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We show that it is possible to learn protocols that effect fast and efficient state-to-state transfor-
mations in simulation models of active particles. By encoding the protocol in the form of a neural
network we use evolutionary methods to identify protocols that take active particles from one steady
state to another, as quickly as possible or with as little energy expended as possible. Our results
show that protocols identified by a flexible neural-network ansatz, which allows the optimization of
multiple control parameters and the emergence of sharp features, are more efficient than protocols
derived recently by constrained analytical methods. Our learning scheme is straightforward to use
in experiment, suggesting a way of designing protocols for the efficient manipulation of active matter
in the laboratory.

I. INTRODUCTION

Active particles extract energy from their surroundings
to produce directed motion [1–4]. Natural active parti-
cles include groups of animals and assemblies of cells and
bacteria [5–7]; synthetic active particles include active
colloids and Janus particles [8, 9]. Active matter, collec-
tions of active particles, displays emergent behavior that
includes motility-induced phase separation [10, 11], flock-
ing [12, 13], swarming [14], pattern formation [15, 16],
and the formation of living crystals [17].

Recent work has focused on controlling such behav-
ior by creating active engines [18–27], controllably clog-
ging and unclogging microchannels [28], doing drug deliv-
ery in a targeted way [29, 30], and creating microrobotic
swarms with controllable collective behavior [31–33]. For
such applications, efficient time-dependent protocols are
important [34–38]. Methods for identifying efficient pro-
tocols, such as reinforcement learning, have been used to
optimize the navigation of active particles in complex en-
vironments [39–41] and induce transport in self-propelled
disks using a controllable spotlight [42].

For purely diffusive (passive) molecular systems, an-
alytic methods allow the identification of optimal time-
dependent protocols for a range of model systems [43–
46]. These results establish that rapidly-varying and dis-
continuous features are common components of optimal
protocols, and are useful for benchmarking numerical ap-
proaches [47, 48]. However, active-matter systems are
more complicated to treat analytically than passive sys-
tems, requiring the imposition of protocol constraints in
order to make optimization calculations feasible for even
the simplest model systems. Two recent papers derive
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control protocols for confined active overdamped parti-
cles by assuming that protocols are slowly varying and
smooth [49] or have a specific functional form [50]. In this
paper we show numerically that relaxing these assump-
tions leads to more efficient control protocols for those
systems. The protocols we identify can be rapidly vary-
ing and are not smooth, showing jump discontinuities
similar to those seen in overdamped passive systems.

To learn protocols to control active matter we use the
neuroevolutionary method described in Refs. [47, 51–
53], which we adapted from the computer science lit-
erature [54–56]. Briefly, we encode a system’s time-
dependent protocol [57] in the form gθ(t/tf). Here g is
the output vector of a deep neural network, correspond-
ing to the control parameters of the system (which in
this paper consist of the activity of the particles and the
spring constant of their confining potential), θ is the set
of neural-network weights, t is the elapsed time of the
protocol, and tf is the total protocol time. We apply the
protocol to the system in question, and compute an or-
der parameter ϕ that is minimized when it achieves our
desired objective (such as inducing a state-to-state trans-
formation while emitting as little heat as possible). The
neural-network weights θ are then iteratively adjusted
by a genetic algorithm in order to identify the protocol
whose associated value of ϕ is as small as possible.

This approach is a form of deep learning – in the limit
of small mutations and a genetic population of size 2 it
is equivalent to noisy gradient descent on the objective
ϕ [58] – and so comes with the benefits and drawbacks of
deep learning generally. Neural networks are very expres-
sive, and if trained well can identify “good” solutions to
a problem, but these solutions are not guaranteed to be
optimal [59, 60]. We must therefore be pragmatic, and
(as with other forms of sampling) verify that protocols
obtained from different starting conditions and from in-
dependent runs of the learning algorithm are consistent.
Consequently, we call the protocols identified by the al-
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gorithm “learned” rather than “optimal”. In general, we
have found the method to be easy to apply and to solve
the problems we have set it: we have benchmarked the
method – see Refs. [47, 53] and Fig. S1 in the Supplemen-
tary Information (SI) – against exact solutions [43] and
other numerical methods [46, 48, 61, 62]. In this paper
we use it to produce protocols that are closer to optimal
than the protocols obtained by other methods [49, 50].

The neuroevolutionary learning algorithm uses infor-
mation that is experimentally accessible. And so while
in this paper we have learned protocols for the control of
simulation models (these protocols could then be applied
to experiment if the simulation model is a good enough
representation of the experiment), the learning algorithm
can also be applied directly to experiment. The following
results therefore indicate the potential of this method for
learning control protocols for active systems generally.

II. ACTIVE PARTICLE IN A TRAP OF
VARIABLE STIFFNESS

In this section we consider the problem of Section IIIA
of Ref. [49], a single active Ornstein-Uhlenbeck parti-
cle [63–65] in a one-dimensional harmonic trap of stiffness
α(t). A schematic of this model is shown in Fig. 1(a).
The particle has position r and self-propulsion velocity
v. It experiences overdamped Brownian motion with dif-
fusion constant D and mobility µ, such that

ṙ(t) = v(t)− µα r(t) +
√
2Dη(t). (1)

Here η is a Gaussian white noise term with zero mean
and unit variance. The self-propulsion velocity v follows
an Ornstein-Uhlenbeck process with persistence time τ
and amplitude D1, such that ⟨v⟩ = 0 and ⟨v(t)v(t′)⟩ =

D1τ
−1e−|t−t′|/τ . The parameter D1 is zero in the passive

limit.
The trajectory-averaged heat associated with varying

α(t) from αi to αf in time tf is [19, 49, 64]

⟨Q⟩ =1

2
(αixi − αfxf) +

1

2

∫ tf

0

dt α̇(t)x(t)

+
D1tf
τµ

−
∫ tf

0

dt α(t)y(t).

(2)

Here ⟨·⟩ denotes an average over dynamical trajectories,
and we have defined x ≡

〈
r2
〉
and y ≡ ⟨rv⟩. For time-

dependent quantities q(t) we use the notation qi ≡ q(0)
and qf ≡ q(tf) to denote initial and final values. The
first line of Eq. (2) is the passive heat (minus the change
in energy plus the work done by changing the trap stiff-
ness), and the second line is the active contribution to
the heat. The first term on the second line is constant
for fixed tf (describing the heat dissipated to sustain the
self-propelled motion), and plays no role in selecting the
protocol.

For a given protocol α(t), the time evolution of x and
y is given by the equations [49]

1

2
ẋ(t) + µα(t)x(t) = y(t) +D, and

τ ẏ(t) + γ(t)y(t) = D1,
(3)

where γ(t) ≡ 1 + µτα(t). The system starts in the
steady state associated with the trap stiffness αi, and so
its initial coordinates are

xi =
1

αiµ

(
D1

γi
+D

)
and yi =

D1

γi
. (4)

Ref. [49] sought protocols that carry out the change
of trap stiffness αi = 1 → αf = 5 with minimum mean
heat, Eq. (2). The theoretical framework used in that
work assumes that protocols α(t) are smooth and are
not rapidly varying (see Section S2 for a discussion of
this point). Here we revisit this problem using neuroevo-
lution. We find that heat-minimizing protocols are not
in general slowly varying or smooth, but can vary rapidly
and can display jump discontinuities. The protocols we
identify produce considerably less heat than do the pro-
tocols identified in Ref. [49] (see Fig. S2).

To learn a protocol α(t) that minimizes heat, we en-
code a general time-dependent protocol using a deep neu-
ral network. We choose the parameterization

αθ(t) = αi + (αf − αi)(t/tf) + gθ(t/tf), (5)

where g is the output of a neural network whose in-
put is t/tf . We constrain the neural network so that
αi ≤ αθ(t) ≤ αf , meaning that it cannot access values
of α outside the range studied in Ref. [49] [66]. Initially
the weights and output of the neural network are zero,
and so we start by assuming a protocol that interpolates
linearly with time between the initial and final values of
α. We train the neural network by genetic algorithm to
minimize the order parameter ϕ = ⟨Q⟩, given by Eq. (2),
which we calculate for a given protocol by propagating
(3) for time tf , using a forward Euler discretization with
step ∆t = 10−3. An example of the learning process is
shown in Fig. S2(a).

In Fig. 1(b) we show, for the choice D1 = 2, that heat-
minimizing protocols learned by the neural network vary
between a step-like jump at the final time, for small val-
ues of tf , and a step-like jump at the initial time, for large
values of tf . For intermediate values of tf we observe a
range of protocol types. These protocols include non-
monotonic and rapidly-varying forms, and show jump
discontinuities at initial and final times.

The heat associated with the final-time step protocol
is just that associated with the initial steady state, and
is

Q1 =
D1tf

µτ(1 + αiµτ)
. (6)
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FIG. 1. Protocols α(t) controlling the stiffness of a trap confining an active Ornstein-Uhlenbeck particle. (a) Schematic of the
model. (b) Neural-network protocols α(t) that minimize ⟨Q⟩, Eq. (2), for different protocol lengths tf . (c) Heat associated
with the protocols. The dotted and dashed lines correspond to the values Q1, Eq. (6), and Q2, Eq. (7), respectively. (d)
As (b), but requiring minimum heat while enacting a state-to-state transformation (SST); see Eq. (11). Model parameters:
D = 1, µ = 1, τ = 1, D1 = 2.

The heat associated with the initial-time jump protocol
can be calculated from Eqs. (2) and (3), and is

Q2 =
αf

2
(xi − x2(tf)) +

D1tf
µτ(1 + αfµτ)

− D1ταf

γf

(
1

γi
− 1

γf

)(
1− e−γf tf/τ

)
,

(7)

where

x2(t) ≡(xi − xf)e
−2µαf t + xss

+ 2D1

(
1

γi
− 1

γf

)(
2µαf −

γf
τ

)−1

×
(
e−γf t/µ − e−2µαf t

)
.

(8)

(Note that xss is given in Eq. (10).) For large tf we have

Q2 ≈ D1tf
µτ(1 + αfµτ)

, (9)

which is the heat associated with the final steady state.
In Fig. 1(c) we show that the heat values associated

with the trained neural-network protocols interpolate, as
a function of tf , between the values Q1 and Q2. Our
conclusion is that this optimization problem is solved by
protocols that are rapidly varying, have a variety of func-
tional forms, and display jump discontinuties. As shown
in Fig. S2, these protocols produce values of heat consid-
erably smaller than those associated with the protocols
derived in [49]. (In that figure we also show that it is pos-
sible to construct smooth but rapidly-varying protocols
that can produce values of heat arbitrarily close to the
discontinuous protocols identified by the learning proce-
dure.)

The protocols just described are valid solutions to the
heat-minimization problem defined in [49]. However,
some of them are not meaningful in experimental terms.

For instance, for small values of tf , the heat-minimizing
protocol is a step function at the final time. This pro-
tocol is a solution to the stated problem, but effects no
change of the system’s microscopic coordinates. All the
heat associated with the subsequent transformation of
the system is ignored, simply because we have stopped
the clock.
We therefore argue that it is more meaningful to search

for protocols that minimize heat subject to the require-
ment of a state-to-state transformation. That is, we
require that a specified change in the system’s state
has occurred. We therefore modify the problem stud-
ied in Ref. [49] to search for protocols that minimize
the mean heat (2) caused by a change of trap stiffness
αi = 1 → αf = 5, subject to the completion of a state-
to-state transformation (SST) between the initial steady
state (4) and that associated with the final-time value of
αf ,

xss =
1

αfµ

(
D1

γf
+D

)
and yss =

D1

γf
. (10)

As before, we impose the experimentally-motivated con-
straint αi ≤ αθ(t) ≤ αf .
To solve this dual-objective problem we choose the evo-

lutionary order parameter

ϕ = ∆+ c if ∆ ≥ ∆0 and ϕ = ⟨Q⟩ otherwise. (11)

Here ∆2 ≡ (xf−xss)
2+(yf−yss)

2 measures the difference
between the final-time system coordinates and their val-
ues (10) in the final steady state; ∆0 = 10−3 is the toler-
ance with which we wish to achieve this steady state [67];
and c = 100 is an arbitrary constant whose only role is
to make the first clause of (11) always larger than the
second. Minimizing (11) will minimize heat emission for
a protocol α(t) that in time tf effects a state-to-state
transformation within the precision ∆0.
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In Fig. 1(d) we show protocols that minimize heat
while achieving SST. These protocols have a variety of of
forms, which involve rapidly-varying portions and jump
discontinuities, and that tend, for large tf , to the initial-
time jump form. For times tf ≲ 1.3 the learning algo-
rithm could not identify a protocol that could achieve
SST.

The heat emission associated with these protocols is
shown in panel (c). The time tf for which least heat is
emitted is about tf = 1.74, for this choice of D1. (For
heat optimization alone, the minimum heat is ⟨Q⟩ = 0,
and is shown by Eq. (6) to occur at time tf = 0, a conclu-
sion different to that drawn in Fig. 3 of Ref. [49]. This
strange result follows from the fact that the instruction
to minimize heat comes with no requirement that the
system change state.)

For comparison, we show the heat emission associated
with the linear protocol αlin(t) = αi + (αf − αi)(t/tf)
(square symbols). The linear protocol emits considerably
more heat than learned protocols (note the log scale of
the figure), and fails to achieve SST for times tf ≲ 60.
We conclude that the model of the confined active par-

ticle studied in [49] is best controlled by protocols α(t)
that are in general rapidly varying and exhibit jump dis-
continuities – similar to protocols for overdamped passive
systems – whether the goal is to minimize heat or to do
so while also inducing SST. We note that while the evo-
lutionary training of the neural network is a numerical
procedure, the protocols it identified allowed us to derive
analytic results for the minimum heat produced for suf-
ficiently small and large trajectory lengths, Eq. (6) and
Eq. (7) respectively.

III. ACTIVE PARTICLE OF VARIABLE
ACTIVITY IN A TRAP OF VARIABLE

STIFFNESS

A. State-to-state transformation in least time

In this section we consider the problem of Ref. [50], an
active Brownian particle confined by a two-dimensional
harmonic potential U(ρ) = 1

2kρ
2 with stiffness k.

The particle is described by the position vector ρ =
(ρ cosϕ, ρ sinϕ) and orientation θ, and moves in the di-
rection ê(θ) = (cos θ, sin θ) with constant speed u0. Its
dynamics is described by the Langevin equation

dρ

dτ
= u0ê(θ)− µkρ+

√
2Dtξr(τ)

dθ

dτ
=

√
2Dθξθ(τ),

(12)

where τ is the time; µ is the mobility; Dt and Dθ are
translational and rotational diffusion coefficients, respec-
tively; and ξr(τ) and ξθ(τ) are Gaussian white noise
terms with zero mean and unit variance. Upon intro-
ducing the dimensionless variables r ≡ ρ

√
Dθ/Dt and

t ≡ τDθ, Eq. (12) reads

dr

dt
= λê(θ)− κr +

√
2ξr(t)

dθ

dt
=

√
2ξθ(t),

(13)

where κ ≡ µk/Dθ and λ ≡ u0/
√
DθDt are dimensionless

versions of the spring constant and the self-propulsion
speed (λ is the Péclet number). These dimensionless vari-
ables are the control parameters of the problem.
The steady-state probability distribution function

Pss(r, χ) of the system depends only on r ≡ |r| and
χ ≡ θ − ϕ, and is known exactly [68]. The steady state
associated with the control-parameter choices κ and λ
can be classified as passive or active (Fig. 2(a)): in the
passive phase, the radial probability distribution P (r) is
peaked at the trap center, while in the active phase it is
peaked at r > 0.
This model system is motivated by experiments involv-

ing spherical Janus particles, whose self-propulsion speed
can be tuned through light intensity [9], confined in a
trap constructed by acoustic waves [69]. For a typical
experimental setup the control parameters are bounded
as 0 ≤ λ ≤ 11 and 1 ≤ κ ≤ 7 [9, 50, 69].
The problem described in Ref. [50] is to find a time-

dependent protocol (λ(t), κ(t)) that obeys the bounds of
the previous paragraph and that minimizes the time tf
required to transform the distribution P(r, χ) from a pas-
sive steady state at (λi, κi) = (2.5, 4) to an active one at
(λf , κf) = (5, 4). Using an ansatz constrained so that the
distribution P(r(t), χ(t)) has at all times the form of the
steady-state distribution Pss(r, χ) with effective control-
parameter values, the authors of that paper found a pro-
tocol that completed the state-to-state transformation in
time tf ≈ 0.44. This protocol is shown in Fig. 2(a,b).
With a neural-network ansatz for the protocol

(λ(t), κ(t)) we find that the state-to-state transforma-
tion can be achieved about three times as rapidly; see
Fig. 2(a,b). For a simulation of fixed time tf we use
a genetic algorithm to train the neural network to mini-
mize the order parameter ϕ = ∆, the mean-squared error
between the target distribution P⋆

ss(r, χ) associated with
the control-parameter values (λf , κf) and the distribution
P(r(tf), χ(tf)) obtained at the end of the simulation. The
latter was calculated from 105 independent trajectories
of (13) under a given neural-network protocol.

The protocol learned by the neural network for time
tf = 0.16 is shown in Fig. 2(a,b), together with the pro-
tocol of Ref. [50]. Both show sharp jumps in trap stiff-
ness, decreasing it abruptly to its smallest possible value.
The neural network protocol achieves the transformation
more quickly because it also enacts a sharp jump in ac-
tivity, setting it to the maximum possible value (the con-
straints imposed in Ref. [50] mean that if one control
parameter achieves its maximum value in an abrupt way,
the other is not free to do so). Near the end of the learned
protocol both parameters are abruptly changed to their
final values.
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FIG. 2. State-to-state transformation for a confined active Brownian particle with control protocol (λ(t), κ(t)). (a) Parameteric
protocols from [50] (orange, “BGT”) and this work (blue). The latter achieves the transformation about three times more
rapidly than the former. The black dots denote initial and final points; the dotted line denotes the bounds for the control
parameter values. The schematic in the top-right corner is a one-dimensional schematic of this two-dimensional system. (b)
The protocols of panel (a) as a function of time t. (c) Temporal evolution of the radial distribution function P (r) together
with the target distribution (dotted line) and the potential U(r), for the learned protocols shown in (a,b). (d) Final-time
distribution for χ. The dotted line is the target distribution. (e) Mean-squared error ∆ between the final distribution and the
exact solution, averaged over 105 trajectories. The dashed vertical line is the transformation time for the protocol of [50], and
the horizontal line is the value of ∆ associated with that protocol.

In Fig. 2(c) we show the temporal evolution of P (r) for
the learned protocol. Starting from an initial distribution
peaked at the origin, the peak of P (r) overshoots the
peak of the target distribution (they are not at that time
of the same shape). The peak of P (r) is later brought
back toward the target when stiffness and activity are
set to their maximal and minimal values, respectively.
Subsequently, both are set to their final values.

In Fig. 2(d) we show the final-time distribution of χ
for the learned protocol, which matches the target distri-
bution.

In Fig. 2(e) we show the value of ∆ obtained by pro-

tocols trained at various fixed simulation times tf . For
times tf ≳ 0.15, the learned protocol produces a small
constant value of ∆ consistent with the value produced
by the protocol of Ref. [50] (horizontal line). For times
tf ≲ 0.15 the value of ∆ increases sharply with decreas-
ing tf , indicating that the state-to-state transformation
cannot be achieved with the same precision.
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FIG. 3. Similar to Fig. 2, but now the learning algorithm is told to enact the state-to-state transformation of Fig. 2, in time
tf = 0.44, while minimizing work done; see Eq. (14). Panels (a–c) are analogous to those of Fig. 2. (d) Distribution of work for
the two protocols. (e) Mean work as a function of time for the two protocols.

B. State-to-state transformation with work
extraction

It is possible to extract work during the state-to-state
transformation. Setting tf = 0.44, the transformation
time of the protocol of Ref. [50], we used a genetic algo-
rithm to train a neural network to minimize the objective

ϕ = ∆+ c if ∆ ≥ ∆0 and ϕ = ⟨W ⟩ otherwise. (14)

Here ∆0 is the mean-squared error associated with the
protocol of Ref. [50] (calculated using 105 trajectories),
and c = 100 is an arbitrary constant whose only role is
to make the first clause of (14) always larger than the
second. The quantity ⟨W ⟩ is the mean work, in units of
µ/Dt, given by

⟨W ⟩ =
∫ tf

0

dt κ̇

〈
∂U

∂κ

〉
=

1

2

∫ tf

0

dt κ̇
〈
r2
〉
. (15)

Minimizing (14) will minimize the mean work associated
with a protocol (λ(t), κ(t)) that in time tf effects the
state-to-state transformation to a precision ∆0.

The protocol learned in this way is shown in
Fig. 3(a,b), together with the protocol of Ref. [50]. Panels
(c) show the effect of the learned protocol on the radial
probability distribution. The neural-network protocol in-
creases κ to its maximum value at the beginning of the
protocol. Doing so costs work, but only small amounts
because the system is initially in a passive phase and so
⟨r2⟩ is small. The protocol also increases λ to a large
(but sub-maximal) value, which begins to drive the dis-
tribution into the active phase, so increasing ⟨r2⟩. Sub-
sequently, κ is decreased to its target value, causing a
decrease of energy and allowing net extraction of work.

Fig. 3(d) shows the work distributions P (W ) associ-
ated with the learned protocol and that of Ref. [50]. The
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latter results in a broad distribution of work values, and
on average requires a large input of work to enact the
transformation. By contrast, the work distribution ob-
tained using the learned protocol is sharply peaked at a
negative value, and the mean work is negative.

In Fig. 3(e) we show mean work as a function of time
for the two protocols. The learned protocol requires an
input of work at early times in order to extract net work
at later times. This solution was identified by a genetic
algorithm using an order parameter (14) that depends
only on quantities evaluated at the final time point. As
a result, the protocol is not biased toward any particu-
lar functional form. By contrast, greedy reinforcement-
learning algorithms, which at all times attempt to reduce
the objective function, would (without special shaping
of the reward function) be unlikely to find the solution
shown here.

IV. WORK EXTRACTION FROM CONFINED,
INTERACTING ACTIVE PARTICLES

We now consider the case ofN interacting active Brow-
nian particles placed within the two-dimensional har-
monic trap of Section III. Particle i evolves according
to the Langevin equation

dri
dt

= λêi(θ)− κri − ∂ri

∑
j ̸=i

V (rij) +
√
2ξr(t)

dθi
dt

=
√
2ξθ(t), (16)

whose terms are similar to those of (12) with the addition
of the Weeks-Chandler-Andersen interaction

V (x) =

{
4ϵ

[
(σ/x)

12 − (σ/x)
6
]
+ ϵ (x < 21/6σ)

0 (otherwise),
(17)

which takes as its argument the inter-particle separation
rij ≡ |rj − ri|. We set σ and ϵ to 1.
We wish to learn protocols that minimize the mean

work done upon reducing the trap stiffness from κi = 5
to κf = 2, in time tf , observing the bounds on the control
parameter values of Section III. Here work is

⟨W ⟩ = N

2

∫ tf

0

dt κ̇R2, (18)

where R2 ≡ N−1
∑N

i=1

〈
r2i
〉
. The angle brackets indicate

an average over dynamical trajectories. We start from a
steady state at λi = 0, but place no constraints (beyond
those of the control-parameter bounds) on the value of
λf . Such a transformation could be used as part of a
cycle for an active engine [18–20].

No analytical solutions are known for this many-body
system, but a protocol can be learned in exactly the same
way as for the single-particle problems considered previ-
ously, using a genetic algorithm to train a neural network

to minimize ϕ = ⟨W ⟩. The latter was calculated from 103

independent trajectories.
In Fig. 4(a) we show the result of this learning proce-

dure for trajectory time tf = 1 and a number of particles
between N = 1 and N = 40. In Fig. S4 and Fig. S5
we provide additional details of learned protocols for the
cases N = 12 and N = 40. In all cases work can be
extracted, ⟨W ⟩ < 0. However, the extracted work per
particle is a non-monotonic function of N , attaining a
minimum value for N = 12. For this particular prob-
lem, the many-body system becomes more efficient than
the one-body system for N > 25. This finding suggests
that particular cycles of many-body active engines may
function more efficiently with certain particle numbers.
The learned protocols that produce the work values

in Fig. 4(a) initially increase λ to its maximum value.
For small N they initially increase κ to its maximum
value, while for large N they initially increase κ to close
to it maximum value (see Fig. S4 and Fig. S5). This
initial increase of κ costs work (as with the protocols
in Sec. III B), but the significant increase in R2 as the
activity is increased allows for net work extraction upon
the subsequent reduction of κ.
As N is increased from 1, the amount of work that

can be extracted per particle initially goes down. This
decrease results from the fact that particles repel each
other, and so R2 in the passive initial state is significantly
larger for N > 1 than for N = 1; see Fig. 4(b). Increasing
κ (at early times) therefore costs more work per particle
than for the caseN = 1. Work can still be extracted from
this system, but less efficiently than for the single-body
system.
For N sufficiently large, however, the situation

changes: R2 for large λ and κ becomes much larger than
it is for a single particle (Fig. 4(b,c)) [70]. This change
allows for greater work extraction per particle when κ
is decreased later on in the protocol. For N > 25, this
effect exceeds that described in the previous paragraph,
and the many-body system provides more work per par-
ticle than a one-body system.
To illustrate the origin of the non-monotonicity seen in

Fig. 4(a), we consider a simplified protocol that instanta-
neously sets κ and λ to their maximum values, waits until
the system reaches a steady state, and then sets κ = κf .
The work per particle associated with this protocol is
given by

⟨W ⟩est
N

=
1

2
(κmax − κi)R

2
λi,κi

− 1

2
(κf − κmax)R

2
λmax,κmax

,

(19)

where R2
λ,κ denotes the steady-state value of R2 mea-

sured at (λ, κ). In Fig. 4(c) we show that Eq. (19) is a
non-monotonic function of N . It is not a quantitatively
accurate model of the learned protocols, but captures one
important feature of their behavior.
Extending the simulation time to tf = 10 allows

for even greater work extraction. This improvement is
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FIG. 4. Many-body active engine segment. (a) Average work ⟨W ⟩ per particle, as a function of the number of particles N , for
neural-network protocols trained to minimize work by controlling the activity and confining potential of a set of interacting
active Brownian particles. The many-body system is more efficient than the one-body system for N > 25. (b) Steady-state

values of R2 ≡ N−1 ∑N
i=1

〈
r2i
〉
as a function of N . Here κ = 5, and λ is set to its minimum (blue line) and maximum (green

line) values. (c) Steady-state particle density at the control parameters indicated in (b). Instantaneous particle positions for
one realization of the system at steady state are shown in white. (d) A simple model of the learned protocols, Eq. (19), captures
the non-monotonicity of panel (a).

achieved by a learned protocol that substantially changes
the system’s activity twice, from passive to active to pas-
sive again (see Fig. S3).

V. CONCLUSIONS

We have shown that evolutionary methods can train
neural networks to produce efficient protocols for state-
to-state transformations in simulation models of active
matter. We found protocols that were more efficient
than those derived recently by constrained analytical
methods, and showed that neural-network methods can
aid in the design of protocols that achieve extraction
of work from many-body active systems. The learning
scheme used here can be applied to experiment the way
it is applied to simulations, suggesting a way of designing
protocols for the efficient manipulation of active matter
in the laboratory.
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[35] David Guéry-Odelin, Christopher Jarzynski, Carlos A.
Plata, Antonio Prados, and Emmanuel Trizac, “Driving
rapidly while remaining in control: Classical shortcuts
from Hamiltonian to stochastic dynamics,” Reports on
Progress in Physics 86, 035902 (2023).

[36] Michael M Norton, Piyush Grover, Michael F Hagan,
and Seth Fraden, “Optimal control of active nematics,”
Physical review letters 125, 178005 (2020).

[37] Shriram Chennakesavalu and Grant M Rotskoff, “Prob-
ing the theoretical and computational limits of dissipative
design,” The Journal of Chemical Physics 155 (2021).

[38] Suraj Shankar, Vidya Raju, and L Mahadevan, “Opti-
mal transport and control of active drops,” Proceedings
of the National Academy of Sciences 119, e2121985119
(2022).

[39] Paul A Monderkamp, Fabian Jan Schwarzendahl,
Michael A Klatt, and Hartmut Löwen, “Active par-
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S1. BENCHMARKING THE LEARNING
PROCEDURE

In Fig. S1 we show the protocol α(t) identified by the
neuroevolutionary learning procedure when instructed to
minimize the work

⟨W ⟩ =
∫ tf

0

dt α̇(t)x(t) (S1)

for a passive Brownian particle in a harmonic trap of stiff-
ness α(t), with αi = 1, αf = 5, and tf = 1. The particle is
described by (3) with D1 = 0. The optimal protocol for
this transformation is known exactly [43], and displays
jumps at both t = 0 and t = tf . The agreement be-
tween the learned protocol and the known optimal pro-
tocol provides a benchmark for the learning algorithm
when applied to the passive version of the problem stud-
ied in Section II, and provides confidence in the ability
of the algorithm to identify rapidly-varying and discon-
tinuous portions of protocols if necessary. For additional
benchmarks see Refs. [47, 53].

S2. COMPARISON WITH REF. [49]

In Fig. S2, we compare a learned neural-network proto-
col that minimizes the heat ⟨Q⟩ (2) of the system of Sec-
tion II with the results of protocols derived in Ref. [49],
in the low-activity case D1 = 0.01 shown in Fig. 2 of
that reference.

Fig. S2(a) shows the mean heat ⟨Q⟩ produced by the
neural-network protocol as a function of training time n.
Initially the heat produced is that of the linear protocol
α(t) = αi+(αf−αi)(t/tf) from which we start our search.
The linear protocol produces values of heat similar to the
protocols of Ref. [49], which are approximately linear.
After about 20 steps of training, the neural-network pro-
tocol converges to the final-time step form, which emits
an amount of heat equal to Q1, given by Eq. (6).

∗ ccasert@lbl.gov
† swhitelam@lbl.gov
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FIG. S1. Benchmarking the learning algorithm: the neu-
roevolution procedure used in the main text was instructed
to find a protocol α(t) of length tf = 1 that with least work
changes from αi = 1 → αf = 5 the stiffness α of a trap con-
taining a passive Brownian particle. The protocol it identified
is shown in blue. The black dotted line is the exact result from
Ref. [43].

In Fig. S2(b) we compare, for a range of values of tf , the
heat associated with trained neural-network protocols,
the protocols of Ref. [49], and the linear protocol. The
latter two protocols produce similar values of heat, and
both produce many times the heat emitted by the neural-
network protocols. (For the neural-network protocols,
the crossover between the forms producing heat Q1 and
Q2 occurs here for a much larger tf than is the case for
the value D1 = 2 considered in the main text.)
The discrepancy between the protocols derived here

and the protocols of Ref. [49] probably results from the
assumption made in that reference of slowly-varying driv-
ing, expressed by Eq. (7) of that reference, rather than
from the assumption of smoothness. It is possible to
construct smooth but rapidly-varying protocols that are
arbitrarily close to discontinuous ones; for instance, the
family of protocols

αk(t) = αi + (αf − αi) (t/tf)
k

(S2)

interpolates between the linear protocol for k = 1 and
the final-time step protocol for k → ∞. We demonstrate
this interpolation in Fig. S2(c) and (d) for the trajectory
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FIG. S2. Supplement to Fig. 1. (a) Heat ⟨Q⟩ produced by a neural-network protocol as a function of evolutionary training
time n, for D1 = 0.01 and tf = 5 (blue). The learning algorithm is instructed to minimize heat. The orange line (“DPF”) is
the result extracted from Ref. [49]; the dashed black line is Eq. (6). Inset: the neural-network protocol before training (n = 0)
and after 30 steps of training. (b) As in Fig. 1(c), but now for D1 = 0.01. (c) Smooth protocols of the family (S2) – with blue
and green line shading indicating smaller or larger values of the exponent k, respectively – and (d) associated heat values for
tf = 5.

length tf = 5. The heat produced by the protocol (S2) is
not a monotonic function of k: a local minimum having
heat values similar to those of Ref. [49] occurs at k ≈ 2.
For k ≳ 25 the protocol (S2) produces less heat than the
protocols of Ref. [49], and for k ≳ 103 it produces heat
similar to that produced by the final-time step function.

Eq. (7) of Ref. [49] represents a protocol α(t) as an
expansion in terms of its time derivatives. Such an ex-
pansion is unable to represent rapidly-varying functions:
for large k, near the inflection point t ≈ tf of the pro-
tocol αk(t), the nth time derivative of (S2) (for n ≤ k)
scales as k!/(n− k)!, and so increases in size with n. An
expansion such as Eq. (7) of Ref. [49], which neglects
derivatives above n = 2, cannot represent such a proto-
col in a controlled way (the protocol α(t) ∼ (t/tf)

2 is the
strongest nonlinearity for which neglect of the third time
derivative near t = tf is justified on the grounds of size).

Our conclusion from this section and Section II of the
main text is that methods that can represent rapidly-
varying (and potentially non-analytic) protocols are
needed to optimally control active-matter systems, just
as they are for passive-matter systems.

S3. PROTOCOLS FOR CONFINED
INTERACTING ACTIVE BROWNIAN

PARTICLES

In this section we supplement the results of Section IV.

Figs. S4 and S5 provide more detail of the protocols
discussed in Section IV, for N = 12 and N = 40, re-
spectively. The protocols for the control parameters λ
and κ are shown in panel (a); panels (b) and (c) show
the temporal evolution of the corresponding average work
per particle and R2, respectively. In panels (d) and (e)
we show the radial distribution function P (r) and the

particle density at different times during the protocol.
We next consider the effect of increasing the value of

tf for the problem considered in that section. In panel
(a) of Fig. S3, we show the work ⟨W ⟩ (15) as a function
of time for a system containing N = 9 active Brownian
particles, and protocol lengths tf = 1 and tf = 10. The
corresponding protocols for κ(t) and λ(t) are shown in
panel (b). For tf = 1, the protocol consists of increasing
λ and κ to their maximum values instantly, and then
reducing κ while the system is in an active state, in this
way extracting work.
The protocol for tf = 10 is able to extract much more

work than the one for tf = 1, and does so by changing
the state of the system twice. The protocol starts off
similar to the one for tf = 1, but then decreases κ to its
minimum value. Next, the system is brought back to the
passive state by setting λ = 0, so that the final increase
of κ to κf costs less work as R2 decreases.
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FIG. S3. (a) Work as a function of time for neural-network
protocols that optimize the problem of Section IV, for N = 9
and two values of tf . (b) Protocols for λ(t) and κ(t) corre-
sponding to the work in panel (a).
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FIG. S4. (a) Control parameters, (b) average work per particle, and (c) R2 as a function of time for the problem of Sec. IV
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(e) we show the particle positions for one of the trajectories.
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