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We present a modification of the Rose-Machta algorithm (Phys. Rev. E 100 (2019) 063304) and
estimate the density of states for a two-dimensional Blume-Capel model, simulating 105 replicas
in parallel for each set of parameters. We perform a finite-size analysis of the specific heat and
Binder cumulant, determine the critical temperature along the critical line, and evaluate the critical
exponents. The results obtained are in good agreement with those obtained previously using various
methods – Markov Chain Monte Carlo simulation, Wang-Landau simulation, transfer matrix, and
series expansion. The simulation results clearly illustrate the typical behavior of specific heat along
the critical lines and through the tricritical point.

INTRODUCTION

The Ising system with anisotropy field [1, 2], known
as the Blume-Capel (BC) model, is the simplest lattice
spin model in which a tricritical point is observed. This
is the point on the phase diagram where a smooth line
of second order phase transitions suddenly turns into a
first order line [3, 4]. The model has been studied using
various analytical and numerical methods, and the status
of the study is discussed in detail in the paper [5].

A new framework for numerical entropy estimation of
systems with discrete energy spectrum was recently pre-
sented [6]. It is designed to simulate equilibrium systems
in a microcanonical ensemble using annealing on the en-
ergy ceiling. It has been applied to a first-order phase
transition in a two-dimensional 20-state Potts model to
study topological transitions in the unstable energy re-
gion between two equilibrium states. One of the micro-
canonical algorithms proposed in the paper [6], the mi-
crocanonical population annealing algorithm, is an inter-
esting combination of Markov Chain Monte Carlo and
population annealing, and is designed to calculate the
density of states by estimating entropy. The basic idea is
to compute the random transitions of a huge number of
replicas and estimate the ratio of replicas that are sepa-
rated by an energy ceiling as the ceiling goes down the
energy spectrum.

In the original version, the algorithm starts by gener-
ating R independent replicas of the system at the maxi-
mum energy of the system and moves the replicas down
the energy levels using energy ceiling. The reasons for
the modification are several. First, in the general case
the choice of the spin configurations with the maximum
energy is a difficult task. Second, the number of configu-
rations with maximum energy can be finite. For example,
for the two-dimensional Ising model there are only two
such configurations, and we would like to have a large
number of replicas. Third, the ceiling algorithm of Rose
and Machta will drop the systems down the energy spec-
trum very quickly, and it is impossible to obtain a good
enough entropy estimate near the top of the energy spec-

trum.
In this paper, we extend the Rose-Machta population

annealing approach by introducing energy floor in addi-
tion to energy ceiling. The idea of the microcanonical
population annealing algorithm (MCPA) is as follows.
The randomly generated spin configurations most likely
correspond to the most probable energy values centered
around the maxima of the density of states (DoS), which
is a convex function. Using annealing with energy ceil-
ing, we get the left wing DoS. Using an extension of the
procedure with energy ceiling, the procedure with energy
floor, we get the right wing DOS.
The accuracy of our approach is additionally veri-

fied in a parallel article [7], which compares the re-
sults of the Rose-Machta method with the Wang-Landau
method [8, 9] with controlled accuracy [10] using the
Potts model as an example. It turns out that the ac-
curacy of both algorithms, the Wang-Landau algorithm
and the ceiling/floor population annealing algorithm, is
comparable. The difference between the algorithms is
that the Wang-Landau algorithm is a process of random
walk in the energy space, and this algorithm is a process
of parallel annealing of a sufficiently large population of
replicas using ceiling/floor energy annealing.
One of the main problems in simulating using tem-

perature dependent transition probability is the critical
slowdown. In the case of second-order phase transitions,
the relaxation time increases in a power law with the size
of the system in the critical region [11]. In the case of
first-order phase transitions, the situation is even worse,
since the time scale in the coexistense phase for simu-
lations growth with L as exp

(
Σ Ld−1

)
, where L is the

system size, d is the dimension of the system, and Σ is
the surface tension of the interface [12].
A practical feature of the Wang-Landau and energy

ceiling algorithms is that the transition probability does
not contain any temperature dependence and formally
does not have such a critical slowdown. In any case,
the characteristic times of the Wang-Landau algorithm,
the tunneling time and mixing time, continue to grow
according to the power law of the system size in the case
of a second-order phase transition [13] and simulating a
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model with large system size remains problematic. At the
same time, it seems that microcanonical algorithms are
more preferable for simulating systems with first-order
phase transitions [14].

We choose the Blume-Capel model to check how the
modified Rose-Machta framework works for a system
with second- and first-order phase transitions, and in the
case of a tricritical point, which is very difficult to study
numerically.

MODEL

The Blume-Capel model [1, 2] in the absence of a mag-
netic field is described by a Hamiltonian

H = −J
∑
⟨i,j⟩

σiσj +∆
∑
i

σ2
i , (1)

where the spins σi are located on the sites of a square lat-
tice of linear size L and take one of three values (−1, 0, 1).
Periodic boundary conditions are used, and pairwise in-
teraction of spins occurs only through the nearest neigh-
bor sites. The natural variables in the equation (1) are
the ferromagnetic coupling constant J>0 and crystal field
∆. We will also use the notation D=∆/J . The param-
eter D can be viewed as a disorder parameter, since the
model (1) can be mapped to the Ising model with an-
nealed disorder [4].

No exact solutions for the Blume-Capel (BC) model
on lattices of dimension d>1 are known. The phase dia-
gram obtained by numerical estimation of the continuous
phase transition line, the first-order phase transition line
and the tricritical point is shown in Fig. 1. The agree-
ment between the different numerical methods is quite
good and the most accepted position of tricritical point
is Dtr≈1.966 and Ttr≈0.608. Our phase diagram esti-
mate is consistent with other methods.

MICROCANONICAL POPULATION
ANNEALING

In this section, we briefly introduce the Rose and
Machta ceiling population algorithm presented in Sec-
tion II of the paper [6]. The authors demonstrate the
efficiency of the algorithm in the coexistence phase and
are able to capture interesting details of topological tran-
sitions in this domain.

In order to apply the ceiling population annealing algo-
rithm to calculating thermodynamic variables, the entire
energy spectrum must be covered to be able to estimate
entropy. So the simulating starts by generating a pop-
ulation of states with maximum energy. Applying the
ceiling algorithm [6] will very quickly drive all replicas
into the most likely states, and accuracy of density of

FIG. 1: Phase diagram obtained by different methods:
transfer-matrix [30] (blue circles), Monte-Carlo [31] (black tri-
angles), Wang-Landau [32] (green squares), high-energy and
low-energy expansions [5, 33] (red diamonds), microcanonical
algorithm [34] (cyan plusses), and microcanonical population
annealing (current work, violet crosses). The error bars are
much smaller than the symbols.

states (DoS) estimate will be insufficient [40]. We pro-
pose to generate a population with an initially random
configuration of spins.
In this case, the most likely configurations will have

an energy corresponding to the maximum of the density
of states, which is a convex function with a maximum
somewhere in the middle of the energy spectrum (see,
for example, Fig. 6). In this way, we can cover the whole
energy spectrum with good statistics and estimate the
DoS by combining the results of the ceiling and floor
simulations using an appropriate procedure. We present
the ceiling and floor processes in a unified description.

Rose-Machta ceiling procedure

Rose and Machta’s approach to simulating equilibrium
systems in a microcannonical ensemble does not relax
with temperature; instead, the independent variable of
the algorithm is energy. The MCMC procedure consists
of a single spin-flip algorithm. The moves occur in con-
figuration space, and the probability of transition from
the state α to the state ω with energy Eω is given by

Pceiling(α → ω) =

{
1 if Eω ≤ Ec

0 if Eω > Ec
, (2)

where Ec is the value of ceiling energy, the cooling energy
value. The elementary MCMC step consists with N up-
dating of randomly chosen spins with N is the number of
spins. Another parameter of the algorithm is the number
of elementary MCMC steps ns(E).
The algorithm satisfies detailed balance, but is not er-

godic for all ceiling energies Ec, especially near a ground
state consisting of more than one ordered state. Ergodic-
ity can be ensured by simulating a sufficiently large num-
ber of parallel replicas [6]. The success of the method was
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demonstrated by the example of a strong first-order phase
transition in the Potts model with 20 states [6]. The
method is in a sense a mixture of three algorithms: the
simulated annealing algorithm [15], the Wang-Landau
algorithm [8, 9], and the populations annealing algo-
rithm [16, 17].

Floor microcanonical procedure

Extension of this idea is annealing using the floor in-
stead of ceiling. The moves occur with the probability
of transition from the state α to the state ω with energy
Eω is given by

Pfloor(α → ω) =

{
1 if Eω ≥ Ef

0 if Eω < Ef
, (3)

where Ef is the value of floor energy, the heating energy
value.

FIG. 2: Example entropy estimate for Blume-Capel model
with D = 1.5 and linear system size L = 32. The blue solid
squares are calculated using the ceiling algorithm, the red
open circles are calculated using the floor algorithm, the right
dashed red vertical line marks the rightmost value of Sc(E),
the left dashed red vertical line marks the leftmost value of
Sf (E). The inner green solid vertical lines mark the stitching
region. Details are given in the text.

Microcanonical population annealing algorithm

Combining the ceiling and floor procedures, we get the
following algorithm. We do not apply any annealing pro-
tocols, but instead perform lowering and raising of energy
levels that are calculated dynamically.

Initialization – Generate R copies of a system with
a random spin configuration, most of which are located
near the maximum of the energy probability distribution
g(E), called the density of states (DoS). Set the initial
value of the ceiling Ec(0) to the maximum energy in the
ensemble of replicas, and the initial value of the floor
Ef (0) to the minimum energy.

Elementary step i of the algorithm –
1. Perform the ns(Ec(i)) (ns(Ef (i))) MCMC steps,

thereby creating new configurations R, which represent
a pool of configurations.
2c. Ceiling step – Set the next value of the ceiling Ec(i)

to the nearest lower energy level in the pool configura-
tions.
2f. Floor step – Set the next value of the floor Ef (i) to

the nearest higher energy level in the pool configurations.
3. Count the number of replicas in the pool R′ with

energy Ec(i) (Ef (i)), and calculate the culling fraction
ϵ(Ec(i))=R′/R or ϵ(Ef (i))=R′/R. Filter these R′ con-
figurations from the pool of configurations.
5. Randomly select configurations from the pool until

the number of replicas equal R.
6c. Go to step 1 until the lowest energy for the ceiling

is reached.
6f. Go to step 1 until the highest energy for the floor

is reached.

Stitching the parts of entropy together

To estimate the extensive part of entropy [6], culling
fractions are used for the ceiling and floor

Sc(E) = ln(ϵ(E)) +
∑

E′>E

ln(1− ϵ(E′)), (4)

Sf (E) = ln(ϵ(E)) +
∑

E′<E

ln(1− ϵ(E′)). (5)

Entropy allows us to add arbitrary constants, which we
denote as Sc

0 and Sf
0 , the entropy constants for the ceiling

and floor, respectively.
As can be seen from the simulation example in Fig. 2,

both cooling and heating only cover one wing of the entire
energy spectrum. The intersection spanned by both runs
is near the entropy maximum, where the random initial
replicas are probably located. We obtain entropy over
the entire energy range by stitching together the cooling
and heating wings in the overlapping region.
Stitching is a somewhat arbitrary procedure that is not

sensitive to selection details. We perform it as follows:
1. Select the intersection area bounded by the outer

red vertical lines from the leftmost point of the floor wing
to the rightmost point of the ceiling wing, see Fig. 2.
2. The ends of the ceiling and floor wings are somewhat

scattered, so we cut off the outer thirds areas, leaving us
with the area bounded by the inner green vertical lines,
which we denote as Eleft and Eright.
3. Calculate the mean difference

∆S(E) =
∑

E∈[Eleft,Eright]

Sc(E)− Sf (E)

Nstitch
,

where Nstitch=number of levels in [Eleft, Eright], i.e. for
all energies within the green lines in Fig. 2, for energy



4

levels coming from Eleft and Eright. This allows us to
write the stitched S(E) in the form

S(E) = S0 +


Sc(E) ifE < Eleft

Sf (E) + ∆S(E) ifE > Eright
Sc(E)+Sf (E)+∆S(E)

2 else.

(6)

4. The last free constant S0 can be fixed by counting
the number of all states in the system, which is 3L

2

in
our case of the Blume-Capel model on a square lattice
with L2 sites ∑

{E}

eS(E) = 3L
2

. (7)

It should be noted that step 3 is necessary to stitch
together the left and right entropy wings, since in the
general they should not coincide. The last step 4 consists
in normalizing the DoS by the number of possible states,
which should lead to the correct entropy values.

Estimation of the thermodynamic observables

An estimate of the canonical partition function is given
as a function of temperature T measured in energy units

Z(T ) =
∑
E

e−E/T+S(E) (8)

up to some constant multiplier. This multiplier canceled
when computing the estimates of the canonical averages,
so for simplicity we simply omit it and consider only the
extensive part of entropy.

The estimates of average internal energy ⟨E(T )⟩ and
specific heat ⟨C(T )⟩ at temperature T are calculated us-
ing the following expressions

⟨E(T )⟩ =

∑
E E e−E/T+S(E)

Z(T )
, (9)

⟨E2(T )⟩ =

∑
E E2 e−E/T+S(E)

Z(T )
, (10)

C(T ) =
⟨E2(T )⟩ − ⟨E(T )⟩2

T 2
. (11)

ALGORITHM REALIZATION

The implementation of the algorithm is based on a
modification [6] of the accelerated population annealing
algorithm for GPU [18]. The simulation were performed
on an NVIDIA V100 GPU with a typical replica number
R=217=131072.

The numberR of initial and independent replicas of the
system (1) is generated with random spin configurations.
Thus, these will be the most probable configurations with

the most probable energies. We use the cuRAND pack-
age [19] with the Philox random number generator from
the CUDA SL package, which allows us to have indepen-
dent sequences of pseudorandom numbers. The largest
linear lattice size in our research is L=96, and each ceil-
ing/floor simulation in one replica uses about 2 105 ran-
dom numbers per algorithm step. The total number of
steps is equal to the number of energy levels, which is
about 106. The total number of random numbers per run
of one replica is about 240, which is less than the length
of Philox stream 264. This concludes the discussion that
parallel replica simulations are random and uncorrelated.
We validate our algorithm by computing the DoS of

the 2D Ising model and comparing them well with the
corresponding exact solution [20] using ns(E)=10 steps.
Figure 3 shows the distribution of the number of initial
replicas of 2D Ising model with L = 20 as function of
energy, which is centered around zero.

FIG. 3: Number of replicas with energy E: initial random
configuration of 2D Ising model with square lattice size L =
20.

Figure 4 shows the culling factor calculated using the
microcanonical population annealing algorithm, and the
inset shows the absolute difference between the calcu-
lated culling factor and the exact one calculated using
Beale’s approach [20]. Note that the difference shown in
the inset is multiplied by the factor 1000, and this differ-
ence does not exceed 10−3, and is not visible at the scale
of the main figure.
We found no significant effect of the number of MCMC

steps ns(E) on the results, comparing DoS calculated at
values of ns(E) from 1 to 50. In contrast, the accuracy
of DoS strongly depends on the number of replicas R.
Figure 5 shows the variation of the relative DoS error,
calculated as the relative difference of the DoS estimate
from the MCPA simulation gMCPA(E) from the exact
g(E) calculated with Beale’s solution [20] g(E)

δg =
∑
{E}

|gMCPA(E)/g(E)− 1|

as the sum of modulus of the relative differences at each
energy level E, normalized by the number of energy lev-
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els. Remarkably, δg behaves like R−1/2, reflecting the
applicability of the central limit theorem for DoS estima-
tion using MCPA.

FIG. 4: Culling factor ϵ(E) of a two-dimensional Ising model
with linear lattice size L = 40. Inset: absolute difference
between the calculated and exact culling factor, multiplied
by a factor of 1000.

FIG. 5: Variation of the relative DoS error δg on the number
of replicas R. The dashed line shows the slop proportional to
1/R1/2. 2D square lattice Ising model with L=20.

We further validated the algorithm by comparing our
approach with Wang-Landau simulations using Potts
models with 10 and 20 components exhibiting a first-
order phase transition, and the results matched well [7].

The implementation of the Blume-Capel model algo-
rithm has significant differences from the Ising and Potts
models. In general, energy levels are not integers and
care must be taken when handling them in the algorithm.
The ceiling or floor goes to the next energy level, and the
energy gap depends on the fractional value of D. In-
deed, D is a finite decimal number, and the last digit a
in D is represented as a10−n (e.g., D=1.966 with a=6
and n=3). Since E=integer number+D integer number,
the minimum energy step is dD=10−n in the general case.
Therefore, the ceiling/floor modeling takes orders of mag-
nitude longer as n increases. For example, the number of
levels for systems of size L=32 varies from 4085 at D=0
to 40589 at D=1.9 to 383528 at D=1.966.

FIG. 6: The entropy S(E) is calculated for the ratios ∆/J=0
and 1.5 in the top row and ∆/J=1.966 and 1.99 in the bottom
row. The number of replicas is 217 and the system size is
L = 64.

As a result, we implement automatic detection of en-
ergy levels in the pool and change the ceiling/floor value
to the next energy level instead of changing it by dD. To
avoid the error in comparing floating point numbers, we
calculate the energies multiplied by a factor of 10n and
use integer arithmetic for them. This is a technical trick,
but a very important one, and it should be noted that
in the paper we give the energies in J units, so the 10n

factor drops out everywhere.

SIMULATION RESULTS

Figure 6 shows examples of entropy estimates for lat-
tices with linear size L=64 and for several values of the
anisotropy parameter ∆/J . It actually displays log g(E),
where g(E) is the density of states. For ∆/J=0 it is
a symmetric function, as expected, and with increasing
values of ∆/J the maximum shifts to lower energies.

Specific heat analysis

The specific heat is calculated using the expressions (9-
11). We analyze the finite-size scaling of the height of the
specific heat maximum Cmax and its position TC

L . It is
well known [41] that the phase diagram of the Blume-
Capel model, Expr. (1), in the (T −∆) plane consists of
the lines of the second order and first order phase tran-
sitions terminated at the tricritical point. Thus, there
are three classes of finite-size behaviour as well as the
crossover behaviour around the tricritical point. We sum-
marize some estimates of the phase diagram obtained by
various methods, as indicated in the figure caption to
Fig. 1.
The expected finite-size scaling of the specific heat near

the second-order line is in the universality class of the
2D Ising model. Accordingly, the two main terms in the
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D = ∆ / J

FIG. 7: Change of coefficient C0, expression (12), with
anisotropy parameter D. The solid line is the heuristic fit-
ting described in the text.

finite-size dependence of the specific heat of the Ising
model at the critical point behaves [21]

C = C0 (lnL+ C1) + ... (12)

and a detailed calculation of the terms can be found
in [21–24] for a two-dimensional model on the torus,
with C0=8/π(J/Tc)

2≈0.494. The logarithmic behaviour
is universal, but the coefficient C0 is not universal and
depends on the details of the Hamiltonian. The fit to the
expression (12) is given in the second and third columns
in the Table I. These fit is reasonable up to the value of
anisotropy parameter ∆/J=1.95.

It was observed in the paper [25] that the depen-
dence of the coefficient C0 along the critical line on
the anisotropy parameter D can be reasonably consis-
tent with the power law C0∝(D −Dtr)

ω with a reason-
able estimate Dtr=1.96(1). We checked our data against
this observation and plot the C0 coefficient from Table I
along with the fit to the minimum C0 value at D = 1.87,
see Figure 7. Estimating the fit with ω=0.227(31) gives
Dtr=1.965(53), which agrees very well with the widely
accepted value of tricritical point estimates [5].

The most typical dependence of the specific heat max-
imum on the lattice size is shown in Figure 8. For the
value 0≤D≤1.95 corresponding to Table I, the depen-
dence is logarithmic, as expected for the universality class
of the Ising model.

We observe crossover behaviour at a value ∆/J=1.96,
at which the specific heat fits well in a straight line, i.e.
with the effective exponent µeff close to 1, as shown
in Fig. 8. At large values of ∆/J , the divergence of the
specific heat grows faster – the results of fitting the power
law to the data of the form

C = m1L
µeff + . . . (13)

0 2 0 4 0 6 0 8 0 1 0 0
0

5

1 0

1 5

2 0

C m a x

L

FIG. 8: Maximum value of the specific heat of Blume-
Cappel model. Red circles - ∆/J=1.95, black squares -
∆/J=1.96,purple stars - ∆/J=1.962, magenta pentagons -
∆/J=1.966.

are given in Table II. Interestingly, the value of the effec-
tive exponent µeff≈1.6 for ∆/J=1.966 is very close to
those expected for the dependence of the specific heat at
the tricritical point [5]. Indeed, most estimates of the
position of the tricritical point coincide with the point
(∆/J=1.966, Tc=0.608), which agrees well with our ob-
servations. Surprisingly, the value of µeff≈1.6 was ob-
tained without noticeble corrections to scaling.
Qualitatively, this behavior is similar to the results of

the analysis of the phase diagram of the tricritical point
based on Landau theory and developed by Bausch [26].
Figure 4 from his paper illustrates the prediction that
there is a very wide crossover region around the first-
order critical line, a narrower one around the second-
order critical line, and a crossover region that disappears
around the tricritical point. We do not claim this ex-
planation, but simply draw the reader’s attention to the
coincidence, since we found a very strong crossover effect
around the first-order critical line. Indeed, the effective
exponent µeff convergences very slowly to the expected
value of 2 for the first-order phase transition , as can be
seen from Table II and Fig. 9.

Estimation of critical temperature

We estimate the critical point from the position of the
maximum of the specific heat and the position of the
minimum of the Binder cumulant [11, 27], that is, from
the pseudo-critical temperatures, which we denote T ∗

C(L)
and T b

C(L), respectively, and taking the thermodynamic
limit L → ∞. Figure 10 and Figure 11 illustrate how
specific heat and Binder cumulant behave differently in
the critical region depending on the linear lattice size L.
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TABLE I: Estimates of the critical temperature T ∗
c from

the position of the specific heat maximum Cmax, the criti-
cal amplitude C0 of the logarithmic behaviour of the specific
heat maximum and correction to scaling C1, and estimate of
the critical temperature T b

c from a Binder cumulant analysis.
Ising model universality sector. Linear systems of size L from
16 to 64 were used.

D/J T ∗
c C0 C1 T b

c

0 1.694(4) 0.79(2) 0.35(7) 1.697(1) )

0.5 1.5686(4) 0.74(2) 0.35(8) -

1 1.401(1) 0.70(1) 0.14(7) 1.400(1)

1.5 1.155(1) 0.59(1) 0.23(7) 1.155(2)

1.6 1.085(1) 0.53(1) 0.40(7) 1.087(1)

1.7 1.006(1) 0.52(2) 0.33(13) 1.007(1)

1.75 0.961(1) 0.453(8) 0.70(7) 0.9587(4)

1.87 0.8203(8) 0.41(2) 1.26(19) 0.8155(5)

1.9 0.7731(7) 0.44(1) 1.29(14) 0.7700(7)

1.92 0.7338(6) 0.60(2) 0.52(10) 0.731(3)

1.94 0.6891(4) 1.00(1) -0.45(3) 0.688(1)

1.95 0.6613(4) 1.79(6) -1.30(7) 0.6593(4)

TABLE II: Estimates of the critical temperature T ∗
c from the

position of the specific heat maximum Cmax, the critical am-
plitude m1 of the power law behavior of the specific heat
maximum and the effective critical amplitude µeff , and an
estimate of the critical temperature T b

c from Binder’s cumu-
lant analysis.

D/J T ∗
c m1 µeff T b

c

1.96 0.6321(4) 0.18(1) 0.95(1) 0.6281(3)

1.962 0.6219(2) 0.098(9) 1.14(2) 0.6207(5)

1.964 0.6156(1) 0.053(6) 1.34(3) 0.6145(2)

1.965 0.6121(5) 0.029(2) 1.51(2) 0.6110(1)

1.966 0.6089(2) 0.020(2) 1.61(2) 0.6077(1)

1.967 0.6057(1) 0.011(3) 1.78(6) -

1.97 0.601(1) 0.0110(9) 1.83(2) 0.5927(1)

1.98 0.549(1) 0.0062(5) 1.98(2) -

Binder cumulant calculated using the second and fourth
moments of energy

BE(T ) = 1− ⟨E4(T )⟩
3⟨E2(T )⟩2

. (14)

It is known [11, 21, 24] that the pseudo-critical temper-
atures shift depends on the correlation length exponent
ν as

T ∗
C(L) = T ∗

C +
a

L1/ν
, T b

C(L) = T b
C +

a

L1/ν
(15)

where T ∗
C and T b

C are estimates of the critical tempera-
ture. The results of the fit (15) are given in Table I and
Table II as first and last columns.

We found a difference in the estimates (see Table II)
of the critical temperatures T ∗

C(L) and T b
C(L) from the

1 , 9 6 0 1 , 9 6 5 1 , 9 7 0 1 , 9 7 5 1 , 9 8 0
0 , 8

1 , 0

1 , 2

1 , 4

1 , 6

1 , 8

2 , 0

µe f f

∆ / J

FIG. 9: Variation in the effective exponent of the specific heat
maximum.

FIG. 10: Specific heat in the critical region. ∆/J=1.965.

shift of the heat capacity maximum and the local mini-
mum of the Binder cumulant, a difference growing down-
ward along a first-order line. We attribute this to strong
crossover, and more extensive analysis is needed to accu-
rately estimate the first-order critical line. In contrast,
there is no difference in the Table I estimates of the criti-
cal temperature T ∗

c and T b
c from the displacement of the

specific heat maximum and the local minimum of the
Binder cumulant along the line of second-order transi-
tions. Apparently, the influence of the crossover is much
weaker in this case. It should be noted that the estimates
of the critical temperature in the last column of Table II
from the Binder cumulant are closer to Butera and Per-
nici’s estimates of the critical temperature from series
expansion [5] than our estimates of the critical tempera-
ture from the specific heat.
Figure 12 shows the entropy change in the critical re-

gion for lattice size L=48 for different values of the dis-
order parameter ∆/J in the tricritical point region. This
dependence is similar to that presented in Figure 5 of the
article [29], obtained using the transition matrix method.
Estimates of the critical temperature from the intersec-
tion of the entropy densities for various values of the lin-
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FIG. 11: Binder cumulant in the critical region. ∆/J=1.965.

FIG. 12: Entropy density for several values of D=∆/J .

ear size are consistent with estimates calculated from the
specific heat and Binder cumulant behavior.

DISCUSSION

We used a modified multicanonical population anneal-
ing algorithm [6] to analyze the two-dimensional Blume-
Capel model. We analyse the finite-size behavior of spe-
cific heat and Binder cumulant and observe the evolu-
tion from the second-order Ising behavior through the
tricritical point to first-order behavior. Our results are
in agreement with previous numerical analyses performed
by different methods – Monte Carlo Renormalization
Group [28], transfer-matrix methods [29, 30], real-space
renormalization group [36], Monte-Carlo method [31],
Wang-Landau method [32, 37], microcanonical algo-
rithm [34], high- and low-temperature expansions [5], and
many others.

In the Table III we combined some data from the lit-
erature for the critical temperature estimation [5, 25, 30]
and place in the last column our data for the critical tem-
perature estimation from the position of the specific heat
maximum presented also in the first column of Table I.
We cannot compare first-order line estimates because the
published data contain four or five digits of the disorder
parameter D, and our simulation would take a long time

if we simulated the system with such a value of D. We
have to note that the estimations of critical temperature
from the Binder cumulant and shown in the last column
of Table I become even more close to the estimations from
series expansion published by Butera and Pernici [5] for
large values of anisotropy parameter D/J .

Our algorithm differs from another class of micro-
canonical algorithms, such as microcanonical replica ex-
change algorithm [38]. The main difference is that in
MCPA the temperature is not used in the simulation and,
therefore, critical slowdown in the usual sense does not
occur. At the same time, the evaporation and conden-
sation of droplets in the vicinity of the first-order phase
transition are still determined by the energy barrier as-
sociated with surface tension and depend exponentially
on the surface length. It is likely that microcanonical
simulations is less sensitive to this than the canonical
simulations [6, 39]. More research is needed to make this
claim more certain.

The accuracy of the data is weakly dependent on the
number of MCMC steps, as shown in the Fig. 5. Instead,
the accuracy depends on the number of replicas R in
the pool and follows a R−1/2 behavior. Thus, the main
feature of the MPCA is to anneal the population in en-
ergy space and estimate the DoS from the averages over
a large number of replicas. Therefore, this algorithm is
very well suited for massively parallel simulations using a
hybrid MPI/GPU approach. The multicanonical popu-
lation annealing algorithm is another good approach for
modeling critical phenomena. We found a strong effect of
cross-over and finite size near the first-order line, which
needs to be explored with more intensive analysis.

D/J ref. [30] ref. [25] ref. [5] MCPA

0 1.695 1.693(3) 1.69378(4) 1.694(4)

0.5 1.567 1.564(3) 1.5664(1) 1.5686(4)

1 1.398 1.398(2) 1.3986(1) 1.401(1)

1.5 1.150 1.151(1) 1.1467(1) 1.155(1)

1.75 - - 0.958(1) 0.961(1)

1.87 0.800 - 0.812(1) 0.8203(8)

1.9 - 0.769(1) 0.766(1) 0.7731(7)

1.92 0.700 - 0.7289(2) 0.7338(6)

1.95 0.650 0.659(2) 0.656(4) 0.6613(4)

1.962 0.620 - - 0.6219(2)

1.966 0.610 - - 0.6089(2)

TABLE III: Estimates of the critical temperature Tc/J ob-
tained by different methods: transfer-matrix [30], Wang-
Landau [25], high-energy and low-energy expansions [5], and
microcanonical population annealing (MCPA, our data).
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