
Strange metal in the doped Hubbard model via percolation

Andrew A. Allocca∗

Department of Physics and Astronomy and Center for Computation and Technology,
Louisiana State University, Baton Rouge, LA 70803, USA

Many strongly correlated systems, including high-temperature superconductors such as the
cuprates, exhibit strange metallic behavior in certain parameter regimes characterized by anomalous
transport properties that are irreconcilable with a Fermi-liquid-like description in terms of quasipar-
ticles. The Hubbard model is a standard theoretical starting point to examine the properties of such
systems and also exhibits non-Fermi-liquid behavior in simulations. Here we analytically study the
two-dimensional hole-doped Hubbard model, first identifying a percolation transition that occurs
in the low-energy sector at critical hole doping pc ∼ 0.19. We then use the critical properties near
this transition to rewrite the Hubbard Hamiltonian in a way that motivates a large-N model with
strange metallic properties. In particular, we show that this model has the linear-in-T resistivity

and power-law optical conductivity ∼ |ω|−2/3 observed in the strange metal regime of cuprates,
suggesting potential relevance for describing this important class of materials.

I. INTRODUCTION

The strange metal phase of the hole-doped cuprate su-
perconductors is characterized by a dc-resistivity with
anomalous linear temperature dependence ρ ∼ T [1, 2]
starkly different from the quadratic behavior in normal
metals described by Fermi liquid theory. This behav-
ior persists from the melting of low-temperature ordered
phases up to very high temperatures with no significant
change in slope and is seen over a range of doping lev-
els p. It is most prominent near optimal doping or the
critical value pc signalling the collapse of the pseudo-
gap phase, with a gradual crossover from ρ ∼ T around
these values to more standard Fermi-liquid-like ρ ∼ T 2

far enough into the overdoped regime [3–5]. Studies of
other properties find additional anomalous, non-Fermi-
liquid-like behaviors, such as power-law scaling of the
optical conductivity σ(ω) ∼ |ω|−γ

over a finite frequency
range, with γ ≈ 2/3 at pc [6–11] and a Hall angle obey-
ing cotΘH ∼ AT 2 + B across a wide range of doping
levels [12–14].

In addition to this phenomenology, there is growing ex-
perimental evidence for a temperature-independent phe-
nomenon in the cuprates occurring at the critical hole
doping pc. Transport measurements in LSCO subjected
to magnetic fields strong enough to suppress supercon-
ductivity find a broad range of dopings at low tempera-
tures supporting T -linear resistivity [5], with features in
the doping dependence of the resistivity at pc ≈ 0.185;
the coefficients of T and T 2 terms fitting the measured
behavior of ρ have distinct features at pc, with the lin-
ear coefficient achieving its maximum value. As noted in
Ref. [5], this phenomenology contrasts with the behavior
expected from a quantum phase transition, which would
produce this behavior in only a narrow fan emerging from
the quantum critical point, not a broad region at low
temperature. A more recent ARPES study of Bi2212 [15]
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identified a T -independent boundary in the temperature-
doping phase diagram at pc ∼ 0.19 across which the spec-
tral function near the Brillouin zone boundary abruptly
changes from incoherent below pc to coherent with an
identifiable quasiparticle peak above pc.
Evidence of non-Fermi liquid behavior is also found

in studies of the Hubbard model on a two-dimensional
square lattice, believed to model essential features of the
CuO2 planes of the cuprates as well as being the pro-
totype for more general systems of strongly correlated
electrons [16, 17]. Numerical analyses identify marginal
Fermi-liquid [18] behavior of the electronic self-energy
in hole-doped systems at nonzero temperature [19, 20],
and show that linear-in-T resistivity persists down to low
temperature [21, 22], connecting with studies finding T -
linear behavior at high temperatures [23]. Simulations
of the Hubbard model in systems of cold atoms also ex-
tract diffusion and transport properties that are consis-
tent with linear-in-T charge transport [24, 25]. Thus, the
Hubbard model is itself sufficient to produce the defin-
ing strange metal phenomenology ρ ∼ T , and phenom-
ena in real materials such as interactions with phonons,
structural transitions, disorder, etc. are evidently not
necessary ingredients to realize this behavior.
The T -linear nature of the resistivity and the other

unusual properties in strange metals appear to be in-
consistent with a description of these system in terms
of quasiparticles. Current is dissipated on a time scale
τ ∼ ℏ/kBT depending only on temperature, demonstrat-
ing that at least the charge-carrying sector of these sys-
tems contain no other characteristic energy scale, such
as a quasiparticle mass. Consequently, in recent years
there has been a great amount of theoretical work aiming
to better understand strongly-interacting systems with-
out quasiparticles, such as the Sachdev-Ye-Kitaev (SYK)
model and its large-N relatives [26–34], or those with
holographic dualities to gravitational theories [35]. Other
approaches explore destroying the electronic Fermi sur-
face via coupling to critical bosons [36–39], or invoke the
intrinsically non-quasiparticle concept of unparticles [40–
44]. Still other work takes a model-agnostic hydrody-
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namic approach to study systems with anomalous trans-
port properties [45–49].

Taking experimental, numerical, and theoretic insights
together, we propose that a model for the strange metal
phase of the cuprates can in principle be obtained from
the Hubbard Hamiltonian on a 2d square lattice without
any additional effects such as phonons, disorder, or struc-
tural transitions, and without introducing additional de-
grees of freedom by hand. This model should be able
to naturally reproduce generic experimental phenomena,
such as T -independent features at pc ∼ 0.19, T -linear re-
sistivity, power-law optical conductivity, and the appear-
ance of coherent quasiparticles and crossover to Fermi
liquid behavior for p > pc. There is existing work ex-
amining non-Fermi-liquid phenomena in doped Mott in-
sulators [28] which hits close to this aim, however there
the system is composed of SU(N) spins with an artificial
large-N limit, following Ref. [26], instead of the physical
case of spin-1/2.

Here we motivate a theory satisfying many of these cri-
teria by working in a many-body basis for the large-U 2d
Hubbard model that leverages the structure of a classi-
cal percolation transition [50] occurring in generic many-
electron states. For a generic configuration of electrons
in the lattice without doubly-occupied sites, electrons of
one spin species bound clusters of sites that contain all
electrons of the opposite spin. In such a generic state
electron positions are random and uncorrelated, and a
straightforward calculation shows a percolation transi-
tion in these clusters at a critical doping pc ≈ 0.1854
independent of temperature, very close to the value in
the cuprates. For p ∼ pc the properties of these clusters
are thus dictated by a critical theory, and re-expressing
the Hubbard Hamiltonian in terms of these clusters we
find that the dynamics of the system can be expressed
in terms of their shifting, merging, and dividing. We
write an approximate large-N model from this Hamil-
tonian valid near the transition where the N “flavors”
in this model are ultimately related to the large num-
ber of possible shapes of large clusters. Examining the
transport properties of this model we find linear-in-T dc
resistivity and a power-law contribution to the optical

conductivity σ(ω) ∼ |ω|−2/3
for a range of frequencies,

matching what is seen in experiments in the cuprates.

The remainder of this paper is organized as follows.
In Section II we give a brief introduction to relevant as-
pects of site percolation and clusters, which will be used
throughout the rest of the analysis. We start our anal-
ysis of the Hubbard model in Section III, introducing
the cluster basis and cluster operators, and rewriting the
Hubbard Hamiltonian in terms of these degrees of free-
dom. In Section IV we discuss approximations to this
form of the Hamiltonian, which motivates the large-N
model action we write and begin to analyze in Section V.
In Section VI we calculate the anomalous transport prop-
erties of the model, and finally in Section VII we discuss
these results and the outlook for further developments.

II. 2D SITE PERCOLATION

Since it is central to our construction and establishes
notation used throughout, we begin with a brief sum-
mary of relevant aspects of percolation theory, as given
in Refs. [50, 51]. In a site percolation model, the sites
of an infinite lattice are randomly and independently oc-
cupied with some probability P , and the average prop-
erties of clusters of occupied sites are then analyzed as
functions of P . Two occupied sites belong to the same
cluster if they are nearest-neighbors, and the number of
sites comprising a cluster, which we call its size, is de-
noted with s. Some quantities of interest are the size
of the largest cluster, the average cluster size, and the
distribution of cluster sizes. Importantly, a phase transi-
tion occurs in this system as the occupation probability
passes through a critical value Pc. For P < Pc the sys-
tem has only finite clusters—average s is finite and the
largest cluster has size sξ. As P → Pc from below sξ
diverges, and for P > Pc there is single infinite cluster
which encompasses an ever larger portion of all sites in
the system for increasing P . At P = Pc the system has
clusters of every finite size, no characteristic scale, and
can be described by a conformal field theory. For the 2d
square lattice, which is our primary interest, this critical
occupation probability is Pc ≈ 0.5927.
Near to the critical point the average properties and

distribution of finite clusters obey a scaling theory con-
trolled by |P − Pc| and characterized by critical expo-
nents. For P < Pc the average number of sites in the

largest finite cluster is sξ ∝ |P − Pc|−1/σP and the av-
erage linear size of this cluster is the correlation length
ξP ∝ |P − Pc|−νP , with critical exponents σP = 36/91
and νP = 4/3 in two dimensions [52]. The two are re-

lated through sξ ∝ ξ
df

P , where df = 1/(νPσP ) = 91/48
is a fractal dimension characterizing the scaling between
these quantities on average for large s. Motivated by this,
for large enough s we can define an average cluster radius
R through s ∝ Rdf . For large s the average density of
clusters of size s is ns ∝ s−τP f(s/sξ) with critical expo-
nent τP = 187/91, where the function f is constant for
small argument and rapidly decays for argument greater
than 1. The total density of clusters is the sum of ns over
all s, M0 =

∑
s ns, and the critical part of this density

generated by large clusters is

M0,crit ≡
∑
s

ns

∣∣∣∣∣
crit

∝ |P − Pc|2−αP , (1)

where in 2d we have the critical exponent αP = −2/3.
These scaling relationships only apply for large enough

clusters. Small clusters contribute analytic terms for
some quantities, but are largely irrelevant for critical
properties near the transition. We use s0 to denote the
cluster size above which these scaling properties hold,
and R0 ≫ a for the corresponding radius, where a is the
lattice constant.
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III. REWRITING THE HUBBARD
HAMILTONIAN

Turning now to an electronic system, we write the Hub-
bard Hamiltonian in a square lattice with isotropic near-
est neighbor hopping as

H = HU +H↑ +H↓

HU = U
∑
i

ni,↑ni,↓

Hσ = −t
∑
⟨ij⟩

c†i,σcj,σ − µp

∑
i

c†i,σci,σ,

(2)

where U is the on-site Coulomb repulsion energy, taken
to be the largest energy scale, t is the hopping energy,

ni,σ = c†i,σci,σ is the number of spin-σ electrons on site i,
and µp is a chemical potential, dependent on the doping
p, that controls the total electron density. We consider
only hole-doped systems with no net magnetization, so
the number of electrons Ne is less than the number of
lattice sites N and the numbers of spin-up and spin-down
electrons are equal, N↑ = N↓ = Ne/2. The number of
doped holes is Nh = N − Ne, so the hole doping is p =
Nh/N , and similarly the electron density is ne = Ne/N .
To build our model we consider the three terms of

Eq. (2) in turn, and the full process is outlined schemat-
ically in Fig. 1. First, HU restricts the set of real-space
basis states that we are free to use—large on-site repul-
sion U ≫ t, T , essentially forbids doubly-occupied sites,
so for a hole-doped system each site contains either a sin-
gle electron or is empty, ne+p = 1 [53]. We can separate
this Hilbert space into groups of states based on the po-
sitions of spin-down electrons; all states in a given group
have spin-down electrons in the same positions, with only
the positions of spin-up electrons differing between them.
Thus, states in each group are related to each other by
spin-up electron hopping within fixed, disjoints clusters
of available sites. Indeed, the set of these clusters of sites
is in exact one-to-one correspondence with the positions
of the spin-down electrons forming their boundaries, and
either acts as a good label for states.

Next, focusing in on the level of a single cluster, we
transform from the position basis for spin-up electrons
to the eigenbasis of the spin-up hopping Hamiltonian H↑
within each cluster. Instead of definite position, spin-
up electrons occupy states of definite energy with weight
spread over many sites in a cluster, and many-electron
states are given by Slater determinants of the correspond-
ing wave functions. We can write composite operators to
create many-electron states in any cluster, and all basis
states for the full system can be expressed in terms of
these composite “cluster operators.”

Finally, the remaining spin-down hopping term H↓ re-
lates different spin-down electron configurations, equiva-
lent to taking the system between different cluster sets.
Since spin-down electrons form the boundaries of clus-
ters, H↓ thus causes clusters to change in shape, merge,
and divide. The states of spin-up electrons within the

clusters are also changed, so matrix elements for spin-
down electron hopping in this cluster language depend
on the many-electron wave functions within the clusters.
Taking all of these effects into account, we exactly rewrite
the Hubbard Hamiltonian (for large U , projected into
the single-occupancy low-energy sector) in terms of the
composite cluster operators, which is then amenable to
approximation and subsequent analytic exploration.

A. HU term — Identify percolation transition

The set of real-space basis states to describe the low-
energy sector of the Hubbard model for large U consists
of all the ways of placing electrons into the system while
avoiding double occupancy—a Gutzwiller projection [53].
Let Xσ be a set of Ne/2 sites hosting electrons of spin
σ. Then X↑ and X↓ have no intersection, and each is a

proper subset of the other’s complement, i.e. X↑ ⊂ X↓
and vice versa. Any state in the basis is then specified
by X↑ and X↓, and can be written as

|X↑, X↓⟩ =
∏

j∈X↑

c†j,↑

∏
i∈X↓

c†i,↓ |0⟩ , (3)

where |0⟩ is the empty-lattice vacuum state (cf. Eq. (4)
in Ref. [53]).
If we choose a state |X↑, X↓⟩ from the low-energy

Hilbert space at random in the thermodynamic limit then
with probability 1 the positions of the electrons in the
state are uncorrelated up to the single-occupancy restric-
tion. Specifically, the probability that any site x is occu-
pied by, say, a spin-down electron is given by spin-down
electron density, P (x ∈ X↓) = ne/2 = (1− p)/2. Conse-
quently, the probability that x does not contain a spin-
down electron is P (x ∈ X↓) = 1−P (x ∈ X↓) = (1+p)/2.

The sites in X↓ form clusters in the sense of a classical
percolation problem as discussed in Section II, and the
properties of these clusters are controlled by the “occupa-
tion” probability P (x ∈ X↓) = (1 + p)/2, i.e. the proba-
bility that a site is not occupied by a spin-down electron.
For small P there are only finite clusters of “not-down”
sites, and for large P there is an infinite cluster of these
sites. The critical point between these two regimes oc-
curs at P (x ∈ X↓) = Pc ≈ 0.5927, and we obtain a
corresponding critical hole doping

pc = 2Pc − 1 ≈ 0.1854, (4)

which is close to the critical hole doping pc ∼ 0.19 iden-
tified in experiments both as the location of the vertical
feature in the experiments noted above and as the point
where the pseudogap collapses in a variety of cuprate ma-
terials [54–57]. Though we have chosen spin-down elec-
trons to bound the clusters here, breaking the symmetry
between the model’s treatment of the different spins, this
choice is arbitrary and exchanging spin-up and spin-down
everywhere yields the same results.
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1. States with singly-occupied sites, for which HU vanishes:

Group states with common spin-down positions (3 indicated above), defining cluster sets:

Spin-down position set Cluster set

3. Spin-down hopping     relates cluster sets and gives cluster dynamics, with matrix
   elements determined by the wave functions of electrons within the clusters.

2. For a fixed cluster set,     acts in disjoint clusters and can be diagonalized. We change
   the basis for spin-up electrons from position to energy eigenstates spread over many
   sites, and the many-electron wave functions    in each cluster are Slater determinants.

Cluster movement:

Cluster merge:

FIG. 1. A schematic representation of process of rewriting the Hubbard model implementing the percolation transition in the
real-space many-electron basis states. The eight states shown at the top have only singly occupied sites, so that HU = 0, with
spin-up (blue sites) and spin-down (red sites) electrons placed randomly. The three states indicated with a dotted box have
identical spin-down configuration X↓, shown below without spin-ups, which then uniquely defines a set of clusters of sites C
where the spin-up electrons may reside. The six clusters larger than 20 sites in this example configuration are indicated. Spin-
up electrons in the clusters are isolated, and H↑ can be diagonalized—the position basis transforms to the energy eigenbasis.
Finally, we demonstrate how the hopping of a single spin-down electron via H↓ connects different cluster sets and produces
dynamics in the clusters, such as simply shifting the center of mass of the sites in the cluster or merging clusters together.
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The above argument depends on the hole doping only
and is agnostic to the temperature of the system, so this
pc is independent of temperature. Note, however, that
for a large but finite U virtual double occupation of sites
produces a spin-spin interaction with energy scale J , that
could in principle produce long-range spin correlations for
T ≲ J [16]. Our focus here will be kept to higher tem-
peratures, for which ordering from such an interaction
is not favored. Additionally, any disorder in the system,
be it random spatial variation of the hopping t or a ran-
dom on-site potential, would also disfavor regular spatial
order. Disorder is unavoidable in real systems, so the
most relevant states to consider in our further analysis
are precisely those without any order, manifesting the
percolative behavior with T -independent transition that
we have identified.

It is important to acknowledge that some experiments
in the cuprates find a critical doping far from the pc cal-
culated above, e.g. perhaps as high as ∼ 0.23 in Nd-
LSCO [57–59]. The value of the percolation critical oc-
cupation probability Pc and therefore this hole doping
pc is not universal, however, so perturbations to the sys-
tem will change it in general. Additionally, if we were
to include a spin-spin interaction as noted above then
we may need to consider a somewhat different model to
make certain quantitative predictions, even at temper-
atures above a transition into any low-temperature or-
dered state. Here we use the fact that electron positions
are uncorrelated to justify a classical percolation model,
but a more general random cluster model [60, 61]—
which has percolation, Ising, and Potts models as special
cases—may be more warranted if including a spin-spin
interaction in the model, and non-universal properties
such as the value of pc could change. We find that the
qualitative behavior of the resistivity and optical con-
ductivity of our system ultimately do not depend upon
precise details of the percolation transition, e.g. the value
of critical exponents, and rely only on the presence of a
distribution of random clusters, so we proceed here with
the simpler uncorrelated percolation model.

B. H↑ term — Cluster operators

To continue, we introduce some notation. For any state
written as in Eq. (3) with a given X↓, we define C to be
the set of all clusters bounded by the sites in X↓—it is

just X↓ appropriately subdivided. (See the example in
Fig. 1.) Since the sets X↓ and C are in one-to-one cor-
respondence, we will replace X↓ → C in our labeling of
states. We consider only p ≤ pc, so in the thermody-
namic limit every C contains only finite clusters, which
we denote as ζ ∈ C . Spin-up electrons cannot hop be-
tween clusters, so for a fixed C all states |X↑,C ⟩ are
block-diagonal in ζ and we have

|X↑,C ⟩ =
⊕
ζ∈C

∏
i∈X↑,ζ

c†i,↑ |0, ζ⟩ , (5)

where X↑,ζ are the positions of the spin-up electrons in
cluster ζ (the union of all X↑,ζ is X↑) and |0, ζ⟩ is the
state with no lattice sites in the cluster occupied by spin-
up electrons.
It is useful as we continue to have a way to uniquely

specify any cluster ζ. One way is to list the positions
of all of the sites comprising it, but this is cumbersome
and will not be a useful strategy. Instead we label each
cluster first with the number of sites comprising it s and
the center of mass of those sites r =

∑s
i=1 ri/s, where

ri are the positions of the s sites in the cluster, so that
the x- and y-components of r are some integer multiples
of a/s. Finally, let the index λ label all possible distinct
shapes a cluster may have for a given s. We will denote
the total number of these shapes as Nλ(s), so that λ =
1, 2, . . . , Nλ(s) for a given s. For even relatively small s
this number is large, e.g. Nλ(10) = 36446 and Nλ(24) ∼
1013 [62]. The triples {s, r, λ} then uniquely specify each
cluster—they are sufficient information to determine the
positions of all s sites—and two clusters ζ = {s, r, λ} and
ζ ′ = {s′, r′, λ′} are identical if and only if s = s′, r = r′,
and λ = λ′. Sums over clusters can then be understood
as summation over s, and for each s appropriate sums
over r and λ.
In the basis of states written as Eq. (5), the spin-up

hopping term of Eq. (2) becomes

H↑ = −t
∑
⟨ij⟩

c†i,↑cj,↑ − µp

∑
i

c†i,↑ci,↑ =
∑
ζ∈C

Hζ (6)

where C is the set of all finite clusters appearing in any C ,
and Hζ is the Hamiltonian for spin-up electrons hopping
inside cluster ζ. We can diagonalize eachHζ individually,

Hζ = −t
∑

⟨ij⟩∈ζ

c†i,↑cj,↑ − µp

∑
i∈ζ

c†i,↑ci,↑ =

s∑
i=1

ϵζ,iψ
†
ζ,iψζ,i,

(7)

where ψζ,i (ψ†
ζ,i) is the operator that destroys (creates)

a spin-up electron in cluster ζ with energy ϵζ,i, and s
is the number of sites in the cluster. (For simplicity we
have dropped the spin label in this basis.) These ψ’s are
related to the c↑’s as

cx,↑ =

s∑
i=1

ϕζ,i(x)ψζ,i, (8)

where x is the position of any of the s sites in ζ and
ϕζ,i(x) are the wave functions for the single-particle
fermionic states in the cluster. We use the convention
that ϵζ,i ≤ ϵζ,j if i < j. The energies of these single-
particle states and their corresponding wave functions
depend on the full geometry of the cluster, but because
this is a subset of the 2d lattice we know that |ϵζ,i| is
bounded by a scale of order t for all clusters.

With the single-particle eigenstates in each cluster we
can now write definite energy multi-electron states in
each cluster, and then use these to write a basis set for
the whole system that diagonalizes H↑ for any fixed C .
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We denote the number of electrons within cluster ζ as νζ
(≤ s), and the indices of the occupied states are collected
in the set Iζ = {i1, i2, · · · , iνζ

}. Every possible Iζ is an
element of the power set of the s total indices Ps. The
multi-fermion state in the cluster is then

|Iζ , ζ⟩ = ψ†
ζ,iνζ

· · · ψ†
ζ,i1

|∅, ζ⟩

=
∑

{xi}∈ζ

Φζ,Iζ
(x1, . . . ,xνζ

) c†xνζ
,↑ · · · c

†
x1,↑ |0, ζ⟩ , (9)

where |∅, ζ⟩ is the state with every single-electron energy
state unoccupied. (The states |∅, ζ⟩ and |0, ζ⟩ both rep-
resent the vacuum, in the energy eigenbasis and position
basis respectively.) The multi-fermion wave function is
given by the Slater determinant

Φζ,Iζ
(x1 . . .xνζ

) =
1√
νζ !

∣∣∣∣∣∣∣
ϕζ,i1(x1) · · · ϕζ,iνζ (x1)

...
. . .

...
ϕζ,i1(xνζ

) · · · ϕζ,iνζ (xνζ
)

∣∣∣∣∣∣∣,
(10)

and the total energy of this state is

Eζ,Iζ
=
∑
i∈Iζ

ϵζ,i. (11)

We can write a multi-fermion composite operator to
create these states,

C†
ζ,Iζ

= Pζ,Iζ
ψ†
ζ,iνζ

· · · ψ†
ζ,i1

, (12)

using the projector

Pζ,Iζ
=
∏
i∈Iζ

ψ†
ζ,iψζ,i

∏
j ̸∈Iζ

ψζ,jψ
†
ζ,j

∏
x∈∂ζ

c†x,↓cx,↓, (13)

where ∂ζ are the sites bounding cluster ζ occupied by
spin-down electrons, which ensures that Cζ only has non-
trivial action in cluster ζ and that the electrons are only
put into the states indexed in Iζ . The corresponding an-
nihilation operator Cζ,Iζ

can be similarly defined, and
together these operators act on cluster states as

C†
ζ,Iζ

|∅, ζ ′⟩ = δζ,ζ′ |Iζ , ζ⟩ (14)

Cζ,Iζ

∣∣I ′
ζ′ , ζ ′

〉
= δIζ ,I′

ζ
δζ,ζ′ |∅, ζ⟩ , (15)

where the delta-function δζ,ζ′ is 1 if ζ and ζ ′ are the same
cluster and 0 otherwise, and δIζ ,I′

ζ′
is 1 if the two sets

are identical and 0 otherwise. The energy basis represen-
tation of Eq. (5) is then

|{I} ,C ⟩ =
⊕
ζ∈C

C†
ζ,Iζ

|∅, ζ⟩ , (16)

where the spin-up electron position set X↑ is replaced
with {I}, the set of occupied states in each cluster. Since

the total spin-up electron density is fixed to ne/2, the
average filling of each cluster is

⟨νζ⟩ =
∑

ζ∈C νζ∑
ζ∈C s

=
Ne

2

N − Ne

2

=
ne

2

1− ne

2

=
1− p

1 + p
≡ ρp.

(17)
Finally, with these definitions we can now rewrite the

Hamiltonian in each cluster Hζ as

Hζ =
∑

Iζ∈Ps

Eζ,Iζ
C†

ζ,Iζ
Cζ,Iζ

, (18)

so that the spin-up hopping term of the Hubbard Hamil-
tonian is

H↑ =
∑
ζ∈C

∑
Iζ∈Ps

Eζ,Iζ
C†

ζ,Iζ
Cζ,Iζ

. (19)

Notice that the parity of fermionic operators compris-

ing Cζ,Iζ
or C†

ζ,Iζ
is determined by the number of elec-

trons within the cluster νζ . If νζ is even, then these op-
erators are bosonic, and if νζ is odd they are fermionic,
and we can define

Cζ,Iζ
≡

{
bζ,Iζ

, νζ even,

fζ,Iζ
, νζ odd,

(20)

to make this difference explicit.

C. H↓ term — Cluster dynamics

Spin-down electrons define cluster boundaries, so when
projected into the cluster basis the spin-down hopping
term of Eq. (2) describes dynamics of the clusters them-
selves. A single spin-down hop may simply shift the cen-
ter of mass (and change the shape) of a single cluster, it
may cause multiple clusters to merge, or cause one cluster
to divide. More concretely, the spin-down hopping term
provides matrix elements between states in the Hilbert
space labeled by different cluster sets C and C ′ that dif-
fer only in the position of a single spin-down electron.
Since only a single spin-down has moved between C and
C ′, they are the same up to only a small number of clus-
ters; because of the geometric constraints of the square
lattice at most four clusters can share a site on all of
their boundaries, so all of the clusters in C and C ′ are
identical with up to 4 exceptions.
For a spin-down electron at position x, let Nc (≤ 4) be

the number of clusters in C with this electron forming
part of their boundary, which we will label ζ1, . . . , ζNc . If
this electron hops to position x + ê, where ê is a lattice
unit vector, then it is now on the boundary of N ′

c new
clusters in set C ′, labeled ζ ′1, . . . , ζ

′
N ′

c
. All other clus-

ters are unaffected, so the spin-down hopping term of
the Hubbard Hamiltonian projected into the cluster ba-
sis is simply −t times the inner product of the initial and
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final cluster states,

g
(Nc→N ′

c)

α′
1...α

′
N′

c
;α1...αNc

≡ ⟨{I ′},C ′|
(∑

⟨ij⟩

c†i,↓cj,↓

)
|{I},C ⟩ ,

(21)
where we have also introduced the shorthand notation
αi = ζi, Iζi with associated sums∑

αi

· · · =
∑
ζi∈C

∑
Iζi

∈Psi

· · · . (22)

This inner product can be expressed in terms of the
multi-electron wave functions Eq. (10) for the involved
clusters. Since the wave functions strongly depend on
cluster shapes, these matrix elements do as well—all
other indices being fixed, changing even just one of the
shape indices λ1, . . . , λNc or λ′1, . . . , λ

′
N ′

c
can significantly

affect the value of the matrix element. The initial and
final sets of clusters are composed of the same number of
sites s = s1+ · · ·+ sNc

with all but one in the same posi-
tions, so we can calculate the shift in the total center of
mass of the sites forming the clusters—it shifts a distance
a/s in the direction opposite to the spin-down hop. (See
the examples in Fig. 1.) We give an explicit calculation
of this matrix element in Appendix A incorporating all
constraints.

The spin-down electron chemical potential term is
much less complicated. No electrons are moved by this
term, so in the cluster language it just takes some initial
cluster configuration to itself—it contributes to the terms
diagonal in cluster configuration space, like the spin-up
hopping term.

D. H in terms of clusters

We can now restate the Hubbard Hamiltonian Eq. (2)
for large U in terms of clusters,

H =
∑
α

EαC
†
αCα − µp

∑
{αi}

C†
α1

· · ·C†
αNc

CαNc
· · ·Cα1

− t
∑

{(Nc→N ′
c)}

∑
{α′

i}

∑
{αi}

g
(Nc→N ′

c)

α′
1...α

′
N′

c
;α1...αNc

× C†
α′

1
· · ·C†

α′
N′

c

Cα1
· · ·CαNc

. (23)

The first term is the entire spin-up hopping H↑, the sec-
ond term accounts for the chemical potential part ofH↓—
the sets ofNc clusters being summed over are those which
share a spin-down electron on their boundary—and the
final term spanning the last two lines give the effect of
spin-down electron hopping. For this to be a complete
rewriting we need to identify the different allowed cluster
transformations (Nc → N ′

c) generated by the spin-down
hopping term. As noted above, we are guaranteed that
there are only a finite number of these since Nc and N ′

c

are each restricted to be no greater than 4. In Fig. 2 we
demonstrate the 8 distinct types of processes, ignoring

cases where one of the involved clusters has s = 1 and
ν = 0. (We will keep only large clusters in our later ap-
proximations anyway). None involve more than 6 total
clusters–4 becoming 2 or vice versa–so no term in Eq. (23)
can involve more than 6 cluster operators. Even though
Eq. (23) is entirely from electron kinetic energy terms, we
will refer to the multi-cluster terms as interactions since
they have the form of interactions between clusters.

(1→1) (2→1)

(2→2)

(4→2)

(2→2)'

(3→2)

(3→2)'

(3→1)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Representatives of 8 distinct cluster interactions pro-
duced by the single hop of one spin-down electron (red squares
with ↓), excluding processes that include empty single-site
clusters. The blue regions marked with ↑ represent clus-
ters containing the spin-up electron wave functions Φ as in
Eq. (10). Processes labeled (b), (e), (f), (g), and (h) reduce
the number of clusters in the system, and each have a corre-
sponding time reversed process that increases the number of
clusters. Interactions with a primed (Nc → N ′

c) label differ
from their unprimed counterparts by containing at least one
cluster that does not exchange spin-up electrons with other
clusters—it’s size changes by 1, but the number of occupied
states within it cannot. Examples of (a) and (b) for complete
clusters are also shown in Fig. 1.

IV. APPROXIMATIONS

Since Eq. (23) is equivalent to the original infinite-U
Hubbard Hamiltonian it is at least as difficult to exactly
calculate its properties, and to continue we must make
approximations. The first approximation we make is to
keep only the Gaussian (1 → 1) and and 3-body (2 → 1)
and (1 → 2) interaction terms, i.e. the C†C, C†CC, and
C†C†C terms. These two interactions are enough to gen-
erate all qualitatively distinct cluster dynamics—moving,
changing shape, merging, and dividing. Because they re-
quire far less strict local configurations of electrons these
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two interactions are far more likely to occur than any of
the others, a fact supported by simple numerical simula-
tions counting the prevalence of these local arrangements
in random spin-down electron configurations for p ∼ pc.
In addition, finding a local configuration necessary for

a many-cluster interaction does not mean that the ap-
parently distinct clusters sharing the relevant boundary
electron are actually distinct. For example, any of the
apparently distinct clusters in the initial configuration
shown in Fig. 2 (f) for the (3 → 2) interaction may join
up outside of the depicted region, so that the hopping
of the indicated electron yields an interaction of fewer
clusters, and we actually have the (2 → 2), (2 → 1), or
even (1 → 1) interaction. Therefore, interactions involv-
ing more clusters are even less likely than found with a
naive counting of local configurations.

A. Large clusters, IR limit

We can make use of the fact that the system is near the
percolation threshold to make further approximations.
As noted in Section II the critical properties of the per-
colation transition are controlled by large clusters with
sizes above some s0 ≫ 1, corresponding to a linear di-
mension R0 ≫ a. This provides a natural sense in which
we can make an infrared approximation of this system,
neglecting short length scales: we keep only s > s0 ≫ 1,
corresponding to length scales R > R0 ≫ a. This re-
striction preserves the critical properties of the clusters,
and it is reasonable to expect that it will also preserve
whatever critical properties the electronic system inherits
from the percolation transition.

We now start with the resulting effects of this approx-
imation on the quantities introduced to label clusters.
First, we replace sums over all discrete sizes s with in-
tegrals restricted to the range s ∈ [s0, sξ]. Second, the
spacing between the possible center of mass locations for
large clusters is very small compared to R and even com-
pared to the lattice scale, δx = δy = a/s≪ a≪ R, so we
approximate sums over these positions as integrals over
the 2d continuum,∑

r

· · · → 1

s2

∫
d2r · · · . (24)

With this approximation all positions become indistin-
guishable, and quantities that depend on cluster posi-
tions lose that dependence, such as internal spectra and
interaction matrix elements. Third, the number of pos-
sible cluster shapes Nλ(s) is incredibly large for s ≥ s0,
so anticipating an eventual infinite limit to remove terms
∼ 1/Nλ, we replace it with a uniform large Nλ for all s
to simplify intervening calculation.

In the large s limit, we can also make approximations
to the states of spin-up electrons within the clusters. Nu-
merical evaluation of the single-particle energies for large
random clusters shows that they are well approximated

by averages over shape; if ϵ̄s,i is the average of the ener-
gies over λ for a given s, then |ϵr,s,λ,i − ϵ̄s,i| ≪ t. Fur-
thermore, the average energies for different s all appear
to be discrete samplings of the same continuous and gap-
less function, ϵ̄s,i ≈ ϵ̄(i/(s + 1)). (See Appendix B for
this numerical analysis.) Altogether we put

ϵr,s,λ,i ≈ ϵ̄(i/(s+ 1)) → ϵ̄(x), (25)

where x ∈ [0, 1] is now a continuous parameter indexing
the continuum of internal states; all dependence of these
energies on cluster size, shape, and position are dropped.
In this continuum approximation, the analog of the sets

I labeling multi-electron states are now continuous oc-
cupation functions n(x). When integrated over all x, the
occupation function gives the fraction of occupied states,
ρ =

∫
dxn(x) ≈ ν/s. To simplify further we assume that

the physically relevant case for describing the low-energy
properties of the system is that of thermal occupation,
so that n(x) = nF (ϵ̄(x)−µ), where nF (ϵ) = (1+ eϵ/T )−1

is the Fermi function and µ = ϵ̄(ρ) so that ρ completely
characterizes the occupation of the internal states. Since
the addition or removal of a single electron does not
change the filling fraction in the continuum approxima-
tion, we have both a bosonic and fermionic cluster for
any ρ. Finally, we will assume that all clusters have the
same fraction of their states occupied, which, with the
above approximations, means they are filled to the same
energy, i.e. we take ρ = ρp = (1−p)/(1+p) in all clusters,
the average filling found in Eq. (17), so that µ = µp in
all clusters as well. For p = pc this filling is ρpc

≈ 0.687.
The total internal energy of a cluster is then

Er,s,λ,I =
∑
i∈I

ϵr,s,λ,i → s

∫ 1

0

dxnF (ϵ̄(x)− ϵ̄(ρp)) ϵ̄(x)

≡ sEp. (26)

B. Interaction Matrix Elements

Averaging over cluster shapes gives an approximation
of the internal spectra of clusters, but averaging over
shapes is a meaningless operation for the wave functions
within clusters. The wave functions of internal states are
intrinsically related to cluster geometry and there are no
“average wave functions” that can approximate the inter-

action matrix elements g
(Nc→N ′

c)
α′...;α... . Therefore, though λ is

an irrelevant index at the level of single-cluster proper-
ties, any treatment of the interactions must retain strong
dependence on this degree of freedom.

First note that for large s interactions are mostly inde-
pendent of s. Because of the same geometric properties
that lead to the fractal relationship between cluster ra-
dius R and size s, wave functions are typically localized
within some length ℓ set by the lattice scale [63–66], and
moving a single site in a cluster will affect only the wave
functions with weight near that site. Since the interac-
tion matrix elements are the inner product of the wave
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functions in clusters that differ by the location of a sin-
gle site, only a small region of scale ℓ determines the size
of any interaction amplitude. Since R ≫ ℓ ∼ a for the
large clusters we consider, then the matrix elements do
not strongly depend on cluster size.

With the approximations we have discussed so far the
(1 → 1) interaction matrix element becomes

g
(1→1)
α;α′ ≈ gλλ′ δs,s′δ(r− r′ − ê/s), (27)

where gλλ′ is independent of cluster position and size and
encodes all shape dependence. The δ-function here gives
the shift of the center of mass of the cluster—the final
position r is shifted from the initial position r′ by a vector
of length a/s, opposite the direction of the electron hop.

A cluster can only change into a small fraction of the
Nλ possible shapes by moving a single boundary electron,
so for a fixed λ only a relatively small number of λ′ give
nonzero result. The square of the matrix elements is
non-negative, so their total is some very small positive
number, ∑

λ′

|gλλ′ |2 ≡ g22,λ, (28)

which will depend on the starting cluster shape λ. At
this level we can now consider the effect of averaging over
shape. The nonzero values of gλλ′ are just as likely to be
positive as negative, so its average over shapes vanishes.
We use g22 for the average value of g22,λ over the Nλ initial
cluster shapes λ, so averaging over shape indices gives

⟨gλλ′⟩ = 0 (29)〈
|gλλ′ |2

〉
=

1

N2
λ

∑
λ,λ′

|gλλ|2 =
1

N2
λ

∑
λ

g22,λ =
g22
Nλ

, (30)

where ⟨. . .⟩ denotes averaging over any unsummed shape
indices. The small constant g22 giving the average prob-
ability for a transition from one cluster shape to any
other therefore characterizes the strength of this inter-
action term.

The same considerations apply directly for the (2 → 1)
interaction, but with one complication—not all position
dependence is removed by our approximations, and the
matrix element still depends on the separation between
the two initial clusters. For very large separations, much
larger than the sum of the two cluster radii, two clusters
are very unlikely to share a boundary so the correspond-
ing amplitude vanishes. For very small separations they
are likely to overlap, meaning they cannot both exist at

once and likewise the corresponding amplitude vanishes.
Only in between, in a wide window around the sum of
the radii, are there separations with nonzero amplitude.
Since the average cluster radius diverges near pc we will
extend this window up to the size of the system, and in
the IR limit let the interaction be independent of this
separation as well. We therefore have

g
(2→1)
α′;α1,α2

≈ gλ′;λ1λ2δs1+s2,s′δ

(
s1
s
r1 +

s2
s
r2 − r′ − ê

s

)
(31)

with gλ′;λ1λ2
encoding all shape dependence of the matrix

element. As in Eq. (27), the δ-function gives the shift in
the total center of mass position between the initial and
final clusters. Similar arguments about the properties of
this quantity and the nature of the average over shapes
as given for gλλ′ above now give

⟨gλ′;λ1λ2⟩ = 0〈
|gλ′;λ1λ2

|2
〉
=

g23
N2

λ

,
(32)

where g23 is a positive constant characterizing the
strength of this interaction. There are many fewer ways
to satisfy all of the constraints of the (2 → 1) interac-
tion than for the (1 → 1) interaction, so there are fewer
nonzero values of gλ′;λ1λ2

than gλλ′ , and g23 ≪ g22 .
We see that our approximations leave us with interac-

tion constants that depend on “flavor” indices which take
a large number of values and are characterized by partic-
ular statistical properties after an averaging procedure.
This looks very similar to the structure posited in large-
N models with random interactions such as the SYK and
Yukawa-SYK models [33]. The quenched-disordered in-
teractions in those models are self-averaging for many
quantities, so considering a random fixed set of couplings
gives the same result as averaging over realization of the
disorder. Similarly, the specific fixed interactions that
manifest in a randomly chosen state in our model are also
random, and the average over cluster shapes can simply
be thought of as a way to calculate quantities that are
self-averaging.

C. Approximate Hamiltonian

Implementing all of the above approximations into
Eq. (23), writing cluster operators explicitly as either
fermionic or bosonic, and then Fourier transforming real-
space cluster positions to momentum space gives
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H ≈
∫ sξ

0+
ds

∫
d2k

(2πs)2

Nλ∑
λ,λ′

(sEp δλλ′ + ε(k/s) gλλ′)C†
λ(k, s)Cλ′(k, s)

− µp

∫
d2k

4∑
Nc=1

mNc

Nc∏
i=1

∫ sξ

0+
dsi

∫
d2ki

(2πsi)2

Nλ∑
λi

C†
λi
(ki, si)Cλi

(ki, si)δ(k− k1 · · · − kNc
)

+

∫ sξ

0+
ds

∫ s

0+
ds′
∫

d2k

(2πs)2

Nλ∑
λ,λ1,λ2

ε(k/s)
[
g
(f ;fb)
λ;λ1λ2

f†λ(k, s)fλ1

(
s−s′

s k, s− s′
)
bλ2

(
s′

s k, s
′)

+
1

2
g
(b;ff)
λ;λ1λ2

b†λ(k, s)fλ1

(
s−s′

s k, s− s′
)
fλ2

(
s′

s k, s
′)

+
1

2
g
(b;bb)
λ;λ1λ2

b†λ(k, s)bλ1

(
s−s′

s k, s− s′
)
bλ2

(
s′

s k, s
′)]+ h.c.,

(33)

where ε(k/s) = −2t [cos(kxa/s) + cos(kya/s)] results
from the δ-functions in Eqs. (27) and (31) and the Fourier
transform, mNc is the average number of boundary spin-
down electrons shared by Nc clusters, and the factor of
s−2 coming with the momentum integrals is from the con-
tinuum limit of the original position sums. We have also
extended the size variables down to 0, and only use the
explicit cutoff s0 > 0 when necessary to avoid unphysical
divergences stemming from this approximation. The in-
teraction constants are labeled to indicate the parity of
operators they appear with. Exchange statistics in the
3-cluster interactions requires that

g
(b;ff)
λ;λ1λ2

= −g(b;ff)λ;λ2λ1
and g

(b;bb)
λ;λ1λ2

= g
(b;bb)
λ;λ2λ1

. (34)

In Eq. (21) these conditions naturally arise from the
(anti)symmetry of the underlying wave functions. The
factors of 1/2 in the last two terms of the Hamiltonian
account for double counting from these symmetries.

The averages of the three-cluster coefficients are〈
g
(f ;fb)
λ;λ1λ2

〉
=
〈
g
(b;ff)
λ;λ1λ2

〉
=
〈
g
(b;bb)
λ;λ1λ2

〉
= 0〈

g
(f ;fb)†
λ;λ1λ2

g
(f ;fb)
λ′;λ′

1λ
′
2

〉
=

g23
N2

λ

δλλ′δλ1λ′
1
δλ2λ′

2〈
g
(b;ηη)†
λ;λ1λ2

g
(b;ηη)
λ′;λ′

1λ
′
2

〉
=

g23
N2

λ

δλλ′
(
δλ1λ′

1
δλ2λ′

2
+ aδλ1λ′

2
δλ2λ′

1

)
,

(35)
where η = f or b, and are all characterized by the same
g23 . The only difference between the three corresponding
terms in the Hamiltonian is the presence or absence of
an extra electron inside one of the initial or final clusters,
which is insignificant for large clusters.

With all of our approximations the term of Eq. (33)
giving the internal cluster energy from spin-up electrons
can be expressed in terms of the density of critical clus-
ters,

E↑ =

∫ sξ

s0

ds

∫
d2k

(2πs)2

Nλ∑
λ=1

sEp

〈
C†

λ(k, s)Cλ(k, s)
〉

= Ep

∫ sξ

s0

ds s ns ∝ pcEp. (36)

For any given p this and the term proportional to µp are
simply constant shifts of the total energy and we drop
both from further consideration.

D. Peierls Substitution

To calculate transport properties we must determine
how the to couple the model to an external electromag-
netic field. Electrons in the original lattice model can be
coupled to an electromagnetic field with a Peierls substi-
tution,

t→ t exp

[
ie

∫ r+aê

r

dl ·A(l)

]
, (37)

where r is the initial position of the electron, the unit
vector ê ∈ {±êx,±êy} gives the direction along which
it hops, e is the electron charge, and A is the vector
potential. We will take a spatially uniform but time de-
pendent A producing a uniform electric field. We then
carry through the same approximations as above with
this new phase factor. Just as we discard the internal
energy term, we also neglect the coupling of A to the
electrons within clusters. The terms we keep reflect the
coupling of the electromagnetic field to clusters’ dynam-
ics rather than just their internal states and allow us to
calculate the clusters’ electromagnetic properties.
The result is that the electromagnetic field enters via

minimal coupling ε(k) → ε(k − eA), and expansion in
powers of e lets us treat its effect perturbatively. To
O(e2) the full Hamiltonian including the coupling to A
can thus be obtained from Eq. (33) by putting

ε(k) → ε(k)− eAi
∂ε(k)

∂ki
+
e2

2
AiAj

∂2ε(k)

∂ki∂kj
, (38)

where repeated indices are summed. Because the func-
tion ε(k) appears with each interaction we acquire two
new terms for each cluster interaction, a paramagnetic
term at O(e) and a diamagnetic term at O(e2).
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V. MODEL ACTION

Using the approximated form of the Hamiltonian, we
now write a model Matsubara action. To start, if we
redefine the cluster operators in Eq. (33) as fλ(k, s) →
fλ(k/s, s), and similarly for b, then all operators have the
same k/s momentum argument. In fact the momentum

appears only in this way, so we can rescale momentum
and remove this common factor of s. We then promote
the operators to fields ψη

λ(τ,k, s) as functions of imagi-
nary time τ , labeling bosonic and fermionic cluster fields
by their respective statistical signs η = ±. The resulting
action is

S ≈
∫ sξ

0+
ds

∫ 1/T

0

dτ

∫
d2k

(2π)2

Nλ∑
λ,λ′=1

∑
η=±

ψ̄η
λ(τ,k, s)

[
(∂τ − µη(s))

δλλ′

Nλ
+ gλλ′ ε(k)

]
ψη
λ′(τ,k, s)

+

∫ sξ

0+
ds

∫ s

0+
ds′
∫ 1/T

0

dτ

∫
d2k

(2π)2

Nλ∑
λ,λ1,λ2

ε(k)

[
g
(f ;fb)
λ;λ1,λ2

ψ̄−
λ (τ,k, s)ψ

−
λ1
(τ,k, s− s′)ψ+

λ2
(τ,k, s′)

+
1

2
g
(b;ff)
λ;λ1,λ2

ψ̄+
λ (τ,k, s)ψ

−
λ1
(τ,k, s− s′)ψ−

λ2
(τ,k, s′)

+
1

2
g
(b;bb)
λ;λ1,λ2

ψ̄+
λ (τ,k, s)ψ

+
λ1
(τ,k, s− s′)ψ+

λ2
(τ,k, s′)

]
+ h.c.,

(39)

where µ±(s) are chemical potentials (unrelated to µp in
Eq. (2)) introduced to fix the boson and fermion densi-
ties to the cluster number scaling form, n(s) = n0s

−τP

for the range of s we consider where n0 is a proportion-
ality constant. We can express the terms of this action
diagrammatically as shown in Fig. 3. The Gaussian prop-
agators are represented as single solid or dashed lines for
fermions and bosons respectively. With the analogy be-
tween our interactions and the random disordered inter-
actions of large-N models, each interaction is associated
with a dotted “disorder” line ending in ×, and sensible
diagrams with nonzero averages are made by connecting
two ×’s from the same type of vertex, representing an
average over the square of one of the g’s.

A. Dyson equation

To calculate properties of this model we first need
the Green’s functions for fermionic and bosonic cluster

fields. To proceed we transform to Matsubara frequencies
ωn = [2n+(1∓1)/2]πT , and identify the non-interacting
Green’s functions

G0,±(iωn, s) =
1

iωn + µ±(s)
. (40)

These are independent of momentum and flavor index,
and depend on s only through the chemical potentials.

As for other large-N models, interaction contributions
are dominated by terms that do not have crossed disor-
der lines in their diagrammatic representation, for exam-
ple melon diagrams in the SYK model. The diagram-
matic expansion of the Green’s functions for our model
are shown in Fig. 4 and give the Dyson equation

G±(iωn,k, s)
−1 = iωn + µ±(s)− Σ±(iωn,k, s), (41)

where the self-energies Σ± are most easily written in
terms of imaginary time as

Σ−(τ,k, s) = g22 ε(k)
2G−(τ,k, s)

− g23 ε(k)
2

[∫ s

0+
ds′G+(τ,k, s

′)G−(τ,k, s− s′) +

∫ sξ−s

0+
ds′

∑
η=±

η Gη(−τ,k, s′)G−η(τ,k, s+ s′)

]
, (42)

Σ+(τ,k, s) = g22 ε(k)
2G+(τ,k, s)

− g23 ε(k)
2

[
1

2

∫ s

0+
ds′

∑
η=±

Gη(τ,k, s
′)Gη(τ,k, s− s′) +

∫ sξ−s

0+
ds′

∑
η=±

η Gη(−τ,k, s′)Gη(τ,k, s+ s′)

]
. (43)

Explicit dependence on s is acquired in the g23 terms from the integrals over s′.
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(a) (b) (g)(f)(e)

(h) (i) (j)(c) (d)

FIG. 3. The diagrammatic representation of the terms of our model action, Eq. (39). The solid line (a) is the bare fermionic
propagator and dashed line (b) is bare bosonic propagator. The random Gaussian terms are given in (c) for fermions and (d)
for bosons. The 3-body interactions and their Hermitian conjugates are given in (e) through (j). Each • vertex contributes a
factor of ε(k) and the corresponding g. Dotted lines in the interaction diagrams terminating in × represent “disorder lines”
for each vertex, and connecting two of these gives the average of a square of the corresponding g.

= + + ++

= + +

+

+

+

FIG. 4. The diagrammatic representation of the full Green’s functions, represented here as double solid (fermionic) or double
dashed (bosonic) lines. Other elements are the same as in Fig. 3. From these diagrams we can write the Dyson equation
Eq. (41) with self-energies as in Eqs. (42) and (43).

We now consider two qualitatively distinct parameter
regimes for this set of equations: one where the terms
with coefficient g22 dominate the self-energy (Gaussian
regime), and one where the terms with coefficient g23 dom-
inate (cubic regime). We label quantities in the first case
with a subscript 2 and in the latter case with a subscript
3, so that

G2,±(iωn,k, s)
−1 = iωn + µ±(s)− Σ2,±(iωn,k, s) (44)

Σ2,±(iωn,k, s) = g22 ε(k)
2G2,±(iωn,k, s), (45)

and similarly for G3,± with Σ3,± given by the g23 terms
in Eqs. (42) and (43).

B. Gaussian solution — G2

At the Gaussian level the bosonic and fermionic sec-
tors of the theory have the same form and do not couple
so G2,+ and G2,− must also have the same form. Be-
cause Σ2,± is proportional to G2,±, we have a quadratic
equation for the Green’s function and the solution is eas-
ily obtained. Continued from Matsubara frequency to
generic complex frequency z we have

G2,±(z − µ±(s),k, s) =
2

z + sgn [Re(z)]
√
z2 − 4g22 ε(k)

2
,

(46)
where the sign before the square root ensures that
G2(z) ∼ 1/|z| for large |z|.

Restricting to z = ω + i0 gives the retarded Green’s
functions,

GR
2,±(ω − µ±(s),k, s) =

Θ(ω2 − 4g22 ε(k)
2)

ω
2 + sgn(ω)

√(
ω
2

)2 − g22 ε(k)
2

+

(
ω

2
− i

√
g22 ε(k)

2 −
(ω
2

)2) Θ(4g22 ε(k)
2 − ω2)

g22 ε(k)
2

(47)

shown in Fig. 5, and the spectral densities are

ρ2,±(ω,k) = − 1

π
ImGR

2,±(ω − µ±(s),k, s)

=

√
g22 ε(k)

2 −
(
ω
2

)2
π g22 ε(k)

2
Θ
(
4g22 ε(k)

2 − ω2
)
. (48)

Notice that the range of support for the spectral density
depends on ε(k) = −2t [cos(kxa) + cos(kya)], and that
this range is widest for k0 = (0, 0) and kπ = (π/a, π/a),
both giving |ε(k)| = 4t.
Using these spectral densities we can write the bosonic

and fermionic cluster densities,

n±(s) =

∫
d2k

(2π)2

∫
dω ρ2,±(ω,k)nB/F (ω − µa(s)),

(49)
where nB/F (ω) = 1/(eω/T ∓ 1) are the Bose and Fermi
functions. We can now fix the chemical potentials by
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Re[G2
R(ω)]

Im[G2
R(ω)]

ω

FIG. 5. A plot of the real and imaginary parts of the retarded
Gaussian sector Green’s functions GR

2,±, Eq. (47). The verti-
cal dashed lines indicate where |ω + µ±| = 2g2|ε(k)|.

ensuring these densities are consistent with the behavior
demanded by percolation. Since n(s) is small for the
range of s we are considering, both n+(s) and n−(s) must
also be small. Therefore, for T ≪ 4t only the states near
the momenta k0,π are relevant—if we integrate ρ2,±(ω,k)
over all momenta, the lowest ω giving nonzero values only
have contributions near k0,π. We expand ε(k) around
these points, giving a quadratic dispersion in each case,

ε(k0 + p) = −ε(kπ + p) ≈ p2

2m
− 4t ≡ ε(p), (50)

where the effective mass is defined as m ≡ 1/(2ta2) and
this parabolic approximation is cut off at an energy scale
Λ ∼ t. Assuming that T ≫ g2t, consistent with T ≪ 4t
since g2 ≪ 1, we find

µ+(s) ≈ −2T arcoth

(
1 +

n+(s)

nΛ

)
(51)

µ−(s) ≈ −2T artanh

(
1− n−(s)

nΛ

)
, (52)

where nΛ is the density associated with the cutoff scale,
much larger than n±(s).

C. Cubic solution — G3

Our analysis in the cubic regime is similar to the treat-
ment of the SYK model for complex fermions, e.g. as in
Refs. [34, 67]. (For details of this full calculation see Ap-
pendix C). We first assume that the self-energies Σ3,±
dominate over the linear-in-frequency term of the Dyson
equation, which will partially restrict the regime in which
the resulting solution applies. Then the form of the self-
energies motivates us to consider a scaling ansatz forG3,±
in the zero temperature limit, and for complex frequency
z (with Im(z) > 0) we put

G3,±(z,k, s) = sγ±
e−i(π∆±+θ±(s))

Ω±(k)2∆±z1−2∆±
, (53)

where γ± and ∆± are real exponents characterizing the
scaling with s and frequency respectively, Ω±(k) are en-
ergies introduced to fix dimensions and account for mo-
mentum dependence, and θ±(s) parameterize the spec-
tral asymmetry and consequently the finite density for
each s—they are in principle related to µ±(s) which fix
the density in the non-scaling regime.
Positivity of the spectral densities gives the constraints

π∆+ ≤ θ+(s) ≤ π(1−∆+) and −π∆− ≤ θ−(s) ≤ π∆−.
Furthermore, since the density n(s) vanishes for s > sξ,
we take the functions θ±(s) to depend on sξ itself and
on s only through s/sξ, and we substitute θ±(s) →
θ±(s/sξ). Transforming to imaginary time τ the ansatz
becomes

G3,±(τ,k, s) = − sgn(τ)
sγ±Γ(2∆±)

πΩ±(k)2∆± |τ |2∆±

× sin [π∆± + sgn(τ)θ±(s/sξ)] , (54)

where Γ(x) is the gamma function.
We assume that the self-energies evaluated at zero fre-

quency cancel against the chemical potentials in Eq. (41),
Σ±(0,k, s) = µ±(s). Then substituting the ansatz we
find that consistency of the s → 0+ and s = sξ lim-
its of the Dyson equation constrain many of our pa-
rameters: we obtain exponents ∆+ = ∆− = 1/3 and
γ+ = γ− = −1/3, and find Ω+(k) ∝ Ω−(k) ∝ |ε(k)|.
The constants c± that can be introduced to exactly re-
late Ω±(k) to ε(k) are O(1) numbers given by integrals
over functions of θ±(s/sξ).
Altogether we have

G3,±(z,k, s) =
e−i(π/3+θ±(s/sξ))

c
2/3
± g

2/3
3 s1/3 ε(k)2/3 z1/3

, (55)

the same form for both bosonic and fermionic fields. Tak-
ing z → ω+ i0 we acquire the retarded Green’s function,

GR
3,±(ω,k, s) = sgn(ω)

e−i(sgn(ω)π/3+θ±(s/sξ))

c
2/3
± g

2/3
3 s1/3 ε(k)2/3|ω|1/3

. (56)

To obtain this solution we have assumed first that we
are in a parameter regime where the Gaussian terms in
the self-energies are much smaller than the cubic terms,
and second that |Σ3,±| =

∣∣G−1
3,±
∣∣ ≫ |ω| for nonzero fre-

quency. These constrain the frequency regime for which
G3,± applies to be

g32
s g̃23

|ε(k)| ≪ |ω| ≪
√
s g̃3 |ε(k)|. (57)

Since we are interested large s we therefore find that this
power-law Green’s function may apply over a finite range
of frequencies, not just in the limit of zero frequency as is
the typical case for the SYK model—indeed, this solution
never applies for zero frequency, and in that limit we
must use G2 as found in Section VB; sξ is always cut off
at some large value in a finite system, so the regime of
applicability for G3 never extends down to include ω = 0.
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VI. TRANSPORT PROPERTIES

The coupling of the cluster fields to a spatially-uniform
electromagnetic field in the action Eq. (39) is obtained via
minimal coupling as in Section IVD for the Hamiltonian
description, but now we take the vector potential to be
a function of imaginary time A(τ). The electromagnetic

linear response function Π̂(iωn) can be calculated in the
usual way as the second derivative with respect to A of
the partition function constructed from the action S in-
cluding the coupling toA. The result is greatly simplified
because of the large-N nature of the theory and the aver-
aging procedure. First, there are no contributions at first
order in an interaction constant since ⟨g...⟩ = 0. There-

fore, the two types of diagrams contributing to Π̂ are
bubble diagrams with two paramagnetic vertices or with
one diamagnetic vertex and one normal interaction ver-
tex. Second, vertex corrections necessitate crossed disor-
der lines, which contribute at O(1/Nλ), and so vanish in
the large-Nλ limit. Finally, because g22 ≫ g23 the primary
contribution comes from the coupling of the Gaussian
terms in the action to A, so Π̂ has an overall factor of
g22 . Taking these points into account the effect of dia-
grams higher order in g2 and g3 is simply to dress the
bare propagators as in Fig. 4, so Π̂ can be represented
diagrammatically as in Fig. 6, and we have

Πij(iωn) ≈ e2g22 T

∫
ds

∫
d2k

(2π)2

∑
η=±

∑
{ω′

n}

×
(
∂ε(k)

∂ki

∂ε(k)

∂kj
Gη(iω

′
n,k, s)Gη(iω

′
n − iωn,k, s)

+ε(k)
∂2ε(k)

∂ki∂kj
Gη(iω

′
n,k, s)

2

)
. (58)

The optical conductivity is defined using the retarded
response, obtained from this via analytic continuation
iωn → ω + i0. Since the model is isotropic and we
are interested in its longitudinal transport properties,
we further define the longitudinal response function as
the average of the diagonal elements of this matrix,
Π = (Πxx +Πyy)/2.

Even though the Gaussian couplings to A dominate

Π, the Green’s functions appearing in Eq. (58) may have
either Gaussian G2 or cubic G3 form; whether the Gaus-
sian or cubic self-energies dominate the Dyson equation
depends on the frequency regime being considered, not
the relative sizes of g2 and g3. When evaluating the Mat-
subara sum in the standard way via contour integration
the different analytic structures of G2 and G3 become
vitally important and each case must be considered sep-
arately. As previously noted, when continued to real fre-
quencies G3 is applicable in a range of finite frequencies
excluding ω = 0, so that G2 is relevant for the dc limit.

+

+ +

=

FIG. 6. The diagrams giving the response of the effective
theory to an external electromagnetic field, dropping all con-
tributions O(1/Nλ) or smaller. The open circles with a single
∼ represent paramagnetic coupling to A and the squares with
two ∼’s represent diamagnetic coupling to A2. The propaga-
tors (double solid or dashed lines) are dressed by interactions
as in Fig. 4. All other diagrams vanish with the disorder
average or have crossed impurity lines and so vanish in the
Nλ → ∞ limit.

A. Linear-in-T Resistivity

The dc resistivity ρ is the reciprocal of the dc conduc-
tivity σ, which itself is the real part of the ω → 0 limit
of the optical conductivity. In terms of Π,

σ = Re
[
lim
ω→0

σ(ω)
]
= Re

[
lim
ω→0

Π(ω + i0)

iω

]
. (59)

After rewriting the Matsubara sums in the expression for
Π in terms of integrals over real frequencies of Fermi and
Bose distribution functions and functions of retarded and
advanced Green’s functions we have

σ = Re

{
−e

2g22
4π

∫
ds

∫
d2k

(2π)2
|∇kε(k)|2

∑
η=±

∫
dω′na(ω

′) lim
ω→0

1

ω

[
GR

η (ω
′)−GA

η (ω
′)
] [
GR

η (ω
′ + ω) +GA

η (ω
′ − ω)

]
− lim

ω→0

1

ω

e2g22
4π

∫
ds

∫
d2k

(2π)2
ε(k)∇2

kε(k)
∑
η=±

∫
dω′na(ω

′)
[
GR

η (ω
′)2 −GA

η (ω
′)2
]}

, (60)

where we have suppressed the Green’s functions’ com-
mon dependence on k and s. In this regime the relevant

Green’s functions are the zero-frequency limit of G2,± as
in Eq. (47) with the chemical potentials µ±(s, T ) as in
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Eqs. (51) and (52). Because of the branch cut in these
Green’s functions for small frequencies, the integral over
the integrated frequency ω′ is restricted to the range
−2g2|ε(k)| − µ±(s) ≤ ω′ ≤ 2g2|ε(k)| − µ±(s); contri-
butions from outside this range exactly cancel. Because
of the ω → 0 limit we expand the Green’s functions in
the first line in powers of ω. The 0th order terms of
this expansion, which simply evaluates the Green’s func-
tions at ω = 0, are overall proportional to 1/ω and com-
bine with the second line. Using the form of GR

2,± and

GA
2,± = (GR

2,±)
∗, these terms are found to contribute a

purely imaginary Drude term ∝ 1/(iω) as expected from
a model with translational symmetry. We will not ana-
lyze here how or if this term is removed by the inclusion
of disorder in the system, as is typically the case, and
will continue keeping just the real part of the conduc-
tivity. Of the remaining terms in the expansion of the
Green’s functions only the terms first order in ω survive
in the ω → 0 limit, and will be our focus from here on.

The Green’s functions in the remaining real term enter
in the form

[
GR

±,2(ω
′)−GA

±,2(ω
′)
] [dGR

±,2(ω
′)

dω′ −
dGA

±,2(ω
′)

dω′

]

=
1

2

d

dω′

[
GR

±,2(ω
′)−GA

±,2(ω
′)
]2

=
ω′ + µ±(s)

g42ε(k)
4
, (61)

where the last equality uses the form of the Green’s func-
tion in this frequency range, Eq. (47). With a shift of
the integrated frequency by the chemical potential the
dc conductivity becomes

σ = − e2

4πg22

∫
ds

∫
d2k

(2π)2
|∇kε(k)|2

ε(k)4

×
∑
η=±

∫ 2g2|ε(k)|

−2g2|ε(k)|
dω′ ω′ nη [ω

′ − µη(s)] , (62)

and we can evaluate the frequency integral using the
chemical potentials given in Eqs. (51) and (52). Since
the densities n±(s) are very small but nonzero for all s
being considered, we can approximate

µ±(s) ≈ T log

(
n±(s)

2nΛ

)
, (63)

where the log is a large negative number. If we
take |µ±(s)| ≫ 2g2|ε(k)|, equivalent to T/t ≫
8g2/|log(n±(s)/2nΛ)|, then all frequencies in the integra-
tion region are small compared to the chemical potential
and we can expand the distribution function in Eq. (62)
in powers of ω′. With the factor of ω′ already appear-
ing in the integrand the terms at even orders in this ex-
pansion integrate identically to zero. The lowest order

nonzero term gives

σ ≈ −4e2g2
3π

∫
ds

∫
d2k

(2π)2
|∇kε(k)|2

|ε(k)|
∑
η=±

n′η (|µη(s)|)

≈ 2e2g2
3πnΛ T

∫
ds n(s)

∫
d2k

(2π)2
|∇kε(k)|2

|ε(k)|
, (64)

with the higher order terms contributing terms with
higher powers in the small constant g2, and so can be
neglected. To reach the final line we used n±(s) ≪ nΛ to
expand the derivatives of the Bose and Fermi functions
and replaced n+(s)+n−(s) = n(s). The momentum inte-
gral is independent of temperature and can be evaluated
expanding ε(k) around k0,π. Dependence on the hole
doping p enters through the sum over the cluster num-
bers, i.e. the critical part of the total density of clusters
in the system M0 as in Eq. (1). (There M0 is a function
of the deviation of the occupation probability from criti-
cality P −Pc, but the translation to hole doping p−pc is
trivial.) The resistivity is the inverse of this expression,
and so we obtain

ρ ∼ T

M0,crit(p)
. (65)

Though the critical part of M0 vanishes at the critical
point, the finite size of any real system and the non-
vanishing contribution from small clusters ensures that
the coefficient of this T -linear form does not actually di-
verge, but nevertheless achieves its largest value at the
critical doping pc—the proliferation of large clusters at
the critical point yields the minimum cluster density and
maximum resistivity. We also note that the divergent,
imaginary Drude term acquires exactly the same depen-
dence on T and p as the real part we have analyzed here
explicitly.
Curiously, we have found a linear-in-T resistivity stem-

ming from the Gaussian sector of the model action
Eq. (39), which is similar in the form to a random matrix
model. The random matrix model has a description in
terms of quasiparticles—gλλ′ can be immediately diago-
nalized instead of following a Green’s function calculation
as in Section VB—and therefore is known not to give
such anomalous behavior [34]. Here, however, the pa-
rameter s and appearance of the momentum-dependent
function ε(k) in the kinetic energy distinguish this model
from a random matrix model and allows this result to
be obtained. The only energy scales appearing in the
spectral densities are the frequency ω and the kinetic en-
ergy g2|ε(k)|, both of which are integrated in order to
find the cluster field densities and set the chemical po-
tentials. Thus, in the parameter regime considered the
only energy or length scales remaining inside µ±(s) are
the cluster densities n(s) and the temperature. Since s
is also integrated, the only scale remaining in the end to
determine the behavior of ρ is T .
The approximations made to obtain this result imply

that the linear-in-T behavior does not persist down to
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T = 0 or up to T → ∞, but for a range g2 ≪ T/t ≪ 1.
At this lower limit contributions at higher odd powers of
T start to become relevant. We do not have a numerical
estimate for the small constant g2 nor for other factors en-
tering into this lower scale, however, so it is not possible
to say precisely at what temperature scale we might ex-
pect to see a significant deviation from linear-in-T behav-
ior. Regarding the upper limit, if t ∼ 100meV ∼ 103K
then we expect non-saturating linear-in-T behavior up to
the highest experimentally accessible temperatures.

B. Power-law Optical Conductivity

As found in Section VC, the cubic Green’s functions
G3,± apply over a wide range of frequencies between UV
and IR limits for large s. Using these Green’s functions
in Π we can therefore obtain the leading-order contribu-
tions to the optical conductivity relevant in this interme-
diate frequency regime. A simple scaling analysis of the
frequency dependence of this optical conductivity gives

σ(ω) =
Π(ω + i0)

iω

∼ 1

ω

∫
dω′

∑
η=±

GR
3,η(ω

′)GA
3,η(ω

′ − ω)

∼ |ω|−2/3
eiπ/3. (66)

We therefore find that σ(ω) for this model is of power-
law form for a range of intermediate frequencies, with
exponent matching the results of experiments in the
cuprates [6–11].

To recover power-law behavior here we only need a
simple scaling argument using the T = 0 form of the
cluster Green’s functions. In principle, a more pre-
cise form for the optical conductivity may be obtained
from a more complete analysis, including temperature
dependence by extending these Green’s functions to non-
zero temperature leveraging the cubic regime’s imaginary
time reparametrization invariance and a conformal trans-
formation, e.g. as discussed in Refs. [28, 31]. We will
leave such analysis to later work.

VII. DISCUSSION AND OUTLOOK

The simple first analysis of the transport properties of
the model in the previous section yields clear non-Fermi-
liquid properties indicative of a strange metal. The op-

tical conductivity has power-law form, σ(ω) ∼ |ω|−2/3
,

and the dc resistivity is found to be linear-in-T with
doping-dependent slope that takes its maximum value
at the critical doping pc ≈ 0.1854, all of which are
consistent the phenomenology of the cuprates. Inter-
estingly, these behaviors are found to arise from differ-
ent sectors of the model. For zero and non-zero fre-
quency different contributions to the self-energies dom-
inate, so although all terms in the model action result

from implementing a single principle—a classical perco-
lation transition—particular anomalous properties char-
acteristic of the strange metal phase do not all arise from
the same microscopic processes. The dc properties arise
from the Gaussian sector of the theory, with the corre-
sponding cluster interaction term related to the shifting
of single clusters, while the optical properties arise from
the cubic sector, describing the merging and dividing of
clusters.

Here we have focused exclusively on p ≤ pc since above
this value an infinite cluster appears which requires qual-
itatively new considerations. However, the model action
Eq. (39) does not suddenly become irrelevant above the
critical doping. There are still finite clusters for p > pc
that are described by this action, so the contributions
to the transport properties that we have calculated will
remain, but now in addition to whatever contributions
are brought by the infinite cluster. In finite clusters elec-
trons are strictly confined—they may not pass through
the large energy barrier at the boundary—but this is not
the case for the infinite cluster. In principle electronic
wave functions are not forbidden from being extended,
though localization may also result from interference ef-
fects in any given configuration of the system [68, 69].
However, this quantum percolation problem, as it is
called, is somewhat different than what would arises in
a percolation-based recasting of the Hubbard model for
p > pc, since the infinite cluster itself is not static; the
motion of the electrons forming its boundary have dy-
namics themselves, and further study would be needed
to determine how this affects the nature of the electronic
states within, i.e. extended, power-law localized, or expo-
nentially localized. Whatever the case, the infinite clus-
ter surely provides a crucial contribution to transport
properties above pc, especially as it grows with higher
hole doping to encompass and larger and larger portion
of the system. It seems reasonable to guess that this may
be related to the emergence of a Fermi-liquid-like state
at high enough hole doping.

As noted in the introduction, there are additional prop-
erties indicative of the strange metallic phase of the hole-
doped cuprates that we have not considered, such as the
temperature dependence of Hall properties. Because the
construction presented here depends the system possess-
ing spin symmetry while also treating the two electron
spins separately—one bounding clusters, the other re-
siding within them—a natural question arises as to how
to account for the partial magnetization of the system
in response to the external field necessary for Hall re-
sponse. Our choice here of having spin-down electrons
bound clusters was arbitrary, and exchanging spin-up
and spin-down everywhere yields the same results. If
the system has an excess of one spin species, however,
then this symmetry is broken and the doping yielding
the percolation transition would shift up or down from
the symmetric case depending on the choice. Putting
n↑ = (ne + δ)/2 and n↓ = (ne − δ)/2, then identifying
the critical hole doping as a percolation transition as in
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Section IIIA gives pc↑ ≈ 0.1854+ δ and pc↓ ≈ 0.1854− δ
depending on whether spin-up or spin-down electrons are
taken to bound clusters. If δ is smaller than the uncer-
tainty of the doping level in experiments then this split-
ting may be irrelevant, and only subsequent effects of an
applied magnetic field in our analysis would be necessary
to consider. If δ is not small, however, then a qualita-
tively new calculation is likely required that can manage
the split percolation transition for different spins.

The effect of disorder has not been considered here in
any real detail. Though we modeled the matrix elements
g for the cluster dynamics terms as random quantities,
we began from the clean Hubbard Hamiltonian on a per-
fectly regular square lattice. If, at the level of the Hub-
bard Hamiltonian, we were to include quenched hopping
disorder or an on-site disorder potential characterized by
an energy W ≪ U , then the initial rewriting of the sys-
tem in terms of clusters is largely unaffected, and our ig-
noring of rare spatially ordered states would be more ex-
plicitly justified. Furthermore, the interaction constants
g would be affected by either of these forms of disorder
to become actually random quantities.

Another question we have not fully addressed here is
the range of temperatures for which this theory applies,
or how other phases emerge from this state and dominate
at low temperatures. In the cuprates, for p < pc strange
metallic behavior gives way to the pseudogap phase below
a crossover temperature T ∗ that decreases with increas-
ing hole doping and drops to 0 at p = pc. Since it vanishes
at pc, can we understand T ∗ as related to some critical
behavior of the percolation transition? The correlation
length characterizing the largest cluster ξ provides one
natural IR cutoff for the theory, Eξ ∼ 1/ξ ∼ |p− pc|νP ,
which decreases with increasing p and vanishes at the
critical point. On length scales larger than ξ or energy
scales smaller than Eξ the cluster structure cannot be
distinguished and the theory investigated here is invalid,
which may signal one avenue to approach the emergence
of new phases at low temperatures.

Most notably superconductivity arises in the cuprates
in a low-temperature dome covering a range of dopings
around pc. The model proposed here does not possess a
mechanism for forming Cooper pairs, though the anal-
ysis has not considered the spin-spin interaction, pa-
rameterized by J ∼ t2/U , generated by virtual double-
occupancy. This interaction favors the formation spin
singlet states on nearest neighbor sites, which in the clus-
ter picture may occur at the boundaries of the clusters—
spin-down electrons bound the clusters filled with spin-
up electrons. Therefore we see that the sorts of clusters
we have been considering, which have fractal properties
on average and large surface areas, are energetically fa-
vored by including this additional term in the Hamilto-
nian compared to, for example, clusters with more cir-
cular geometry. Additionally, when T ∼ J the pairing
effect of the spin-spin interaction will become important
and may dominate, causing the principle assumptions of
this work to fail. It is currently unclear how to include all

effects of this J interaction into the model action Eq. (39)
and therefore we cannot yet explore how superconductiv-
ity may emerge at low temperatures.
The goal of this work is to attempt to bridge the

gap between the Hubbard model, a well accepted start-
ing point for the analysis of real strongly-correlated sys-
tem, especially the cuprate high-temperature supercon-
ductors, and theories yielding strange-metallic proper-
ties, which often lack a clear connection to the micro-
scopic physics of electrons in a lattice. We have shown
that rewriting the infinite-U Hubbard model in a way
that highlights the classical percolation transition occur-
ring in the basis states at hole doping pc ≈ 0.1854 mo-
tivates a model that exhibits strange-metallic behavior,
and has features of a number of different types of theo-
ries: it is a large-N model like SYK and its relatives and
the cluster size s plays a similar role to the continuous
mass spectrum in theories of unparticles. The degrees of
freedom of this theory originate from extended clusters of
electrons in the original real-space electronic basis, and
the large number of “flavors” in the model are related to
the large number of possible shapes for clusters of suffi-
cient size, which are responsible for the critical proper-
ties of the percolation transition itself. Ultimately, the
strange metallic transport of the model is due the scaling
properties of these degrees of freedom and the unusual
nature of their dynamics.
Though we have not provided a rigorous derivation of

the effective theory Eq. (39) from the Hubbard model,
the ability of the model to recover the transport prop-
erties in line with experiments in the cuprates without
fine tuning or ad hoc additional degrees of freedom and
to naturally explain why these properties manifest near
p ∼ 0.19 specifically, suggests that this framework may
be relevant for understanding the nature of the cuprate
normal state. There is much more to be studied about
this model, both at the level of the microscopic construc-
tion in Sections III and IV and in the model action in
Section V, most importantly the potential to support su-
perconductivity and other low-temperature phases by in-
cluding additional perturbations.
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Appendix A: Boundary electron hopping matrix
elements

Here we give an explicit calculation for a general matrix
element for the spin-down hopping term in the cluster
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basis. In the initial set of clusters C , there areNc clusters
that have a particular spin-down electron forming part of
their boundary, and when this electron hops we are taken
to a different set of clusters C ′ in which those initial
clusters have been changed into N ′

c new clusters. We
label the initial clusters ζ1, . . . , ζNc

and the final clusters
ζ ′1, . . . , ζ

′
N ′

c
. We define the union of the sites in the initial

and final sets of clusters respectively as Zc and Z
′
c. Since

the total number of spin-up electrons within the initial
and final clusters cannot change we have

ν =

Nc∑
i=1

νi =

N ′
c∑

j=1

ν′j = ν′, (A1)

and similarly the total number of sites in the initial and
final sets of clusters cannot change, so we have

s =

Nc∑
i=1

si =

N ′
c∑

j=1

s′j = s′. (A2)

We also know how the total center of mass of the involved
clusters moves; the sets Zc and Z ′

c differ in the location
of a single site, which is displaced by −ê, so the the total
final center of mass r′ is related to the total initial center
of mass r via

r′ = r− ê

s
. (A3)

Finally we introduce the abbreviated notation αi =
ζi, ν̂i = ri, si, λi, Ii. With this notation in place we can
write the spin-down electron hopping matrix element in
the cluster basis as

⟨{I ′} ,C ′|

(
−t
∑
ê

c†x+ê,↓cx,↓

)
|{I} ,C ⟩ = −t

N ′
c⊕

i=1

Nc⊕
j=1

⟨∅, ζ ′i|Cα′
i

∑
ê

c†x+ê,↓cx,↓C
†
αj

|∅, ζj⟩

= −t
N ′

c⊕
i=1

Nc⊕
j=1

⟨∅, ζ ′i|
∑

{xi}∈ζ′
i

cxi,1
· · · cxi,ν′

i
Φ∗

α′
i
(xi,1, . . . ,xi,ν′

i
)
∑
ê

c†x+ê,↓cx,↓
∑

{yj}∈ζj

Φαj
(yj,1, . . . ,yj,νj

)c†yj,νj
· · · c†yj,1

|∅, ζj⟩

= −t δν′,νδs′,sδr′,r−ê/s

∑
{x}∈Z′

c

Φ∗
α′

1...α
′
N′

c

(x1, . . . ,xν′)Φα1...αNc
(x1, . . . ,xν)

≡ −t g(Nc→N ′
c)

α′
1...α

′
N′

c
;α1...αNc

. (A4)

In the third line we define the multi-cluster, multi-electron wave functions as the product of the multi-electron wave
functions in the clusters in question,

Φα1...αN
(x1, . . . ,xν) = Φα1(x1, . . . ,xν1) · · ·ΦαN

(xν−νN+1, . . . ,xνN
), (A5)

and in the final line we define the symbol g
(Nc→N ′

c)

α′
1...α

′
N′

c
;α1...αNc

to represent the entire inner product of the initial and final

multi-electron wave functions, including the δ-functions enforcing conservation of electron number and total cluster
size, and the motion of the cluster center of mass.

Appendix B: Internal spectra of large clusters

Here we investigate the question of how well the single-
particle spectra within individual large clusters are ap-
proximated by the average over cluster shapes. We ex-
amine this question numerically: for a range of differ-
ent sizes we generate a large number of random clusters,
obtaining a representative sample of the vast number
of cluster shapes, then diagonalize the nearest-neighbor
hopping Hamiltonian and average the energies thus ob-
tained. The discrete indices labeling these averaged ener-
gies, i = 1, 2, . . . , s are then related to samplings of a con-
tinuous parameter x running from 0 to 1 as xi = i/(s+1).

The result of this procedure for s = 50, 75, 100, and 200,
averaging over 100 different shapes each, is shown in
Fig. 7. The average spectra for different sized clusters
are found to trace the same curve as a function of the
parameter x, and we define this function to be the con-
tinuous spectrum ϵ̄(x).

Appendix C: Evaluation of scaling Green’s
functions, G3

Here we determine the values of the exponents γ± and
∆± and the behavior of the functions Ω±(k) and θ±(s)
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FIG. 7. The average spectra for clusters of size 50 (red),
75 (green), 100 (yellow), and 200 (blue). For each size we
generate 100 random clusters, find and sort the energies of
the s eigenstates, then average each energy in order. The
horizontal axis is the index of the state over s+1. We see that
they all follow the same curve which we call ϵ̄p(x), with the
average energies for a cluster of size s very closely reproduced
as the values of ϵ̄p(x) at the points xi = i/(s + 1) for i =
1, 2, . . . , s.

appearing in the scaling ansatz for the Green’s function
in the cubic regime, G3,±. To do so we employ the spec-
tral representation of the Green’s function for complex
frequency z,

G3,±(z,k, s) =

∫ ∞

−∞
dω

ρ3,±(ω,k, s)

z − ω
, (C1)

and impose the appropriate positivity constraints on the
spectral density for bosons and fermions, − ImG3,−(ω+
i0) > 0 and −ω ImG3,+(ω+ i0) > 0. These immediately
give

−π∆− < θ−(s) < π∆− (C2)

π∆+ < θ+(s) < π(1−∆+). (C3)

Fourier transforming the spectral representation of

G3,± to imaginary time τ we have

G3,±(τ,k, s) =

{
−
∫∞
0

dωρ3,±(ω,k, s)e
−ωτ , τ > 0∫∞

0
dωρ3,±(−ω,k, s)e−ω|τ |, τ < 0,

(C4)
with which we can write the imaginary time representa-
tion of the Green’s functions,

G3,±(τ,k, s) = − sgn(τ)
sγ±Γ(2∆±)

πΩ±(k)2∆± |τ |2∆±

× sin (π∆± + sgn(τ)θ±(s)) . (C5)

Substituting this into Eqs. (42) and (43), the cubic terms
of the self-energies, which we denote Σ3,±(τ,k, s), can
then be written explicitly.
Alternatively, we can start from the Dyson equation,

G3,±(z,k, s)
−1 = z + µ±(s)− Σ3,±(z,k, s). (C6)

If we assume that the zero-frequency part of the self-
energy cancels the chemical potential, then for z ̸= 0 we
have

Σ3,±(z,k, s) = z − s−γ±Ω±(k)
2∆±ei(π∆±+θ±(s))z1−2∆± .

(C7)
Using a spectral representation for Σ in terms of a func-
tion σ (as G is written in terms of ρ) and a Fourier trans-
form of this spectral representation we obtain a second
expression for the self-energies in terms of the imaginary
time τ ,

Σ3,±(τ,k, s) = − sgn(τ)s−γ±
Γ(2− 2∆±)

π|τ |2−2∆±
Ω±(k)

2∆±

× sin (π∆± + sgn(τ)θ±(s)) . (C8)

Equating the two representations we have thus obtained
for Σ3,±(τ,k, s) and demanding consistency for generic s
and in the limit s→ sξ gives ∆± = 1/3 and γ± = −1/3,
and also constrains Ω±(k) ∝ ε(k).
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