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Abstract

Image-goal navigation is a challenging task that requires
an agent to navigate to a goal indicated by an image in un-
familiar environments. Existing methods utilizing diverse
scene memories suffer from inefficient exploration since
they use all historical observations for decision-making
without considering the goal-relevant fraction. To ad-
dress this limitation, we present MemoNav, a novel mem-
ory model for image-goal navigation, which utilizes a work-
ing memory-inspired pipeline to improve navigation perfor-
mance. Specifically, we employ three types of navigation
memory. The node features on a map are stored in the short-
term memory (STM), as these features are dynamically up-
dated. A forgetting module then retains the informative
STM fraction to increase efficiency. We also introduce long-
term memory (LTM) to learn global scene representations
by progressively aggregating STM features. Subsequently, a
graph attention module encodes the retained STM and the
LTM to generate working memory (WM) which contains the
scene features essential for efficient navigation. The syn-
ergy among these three memory types boosts navigation
performance by enabling the agent to learn and leverage
goal-relevant scene features within a topological map. Our
evaluation on multi-goal tasks demonstrates that MemoNav
significantly outperforms previous methods across all diffi-
culty levels in both Gibson and Matterport3D scenes. Qual-
itative results further illustrate that MemoNav plans more
efficient routes.

1. Introduction

Image-goal navigation (ImageNav) is an attractive embod-
ied AI task where an agent is guided toward a destination
indicated by an image within unfamiliar environments. This
task has garnered significant attention recently, owing to its
promising applications in enabling robots to navigate open-

Figure 1. A brief example of MemoNav. MemoNav calculates
attention scores for each node on the topological map and then ex-
cludes the nodes with low scores (the black nodes in the figure)
during decision-making. This design helps our agent focus more
on goal-relevant scene features, boosting multi-goal visual naviga-
tion performance.

world scenarios.
Central to ImageNav is scene memory, which serves as

a repository of crucial historical information for decision-
making in unseen environments [34]. During navigation,
this memory typically stores both scene features and the
agent’s navigation history [23], thereby enhancing navi-
gation by mitigating the challenges of partial observabil-
ity [29]. In literature, various memory mechanisms have
been introduced for ImageNav, which can be classified into
three categories according to memory structure: (a) metric
map-based methods [10, 13] that reconstruct local top-down
maps and aggregate them into a global map, (b) stacked
memory-based methods [18, 28, 30] that stack the past ob-
servations chronologically, and (c) topological map-based
methods [5, 11, 22, 23, 34] that store sparse landmark fea-
tures in graph nodes. Notably, topological map-based meth-
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ods leverage the sparsity of topological maps, demonstrat-
ing impressive performance in ImageNav.

Nevertheless, existing topological map-based methods
still suffer from two major limitations: (a) Unawareness of
useful nodes. These methods typically use all node features
for generating actions without considering the contribution
of each node, thus being easily misled by redundant nodes
that are uninformative of the goal. (b) Local representation.
Each node feature only represents a small area in a large
scene, limiting the agent’s capacity to learn a higher-level
semantic and geometric representation of the entire scene.

To address these limitations, we present a novel Ima-
geNav method named MemoNav (refer to Fig. 1), which
draws inspiration from the classical concept of working
memory in cognitive neuroscience [15] and loosely aligns
with the working memory model in human navigation [7].

MemoNav learns three types of scene representations:
Short-term memory (STM) represents the local and tran-
sient features of nodes in a topological map. Long-term
memory (LTM) represents a global node that acquires
a scene-level representation by continuously aggregating
STM. Working memory (WM) learns goal-relevant fea-
tures about 3D scenes and is used by a policy network to
generate actions. The WM is formed by encoding the infor-
mative fraction of the STM and the LTM.

Based on the above three representations, MemoNav
navigation pipeline (Fig. 2) contains five steps: (1) STM
generation. The map updating module stores landmark fea-
tures on the map as STM. (2) Selective forgetting. A forget-
ting module incorporates goal-relevant STM into WM by
temporarily removing nodes with attention scores ranking
below a predefined threshold. After this process, the navi-
gation pipeline excludes the forgotten nodes in subsequent
time steps. (3) LTM generation. To assist STM, a global
node is added to the map as LTM. This node links to all map
nodes and continuously aggregates their features at each
time step. (4) WM generation. A graph attention module
encodes the retained STM and LTM to generate WM. The
WM combines goal-relevant information from STM with
scene-level features from LTM, enhancing the agent’s abil-
ity to use informative scene representations for improved
navigation. (5) Action generation. Two Transformer de-
coders use the embeddings of the goal image and the cur-
rent observation to decode the WM. The decoded features
are then used to generate navigation actions.

Consequently, with the synergy of the three represen-
tations, MemoNav outperforms state-of-the-art methods in
the Gibson scenes [42], enjoying substantial improvements
on multi-goal navigation tasks. Comparison in the Matter-
port3D scenes [9] also highlights MemoNav’s superiority.

The main contributions of this paper are as follows:
• We propose MemoNav, which learns three types of scene

representations (STM, LTM, and WM) to improve navi-

gation performance in the ImageNav task.
• We use a forgetting module to retain informative STM,

thereby reducing redundancy in the map and improving
navigation efficiency. We also introduce a global node as
the LTM, connecting to all STM nodes and providing a
global scene-level perspective to the agent.

• We adopt a graph attention module to generate WM from
the retained STM and the LTM. This module utilizes
adaptive weighting to generate effective WM used for
challenging multi-goal navigation.

• The experimental results demonstrate that our method
outperforms existing methods on both 1-goal and multi-
goal tasks across two popular scene datasets.

2. Related Work

ImageNav methods. Since an early attempt [44] to train
agents in a simulator for ImageNav, rapid progress has been
made on this task [2, 5, 12, 16, 20, 23, 26, 41, 43]. Several
methods have utilized topological scene representations for
visual navigation, of which SPTM [34] is an early work.
NTS [11], VGM [23], and TSGM [22] incrementally build
a topological map during navigation and generalize to un-
seen environments without exploring the scenes in advance.
These methods utilize all features in the map, while our
MemoNav flexibly utilizes the informative fraction of these
features. Another line of work [27, 43] has introduced self-
supervised learning to enhance the scene representations,
achieving a promising navigation success rate. In contrast,
we enhance the scene representations using the proposed
LTM that aggregates the agent’s local observation features.

Memory models for reinforcement learning. Several
studies [24, 25, 31, 33, 37, 45] draw inspiration from mem-
ory mechanisms of the human brain and design reinforce-
ment learning models for reasoning over long time hori-
zons. Ritter et al. [33] proposed an episodic memory storing
state transitions for navigation tasks. Lampinen et al. [24]
presented hierarchical attention memory as a form of “men-
tal time-travel” [38], which means recovering goal-oriented
information from past experiences. Unlike this method, our
model retains such information via a novel forgetting mod-
ule. Expire-span [37] predicts life spans for each memory
fragment and permanently deletes expired ones. Our model
is different from this work in that we restore forgotten mem-
ory if the agent returns to visited places. [25] shares a simi-
lar idea but just solves simple 2D grid-world tasks [14] and
its memory capacity is fixed. In contrast, our method em-
ploys an adaptive working memory to tackle more compli-
cated long-horizon navigation tasks.
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Figure 2. Overview of MemoNav. (a) The memory update module builds a topological map using et, the embedding of the current image
It. (b) The node features in the map constitute the STM while a global node that links to each node acts as the LTM. (c) The forgetting
module temporarily excludes a fraction of STM whose attention scores rank below a threshold p. (d) The retained STM and the LTM are
concatenated and then encoded by (e) a graph attention module to generate the WM M t

w. (f) The WM is decoded by two Transformer
decoders (details in Fig. 7). (g) Lastly, the output of the decoding process is input to a policy network to generate navigation actions.

3. Background
3.1. Task Definition

The objective of ImageNav is to learn a policy π to reach a
goal, given an image Igoal that contains a view of the goal
and a series of observations {It} captured during the navi-
gation. At the beginning of navigation, the agent receives an
RGB image Igoal of the goal. At each time step, the agent
captures an RGB-D panoramic image It of the current lo-
cation and generates a navigational action. Following [23],
any additional sensory data (e.g., GPS and IMU) are not
available.

3.2. Brief Review of Visual Graph Memory

Our MemoNav is primarily based on Visual Graph Mem-
ory (VGM) [23], which is briefly introduced below. VGM
incrementally builds a topological map G = (V, E) from
the agent’s past observations where V and E denote nodes
and edges, respectively. The node features V ∈ Rd×Nt

are derived from observations by a pretrained encoder Floc

where d denotes the feature dimension and Nt the number
of nodes at time t.

VGM uses a graph convolutional network (GCN) to en-
code the topological map into a memory representation
M = GCN(V ). Before encoding, VGM obtains the goal
embedding egoal = Fenc(Igoal) and fuses each node feature
with this embedding through a linear layer.

The encoded memory is then decoded by two Trans-
former [39] decoders, Dcur and Dgoal. Dcur takes the cur-
rent observation embedding ecur = Fenc(Icur) as the query
and the feature vectors of the encoded memory M as the
keys and values, generating a feature vector fcur. Similarly,
Dgoal takes the goal embedding egoal as the query and gen-
erates fgoal. Lastly, a LSTM-based policy network takes as
input the concatenation of fcur, fgoal and ecur to output an
action distribution.

4. Method

MemoNav integrates three principal components: the for-
getting module, long-term memory generation, and working
memory generation. We illustrate the pipeline of the Mem-
oNav in Fig. 2 and detail these components in this section.
We also briefly discuss the connection between our method
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and working memory studies [4, 15] in the appendix.

4.1. Selective Forgetting Module

MemoNav continually adds nodes to its topological map
during exploration. We denote these nodes as short-term
memory (STM)1 as they are dynamically substituted with
new ones when the agent revisits corresponding areas.

Our pilot studies indicated that not all STM equally con-
tribute to reaching goals. We visualize the attention scores
for the STM calculated in the memory decoderDgoal (Fig. 1
and Fig. 12 in the appendix). The figures show that high
scores are assigned to nodes leading to goals while little at-
tention is paid to remote ones. This phenomenon suggests
that it is more efficient to use the goal-relevant fraction of
scene memory. According to this finding, we devise a for-
getting module that enables the agent to forget uninforma-
tive experiences. Here, “forgetting” means that STM with
attention scores lower than a threshold are temporarily ex-
cluded from the navigation pipeline. This means of forget-
ting via attention is also evidenced by research [19] suggest-
ing that optimal working memory performance depends on
focusing on task-relevant information.

The forgetting module retains a fraction of STM accord-
ing to the attention scores {αi}Nt

i=1 in Dgoal. These scores
reflect the extent to which the goal embedding egoal at-
tends to each STM feature. After Dgoal finishes decoding,
the agent temporarily “forgets” a fraction of nodes whose
scores rank below a predefined percentage p, meaning these
nodes are disconnected from their neighbors and excluded
from the navigation pipeline in subsequent steps. If the
agent returns to a forgotten node, this node will be re-added
to the map and processed by the pipeline again. In multi-
goal tasks, once a goal is reached, all forgotten nodes will
be restored for potential usefulness in locating the next goal.
The forgetting module operates in a plug-and-play manner,
which means it is not activated during training but switched
on during evaluation and deployment (refer to Fig. 7 for de-
tails). p is set as 20% as we empirically find that this suits
most tasks. With this module, the agent can selectively re-
tain the informative STM, while avoiding misleading expe-
riences.

4.2. Long-Term Memory Generation

In addition to STM, the information in the long-term mem-
ory (LTM) also forms part of working memory (WM) [17].
Inspired by ETC [1] and LongFormer [6], we add a zero-
initialized trainable global node nglobal ∈ Rd to the
topological map, representing the LTM (the orange star
in Fig. 2), which connects to all nodes in the map and
aggregates the STM features at each time step. Unlike

1The two terminologies ”Nodes” and ”STM” will be used interchange-
ably in the following sections.

RecBERT [21], which uses a recurrent state token to en-
code visual-linguistic clues, our LTM aggregates the agent’s
past observations by continuously fusing the STM through
memory encoding (the encoder is described in the next sub-
section).

LTM offers two key benefits: it learns a scene-level fea-
ture and facilitates feature fusion. A recent study [32] sug-
gests that embodied agents benefit from higher-level en-
vironment representations to mitigate partial observability
from limited field-of-view sensors. From this viewpoint,
the LTM stores a high-level scene representation by aggre-
gating local node features. Moreover, the LTM facilitates
feature fusion, especially useful when the topological map
is segmented into isolated sub-graphs due to the removal of
forgotten nodes. By connecting to every node, the LTM acts
as a bypath aiding in feature fusion across these sub-graphs.

4.3. Working Memory Generation

The third type of scene representation WM learns goal-
relevant features for action generation. To learn adap-
tive WM, we utilize a graph attention module GATv2 [8]
to encode the retained STM and the LTM, capitalizing
on GATv2’s effectiveness in scenarios where nodes have
varying neighbor importance. GATv2 adaptively assigns
weights to neighboring nodes based on their features, in-
stead of relying on a static Laplacian matrix. This design is
suitable for generating WM, especially in multi-goal tasks
since the STM features related to a path leading to the goal
should obtain high weights while those of irrelevant places
should receive lower weights. In addition, as STM fea-
tures are updated with new features upon revisiting nodes,
GATv2’s adaptive weighting is particularly suitable for ag-
gregating the STM features into the WM. The WM genera-
tion process is formulated as follows:

Mw = {V ′,nt
global} = GATv2({V ,nt−1

global}) (1)

where Mw represents the generated WM, and V ′ the en-
coded STM. {·, ·} denotes that the LTM (a vector) is ap-
pended to the retained STM (a sequence of vectors). Note
that the time step superscript of nglobal means that the LTM
is recurrent through time.

After GATv2 encoding, the WM aggregates the goal-
relevant information from retained STM as well as the
scene-level representation from the LTM. Lastly, the de-
coders Dcur and Dgoal take Mw as keys and values, gen-
erating fcur and fgoal, which are further used to generate
actions.

5. Experiments
5.1. Datasets

All experiments are conducted in the Habitat [35] simulator
with the Gibson [42] and Matterpot3D [9] scene dataset,
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Scene Methods 1-goal 2-goal 3-goal 4-goal

SR SPL PR PPL PR PPL PR PPL

G

ANS [10] 30.0 11.0 - - - - - -
NTS [11] 43.0 26.0 - - - - - -

CNNLSTM [44] 53.1 39.2 31.5 10.6 18.0 2.8 12.4 1.6
TSGM [22] 70.3 50.0 27.8 16.1 17.4 10.4 13.4 4.6
VGM [23] 70.0 55.4 42.9 17.1 29.5 7.0 21.5 4.1

MemoNav (ours) 74.7 57.9 50.8 20.1 38.0 9.0 28.9 5.1

M
CNNLSTM [44] 16.2 9.8 10.8 2.6 7.7 1.4 - -

TSGM [22] 24.0 14.6 13.5 6.2 7.8 3.8 - -
VGM [23] 25.1 16.6 16.7 5.0 11.8 2.5 - -

MemoNav (ours) 26.1 16.3 19.5 5.6 13.6 2.9 - -

Table 1. Comparison between MemoNav and previous methods. The evaluation results in Gibson (G) and Matterport3D (M) scenes
demonstrate that MemoNav outperforms previous methods across all difficulty levels. Note that the 1-goal evaluation in Gibson uses 1007
hard episodes following [23] while the multi-goal evaluation uses our collected episodes. SR: success rate (%), SPL: success weighted by
path length (%), PR: progress (%), PPL: progress weighted by path length (%).

Figure 3. An example episode for multi-goal tasks in Gibson.
The agent is tasked with navigating to multiple sequential goals.

adopting an action space consistent with VGM [23].
1-goal evaluation. In Gibson, we use 72 scenes for training
and a public dataset [28] comprising 14 unseen scenes for
evaluation. Following the setting in VGM [23], 1007 out of
1400 1-goal episodes2 from this public dataset are used for
evaluation, while we still use the full set of 1400 episodes
for ablation studies of MemoNav.
Multi-goal dataset. Multi-goal evaluation, which requires
an agent to navigate to an ordered sequence of goals, is
more suitable for evaluating memory models used for navi-
gation. By enabling the agent to return to visited places we
can test whether memory models help the agent plan effi-
cient paths. If not, the agent will probably waste its time
re-exploring the scene or traveling randomly. However, re-
cent ImageNav methods seldom conduct multi-goal evalu-
ations. To further investigate the efficacy of MemoNav, we
follow MultiON [40] to compile 700-episode multi-goal test

2The 1-goal difficulty level here denotes the hard level in this public
test dataset

datasets in the Gibson scenes (see Fig. 3 for an example).
We follow five rules to set sequential goals for each

episode: (1) No obstacles appear near each goal. (2) The
distance between two successive goals is no more than 10
meters. (3) All goals are placed on the same layer. (4) All
goals are reachable from each other. (5) The final goal is
placed near a certain previous one. Please refer to Fig. 8 for
dataset statistics.

In Matterpot3D, we sample 1008 episodes per difficulty
level from the multi-goal test datasets used in Multi-ON
[40]. The difficulty of an episode is indicated by the num-
ber of goals. All methods are trained on the Gibson 1-goal
dataset and tested across varying difficulty levels.
Evaluation Metrics. In 1-goal tasks, the success rate (SR)
and success weighted by path length (SPL) [3] are used. In
a multi-goal task, two metrics are borrowed from [40]: The
progress (PR) is the fraction of goals successfully reached,
equal to the SR for 1-goal tasks; Progress weighted by path
length (PPL) indicates navigation efficiency and is defined

as PPL =
1

E

E∑
i=1

Progressi
li

max (pi, li)
, where E is the

total number of test episodes, li and pi are the shortest path
distance to the final goal via midway ones, and the actual
path length taken by the agent, respectively. The objective
of each goal is to stop within 1 meter of the goal location
and each episode is allowed 500 steps.

5.2. Compared Methods and Training Details

We compare with the following methods which adopt var-
ious memory types: CNNLSTM [44] uses no maps but a
hidden vector as implicit memory. ANS [10] is a metric
map-based model for ImageNav. NTS [11] incrementally
builds a topological map without pre-exploring and adopts
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Components 1-goal 2-goal 3-goal 4-goal

Forget LTM WM SR SPL PR PPL PR PPL PR PPL

1 52.1 46.7 42.9 17.1 29.5 7.0 21.5 4.1
2 ✓ 55.1 46.1 44.9 17.5 29.4 6.5 21.5 4.2
3 ✓ 58.9 49.7 43.8 17.8 29.6 6.9 25.1 4.0
4 ✓ ✓ 60.6 49.9 48.1 19.5 37.5 9.1 28.8 4.9
5 ✓ ✓ 61.1 48.9 47.6 17.8 33.7 7.9 27.4 5.0
6 ✓ ✓ ✓ 62.4 50.7 50.8 20.1 38.0 9.0 28.9 5.1

Table 2. Network component ablation results. This ablation uses the entire 1400 1-goal episodes collected by [28] and our collected
multi-goal evaluation datasets. Row 1 is the baseline model VGM [23], and row 6 is our full model. The table shows that when applied
separately, the forgetting module and the LTM both improves performance and that the combination of these two components brings larger
gains. Moreover, the synergy among the three components leads to the best performance. (Forget: Forgetting nodes with attention scores
below 20%, LTM: Using the LTM to continuously fuse the STM, WM: Using GATv2 to learn adaptive working memory)

a hierarchical navigation strategy. VGM [23] is the base-
line for MemoNav and has been elaborated in Sec. 3.2.
TSGM [23] associates a topological map with detected ob-
jects to use more semantic scene information.

We follow the training pipeline in [23] to reproduce
CNNLSTM and train our MemoNav. These methods are
first trained via imitation learning and then further fine-
tuned with proximal policy optimization (PPO) [36] (details
in the appendix). The evaluation results for ANS and NTS
are borrowed from the VGM paper [23]3. All methods are
equipped with a panoramic camera.

5.3. Quantitative Results

Comparison on Gibson. Tab. 1 shows that the MemoNav
outperforms all compared methods in SR across all diffi-
culty levels. Notably, CNNLSTM exhibits the poorest per-
formance as its limited memory provides insufficient scene
information. MemoNav also outperforms the metric map-
based method ANS which requires pre-built maps. Com-
pared with VGM, our model exhibits a noticeable perfor-
mance gain, especially on the multi-goal tasks, enhancing
SR by 7.9%. 8.5%, and 7.4% on the 2, 3, and 4-goal tasks
respectively, while relying on less scene memory.
Comparison on Matterport3D. We extend our evaluation
to the Matterport3D scenes to assess the models’ ability to
generalize to different scene types. Tab. 1 shows that our
method achieves consistent performance improvements on
this unseen scene dataset. Compared with VGM, MemoNav
demonstrates higher SR/PR across the three difficulty lev-
els. TSGM obtains slightly better PPL on multi-goal tasks
probably because it uses more object-level clues to locate
the goal. As the introduction of object semantics in TSGM
is orthogonal to our contributions, we believe adding these
semantics to MemoNav will lead to higher performance.

3ANS is designed for exploration while NTS is not open-sourced, so it
is not straightforward to reproduce them for multi-goal tasks.

Overall, these results demonstrate that MemoNav bene-
fits from the informative scene memory and the high-level
scene representation contained in the WM, obtaining high
success rates.

5.4. Ablation Studies and Analysis

We conduct ablation studies in the Gibson scenes to analyze
the impact of each proposed component.
Performance gain from each proposed component. We
assess the three key components outlined in Sec. 4 and
present the results in Tab. 2. We can see that applying
the forgetting module achieves improvements in the SR/PR
(row 2 vs. row 1) and that the LTM also brings noticeable
gains in SR/PR over the baseline (row 3 vs. row 1). No-
tably, the combined use of the forgetting module and LTM
results in even larger increases (row 4 vs. row 1). More
importantly, the synergy among the three components in-
creases the SR/PR by 10.3%, 7.9%, 8.5%, and 7.4% at the
1, 2, 3, and 4-goal levels, respectively (row 6 vs. row 1).
Comparing rows 6 and 5, we see that adding the forgetting
module to MemoNav leads to notable increases, especially
on multi-goal tasks. The qualitative evaluation in Fig. 9 also
shows that MemoNav without forgetting tends to take re-
dundant steps, which also justifies the efficacy of the for-
getting module. Overall, these results underscore the ef-
fectiveness of our components in addressing long-horizon
navigation tasks with multiple sequential goals.
The Critical Role of LTM. To study the effect of the LTM
proposed in Sec. 4.2, we implement three distinct ways of
disenabling the function of the LTM and show the results
in Tab. 3. The first ablation (row 2) excludes the LTM from
the WM, preventing the high-level scene feature from being
utilized by the downstream policy network. This modifi-
cation worsens the performance across all difficulty levels.
The second ablation replaces the LTM feature with a ran-
domly selected STM feature each time the WM is generated
according to Eq. (1), resulting in inferior multi-goal naviga-
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Variants 1-goal 2-goal 3-goal 4-goal

SR SPL PR PPL PR PPL PR PPL

1 MemoNav 62.4 50.7 50.8 20.1 38.0 9.0 28.9 5.1
2 LTM excluded 60.5 49.1 46.3 16.3 34.2 8.0 26.8 4.9
3 Random replacing 61.0 47.9 45.9 17.4 34.9 8.2 27.0 5.0
4 Averaging STM as LTM 59.1 49.2 46.1 18.6 37.4 8.3 28.4 4.8

Table 3. Ablation study of LTM. Row 1 is our default model. Row 2 is a variant using the LTM to aggregates STM but does not incorporate
the LTM into WM. Row 3 shows the impact of replacing the LTM with a random STM feature. Row 4 shows the result of replacing the
LTM with averaged STM. The three variants disable the LTM, all leading to performance drops.

tion performances.
To justify that aggregating STM features into the LTM

using adaptive weighting helps to learn a better high-level
scene representation, we replace the LTM feature with an
average of all STM features (row 4). After replacing, the
LTM no longer learns a scene-level representation but still
facilitates message passing among STM. Although this vari-
ant exhibits a decline in performance, the decrease is less
pronounced for the more challenging 3 and 4-goal tasks. We
hypothesize that this is because the simply averaged STM
features act as a rudimentary scene-level feature but pos-
sess a weak representation capability compared to a learned
LTM feature.

Overall, these findings confirm the LTM’s vital role in
learning scene-level features that are crucial for improving
navigation performance.
Correlation between navigation performance and for-
getting threshold. We evaluate our model with different
forgetting thresholds p, as defined in Sec. 4.1. The results
are shown in Fig. 4. For clarity, the figure shows the perfor-
mance differences between our full model and the variants.
The figure in general shows that MemoNav achieves the
best performance on easier tasks with a lower p but requires
a higher p for peak performance on harder tasks. Specif-
ically, increasing p from 0.0 (no forgetting) to 0.8 leads
to initial improvements in SR/PR and SPL/PPL for 1 and
2-goal tasks, followed by a decline. As the agent seldom
revisits explored areas in these easier tasks, using a larger
p to remove too much STM leads to a situation where the
agent forgets what it has explored and takes more steps to
re-explore the scene.

In contrast, for the more demanding 3 and 4-goal tasks,
a higher p is more helpful. For instance, at p = 0.8, Mem-
oNav exhibits only slight drops in SR/PR and SPL/PPL on
3-goal tasks, indicating that our agent is able to maintain a
high success rate with just 20% of STM. Notably, Memo-
Nav achieves top performance in 4-goal tasks at p = 0.4,
suggesting that a larger portion of the STM can be forgot-
ten when conducting longer-horizon navigation tasks that
require an agent to frequently revisit explored places. The
rationale behind this phenomenon is that if an agent has ex-

plored most of the scene after finishing several goals, it is
supposed to plan shorter paths to subsequent goals by uti-
lizing a small, goal-relevant fraction of STM.

We have also conducted an in-depth analysis of this phe-
nomenon by plotting distributions of distances from re-
tained/forgotten STM to each goal, as shown in Fig. 11 of
the appendix. This analysis demonstrates that a substan-
tial portion of retained nodes align closely with the short-
est paths, indicating that MemoNav leverages a higher p to
focus more on the regions along short paths in multi-goal
navigation scenarios.

5.5. Qualitative Comparison

To qualitatively assess MemoNav, we show example
episodes of CNNLSTM, VGM, and MemoNav in the Gib-
son scenes in Fig. 5. MemoNav’s efficacy is evident in its
shorter and smoother trajectories. Conversely, CNNLSTM
exhibits extensive exploration steps and often fails in com-
plex scenes due to its simplistic hidden states which struggle
to encapsulate an effective scene memory. VGM frequently
navigates in redundant circles, particularly in narrow path-
ways. For instance, as depicted in the second and third
columns, MemoNav adeptly avoids the bottlenecks that en-
trap VGM, exemplifying MemoNav’s capabilities of plan-
ning efficient routes.

5.6. Visualization of MemoNav

We plot example trajectories of MemoNav in multi-goal
tasks, as shown in Fig. 12. These examples show that Mem-
oNav utilizes the adaptive WM to plan efficient paths in
challenging multi-goal navigation. For instance, in the 3-
goal trajectory, MemoNav strategically forgets the distant
topmost node during the first goal and similarly neglects
the goal-irrelevant bottom-left nodes in subsequent goals.

To provide a comprehensive overview, we also analyze
MemoNav’s limitations by examining its failure episodes
in Fig. 13 of the appendix. These failures predominantly fall
into four categories: Stopping mistakenly, Missing the goal,
Not close enough, and Over-exploring. This analysis not
only helps in understanding the limitations of MemoNav
but also guides potential improvements in future iterations.
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Figure 4. Navigation performance versus forgetting threshold p in the Gibson scenes. MemoNav achieves the best performance on
easier tasks with a lower p but a higher p is more beneficial for harder tasks. Moreover, MemoNav maintains high SR/PR with just 20% of
STM on the 3-goal tasks and enjoys a higher p on the 4-goal tasks.

Figure 5. Visualization of example episodes from a top-down view. We compare CNNLSTM, VGM, and MemoNav at four difficulty
levels in the Gibson scenes. Our MemoNav plans more efficient paths compared to the other two methods. For instance, in the 3-goal
example, MemoNav quickly reaches the third goal which is located at an explored area. Best viewed in color.

6. Conclusion

This paper proposes MemoNav, a novel memory model for
ImageNav. This model flexibly retains informative short-
term navigation memory via a forgetting module. We also
introduce an extra global node as long-term memory to
learn a scene-level representation. The retained short-term
memory and the long-term memory are encoded by a graph
attention module to generate the working memory that is
used for generating action. The experimental results show
that the MemoNav outperforms previous methods in multi-
goal tasks and plans more efficient routes.
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MemoNav: Working Memory Model for Visual Navigation

Supplementary Material

Figure 6. The memory model by Cowan et al. [15]. This figure is
borrowed and adapted from its original paper.

8. Relation between MemoNav and Represen-
tative Working Memory Models

Human memory consists of complex interactions between
long-term memory (LTM), short-term memory (STM), and
working memory [15]. As defined by Cowan et al. [15],
LTM refers to the vast, stable knowledge base and expe-
riences stored over a lifetime. STM is a transient, limited-
capacity memory system that holds information in an acces-
sible state for brief periods. Working memory incorporates
selective parts of STM as well as stored LTM knowledge
through an attention mechanism, in order to actively process
information relevant to the current task or decision. Cowan
et al. [15] also designed a framework depicting how WM is
formed from STM and LTM (shown in Fig. 6). This frame-
work demonstrates that STM cooperates with LTM and de-
cays as a function of time unless it is refreshed. The useful
fraction of STM is incorporated into WM via an attention
mechanism to avoid misleading distractions. Subsequent
work by Baddeley et al. [4] suggests that the central execu-
tive manipulates memory by incorporating not only part of
STM but also part of LTM to assist in making a decision.

We draw inspiration from the work by Cowan et al. [15]
and Baddeley et al. [4] and formulate the navigation mem-
ory of MemoNav as an emulation of the human STM, LTM
and working memory systems.

The parallel between MemoNav and the two relevant
models above is shown in the following list:
• The map node features are termed “STM”, since they are

local and transient.

• The topological map of MemoNav maintains a 100-node
queue to store map nodes. This design simulates STM
that holds a limited amount of information in a very ac-
cessible state temporarily in the human brain.

• MemoNav introduces a global node aggregating prior ob-
servation features stored in the topological map, thereby
simulating LTM which acts as a large knowledge base.

• MemoNav utilizes a forgetting mechanism to remove a
fraction of STM with attention scores lower than a thresh-
old. This mechanism acts as a simple way of decaying
STM.

• The forgetting mechanism helps WM include part of
STM.

• MemoNav incorporates the retained STM and the LTM
into WM, which is subsequently used to generate naviga-
tion actions. This design simulates the working memory
model by [4].

9. Implementation Details
9.1. Implementation of MemoNav

Built upon VGM, MemoNav inherits its topological map
and uses its localization approach to add nodes. In addition,
MemoNav improves the memory module while keeping the
visual encoder and policy network unchanged of VGM.

We follow the training pipeline in [23] to reproduce
CNNLSTM and train our MemoNav. These methods are
first trained via imitation learning, minimizing the nega-
tive log-likelihood of ground-truth actions. Next, the agents
are further fine-tuned with PPO [36] to enhance exploratory
ability. The reward setting and auxiliary losses remain the
same as in VGM.The reward setting and auxiliary losses re-
main the same as in VGM.

The detailed MemoNav framework is shown in Fig. 7.
The structure of the memory decoding module in MemoNav
remains the same as in VGM [23]. The forgetting module
of MemoNav requires the attention scores generated in the
decoder Dgoal. Therefore, our model needs to calculate the
whole navigation pipeline before deciding which fraction
of the STM should be retained. This lag means that the
retained STM is incorporated into the WM at the next time
step. The pseudo-code of MemoNav is shown in Algorithm
1.

9.2. Reproduction of CNNLSTM

We reproduce CNNLSTM [44] following the description
in its original paper, but we also make some modifica-
tions to keep the comparison fair. We replace the ResNet-
50 in CNNLSTM with the pretrained RGB-D encoder of

1



Figure 7. The detailed structure of MemoNav. The goal decoder Dtarget calculates the attention scores α for each STM feature in the
topological map. Then the scores are used by the proposed forgetting module to remove redundant STM which will no longer be utilized
for downstream action generation. V denotes the retained STM and Mw the working memory.

Algorithm 1: The implementation of the MemoNav
Data: Empty topological map G = {V, E}, goal image Igoal, current time step t, forgetting percentage p, trainable

observation encoder Fenc, GATv2-based encoder GATv2, Transformer decoders Dgoal and Dcur,
LSTM-based policy network LSTM

Result: Navigation action at
1 Long-term memory nglobal ← 0 ∈ Rd;
2 Attention scores for graph nodes V : α← 0 ∈ R|V |;
3 while not AgentCallStop () do

// Step 1: Update the topological map
4 It ← GetCurrentPanorama();
5 G.UpdateMap(It);

// Step 2: Retain the informative fraction of the STM
6 Forgotten number n← Floor (p · |V|);
7 Sorted indices i← Argsort(α);
8 Forgotten indices iforgotten ← i [0 : n];
9 G.RemoveNodes(iforgotten);

10 V ∈ R|V|×d ← G.GetNodeFeatures ();
11 Working memory Mw ← GATv2({V , nglobal}) // Note that STM is fused before being

forgotten in the next step so the features of forgotten STM have been
fused into LTM.

12 ; ecur ← Fenc(It), egoal ← Fenc(Igoal);
13 fcur ← Dcur (ecur,Mw) , fgoal ← Dgoal(egoal,Mw);
14 α← Dgoal.GetAttScores()

// Step 4: Action generation
15 x← LSTM(FC([fcur,fgoal, ecur]));
16 p (at | x) = σ(FC(x));
17 at ← SampleFromDistribution(p(at | x));
18 end

VGM [23]. We also add positional embeddings to the en-
coded RGB-D observations to contain temporal informa-

tion. Moreover, we concatenate the encoded RGB-D ob-
servations with the goal image embedding and project the
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concatenated feature (1024D) to a 512D feature, so CNNL-
STM can utilize the information of the goal image. The pro-
jected features of four consecutive frames are further con-
densed and then input to a policy network as in [44]. To use
the two auxiliary tasks proposed in VGM [23], we also in-
troduce the linear projection layers (Linear-ReLU-Linear)
used in VGM to process the embedded goal image and em-
bedded current observation.

9.3. Compute Requirements

We utilize an RTX TITAN GPU for training and evaluating
our models. The imitation learning phase takes 1.5 days to
train while the reinforcement learning takes 5 days.

The computation in the GATv2-based encoder and the
two Transformer decoders occupy the largest proportion of
the run-time of MemoNav. The computation complexity
of the encoder and the decoders are O(|V|d2 + |E|d) and
O (|V|d), respectively. Using the forgetting module with
a percentage threshold p, the computation complexity of
MemoNav can be flexibly decreased by reducing the num-
ber of nodes to (1− p)|V|.

10. Comparison between MemoNav with and
without Forgetting

We analyze the impact of the forgetting module on Memo-
Nav’s trajectory properties, such as smoothness and length.
Fig. 9 illustrates that the inclusion of the forgetting module
results in more smooth and efficient trajectories. In con-
trast, trajectories generated without this module are charac-
terized by numerous abrupt turns and extended paths. This
disparity likely arises from a segment of the Short-Term
Memory (STM) containing irrelevant information, leading
to frequent and erratic alterations in the policy network’s ac-
tion output. The forgetting module effectively filters out this
disruptive portion of STM, thereby enabling the policy net-
work to use task-relevant navigation memory for efficient
decision-making.

11. In-depth Analysis of Forgetting Module
An extensive statistical analysis is conducted to compre-
hend the forgetting module’s functionality. In this experi-
ment, five distance metrics are calculated: (a) distance from
a node to the agent, (b) distance from a node to the goal,
(c) distance from a node to the oracle shortest path, (d)
distance from a node to the shortest path segments closer to
the agent, and (e) distance from a node to the shortest path
segments closer to the current goal. Then the histograms of
these five metrics are drawn according to the metrics records
for each forgotten/retained node at each time step so we can
see the patterns of these distance metrics. Please see Fig. 10
to better understand the definitions of the distance metrics
(c)(d)(e).

We evaluate MemoNav on the 3-goal Gibson task and
draw the histograms on per-goal basis, as shown in Fig. 11.
The figure provides two interesting findings:

• The distance distribution patterns for forgotten nodes
(green bars) and retained ones (orange bars) vary across
goals. Notably, as the agent progresses to the third goal,
the distributions of the distances from forgotten nodes to
goals (column 2) and to shortest path segments near goal
(column 5) become uniform. In contrast, these two his-
tograms for the retained nodes become sharper and the
peaks shift to smaller distance values. This pattern sug-
gests the forgetting module selectively retain nodes that
are proximal and relevant to the current goal.

• The forgetting module has a larger impact on the distance
metrics when the navigation task becomes more difficult.
Specifically, when the current goal index is 1 (i.e. the task
is easy), the averages of the distance metrics for forgotten
nodes and retained nodes are close. When the goal index
rises to 3 (i.e. the task becomes harder), a larger propor-
tion of the retained nodes are close to the goal, the shortest
path, and the shortest path segments near goal. This pat-
tern suggests that MemoNav focuses on critical areas for
navigation, such as the goal vicinity and the shortest path.

These results empirically validate that MemoNav is able
to retain the information useful for multi-goal navigation
via the forgetting module.

12. The Variation of the LTM

We explore the dynamic nature of the LTM during navi-
gation by calculating the L2 distance between consecutive
time-step features, as depicted in Fig. 14. The trends ob-
served in these curves – rapid initial increases in L2 differ-
ence followed by stabilization and intermittent peaks – are
indicative of the LTM’s response to the agent’s environmen-
tal interactions.

To understand why the LTM variation shows such a
trend, we visualize the agent’s observations at the time steps
of the peaks. Specifically, the L2 difference remains low in
familiar areas, suggesting stability in the LTM’s feature rep-
resentation. For instance, in the 2-goal example (top row),
the L2 difference steadily decreases in t = 31 ∼ 55 dur-
ing which the agent travels around visited areas; (2) The L2
difference increases sharply upon encountering new scenes.
These peaks correspond with the agent’s exposure to novel
views. For instance, in the 3-goal example (bottom row),
the L2 difference curve exhibits peaks at t = 68 when the
agent passes a corner and at t = 88 when the agent observes
a novel open area. These results highlighting the LTM’s role
in assimilating new exploratory experiences.
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Figure 8. Histograms of geodesic distances for the multi-goal test datasets. As we set a distance limit for goals and discard invalid
trajectories, a scene may own its prominent distance range, leading to the nonuniform histograms.

Figure 9. Visualization comparing the MemoNav with and without the forgetting module. We compare selected episodes at four
difficulty levels in the Gibson scenes and visualize the top-down views. MemoNav without the forgetting module exhibits more sharp turns
and tends to take more steps, demonstrating lower efficiency compared to the full MemoNav. The number of navigation steps (the upper
limit is 500) are shown at the bottom of each top-down view. Best viewed in color.

13. Limitations

While MemoNav witnesses a large improvement in the nav-
igation success rate in multi-goal navigation tasks, it still
encounters limitations. The proposed forgetting module is
a post-processing method, as it obtains the attention scores
of the decoder before deciding which nodes are to be forgot-
ten. Future work can explore trainable forgetting modules.
The second limitation is that our forgetting module does not
reduce memory footprint, since the features of the forgot-
ten nodes still exist in the map for localization. Moreover,
the forgetting threshold in our experiments is fixed. Future
work can merge our idea with Expire-span [37] to learn an
adaptive forgetting threshold.

14. Potential Impact

The notable potential of negative societal impact from this
work: our model is trained on 3D scans of the Gibson
scenes which only contain western styles. This inadequacy
of diverse scene styles may render our model biased and in-

compatible with indoor environments in unseen styles. As
a result, our model may be only available in a small fraction
of real-life scenes. If our model is transferred to out-of-
distribution scenes, the agent may take more steps and even
bump on walls frequently.
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Figure 10. The visualization of distance metrics (c), (d), and (e) defined in Sec. 11.
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Figure 11. Histograms of the five distance metrics defined in Sec. 11. The data of these metrics is collected by evaluating the MemoNav
on the 3-goal task in the Gibson scenes and averaged over five runs. The upper row (green) and lower row (orange) belong to the forgotten
nodes and retained ones, respectively.
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Figure 12. Multi-goal example trajectories of MemoNav. Each example shows both the topological map and the trajectory. The graph
nodes are incrementally added to the map and selectively retained by the forgetting module in MemoNav. The examples illustrate that
MemoNav flexibly neglects distant nodes. The yellow downward arrow denotes the current localized node of the agent. The comparison
with VGM in these example tasks is recorded in the supplementary videos.
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Figure 13. Examples of failed episodes. The agent encounters four major failure mode: (1) Stopping mistakenly: the agent implements
stop at the wrong place. (2) Missing the goal: the agent has observed the goal but passes it. (3) Not close enough: the agent attempts to
reach the goal it sees but implements stop outside the successful range. (4) Over-exploring: the agent spends too much time exploring open
areas without any goals.
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Figure 14. Visualization of the LTM variation. We show the agent’s trajectories in two example episodes and visualize the agent’s
observations at the time steps when peaks appear on the LTM variation curves. The green arrows denote when the agent sets a new goal
while the orange ones denote when peaks appear.
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