (36) in the basis of (End CN|N )⊗2 consisting of

Eij ⊗ Ekl (−1)
( ı̄+ ̄ )(k̄+ l̄ )

where i , j , k , l = ± 1, . . . , ±N

while using the definitions (7) and (9), we get a collection of relations

[Tij(u), Tkl(v) ] =
Tkj(u)Til(v)− Tkj(v)Til(u)

u− v
(−1) ı̄ k̄ + ı̄ l̄ + k̄ l̄

− δ−i,k

∑

h

Thj(u)T−h,l(v)

u+ v
(−1) h̄ l̄ + ı̄ l̄ + ı̄

+ δj,−l

∑

h

Tk,−h(v)Tih(u)

u+ v
(−1) h̄ k̄ + ı̄ k̄ + ı̄ l̄+ h̄ (37)

where h = ±1, . . . , ±N and the square brackets stand for the supercommutator.
By comparing (15) with (36), we obtain that for any t ∈ C the assignment

(End C
N|N )⊗ X(pN)[[u

−1]] → (End C
N|N )⊗2 [[u−1]] : T (u) 7→ R(u , t)

defines a representation X(pN) → End CN|N . We will denote this representation
by ρ t . By the definitions (7) and (9), for any r > 0

ρ t : T
(r+1)
ij 7→ (−Eji + (−1)rτ π(Eji)) t

r(−1)
̄
.
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7. Due to (36) for any formal power series c(u) in u−1 with coefficients from C

and leading term 1, an automorphism of the algebra X(pN) can be defined by

Tij(u) 7→ c(u)Tij(u) . (38)

Now for all i and j define a formal power series T ′
ij(u) in u−1 with coefficients

in the algebra X(pN) by using the element inverse to (34):

T (u)−1 =
∑

i,j

Eij ⊗ T ′
ij(u) . (39)

Proposition 1. These mappings define two commuting antiautomorphisms of
the algebra X(pN) :

Tij(u) 7→ Tij(−u) , (40)

Tij(u) 7→ T ′
ij(u) . (41)

Proof. By using the notation (35) for n = 2 we get the equalities

T1(u)T2(v) =
∑

i,j,k,l

Eij ⊗ Ekl ⊗ Tij(u)Tkl(v) (−1)
( ı̄+ ̄ )(k̄+ l̄ )

, (42)

T2(−v)T1(−u) =
∑

i,j,k,l

Eij ⊗ Ekl ⊗ Tkl(−v)Tij(−u) . (43)

Due to (3) the antihomomorphism property of (40) follows from the relation

(R(u ,v)⊗ 1)T2(−v)T1(−u) = T1(−u)T2(−v) (R(u ,v)⊗ 1)

which is obtained from (36) by using (14). The antihomomorphism (40) is clearly
involutive and therefore bijective.

Similarly to (43), by again using the notation (35) for n = 2 we get

T2(v)
−1 T1(u)

−1 =
∑

i,j,k,l

Eij ⊗ Ekl ⊗ T ′
kl(v)T

′
ij(u) .

By comparing this with (42), the antihomomorphism property of (41) follows
from the relation

(R(u ,v)⊗ 1) T2(v)
−1 T1(u)

−1 = T1(u)
−1 T2(v)

−1(R(u ,v)⊗ 1)

which is obtained by multiplying both sides of the defining relation (36) on the
left and right by T2(v)

−1 and then by T1(u)
−1.

The antihomomorphism (41) clearly commutes with (40). The bijectivity of
the antihomomorphism (41) will follow from Proposition 5 below. ⊓⊔

Furthermore, let us introduce the element of (End CN|N )⊗X(pN)[[u
−1]]

T ∗(u) = (τ π ⊗ id )(T (u)) =

∑

i,j

E−j ,−i ⊗ Tij(u) (−1)
ı̄ ̄ + ̄

=
∑

i,j

Eij ⊗ T−j ,−i(u) (−1)
ı̄ ̄ + ̄

.

Proposition 2. An automorphism of X(pN) commuting with (40) is defined by

Tij(u) 7→ T−j ,−i(u) (−1)
ı̄ ̄ + ̄

. (44)
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Proof. The composition τ π is an antiautomorphism of the Z2-graded associative
algebra End CN|N . Therefore by applying the map τ π ⊗ τ π ⊗ id to both sides
of (36) and then using (12),(13) we get the relation

T ∗
1 (u)T

∗
2 (v) (R(−u ,−v)⊗ 1) = (R(−u ,−v)⊗ 1)T ∗

2 (v)T
∗
1 (u) . (45)

Here for p = 1, 2 we denote

T ∗
p (u) = ιp ⊗ id (T ∗(u)) ∈ (End C

N|N )⊗2 ⊗ X(pN) [[u−1]] .

Multiplying (45) on the left and right by R(u ,v)⊗ 1 and using (14) yields

(R(u ,v)⊗ 1)T ∗
1 (u)T

∗
2 (v) = T ∗

2 (v)T
∗
1 (u) (R(u ,v)⊗ 1)

which yields the homomorphism property of (44). This homomorphism is clearly
involutive, hence bijective. It clearly commutes with (40) as well. ⊓⊔

8. Let us multiply the relation (36) by u+ v and then set v = −u . We get

(Q⊗ 1) T1(u)T2(−u) = T2(−u)T1(u) (Q⊗ 1) . (46)

Since the image of the action of Q on (CN|N )⊗2 is one-dimensional, either side
of the last displayed relation must be equal to Q⊗ Z(u) where Z(u) is a power
series in u−1 with coefficients from X(pN) . It is immediate that every coefficient
of the series Z(u) has Z2-degree 0 and that the leading term of Z(u) is 1 . Hence

Z(u) = 1 + Z (1)u−1 + Z (2)u−2 + . . . .

Proposition 3. The elements Z (1), Z (2) . . . of the algebra X(pN) are central.

Proof. We will work with the elements (35) where n = 3 . Using (36) we get

(R13(u ,v)R23(−u ,v)⊗ 1)T1(u)T2(−u)T3(v) =

T3(v)T1(u)T2(−u) (R13(u ,v)R23(−u ,v)⊗ 1) . (47)

Due to (14) we have the identity in the algebra (End CN|N )⊗3(u ,v)

−R13(u ,−v)P12R23(−u ,v) = −P12

(

1−
1

(u+ v)2

)

.

By applying to it the antiautomorphism τ π relative to the first tensor factor of
(End CN|N )⊗3 and then using (8),(12) we get

Q12 R13(u ,v)R23(−u ,v) = Q12

(

1−
1

(u+ v)2

)

.

Therefore by multiplying the relation (47) by Q12 ⊗ 1 on the left and using the
above definition of the series Z(u) we obtain

(Q12 ⊗ Z(u)) T3(v)

(

1−
1

(u+ v)2

)

= T3(v) (Q12 ⊗ Z(u))

(

1−
1

(u+ v)2

)

.

The last relation implies that any generator T
(r)
ij of the algebra X(pN) commutes

with all coefficients of the series Z(u) . ⊓⊔



10 Maxim Nazarov

By the definition of Z(u) we have relations in (End C
N|N )⊗2 ⊗X(pN) [[u

−1]]

(Q⊗ 1) T1(u)T2(−u) = Q⊗ Z(u) , (48)

T2(−u)T1(u) (Q⊗ 1) = Q⊗ Z(u) .

Applying τ π ⊗ id⊗ id to both sides of these relations and then using (12) gives

T ∗
1 (u) (−P ⊗ 1)T2(−u) = −P ⊗ Z(u) ,

T2(−u) (−P ⊗ 1)T ∗
1 (u) = −P ⊗ Z(u) .

Equivalently,
T ∗
1 (u)T1(−u) (−P ⊗ 1) = −P ⊗ Z(u) ,

(−P ⊗ 1)T1(−u)T ∗
1 (u) = −P ⊗ Z(u) .

The latter two can be simpler written as relations in (End CN|N )⊗X(pN) [[u
−1]]

T ∗(u)T (−u) = 1⊗ Z(u) , (49)

T (−u)T ∗(u) = 1⊗ Z(u) .

Observe that the last two are also equivalent to each other due to Proposition 3.
Explicitly, these last two relations can be rewritten respectively as

∑

k

T−k,−i(u)Tkj(−u) (−1)
̄ k̄+ ̄

= δij Z(u) , (50)

∑

k

Tik(−u)T−j ,−k (u) (−1)
ı̄ k̄+ k̄

= δij Z(u) . (51)

Proposition 4. The antiautomorphism (41) maps Z(u) 7→ Z(u)−1 .

Proof. Due to Proposition 3 the relation (48) can be rewritten as

Q⊗ Z(u)−1 = (Q⊗ 1) T2(−u)−1 T1(u)
−1 .

The right hand side of the last displayed relation can also be obtained by applying
to the left hand side of (48) the antiautomorphism (41) relative to the tensor
factor X(pN) . Hence Proposition 4 follows from (48). ⊓⊔

Proposition 5. The square of antiautomorphism (41) of X(pN) is given by

Tij(u) 7→ Z(u)−1Z(−u) Tij(u) .

Proof. By (49)
T (u)−1 = Z(−u)−1 T ∗(−u) .

Thus for any indices i and j we have the relation

T ′
ij(u) = Z(−u)−1 T−j ,−i(−u) (−1)

ı̄ ̄ + ̄
. (52)

By applying the antiautomorphism (41) to the right hand side of this relation,
and then using the same relation for −j ,−i and −u instead of i , j and u we get
the series

Z(u)−1 Tij(u)Z(−u) = Z(u)−1Z(−u) Tij(u) .

Here we also used Propositions 3 and 4. ⊓⊔
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Proposition 6. The automorphism (44) of X(pN) maps Z(u) 7→ Z(−u) .

Proof. By setting j = i in (50) we get an explicit formula

Z(u) =
∑

k

T−k,−i(u)Tki(−u) (−1)
ı̄ k̄+ ı̄

. (53)

It follows from (53) that the automorphism (44) maps Z(u) to the sum

∑

k

Tik (u)T−i,−k(−u) (−1)
ı̄ k̄+ k̄

.

On the other hand, by setting j = i in (51) we get another explicit formula

Z(u) =
∑

k

Tik(−u)T−i,−k (u) (−1)
ı̄ k̄+ k̄

. (54)

Comparing the sum in (54) with the previous display completes our proof. ⊓⊔

9. There is a natural Hopf algebra structure on the extended Yangian X(pN) .
A coassociative comultiplication homomorphism ∆ : X(pN) → X(pN) ⊗ X(pN)
is defined by

∆ : Tij(u) 7→
∑

k

Tik(u)⊗ Tkj(u) (−1)
( ı̄ + k̄ )( ̄ + k̄ )

(55)

where the tensor product is taken over the subalgebra C[[u−1]] of X(pN)[[u
−1]] .

The counit homomorphism ε : X(pN) → C is defined by Tij(u) 7→ δij . Further,
the antipodal mapping S : X(pN) → X(pN) is just the antiautomorphism (41).
Justification of these definitions is very similar to that in the case of the Yangian
of the general linear Lie algebra glN , see [23, Section 4]. Here we omit the details.

Proposition 7. For the formal power series Z(u) in u−1 we have

∆ : Z(u) 7→ Z(u)⊗ Z(u) and ε : Z(u) 7→ 1 . (56)

Proof. By using the above formula (53) with the index k replaced by −h , and
then using the definition (55) twice with k replaced respectively by −k and l ,
the comultiplication homomorphism ∆ maps Z(u) to the sum

∑

h,k,l

(Th,−k(u)T−h,l(−u))⊗ (T−k,−i(u)Tli(−u)) (−1)
h̄ l̄ + ı̄ k̄+ k̄ l̄ + ı̄ + k̄

=
∑

k,l

( δkl Z(u))⊗ (T−k,−i(u)Tli(−u)) (−1)
ı̄ k̄+ ı̄ + k̄ + l̄

=
∑

k

Z(u)⊗ (T−k,−i(u)Tki(−u)) (−1)
ı̄ k̄+ ı̄

= Z(u)⊗ Z(u)

as needed. Here we also used the relation (50) with the indices k, l,−h instead
of i, j , k respectively. Then we used the above formula (53) in its original form.

Due to the definition of the counit homomorphism ε , the second statement in
(56) immediately follows from (53). ⊓⊔
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Note that Proposition 4 also follows from (56), because the multiplication
µ : X(pN)⊗X(pN) → X(pN) and the unit mapping δ : C → X(pN) : 1 7→ 1 obey

µ ( S⊗ id)∆ = δ ε .

Indeed, by applying to the coefficients of the series Z(u) the homomorphisms at
the two sides of the last displayed identity, we get the equality S(Z(u))Z(u) = 1 .

10. The Yangian Y(pN) of the Lie superalgebra pN is defined as the quotient
of the Z2-graded algebra X(pN) by the relations

Z (1) = Z (2) = . . . = 0 .

Hence Y(pN) is a complex associative unital algebra with the generators (32),
subject to the relations (37) and Z(u) = 1 . Here we still use the series (33).
Explicit formulas for Z(u) in terms of these series are given by (53) and (54).

The Z2-grading on Y(pN) is still defined by setting deg T
(r)
ij = ı̄ + ̄ for every r .

Due Propositions 4 and 7, the Hopf algebra structure descends from X(pN)
to the quotient Y(pN) . Due to Proposition 5, the antipodal map on Y(pN) is
involutive. In terms of the series (32), this map is still defined by (41).

By (52) the antipodal map on Y(pN) coincides with the composition of the
two commuting maps on Y(pN) defined by (40) and (44). These two maps on
Y(pN) commute by Proposition 2. The map (40) on X(pN) clearly descends to
the quotient Y(pN) , whereas (44) descends to Y(pN) due to Proposition 6.

Consider the universal enveloping algebra U(pN) of the Lie superalgebra pN .
This is an associative algebra generated by the elements fij ∈ pN , see (6). The
algebra U(pN) is Z2-graded so that deg fij = ı̄ + ̄ . The defining relations are

f−j ,−i = − fij (−1)
ı̄ ̄ + ̄

,

[ fij , fkl ] = δjk fil − δli fkj (−1)
( ı̄+ ̄ )(k̄+ l̄ )

− δ−i,k f−j,l (−1)
ı̄ ̄ + ̄

− δj,−l fi,−k (−1)
k̄ l̄ + l̄

,

see (5). But now the square brackets stand for the supercommutator in U(pN) .
On the other hand, by setting Z(u) = 1 in (50) and taking the coefficients at

u−1 we obtain the relations in the algebra Y(pN)

T
(1)
−j ,−i = T

(1)
ij (−1)

ı̄ ̄ + ̄
.

Multiplying (37) by u2 − v2 and then taking the coefficients at u v−1 yields

[T
(1)
ij , T

(1)
kl ] = ( δkj T

(1)
il − δil T

(1)
kj ) (−1) ı̄ k̄ + ı̄ l̄ + k̄ l̄

− δ−i,k T
(1)
−j,l (−1) ı̄ l̄ + ̄ l̄ + ı̄ + δj,−l T

(1)
k,−i (−1) ı̄ l̄ + ı̄ .

By comparing the last two displays with the above relations in U(pN) , we deduce
that a homomorphism U(pN) → Y(pN) can be defined by mapping

−fji (−1)
̄
7→ T

(1)
ij . (57)

Our Theorem 2 will imply that this homomorphism is an embedding. Moreover
it is an embedding of Hopf algebras, because for X(pN) by our definitions

∆ : T
(1)
ij 7→ T

(1)
ij ⊗ 1 + 1⊗ T

(1)
ij , ε : T

(1)
ij 7→ 0 , S : T

(1)
ij 7→ −T

(1)
ij .
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11. For any formal power series c(u) in u−1 with coefficients from C and leading
term 1, the automorphism (38) of the associative algebra X(pN) maps Z(u) to

c(u) c(−u)Z(u) .

So (38) descends to Y(pN) if and only if c(u) c(−u) = 1 . The special Yangian of
pN is the fixed point subalgebra of Y(pN) relative to all these automorphisms.
We will denote this subalgebra of Y(pN) by Z(pN) . It will not be confused with
the subalgebra of U(pN) consisting of all elements invariant relative to the adoint
action of pN , since the latter subalgebra is just C by [25, Proposition 3].

The special Yangian Z(pN) is moreover a Hopf subalgebra of Y(pN) . Indeed,
the anipodal map on Y(pN) preserves the subalgebra Z(pN) by the definition of
this subalgebra. Now let c(u) by any formal power series in u−1 with coefficients
from C and leading term 1, satisfying the condition c(u) c(−u) = 1 . By (55) the
comultiplication on Y(pN) maps

c(u)Tij(u) 7→
∑

k

(c(u)Tik(u))⊗ Tkj(u) (−1)
( ı̄ + k̄ )( ̄ + k̄ )

=

∑

k

Tik(u)⊗ (c(u)Tkj(u)) (−1)
( ı̄ + k̄ )( ̄ + k̄ )

.

Hence the comultiplication intertwines the action of the automorphism (38) on
Y(pN) with its action on any one of the two tensor factors of Y(pN)⊗Y(pN) . It
follows that the image of the subalgebra Z(pN) of Y(pN) under comultiplication
is contained in both Z(pN) ⊗ Y(pN) and Y(pN) ⊗ Z(pN) . Therefore this image
is contained in Z(pN)⊗ Z(pN) as needed.

We will conclude this section with an important observation. For any t ∈ C

consider the representation ρ t of X(pN) defined at the end of Section 6. By using
the formula (49) and the relations (12),(14) this representation maps Z(u) to

(τ π ⊗ id )(R(u , t))R(−u , t) = R(u ,− t)R(−u , t) = 1−
1

(u+ t)2
.

So the composition of ρ t with the automorphism (38) of X(pN) maps Z(u) to

c(u) c(−u)

(

1−
1

(u+ t)2

)

which may be equal to 1 for some c(u) if and only if t = 0 . So the composition
of ρ t with (38) may factor to a representation of Y(pN) if and only if t = 0 . The
choice of c(u) for that purpose is not unique then. For example, we can choose

c(u) =
u

u+ 1
or c(u) =

u

u− 1
.

However, the composition of the tensor product ρ t ⊗ ρ−t of representations
of X(pN) with an automorphism (38) may factor to a representation of Y(pN)
for any t ∈ C . This is because due to (56), the latter composition maps Z(u) to

c(u) c(−u)

(

1−
1

(u+ t)2

)(

1−
1

(u− t)2

)

.

The choice of c(u) for ρ t ⊗ ρ−t is still not unique. For example, we can choose

c(u) =
(u+ t)2

(u+ t)2 − 1
or c(u) =

(u− t)2

(u− t)2 − 1
.
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12. There is a natural ascending Z-filtration on the associative algebra Y(pN) .

It is defined by setting the degree of T
(r)
ij to r for each r > 1 and all indices i , j .

Let grY(pN) be the Z-graded algebra corresponding to this filtration. Denote

by X
(r)
ij the image of the generator T

(r)
ij in the degree r component of grY(pN) .

The Z2-grading on Y(pN) descends to grY(pN) so that degX
(r)
ij = ı̄ + ̄ . For

any r, s > 1 by taking the coefficients at u−rv−s in (37) we immediately obtain
the supercommutation relation in the Z2-graded algebra grY(pN)

[X
(r)
ij , X

(s)
kl ] = 0 .

For any indices i , j introduce the series with coefficients in the algebra grY(pN)

Xij(u) = δij · 1 +X
(1)
ij u−1 +X

(2)
ij u−2 + . . . .

Then the relations (50) with Z(u) = 1 imply that for all i , j we have
∑

k

X−k,−i (u)Xkj (−u) (−1)
̄ k̄+ ̄

= δij . (58)

The numerator in the first line of the defining relation (37) of X(pN) vanishes
at v = u . Further, if we multiply by u+ v the expressions in the second and in
the third line of (37) and then set v = −u , we will get

− δ−i,k δj,−l Z(u) (−1)
ı̄ ̄

and δj,−l δ−i,k Z(u) (−1)
ı̄ l̄+ ı̄

by using (50) and (51) respectively. The latter two expressions cancel each other.
So by using (50) and (51) the defining relation (37) can be rewritten is an equality
of formal power series in u−1, v−1 with coefficients in X(pN) .

13. We will also employ another ascending Z-filtration on Y(pN) . It is defined

by setting the degree of T
(r)
ij to r−1 for any r > 1 . The corresponding Z-graded

algebra will be denoted by gr ′Y(pN) . Let Y
(r)
ij be the image of T

(r)
ij in the degree

r − 1 component of gr ′ Y(pN) .

The Z2-grading on Y(pN) descends to gr ′ Y(pN) so that deg Y
(r)
ij = ı̄ + ̄ .

For any r > 1 by equating to δij the left hand side of (50) and then taking the
coefficients at u−r we obtain the relation in the algebra gr ′ Y(pN)

Y
(r)
−j ,−i = −Y

(r)
ij (−1)

ı̄ ̄+ ̄ + r
. (59)

For r,s > 1 by taking coefficients at u−rv−s in (37) we obtain the relation

[ Y
(r)
ij , Y

(s)
kl ] = ( δkj Y

(r+s−1)
il − δil Y

(r+s−1)
kj ) (−1) ı̄ k̄ + ı̄ l̄ + k̄ l̄ +

δ−i,k Y
(r+s−1)
−j,l (−1) ı̄ l̄ + ̄ l̄ + ı̄ + r − δj,−l Y

(r+s−1)
k,−i (−1)

ı̄ l̄ + ı̄ + r
. (60)

Here we used the equality to 1 of the coefficient at u−rv−s in the expansion of

v 1−r−s − u1−r−s

u− v

as a polynomial in u−1, v−1 . We also used the relation (59) obtained just above.
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The structure of Z2-graded Hopf algebra on Y(pN) descends to gr ′Y(pN) .
Due to the definition (55) the comultiplication, the counit homomorphism and
the antipodal antiautomorphism for gr ′Y(pN) are defined respectively by

Y
(r)
ij 7→ Y

(r)
ij ⊗ 1 + 1⊗ Y

(r)
ij , Y

(r)
ij 7→ 0 , Y

(r)
ij 7→ −Y

(r)
ij . (61)

14. Now consider the twisted polynomial current Lie superalgebra g as defined
in Section 1. This subalgebra of glN|N [u] is spanned by the elements

g
(r)
ij = eij u

r + ω(eij)(−u)r = eij u
r − e−j ,−i u

r(−1)
ı̄ ̄ + ̄ + r

where r = 0, 1, 2, . . . and i , j = ± 1, . . . ,±N . Here g
(0)
ij = fij by (6). For r, s > 0

g
(r)
−j ,−i = − g

(r)
ij (−1)

ı̄ ̄ + ̄ + r
, (62)

[ g
(r)
ij , g

(s)
kl ] = δjk g

(r+s)
il − δli g

(r+s)
kj (−1)

( ı̄+ ̄ )(k̄+ l̄ )

− δ−i,k g
(r+s)
−j,l (−1)

ı̄ ̄ + ̄ + r
− δj,−l g

(r+s)
i,−k (−1)

k̄ l̄ + l̄ + s
. (63)

The universal enveloping algebra U(g) is generated by the elements g
(r)
ij as an

associative algebra. It is Z2-graded so that the degrees of these generators are
equal to ı̄ + ̄ respectively. The defining relations for these generators are (62)
and (63) where the square brackets now denote the supercommutator.

By comparing (62),(63) with (59),(60) above we deduce that the mapping

− g
(r)
ji (−1) ̄ 7→ Y

(r+1)
ij (64)

for r > 0 defines a homomorphism U(g) → gr ′ Y(pN) of Z2-graded associative
algebras. Moreover, this is a Hopf algebra homomorphism by the definitions (61).

Note that for any t ∈ C the image of T
(r+1)
ij ∈ Y(pN) under the representation

ρ t coincides with the image of the left hand side of (64) under the evaluation

representation U(glN|N [u]) 7→ End CN|N defined by mapping eij u
r 7→ Eij t

r .

Theorem 2. The mapping (64) defines an isomorphism U(g) → gr ′Y(pN) of
Z2-graded Hopf algebras.

Proof. The homomorphism U(g) → gr ′ Y(pN) defined by (64) above is clearly
surjective. We have to prove that this homomorphism is injective as well.

Let I be the set of all triples (i, j, r) with r > 0 . Choose any total ordering <
on this set. Also choose any subset J ⊂ I such that for i 6= −j it contains only
one of the triples (i, j, r) and (−j ,−i, r) , while for i = −j it contains (i, j, r) if
and only if ı̄ + r is odd. Due to (62) the left hand sides of (64) corresponding
to the triples (i, j, r) ∈ J form a basis of the vector space g .

Let T be the set of all products of T
(r+1)
ij corresponding to (i, j, r) ∈ J taken

in non-decreasing orders, such that two adjacent triples can be the same (i, j, r)
only if ı̄ + ̄ = 0 in Z2 . We will prove that T is linearly independent in Y(pN) .
This is equivalent to the linear independence in gr ′Y(pN) of the set of products

obtained from T by replacing every factor T
(r+1)
ij by the corresponding Y

(r+1)
ij .

Hence we will prove the injectivity of the homomorphism defined by (64).
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Let S be the set of all products of the generators T
(r+1)
ij of the algebra Y(pN) .

Let us call a pair of triples (i, j, r) and (k, l, s) misordered if (i, j, r) > (k, l, s) ,
or (i, j, r) = (k, l, s) and ı̄ + ̄ = 1 in Z2 . For any product A ∈ S let µ(A) be
the number of pairs of factors of A corresponding to misordered pairs of triples.
The pairs of factors of A counted by µ(A) need not to be adjacent. Let ν(A) be
the number of factors of A corresponding to the triples which are not in J .

Let A and B be any two products from the set S . Let a and b be the numbers
of their factors respectively. Let c and d be respectively the sums of the degrees
of their factors relative to the Z-filtration on Y(pN) from Section 13. We will
write A ≺ B if c < d , or c = d but a < b , or c = d and a = b but ν(A) < ν(B) ,
or A is a permutation of factors of B and µ(A) < µ(B) . The relation denoted
by ≺ is a partial ordering on the set S , with every descending chain terminating.
Notice that the condition A ≺ B implies that XAY ≺ XBY for any X, Y ∈ S .

Let S(u) be the element of the algebra (End CN|N )⊗Y(pN) [[u
−1]] inverse to

T ∗(−u) . When determining the inverse element here we do not use any relations
in Y(pN) . The relation (49) with Z(u) = 1 can be now written as S(u) = T (u) .
For any i, j define a formal power series Sij(u) in u−1 with coefficients in Y(pN) ,

S(u) =
∑

i,j

Eij ⊗ Sij(u) .

Define the elements S
(1)
ij , S

(2)
ij , . . . ∈ Y(pN) as the coefficients of the series Sij(u)

at u−1, u−2, . . . respectively. For any r > 0

S
(r+1)
ij = T

(r+1)
−j ,−i (−1)

ı̄ ̄+ ̄ + r
+ C (65)

where C is a linear combination of products of two or more generators of Y(pN)
with the sums of the degrees of factors by the Z-filtration from Section 13 being
less than r . These products occur in the linear combination C only if r > 0 .

Take any (i, j, r) /∈ J . If i 6= −j , then (−j ,−i, r) ∈ J . In this case we will

replace any factor T
(r+1)
ij of B by the right hand side of (65). But if i = −j and

ı̄+ r is even, then we will replace T
(r+1)
ij by C/2 . We will call either replacement

a reduction of B . It does not change the value of B ∈ Y(pN) and is compatible
with ≺ on S , so that its result is a linear combination of products A ≺ B .

For any triples (i, j, r) and (k, l, s) the relation (37) gives an equality in Y(pN)

T
(r+1)
ij T

(s+1)
kl = T

(s+1)
kl T

(r+1)
ij (−1)

( ı̄+ ̄ )(k̄+ l̄ )
+D (66)

where D is a linear combination of single generators of Y(pN) of degree r+ s by
the Z-filtration from Section 13, and of products of two generators with the sums
of the degrees of factors being equal to r + s− 1 . Here we use the expansions

1

u− v
= u−1 + u−2 v + . . . and

1

u+ v
= u−1 − u−2 v + . . .

then equate the coefficients at u−r−1v−s−1 of the series at the two sides of (37).
If (i, j, r) > (k, l, s) then we will replace any product of the corresponding two

adjacent factors of B by the right hand side of (66). But if (i, j, r) = (k, l, s) and
ı̄ + ̄ = 1 in Z2 then we will replace the product of the two factors of B by D/2 .
The value of B ∈ Y(pN) will not change then. Either replacement will be called
a reduction of B too. It is compatible with the ordering ≺ on S as well.
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When proving linear the independence of the set T in Y(pN) , we may assume

that (1, 1, r) /∈ J for every r > 0 . The collection of relations S
(r+1)
11 = T

(r+1)
11

can be written as the equality S11(u) = T11(u) . Using only the relation (49) in
(End CN|N )⊗Y(pN)[[u−1]] , this equality gives Z(u) = 1 . But the relation (49)
follows from (36), see Section 8. So the relation Z(u) = 1 follows from (36) and

from the relations S
(r+1)
11 = T

(r+1)
11 for every r > 0 . Under our assumption on

the choice of J , the latter relations are used to define reductions via (65).
Let now us multiply each side of the relation (36) by P ⊗ 1 on the left and

on the right. Also exchange the variables u and v . The result is the relation

(R(−u ,−v)⊗ 1) T2(v)T1(u) = T1(u)T2(v) (R(−u ,−v)⊗ 1) (67)

since by (11)
P R(v ,u)⊗ 1)P = R(−u ,−v) . (68)

But (67) can also be obtained by multiplying each side of (36) on the left and on
the right by R(−u ,−v)⊗ 1 and then using (14). Inductively, this remark shows
that the relations (66) with (i, j, r) > (k, l, s) imply all other relations (66). In
the induction argument, we use the Z-filtration on Y(pN) from Section 12.

If (i, j) = (k, l) and ı̄ + ̄ = 0 in Z2 , then the relation (37) simply means that
the coefficients of the series Tij(u) pairwise commute. Indeed, in this case the
expressions in the second and the third lines of (37) vanish. Then (37) becomes

Tij(u)Tij(v)− Tij(v)Tij(u) =
Tij(u)Tij(v)− Tij(v)Tij(u)

u− v
.

Equivalently,
Tij(u)Tij(v) = Tij(v)Tij(u) .

In particular, we can eliminate from the definition of Y(pN) the relations (66)
with (i, j, r) = (k, l, s) and ı̄ + ̄ = 0 in Z2 as tautological relations. But to define
reductions via (66), we used (66) only when (i, j, r) > (k, l, s) or (i, j, r) = (k, l, s)
and ı̄ + ̄ = 1 in Z2 . The above arguments show that the used relations imply all
other relations (66). Thus our reductions involve all defining relations of Y(pN) .

Let us now examine the inclusion ambiguities of our set of reductions. They
correspond to misordered pairs of triples where one or both triples are not in J .
Let us show that they are resolvable relative to ≺ in the sense of [6, Section 1].

Take any product T
(r+1)
ij T

(s+1)
kl where the pair of triples (i, j, r) and (k, l, s) is

misordered. Suppose that (i, j, r) /∈ J but (k, l, s) ∈ J . Then we can apply to
the above product the reduction via (65) in the first factor, or alternatively the
reduction via (66). The two results coincide by comparing (36) to the equality

(R(u ,v)⊗ 1) S1(u)T2(v) = T2(v)S1(u) (R(u ,v)⊗ 1) . (69)

Note that to prove the coincidence here we use equalities of linear combinations

of products from S which precede T
(r+1)
ij T

(s+1)
kl relative to the partial ordering.

To get the equality (69) we apply the map τ π⊗ id⊗ id to both sides of (36)
and then use (12). This yields the equality

T ∗
1 (u) (R(u ,−v)⊗ 1)T2(v) = T2(v) (R(u ,−v)⊗ 1)T ∗

1 (u) .

By multiplying both sides of this equality by T ∗
1 (u)

−1 on the left and on the right,
changing u to −u and then using (14) we indeed get (69).
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The case when (i, j, r) ∈ J but (k, l, s) /∈ J can be treated in a similar way,
but using instead of (69) the equality

(R(u ,v)⊗ 1) T1(u)S2(v) = S2(v)T1(u) (R(u ,v)⊗ 1) . (70)

To get this equality multiply each side of (36) by R(−u ,−v)⊗1 on the left and
on the right, and then use (14). Apply the map id⊗ τ π⊗ id to both sides of the
resulting equality and then use (13). In this way we obtain the equality

T1(u) (R(u ,−v)⊗ 1)T ∗
2 (v) = T ∗

2 (v) (R(u ,−v)⊗ 1)T1(u) .

Multiplying its both sides of this equality on the left and on the right by T ∗
2 (v)

−1

and then changing v to −v yields (70).
The case when (i, j, r) /∈ J and (k, l, s) /∈ J can also be treated in a similar

way, but using instead of (69) the equality

(R(u ,v)⊗ 1) S1(u)S2(v) = S2(v)S1(u) (R(u ,v)⊗ 1) .

To get this equality, multiply both sides of (45) on the left and on the right first
by T ∗

1 (u)
−1 and then by T ∗

2 (v)
−1 . Then change u , v to −u , − v respectively.

Finally, let us examine the overlap ambiguities of our set of reductions. They
correspond to the sequences of triples of length three, such that the pair of first
two triples and the pair of the last two triples in the sequence are misordered. Let
us show that they are also resolvable relative to ≺ in the sense of [6, Section 1].

Take any product T
(r+1)
ij T

(s+1)
kl T

(t+1)
gh such that the pair of triples (i, j, r) and

(k, l, s) is misordered, and so is the pair of triples (k, l, s) and (g, h, t) . We can
apply to the product the reduction via (66) in the first two factors. Alternatively,
in the last two factors we can apply the reduction via the equality obtained by
replacing (i, j, r) and (k, l, s) in (66) respectively by (k, l, s) and (g, h, t) .

To see that the results of two reductions coincide, we can continue using (66).
Thus for the first reduction we will use the equality

(R23(v ,w)R13(u ,w)R12(u ,v)⊗ 1) T1(u)T2(v)T3(w) =

T3(w)T2(v)T1(u) (R23(v ,w)R13(u ,w)R12(u ,v)⊗ 1)

in the notation (35) with n = 3 . Here w is another formal variable. In the same
notation, for the second reduction we will use the equality

(R12(u ,v)R13(u ,w)R23(v ,w)⊗ 1) T1(u)T2(v)T3(w) =

T3(w)T2(v)T1(u) (R12(u ,v)R13(u ,w)R23(v ,w)⊗ 1) .

The two results will coincide due to (15). Note that to prove the coincidence here
we will use equalities of linear combinations of products from S which precede

T
(r+1)
ij T

(s+1)
kl T

(t+1)
gh relative to the partial ordering.

So both the inclusion and the overlap ambiguities of our set of reductions are
resolvable. But the elements of the set T cannot be changed by the reductions.
The linear independence of T in Y(pN) is now ensured by [6, Theorem 1.2]. ⊓⊔

Corollary 1. The elements of grY(pN) corresponding to T
(r+1)
ij with the triples

(i, j, r) ∈ J are free generators of this supercommutative algebra.
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Our proof of Theorem 2 also implies the Poincaré-Birkhoff-Witt Theorem for
the algebra U(g) , see [17, Theorem 5.15]. Going back to our Section 10 we obtain

Corollary 2. The homomorphism U(pN) → Y(pN) defined by the mapping (57)
is an embedding of Z2-graded Hopf algebras.

Let us link Y(pN) to the Yangian Y(glN) of the general linear Lie algebra glN .
The latter Yangian is a deformation of the universal enveloping algebra of the
polynomial current Lie algebra glN [u] in the class of Hopf algebras. Comparing
(37) with the relations in Y(glN) as given in [23, Section 1] immediately yields

Corollary 3. The associative subalgebra of Y(pN) generated by elements T
(r)
ij

with i , j > 0 is isomorphic to the algebra Y(glN) .

Note that the associative subalgebra of Y(pN) appearing in Corollary 3 is not
a Hopf subalgebra, see the definition (55). Thus the isomorphism of Corollary 3
is not an isomorphism of Hopf algebras.

15. In this section we will explicitly describe the centre of the Yangian Y(pN) .
An element of an Z2 -graded associative algebra is central if its supercommutator
with every element of the algebra is zero.

First consider the subalgebra of the extended Yangian X(pN) generated by the

elements T
(r)
ij with i , j > 0 . This subalgebra of X(pN) is isomorphic to Y(glN) .

Similarly to Corollary 3 this isomorphism property follows from Theorem 2 by
(37). Consider the formal power series in u−1 with coefficients in this subalgebra

A(u) =
∑

σ

(−1)σ T 1,σ(1)(u)T 2,σ(2)(u+ 1) . . . TN,σ(N)(u+N − 1) (71)

where σ ranges over the symmetric group SN permuting the indices 1, . . . , N .
The power series in (u+1)−1 , . . . , (u+N − 1)−1 should be reexpanded in u−1 .
The series A(u) has the leading term 1 . The coefficients of A(u) at u−1, u−2, . . .
are free generators of the centre of that subalgebra of X(pN) , see [18, Section 2].
All these coefficients have Z2 -degree zero, hence the supercommutator with any
of them in the algebra X(pN) is the usual commutator. By [18, Proposition 2.7]

A(u) =
∑

σ

(−1)σ Tσ(1),1(u+N − 1) . . . Tσ(N−1),N−1(u+ 1)Tσ(N),N(u) .

Now take the series in u−1 with coefficients in X(pN) and the leading term 1

A(u)A(1−N − u) . (72)

Theorem 3. The coefficients of the series (72) belong to the centre of X(pN) .

We will prove this theorem in the next nine sections. We will now employ it
to describe the centre of the algebra Y(pN) . Let B (1), B (2) . . . be the images in
Y(pN) of the coefficients of the series (72) at u−1, u−2, . . . respectively. These
images are central in Y(pN) by Theorem 3. They all are of Z2 -degree zero.

Corollary 4. The coefficients B (2), B (4) . . . freely generate the centre of Y(pN) .
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Proof. The elements B (2), B (4) . . . of Y(pN) are central by Theorem 3. It suffices
to prove now that the images of these elements in the graded algebra gr ′Y(pN)
are free generators of its centre. For r > 1 the image of B (2r) in gr ′ Y(pN) equals

2Y
(2r)
11 + . . .+ 2Y

(2r)
NN . (73)

By Theorem 2 the algebra gr ′ Y(pN) is isomorphic to the universal enveloping
algebra U(g) via (64). Under this isomorphism the element (73) of gr ′ Y(pN) with
any r > 1 corresponds to the element of U(g)

− 2 g
(2r−1)
11 − . . .− 2 g

(2r−1)
NN = − 2 (e11 + e−1,−1 + . . .+ eNN + e−N,−N ) u2r−1

from our Section 14. The latter elements freely generate of the centre of U(g) .
Indeed, they are algebraically independent due to the Poincaré-Birkhoff-Witt

Theorem for U(g) , see [17, Theorem 5.15]. To show that they generate the centre
of U(g) consider the quotient of U(g) by the ideal they generate. This quotient
is isomorphic to the universal enveloping algebra U(h) of the Lie superalgebra

h = {h(u) ∈ a[u] : ω(h(u)) = h(−u)}

where a is the quotient of Lie superalgebra glN|N by the span of a central element

e11 + e−1,−1 + . . .+ eNN + e−N,−N .

The automorphism ω of glN|N maps this element to its negative and therefore
descends to the quotient a . But the centre of the Lie superalgebra a is trivial.
Hence the centre of U(h) is also trivial by [22, Proposition 3.6]. ⊓⊔

To finish this section let us consider the images of the elements B (1), B (2) . . . of
Y(pN) in the supercommutative algebra grY(pN) . In the notation of Section 12
let X(u) the 2N × 2N matrix whose ij entry is the series

Xij(u) (−1)
ı̄ ̄ + ̄

.

We index the rows and columns of X(u) by the numbers 1, . . . , N,−1, . . . ,−N .
The matrixX(u) is invertible. LetX ′

ij(u) be the ij entry of the inverse matrix.
Then the relations (58) imply that for any indices i and j

Xij(−u) = X ′
−j ,−i(u) .

Therefore by using the definition (71), the image in grY(pN)[[u
−1]] of the series

B(u) = 1 +B (1)u−1 +B (2)u−2 + . . .

can be written as the product of the sum
∑

σ

(−1)σ X1,σ(1)(u) . . . XN,σ(N)(u)

by the sum
∑

σ

(−1)σ X ′
−σ(1),−1(u) . . . X

′
−σ(N),−N (u) .

This product is just the Berezinian or the superdeterminant of the matrix X(u) .
Hence the series B(u) is an analogue for Y(pN) of the quantum Berezinian [20]
for the Yangian of the general linear Lie superalgebra glM|N , see [24] for details.
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16. We will now begin our proof of Theorem 3. We will be use the same method
as in the proof of Proposition 3. However, the calculations will be more involved.
Fix any n > 1 and take the rational function of u with values in (End CN|N )⊗n

H(u) =
∏

16p<q6n

R pq(u+ n− p ,u+ n− q)

where the factors are arranged from left to right by ordering their pairs of indices
(p , q) lexicographically. The ordering of factors can be altered by employing (15),
without affecting the function. By using (36) repeatedly we get the equality

(H(u)⊗ 1) T1(u+ n− 1) . . . Tn(u) = Tn(u) . . . T1(u+ n− 1) (H(u)⊗ 1)

of formal power series in u−1 with coefficients in (End CN|N )⊗n ⊗ X(pN) .

Lemma 1. For any 1 6 p < q 6 n we have the equalities in (End CN|N )⊗n(u)

PpqH(u) = −H(u) and QpqH(u) = 0 .

Proof. For n = 1 we have nothing to prove. In particular, in this case H(u) = 1 .
Consider the case of n = 2 . Then H(u) = R(u+ 1 ,u) while

P R(u+ 1 ,u) = P

(

1− P +
Q

2u+ 1

)

= P − 1−
Q

2u+ 1
= −R(u+ 1 ,u)

by the equality P 2 = 1 and by the first equality in (11). By the second and third
equalities in (11) we also have

QR(u+ 1 ,u) = Q

(

1− P +
Q

2u+ 1

)

= Q−Q−
0

2u+ 1
= 0 .

Now for any n > 2 and for any given index p < n let q = p+ 1 . By (15) we
can rearrange the factors of H(u) so that R p,p+1(u + n − p ,u + n − p − 1) is
the leftmost factor. Then the above calculations for n = 2 imply the equalities
of our lemma for any n. Hence our lemma holds whenever q = p+ 1 .

In turn, this implies the required equalities for every q > p . Indeed, the set of
all elements Ppq and Qpq with p < q is generated in the algebra (End CN|N )⊗n

by those elements where q = p+ 1 . ⊓⊔

It follows from Lemma 1 that every value of the normalized function H(u)/n!
is idempotent in the algebra (End CN|N )⊗n . Indeed, by using the lemma we get

H(u)H(u) =
∏

16p<q6n

(

1 +
1

p− q

)

·H(u) = n!H(u) .

Elements of (End CN|N )⊗n act on (CN|N )⊗n by (1) and (2). Take any vector
ei1 ⊗ . . .⊗ ein with only positive indices i1 , . . . , in . Then all elements Qpq with
1 6 p < q 6 n annihilate this vector. So the image H(u)(ei1 ⊗ . . .⊗ ein) equals

∏

16p<q6n

(

1 +
Ppq

p− q

)

· (ei1 ⊗ . . .⊗ ein) =
∑

σ

(−1)σ ei
σ(1)

⊗ . . .⊗ ei
σ(n)

where σ ranges over the groupSn . The last equality is well known [18, Section 2].
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Lemma 2. For any 1 6 p < n we have an equality in (End C
N|N )⊗n(u)

H(u)Qp,p+1 = (2u+ 2n− 2p− 1)H(u) (1 + Pp,p+1) .

Proof. For n = 1 we have nothing to prove. Let n = 2 . Then H(u) = R(u+1 ,u)
while by the relation (14) we have

R(u+ 1 ,u)R(−u− 1 ,−u) = 0 .

Multiplying this equality by 2u+1 and using the definition of the second factor
at the left hand side we get the equality

R(u+ 1 ,u) ((2u+ 1)(1 + P )−Q) = 0 .

This implies our lemma for n = 2 and p = 1 . For any n > 2 and 1 6 p < n by
using (15) we can rearrange the factors of the product H(u) so that the factor

R p,p+1(u+ n− p ,u+ n− p− 1)

is the rightmost. Then the above calculation with u replaced by u + n − p − 1
implies the lemma. ⊓⊔

17. Let us continue our proof of Theorem 3. For any n > 1 consider the rational
function of u , v with values in the algebra (End CN|N )⊗(n+1)

F (u ,v) = R 1,n+1(u+ n− 1 , v) . . . Rn,n+1(u ,v) .

By using (36) repeatedly we get the equality of formal power series in u−1, v−1

(F (u ,v)⊗ 1) T1(u+ n− 1) . . . Tn(u)Tn+1(v) =

Tn+1(v)T1(u+ n− 1) . . . Tn(u) (F (u ,v)⊗ 1) (74)

which have their coefficients in the algebra (End CN|N )⊗(n+1) ⊗ X(pN) .

Lemma 3. For any n > 1 the rational function (H(u)⊗ 1)F (u ,v) of u , v with

values in (End CN|N )⊗(n+1) is equal to

(

1−
P 1,n+1 + . . .+ Pn,n+1

u− v
+

Q 1,n+1 + . . .+Qn,n+1

u+ v + n− 1

)

(H(u)⊗ 1)

plus terms divisible on the left by Qpq ∈ (End CN|N )⊗(n+1) with 1 6 p < q 6 n .

Proof. Using the relation (15) we can rewrite the product (H(u)⊗ 1)F (u ,v) as

Rn,n+1(u ,v) . . . R 1,n+1(u+ n− 1 , v) (H(u)⊗ 1) . (75)

We will prove by induction on n that the latter product is equal to the sum in
the lemma. If n = 1 then H(u) = 1 while F (u ,v) = R(u ,v) . Then the required
equality is just the definition of R(u ,v) as given in Section 5.
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Suppose that n > 1 . By using the induction assumption and the definition
of H(u) for n− 1 instead of n , the product (75) is equal to

(

1−
P 2,n+1 + . . .+ Pn,n+1

u− v
+

Q 2,n+1 + . . .+Qn,n+1

u+ v + n− 2

)

×

(

1−
P 1,n+1

u− v + n− 1
+

Q 1,n+1

u+ v + n− 1

)

(H(u)⊗ 1)

plus terms divisible on the left by Qpq ∈ (End CN|N )⊗(n+1) with 2 6 p < q 6 n .
We also used the relations (15). The product of two sums in the brackets equals

1−
P 1,n+1

u− v + n− 1
+

Q 1,n+1

u+ v + n− 1

−
P 2,n+1 + . . .+ Pn,n+1

u− v
+

Q 2,n+1 + . . .+Qn,n+1

u+ v + n− 2
+

(P 2,n+1 + . . .+ Pn,n+1)P 1,n+1

(u− v) (u− v + n− 1)
−

(Q 2,n+1 + . . .+Qn,n+1)P 1,n+1

(u+ v + n− 2) (u− v + n− 1)

−
(P 2,n+1 + . . .+ Pn,n+1)Q 1,n+1

(u− v) (u+ v + n− 1)
+

(Q 2,n+1 + . . .+Qn,n+1)Q 1,n+1

(u+ v + n− 2) (u+ v + n− 1)
.

Multiplying the first fraction in the third line by H(u)⊗ 1 on the right gives

−
(n− 1)P 1,n+1

(u− v) (u− v + n− 1)
(76)

times H(u)⊗ 1 . Here we used the first equality from Lemma 1 and the relation

P p,n+1 P 1,n+1 = P 1,n+1 P 1p where p = 2, . . . , n .

Multiplying the second fraction in the third line by H(u)⊗ 1 on the right gives
just zero due to the second equality from Lemma 1 and to the relations

Q p,n+1 P 1,n+1 = P 1,n+1 Q p1 = − P 1,n+1 Q 1p where p = 2, . . . , n .

The numerator of the first fraction in the fourth line can be written as the sum of

P p,n+1 Q 1,n+1 = Q 1p P p,n+1 over p = 2, . . . , n .

These summands evidently have the divisibility property stated in the lemma.
Multiplying the second fraction in the fourth line by H(u)⊗ 1 on the right gives

−
Q 2,n+1 + . . .+Qn,n+1

(u+ v + n− 2) (u+ v + n− 1)
(77)

times H(u)⊗ 1 . Here we used the first equality from Lemma 1 and the relation

Q p,n+1 Q 1,n+1 = Q p,n+1 P 1p where p = 2, . . . , n .

By adding to the first and the second lines the expressions (76) and (77) instead
of the third and the fourth lines and by collecting similar terms we get the sum
in brackets displayed in the lemma. Hence we make the induction step. ⊓⊔
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18. Set n = N . Thus the above introduced functions H(u) and F (u ,v) will now
take values in (End CN|N )⊗N and (End CN|N )⊗(N+1) respectively. Elements of
the latter algebra act on vectors in (CN|N )⊗(N+1) by the conventions (1) and (2).
From now on we will be denoting z = u− v and w = u+ v +N − 1 for short.

Lemma 4. Applying (H(u)⊗ 1)F (u ,v) to the vector e1 ⊗ . . .⊗ eN ⊗ e1 has the
same effect as applying H(u)⊗ 1 to the vector

z − 1

z
e1 ⊗ . . .⊗ eN ⊗ e1 . (78)

Proof. For 1 6 p < q 6 N+1 the elements Qpq ∈ (End C
N|N )⊗(N+1) annihilate

the vector e1 ⊗ . . .⊗ eN ⊗ e1 . Hence applying (H(u)⊗ 1)F (u ,v) to this vector
has the same effect as applying

∏

16p<q6N

(

1 +
Ppq

p− q

)

·

(

1−
P 1,N+1

u− v +N − 1

)

. . .

(

1−
PN,N+1

u− v

)

=

∏

16p<q6N

(

1 +
Ppq

p− q

)

·

(

1−
P 1,N+1 + . . .+ PN,N+1

u− v

)

.

The last equality is well known, see for instance [18, Section 2.3]. The summands
P 2,N+1 , . . . , PN,N+1 of the last denominator do not contribute to the image of
the vector e1 ⊗ . . .⊗ eN ⊗ e1 by the remark made just before stating Lemma 2.
The summand P 1,N+1 does not change this vector. Using the above mentioned
remark once again we complete the proof of the lemma. ⊓⊔

Lemma 5. Applying (H(u)⊗1)F (u ,v) to the vector e1⊗ . . .⊗eN ⊗e−1 has the
same effect as applying H(u)⊗ 1 to the linear combination

w + 1

w
e1 ⊗ . . .⊗ eN ⊗ e−1

−
1

z

N
∑

k=1

e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ek

−
1

w

N
∑

k=1

e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ ek .

Proof. Applying F (u ,v) to e1 ⊗ . . .⊗ eN ⊗ e−1 has the same effect as applying

R 1,N+1(u+N − 1 , v)

(

1−
P 2,N+1

u− v +N − 2

)

. . .

(

1−
PN,N+1

u− v

)

.

The remark made before stating Lemma 2 remains valid if n = N and one of the
indices i1 , . . . , iN is −1 while the other N −1 indices are 2, . . . , N in any order.
Hence when applying (H(u)⊗1)F (u ,v) to our vector we can replace F (u ,v) by

R 1,N+1(u+N − 1 , v)

(

1−
P 2,N+1 + . . .+ PN,N+1

u− v

)

.

Here we also use Lemma 2 and the above mentioned result from [18, Section 2.3].



Yangian of the periplectic Lie superalgebra 25

By simply opening the brackets the latter product equals

1−
P 1,N+1

u− v +N − 1
+

Q 1,N+1

u+ v +N − 1
−

P 2,N+1 + . . .+ PN,N+1

u− v
+

P 1,N+1 (P 2,N+1 + . . .+ PN,N+1)

(u− v +N − 1) (u− v)
−

Q 1,N+1 (P 2,N+1 + . . .+ PN,N+1)

(u+ v +N − 1) (u− v)
.

The last two denominators are respectively equal to the sums

P 12 P 1,N+1 + . . .+ P 1N P 1,N+1 and P 2,N+1 Q 12 + . . .+ PN,N+1 Q 1N .

The second of the two sums annihilates our vector. When applying the first sum
to our vector we can replace each of the factors P 12 , . . . , P 1N just by −1. Here
we again use Lemma 2. So when applying (H(u) ⊗ 1)F (u ,v) to our vector we
can replace the function F (u ,v) by the sum

1−
P 1,N+1

u− v +N − 1
+

Q 1,N+1

u+ v +N − 1
−

P 2,N+1 + . . .+ PN,N+1

u− v

−
(N − 1)P 1,N+1

(u− v +N − 1) (u− v)
=

1−
P 1,N+1 + P 2,N+1 + . . .+ PN,N+1

z
+

Q 1,N+1

w
.

Applying the expression in the last displayed line to e1⊗ . . .⊗ eN ⊗ e−1 gives

e1 ⊗ . . .⊗ eN ⊗ e−1 −
1

z

N
∑

k=1

e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ek

−
1

w

N
∑

k=1

e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ ek +
1

w

N
∑

k=1

ek ⊗ e2 ⊗ . . .⊗ eN ⊗ e−k .

By Lemma 2 applying H(u) ⊗ 1 to the last sum over k = 1, . . . , N annihilates
all summands but one where k = 1 . This observation completes the proof. ⊓⊔

19. Introduce the rational function of u , v with values in (End CN|N )⊗(2N+1)

C (u ,v) = F ′(u ,v)F ′′(1− u−N ,v)

where F ′(u ,v) and F ′′(u ,v) are the images of F (u ,v) by the two embeddings

(End C
N|N )⊗(N+1) → (End C

N|N )⊗(2N+1)

defined as ι 1⊗ . . .⊗ ιN ⊗ ι 2N+1 and as ιN+1⊗ . . .⊗ ι 2N ⊗ ι 2N+1 respectively.
Using (74) twice we obtain that multiplying the formal power series in u−1, v−1

T1(u+N − 1) . . . TN (u)TN+1(−u) . . . T 2N (1−N − u)T 2N+1(v)

by C (u ,v)⊗1 on the left gives the same result as as multuplying by C (u ,v)⊗1
on the right the series

T 2N+1(v)T1(u+N − 1) . . . TN (u)TN+1(−u) . . . T 2N (1−N − u) .

Both series have their coefficients in the algebra (End CN|N )⊗(2N+1) ⊗ X(pN) .
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For any index j = ± 1, . . . , ±N denote

fj = e1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ej . (79)

Observe that replacing u by 1−N − u maps z = u− v to 1−N − u− v = −w .
Therefore by using Lemma 4 with that replacement of the variable u and then in
the original formulation we immeditaly get the following corollary to this lemma.

Corollary 5. Applying (H(u)⊗H(1−N − u)⊗ 1)C (u ,v) to the vector f1 has
the same effect as applying H(u)⊗H(1−N − u)⊗ 1 to the vector

(z − 1) (w + 1)

z w
f1 . (80)

Below is the counterpart of Corollary 5 for our Lemma 5 instead of Lemma 4.

Corollary 6. Applying (H(u)⊗H(1−N −u)⊗1)C (u ,v) to f−1 has the same
effect as applying H(u)⊗H(1−N − u)⊗ 1 to the linear combination

(z − 1) (w + 1)

z w
f−1

−
z − 1

z2

N
∑

k=1

e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek

−
z − 1

z w

N
∑

k=1

e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek +

z − 1

z w

N
∑

k=1

e1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ek +

z − 1

z2

N
∑

k=1

e1 ⊗ . . .⊗ eN ⊗ e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ ek . (81)

Proof. By Lemma 5 with the variable u replaced by 1−N − u we immediately
obtain that applying (1⊗H(1−N −u)⊗1)F ′′(1−u−N ,v) to the vector f−1

has the same effect as applying 1⊗H(1−N − u)⊗ 1 to the linear combination

z − 1

z
f−1 +

1

w

N
∑

k=1

e1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ek +

1

z

N
∑

k=1

e1 ⊗ . . .⊗ eN ⊗ e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ ek . (82)

Further, by the original Lemma 5 applying (H(u)⊗1⊗1)F ′(u ,v) to the first
of three lines (82) has the same effect as applying H(u) ⊗ 1 ⊗ 1 to the sum of
first three lines in (81). Further, applying (H(u)⊗ 1⊗ 1)F ′(u ,v) to the second
and to the third lines of (82) has the same effect as applying the product

(H(u)⊗ 1⊗ 1)

(

1−
P 1,2N+1

u− v +N − 1

)

. . .

(

1−
PN,2N+1

u− v

)

.
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Applying the last displayed product to the second and third lines of (82) gives
the same result as applying the product

(H(u)⊗ 1⊗ 1)

(

1−
P 1,2N+1 + . . .+ PN,2N+1

u− v

)

. (83)

Here we used Lemma 2 like in the beginning of our proof of Lemma 5. Let us now
use the remark made just before stating Lemma 2. When applying (83) to the
summands with the index k in the second and third lines of (82), all summands
of the numerator in (83) vanish except for P k,2N+1 . The latter does not change
the summands with the index k in the second and third lines of (82). So applying
(H(u)⊗ 1⊗ 1)F ′(u ,v) to the second and the third lines of (82) gives the same
as applying H(u)⊗1⊗1 respectively to the fourth and the fifth lines of (81). ⊓⊔

20. So far we used the equality in Lemma 2 only in the cases when both sides of
the equality annihilate a given vector. In the next section we will use that equality
in more general cases. We will employ the following corollary to Lemma 2. Denote

dk = e1 ⊗ . . .⊗ ek−1 ⊗ ek+1 ⊗ . . .⊗ eN for k = 1, . . . , N .

Corollary 7. For any k > 1 applying H(u) to the vector e−k ⊗ e2 ⊗ . . . ⊗ eN
has the same effect as applying H(u) to the linear combination

a(u) dk ⊗ e−1 (−1)N+k − b(u) d1 ⊗ e−k (−1)N

where

a(u) =
2

2u+N + 1
and b(u) =

2u+N − 1

2u+N + 1
.

Similarly, for any index k > 1 applying H(1−N − u) to the vector

e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN

has the same effect as applying H(1−N − u) to the linear combination

a(u) e−k ⊗ d1 − b(u) e−1 ⊗ dk (−1)k .

Proof. For any index i denote by xi(u) the result of applying H(u) to the vector

e2 ⊗ . . .⊗ ek−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ei ⊗ e−i . (84)

By Lemma 2 applying H(u) to the vector e−k ⊗ e2 ⊗ . . .⊗ eN gives the vector
(−1)k x−k(u) . Let us apply both sides of the equality in Lemma 2 with n = N
and p = N − 1 to the vectors (84) with i = 1, . . . , N . We obtain the equations

x1(u)− x−1(u) + . . .+ xN (u)− x−N (u) = (2u+ 1) ( xi(u) + x−i(u)) . (85)

But for i = 2, . . . , k−1, k+1 , . . . , N we have xi(u) = 0 by Lemma 2. So by (85)
the vectors x−i(u) with i = 2, . . . , k − 1, k + 1 , . . . , N are equal to each other.
Using these two observations, it is easy to deduce from the equations (85) that

x−k(u) = a(u) x1(u)− b(u) xk(u) .

By using Lemma 2 again we now obtain the first statement of our corollary.
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Changing the notation, let xi(u) be the result of applying H(1−N − u) to

e−i ⊗ ei ⊗ e2 ⊗ . . .⊗ ek−1 ⊗ ek+1 ⊗ . . .⊗ eN . (86)

By Lemma 2 applying H(1−N − u) to e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN
gives the vector (−1)k x−1(u) . Let us replace u by 1−N − u in the equality in
Lemma 2 and apply both sides of the resulting equality with n = N and p = 1
to the vectors (86) with i = 1, . . . , N . In this way we obtain the same equations
(85) although for the changed vectors. For i = 2, . . . , k−1, k+1 , . . . , N we still
have xi(u) = 0 by Lemma 2. So the equations (85) easily imply that

x−1(u) = a(u) xk(u)− b(u) x1(u) .

By using Lemma 2 again we now get the second statement of the corollary. ⊓⊔

21. Let us relate two vectors in (CN|N )⊗(2N+1)(u , v) by the symbol ∼ to each
other if their difference vanishes under the action of H(u)⊗H(1−N − u)⊗ 1 ,
or lies in the image of the action of QN,N+1 . Extend the relation ∼ transitively.
Recall the notations z = u− v and w = u+ v +N − 1 adopted in Section 18.

Proposition 8. For any index j = ± 1, . . . , ±N we have the relation

C (u ,v) fj ∼
(z − 1) (w + 1)

z w
fj .

Proof. Proposition 8 follows from its particular cases of j = 1 ,−1 . Indeed, the
sums in (7) and (9) are invariant under any permutation of the indices 1 , . . . , N
with the corresponding permutation of −1 , . . . ,−N at the same time. So H(u)
and C (u ,v) are also invariant under any such permutation. While the vector

e1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN (87)

changes under the permutation, its image by the action of H(u)⊗H(1−N −u)
does not change due to Lemma 2. Finally, note that the product of C (u ,v) by
H(u)⊗H(1−N − u)⊗ 1 on the left is also divisible by this factor on the right.
This remark follows by setting n = N in the beginning of the proof of Lemma 3.

For j = 1 our proposition immediately follows from Corollary 5. For j = −1
we will derive the proposition from Corollary 6. We will show that the summands
with the index k in the second and fifth lines of (81) cancel each other by ∼ and
so do the summands with the index k in the third and fourth lines of (81).

Consider the second and the fifth lines of (81). For k = 1, . . . , N by Lemma 2

− e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek +

e1 ⊗ . . .⊗ eN ⊗ e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ ek ∼

− dk ⊗ e−1 ⊗ e1 ⊗ d1 ⊗ ek (−1)N+k + dk ⊗ ek ⊗ e−k ⊗ d1 ⊗ ek (−1)N+k ∼

dk ⊗ x ⊗ d1 ⊗ ek (−1)N+k

where x is the vector (10). So the last displayed line lies in the image of QN,N+1 .
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Consider the third and the fourth lines of (81). For their summands with the
index k = 1 by Lemma 2 we get the relations

− e−1 ⊗ e2 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ e1 +

e1 ⊗ . . .⊗ eN ⊗ e−1 ⊗ e2 ⊗ . . .⊗ eN ⊗ e1 ∼

− d1 ⊗ e−1 ⊗ e1 ⊗ d1 ⊗ e1 (−1)N+1 + d1 ⊗ e1 ⊗ e−1 ⊗ d1 ⊗ e1 (−1)N+1 ∼

d1 ⊗ x⊗ d1 ⊗ e1 (−1)N+1

where x is as above. Thus the last displayed line lies in the image of QN,N+1 .
So far in the proof of our proposition we used the equality in Lemma 2 only in

the cases when both sides of the equality annihilate a given vector. Now we will
also use Corollary 7 that stands outside of these cases. Consider the summands
in the third and fourth lines of (81) with any index k > 1 . We get the relations

− e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek +

e1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ek ∼

− a(u) dk ⊗ e−1 ⊗ e1 ⊗ . . .⊗ eN ⊗ ek (−1)N+k +

b(u) d1 ⊗ e−k ⊗ e1 ⊗ . . .⊗ eN ⊗ ek (−1)N +

a(u) e1 ⊗ . . .⊗ eN ⊗ e−k ⊗ d1 ⊗ ek

− b(u) e1 ⊗ . . .⊗ eN ⊗ e−1 ⊗ dk ⊗ ek (−1)k ∼

− a(u) dk ⊗ e−1 ⊗ e1 ⊗ d1 ⊗ ek (−1)N+k

− b(u) d1 ⊗ e−k ⊗ ek ⊗ dk ⊗ ek (−1)N+k+

a(u) dk ⊗ ek ⊗ e−k ⊗ d1 ⊗ ek (−1)N+k +

b(u) d1 ⊗ e1 ⊗ e−1 ⊗ dk ⊗ ek (−1)N+k ∼

a(u) dk ⊗ x⊗ d1 ⊗ ek (−1)N+k + b(u) d1 ⊗ x⊗ dk ⊗ ek (−1)N+k

where x is still as above. So the last displayed line lies in the image of QN,N+1 .
Note that Corollary 7 remains valid for k = 1 . In this particular case the two

linear combinations in the corollary are equal to (−1)N+1 d1⊗e−1 and e−1⊗d1

respectively, because a(u) + b(u) = 1 . The arguments used the last paragraph
here also remain valid for k = 1 , but simplify as in the paragraph before. ⊓⊔

22. Let us employ Proposition 8 in the proof of Theorem 3. Consider the algebra

(End C
N|N )⊗(2N+1) ⊗X(pN) . (88)

Elements of this algebra can be applied to vectors of (CN|N )⊗(2N+1) via 2N +1
tensor factors End(CN|N ) . Equip the vector space (CN|N )⊗(2N+1) with the basis
of tensor products of the vectors ei ∈ CN|N . This basis includes the vectors (79).
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We have an equality of formal power series in u−1, v−1 with coefficients in (88)

(H(u)⊗H(1−N − u)⊗ 1⊗ 1) (C (u ,v)⊗ 1)×

T1(u+N − 1) . . . TN (u)TN+1(−u) . . . T 2N (1−N − u)T 2N+1(v) =

(H(u)⊗H(1−N − u)⊗ 1⊗ 1)T 2N+1(v)×

T1(u+N − 1) . . . TN (u)TN+1(−u) . . . T 2N (1−N − u) (C (u ,v)⊗ 1) ,

see the beginning of Section 19. For any indices i , j apply the right hand side of
this equality to the basis vector fj and take the coefficient of the result at the
basis vector fi . By Proposition 8 and by the second formula for A(u) as given
in Section 15 this coefficient is equal to

(z − 1) (w + 1)

z w
Tij(v)A(u)A(1−N − u) . (89)

Indeed, due to (36) the product

T1(u+N − 1) . . . TN (u)TN+1(−u) . . . T 2N (1−N − u)

by H(u)⊗H(1−N −u)⊗1⊗1 on the left is divisible by the same factor on the
right, see the beginning of Section 16. Due to (46) the product of

TN (u)TN+1(−u) (QN,N+1 ⊗ 1)

is divisible by QN,N+1⊗1 on the left. We use the relation QN+1,N = −QN,N+1

which follows from (11). But the coefficient at fi of any vector from the image
of the action of (H(u)⊗H(1−N − u)⊗ 1)QN,N+1 on (CN|N )⊗(2N+1) is zero.

Next we shall prove that by applying the left hand side of the above displayed
equality to the vector fj and then taking the coefficient of the result at fi we get

(z − 1) (w + 1)

z w
A(u)A(1−N − u)Tij(v) . (90)

Thus the product (89) equals (90). These equalities for all i , j imply Theorem 3.
Considering the left hand side of the above displayed equality will be easier than
the right hand side, thanks to the obvious advantages of Lemma 1 over Lemma 2.

23. Let us now use the right action of the Z2-graded algebra End(CN|N ) on the
Z2-graded vector space CN|N instead of the left action which we used before. For
the matrix units Eij ∈ End CN|N we have ek Eij = δik ej . For for any positive

integer n we can then define the right action of the algebra (End CN|N )⊗n on
the vector space (CN|N )⊗n by the conventions similar to (1) and (2).

Notice that the right action of the element P ∈ (End C
N|N )⊗2 defined by (7)

still maps ei ⊗ ej 7→ ej ⊗ ei (−1)
ı̄ ̄

. The image of the right action on (CN|N )⊗2

of the element Q in (9) is still one-dimensional, but is spanned by the vector

∑

j

ej ⊗ e−j . (91)

By using Lemmas 1 and 3 with n = N we immediately get the next two lemmas.
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Lemma 6. Applying (H(u)⊗1)F (u ,v) to e1⊗ . . .⊗ eN ⊗ e1 from the right has
the same effect as applying H(u)⊗ 1 from the right to the vector (78).

Lemma 7. Applying (H(u) ⊗ 1)F (u ,v) to e1 ⊗ . . .⊗ eN ⊗ e−1 from the right
has the same effect as applying H(u)⊗1 from the right to the linear combination

w + 1

w
e1 ⊗ . . .⊗ eN ⊗ e−1

−
1

z

N
∑

k=1

e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ek +

1

w

N
∑

k=1

e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ ek .

By using Lemma 6 first in its original formulation and then with the variable
u replaced by 1−N−u we immeditaly get the following corollary to this lemma.

Corollary 8. Applying (H(u)⊗H(1−N −u)⊗ 1)C (u ,v) to f1 from the right
has the same effect as applying H(u)⊗H(1−N − u)⊗ 1 from the right to (80).

Below is the counterpart of Corollary 8 for our Lemma 7 instead of Lemma 6.

Corollary 9. Applying (H(u)⊗H(1−N−u)⊗1)C (u ,v) to f−1 from the right
has the same effect as applying H(u)⊗H(1−N − u)⊗ 1 from the right to

(z − 1) (w + 1)

z w
f−1 +

w + 1

w2

N
∑

k=1

e1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ek

−
w + 1

z w

N
∑

k=1

e1 ⊗ . . .⊗ eN ⊗ e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ ek

−
w + 1

z w

N
∑

k=1

e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek +

w + 1

w2

N
∑

k=1

e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek . (92)

Proof. Using Lemma 7 we obtain that applying (H(u)⊗ 1⊗ 1)F ′(u ,v) to f−1

from the right has the same effect as applying H(u)⊗ 1⊗ 1 from the right to

w + 1

w
f−1

−
1

z

N
∑

k=1

e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek +

1

w

N
∑

k=1

e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek . (93)
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By Lemma 7 with the variable u replaced by 1−N −u , applying the product
(1⊗H(1−N −u)⊗ 1)F ′′(1−N −u ,v) to the first of three lines (93) from the
right has the same effect as applying 1⊗H(1−N −u)⊗ 1 from the right to the
sum of first three lines in (92).

Applying (1⊗H(1−N − u)⊗ 1)F ′′(1−N − u ,v) to the second and to the
third lines of (93) from the right has the same effect as applying from the right

(

1 +
P 2N,2N+1

u+ v +N − 1

)

. . .

(

1 +
PN+1,2N+1

u+ v

)

(1⊗H(1−N − u)⊗ 1) ,

see the beginning of the proof of Lemma 3 for n = N . By Lemma 1 applying the
last displayed product to the second and the third lines of (93) from the right
gives the same result as applying to them from the right the product

(

1 +
PN+1,2N+1 + . . .+ P 2N,2N+1

u+ v +N − 1

)

(1⊗H(1−N − u)⊗ 1) . (94)

When applying (94) to the summands with the index k in the second and third
lines of (93), all summands of the numerator in (94) vanish except PN+k,2N+1 .
The latter does not change the summands with the index k in the second and
third lines of (93). Hence applying (1⊗H(1−N − u)⊗ 1)F ′′(1−N − u ,v) to
the second and the third lines of (93) from the right gives the same as applying
1⊗H(1−N − u)⊗ 1 respectively to the fourth and the fifth lines of (92). ⊓⊔

24. Changing the notation of Section 21 let us now relate by the symbol ∼ two
vectors in (CN|N )⊗(2N+1)(u , v) to each other if either their difference vanishes
under the right action of H(u)⊗H(1−N − u)⊗ 1 , or it lies in the image of the
right action of Q 1,2N . Extend the new relation ∼ transitively. Denote

D(u ,v) = RN,2N+1(u ,v) . . . R 1,2N+1(u+N − 1 , v)×

R 2N,2N+1(1− u−N ,v) . . . RN+1,2N+1(−u ,v) .

By choosing n = N in the beginning of the proof Lemma 3 we obtain the equality

(H(u)⊗H(1−N − u)⊗ 1) C (u ,v) =

D(u ,v) (H(u)⊗H(1−N − u)⊗ 1) . (95)

Proposition 9. For i = ± 1, . . . , ±N and for the right action on the vector fi

fi D(u ,v) ∼
(z − 1) (w + 1)

z w
fi .

Proof. Proposition 9 follows from its particular cases of i = 1 ,−1 by the same
remark as already used in the beginning of the proof of Proposition 8. For i = 1
our proposition follows from Corollary 8, see the equality (95) above. For i = −1
we will derive Proposition 9 from Corollary 9. We will prove that the summands
with the index k in the second and fifth lines of (92) cancel each other by ∼ and
that so do the summands with the index k in the third and fourth lines of (92).
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Consider the second and the fifth lines of (92). For k = 1, . . . , N by Lemma 1

e1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ ek +

e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek ∼

e1 ⊗ d1 ⊗ dk ⊗ e−k ⊗ ek (−1)N+k + e−k ⊗ d1 ⊗ dk ⊗ ek ⊗ ek (−1)N+k ∼
∑

j

ej ⊗ d1 ⊗ dk ⊗ e−j ⊗ ek (−1)N+k .

So the last displayed line lies in the image of the right action of Q 1,2N . Here we
use the notation introduced just before stating Corollary 7.

Now consider the third and fourth lines of (81). For k = 1, . . . , N by Lemma 1

e1 ⊗ . . .⊗ eN ⊗ e−k ⊗ e2 ⊗ . . .⊗ eN ⊗ ek +

e1 ⊗ . . .⊗ ek−1 ⊗ e−1 ⊗ ek+1 ⊗ . . .⊗ eN ⊗ e1 ⊗ . . .⊗ eN ⊗ ek ∼

ek ⊗ dk ⊗ d1 ⊗ e−k ⊗ ek (−1)N+k + e−1 ⊗ dk ⊗ d1 ⊗ e1 ⊗ ek (−1)N+k ∼
∑

j

ej ⊗ dk ⊗ d1 ⊗ e−j ⊗ ek (−1)N+k .

So the last displayed line also lies in the image of the right action of Q 1,2N . ⊓⊔

The vector space (CN|N )⊗2 has a basis of the vectors ei ⊗ ej . Applying any

X ∈ (End CN|N )⊗2 to a basis vector from the left and taking the coefficient of
the result at another basis vector is not always the same as applying X to the
latter vector from the right and taking the coefficient of the result at the former
vector. But these two coefficients will be the same for X = P and for X = Q .

Indeed, both actions of P map ei ⊗ ej 7→ ej ⊗ ei (−1)
ı̄ ̄

. Further, applying
Q to the vector ej ⊗ e−j from the left yields the sum (10). Applying Q to the

vector ei ⊗ e−i in (10) from the right yields the sum (91) multiplied by (−1)
ı̄
.

It follows that applying the product (H(u) ⊗H(1− N − u) ⊗ 1)C (u ,v) to
any basis vector of (CN|N )⊗(2N+1) from the left and taking the coefficient of the
result at another basis vector is the same as applying this product to the latter
vector from the right and taking the coefficient of the result at the former vector.

Let us now consider the product at the left hand side of the displayed equality
in Section 22. To complete our proof Theorem 3 we have to show that for any
indices i , j applying this product to the basis vector fj and taking the coefficient
of the result at fi gives (90). But this follows from Proposition 9 due to the above
remark about the left and right actions on the basis vectors of (CN|N )⊗(2N+1) .

Here we use second formula for A(u) in Section 15 and the equality (95). We
also use the equality displayed just before stating Lemma 1 with n = N . And
we also use the following observation. Due to (46) the product

(Q1,2N ⊗ 1)T1(u+N − 1)T2N (1−N − u)

by is divisible by Q1,2N ⊗ 1 on the right. But the coefficient at fj of any vector
from the image of the right action of Q1,2N (H(u) ⊗ H(1 − N − u) ⊗ 1) on

(CN|N )⊗(2N+1) is zero. Our proof of Theorem 3 is now complete.
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25. In this section we will provide an interpretation of Proposition 8. We will
employ the usual left action of the algebra End CN|N on the vector space CN|N .
Proposition 9 admits a similar interpretation. But then one has to use the right
action of the algebra End CN|N on the vector space CN|N instead of left action.

For any t ∈ C consider the representation ρ t ⊗ ρ−t of the algebra X(pN) .
Using the comultiplication (55) this representatioin is determined by mapping

(End C
N|N )⊗X(pN)[[u

−1]] → (End C
N|N )⊗3 [[u−1]] :

T (u) 7→ R12(u , t)R13(u ,− t) .

See the end of our Section 6 for the definition of the representation ρ t of X(pN) .
Multiplying the relation (15) by v + w and then setting v = −w = t yields

R12(u , t)R13(u ,− t)Q23 = Q23 R13(u ,− t)R12(u , t) .

The latter relation shows that that under the representation ρ t⊗ρ−t the action
of the algebra X(pN) preserves the subspace imQ ⊂ (CN|N )⊗2 .

Suppose that − 2 t 6= 1, 2, . . . , 2N − 3 if N > 1 . Then the rational functions
H(u) and H(1−N −u) have no poles at u = t . For N = 1 we get H(u) = 1 and
the complex number t is still arbitrary. For any N > 1 let W ∈ ( End C

N|N )⊗2N

be the value of the function H(u)⊗H(1−N − u) at u = t .
Now consider the representation of X(pN) on the vector space (CN|N )⊗2N

ρ = ρ 1−N−t ⊗ . . .⊗ ρ−t ⊗ ρ t ⊗ . . .⊗ ρ t+N−1 .

For this particular choice of the representation ρ we have

id⊗ ρ : (End C
N|N )⊗ X(pN)[[v

−1]] → (End C
N|N )⊗2N+1 [[v−1]] :

T (− v) 7→ R 12(− v , 1−N − t) . . . R 1,N+1(− v ,− t)×

R 1,N+2(− v , t) . . . R 1,2N+1(− v , t +N − 1) =

P 12 . . . P 2N,2N+1 R 2N+1,1(− v , 1−N − t) . . . R 2N+1,N(− v ,− t)×

R 2N+1,N+1(− v , t) . . . R 2N+1,2N(− v , t +N − 1)P 2N,2N+1 . . . P 12 =

P 12 . . . P 2N,2N+1 C ( t , v)P 2N,2N+1 . . . P 12 .

The last equality is obtained by using (68). The equality (95) now shows that the
action of the algebra X(pN) by ρ preserves the subspace kerW ⊂ (CN|N )⊗2N .
This action also preserves the subspace imQN,N+1 ⊂ (CN|N )⊗2N by the above
remark. Proposition 8 implies that this action preserves the subspace spanned by
kerW , imQN,N+1 and the vector (87). Moreover under the action of the algebra

X(pN) on the one-dimensional subquotient of (CN|N )⊗2N spanned by (87)

Tij(− v) 7→ δij
(t− v − 1) (t+ v +N )

(t− v) (t+ v +N − 1)
.

Let us choose c(u) in (38) so that c(− v) is the reciprocal of the last displayed
fraction. Then c(u)Tij(u) acts on our one-dimensional subquotient just as δij .
For this c(u) the composition of the representation ρ with the automorphism (38)
of X(pN) maps Z(u) 7→ 1 , see Section 11. Hence the composite representation
of X(pN) on (CN|N )⊗2N factors through Y(pN) .
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26. There is a natural Z-grading on the associative algebra Y(pN) . It is defined

by setting the degree of the generator T
(r)
ij to 0 if the indices i , j are of the same

sign, to 1 if i > 0 > j and to −1 if i < 0 < j . Therefore twice the Z-degree of

T
(r)
ij is the eigenvalue of the element Eij ∈ End CN|N under the adjoint action of

E = E11 −E−1,−1 + . . .+ ENN −E−N,−N .

The elements (7) and (9) of the algebra (End CN|N )⊗2 both commute with the
element E ⊗ 1 + 1 ⊗ E . Hence the defining relations of the algebra Y(pN) are
homogeneous, see (37) and (53) with Z(u) = 1. So our Z-grading is well defined.
We will use this grading to prove that under the antipodal map (41) on Y(pN)

B(u) 7→ B(u)−1 . (96)

Let I be the subspace of Y(pN) consisting of all elements of Z-degree 0 . This
subspace is a subalgebra. Using the relations (37) each element of Y(pN) can be

written as a linear combination of monomials in the generators T
(r)
ij where all

factors of degree 1 are on the left and all factors of degree −1 are on the right.
If such a monomial belongs to I \ {0} and has a factor of degree 1, it also has a
factor of degree −1. So the monomials from I \ {0} span a two-sided ideal of I .

Denote this ideal by J . Take any monomial in the generators T
(r)
ij of degree 0.

By using the relations (37) and (53) with Z(u) = 1, this monomial can be written

as a linear combination of monomials in the generators T
(r)
ij with i , j > 0 only

and of some monomials from J . So the quotient algebra I / J can be identified
with the subalgebra of Y(pN) in Corollary 3. Let A be the latter subalgebra and
α : I → A be the canonical homomorphism coming from this identification.

The homomorphism α maps the series B(u) to itself, because all coefficients
of this series belong to A . Thus α maps the series B(u)−1 to itself too. Consider
the image of the series B(u) by the antipodal map (41) on Y(pN) . This image
is a formal power series in u−1 with coefficients in the centre of Y(pN) . We will
show that by applying α to this image we get the series B(u)−1 as well. Due to
Corollary 4 this fact will imply the correspondence (96) under the map (41).

Let G(u) the 2N × 2N matrix whose ij entry is the series

Gij(u) = Tij(u) (−1)
ı̄ ̄ + ̄

.

We index the rows and columns of G(u) by the numbers 1, . . . , N,−1, . . . ,−N .
The matrix G(u) is invertible. Let G ′

ij(u) be the ij entry of the inverse matrix.
Then by the definition (39) for any indices i and j we have the equality

G ′
ij(u) = T ′

ij(u) (−1)
ı̄ ̄ + ̄

.

The matrix G(u) splits to four blocks of size N×N corresponding to different
signs of the indices i and j . By using for instance [5, Lemma 3.2] we obtain that
for i , j > 0 the homorphism α maps G ′

ij(u) to the ij entry of the inverse of the
block of G(u) corresponding to the positive matrix indices. But for i , j > 0 we
have Gij(u) = Tij(u) and G ′

ij(u) = T ′
ij(u) . Therefore by the definition (71) the

homomorphism α maps the image of B(u) by (41) to B(u)−1 as needed. Here we
use [18, Proposition 2.19] and our Corollary 3, also see the end of our Section 9.
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