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Abstract

In this paper, we consider reinforcement learning
of nonlinear systems with continuous state and
action spaces. We present an episodic learning
algorithm, where we for each episode use convex
optimization to find a two-layer neural network
approximation of the optimal @-function. The
convex optimization approach guarantees that the
weights calculated at each episode are optimal,
with respect to the given sampled states and ac-
tions of the current episode. For stable nonlinear
systems, we show that the algorithm converges
and that the converging parameters of the trained
neural network can be made arbitrarily close to
the optimal neural network parameters. In par-
ticular, if the regularization parameter is p and
the time horizon is 7', then the parameters of the
trained neural network converge to w, where the
distance between w from the optimal parameters
w* is bounded by O(pT~1). That is, when the
number of episodes goes to infinity, there exists
a constant C' such that

P

T

In particular, our algorithm converges arbitrarily
close to the optimal neural network parameters as
the time horizon increases or as the regularization
parameter decreases.

lw —w*|| <C-

1. Introduction
1.1. Background

Deep Reinforcement Learning (RL) has been a cornerstone
in most recent developments of Artificial Intelligence One
example was defeating the highest ranked player in the an-
cient game Go (Silver et al., 2017), which in the 90’s was
considered a challenge that is hard to crack for the com-
ing 100 years. Another example is the development of chat
bots with Large Language Models, based on RL with Hu-
man Feedback.

Most of the recent practical progress is related to Markov
Decision Processes (MDPs) with discrete state and/or ac-
tion spaces. The case of continuous state and action spaces

is hard in general due to the high complexity of the prob-
lem.

The optimal control in its full generality is given by a dy-
namical system

Tiv1 = [z, ue)
where z; represents the state and u; the controller, at time

step t. The goal of the controller is to minimize a certain
criterion, given by

th(ilft,ut)

t=1

and a constraint on the control signal, u € U, typically
given by a bound on its power, ||u||? < c,.

Bellman provided a general algorithm to solve the problem
of optimal control based on dynamics programming, given
by the well known Bellman equation

Vi(a) = min {e; (2, u) + Vi (f(2,u))}

The challenge with the above equation is what Bellman
referred to as “The curse of dimensionality”, where for
most of the cases, the dynamic programming solution ex-
plodes exponentially in the dimensions of the state and ac-
tion spaces, and the length of the time horizon. Therefore,
most of the known approaches are approximate even for the
case where the system parameters and the cost function are
known.

1.2. Related Work

Nonlinear control theory is mainly considered with stabi-
lizing nonlinear systems, relying on different approaches,
see for instance (Khalil, 2002). The Bellman equation has
been a standard tool for optimal control. For continuous
state and action spaces, a straight forward approach is to
discretize the state/action spaces and then use existing so-
lutions for discrete MDPs such as different variants of Q-
learning, see (Sutton & Barto, 2018) for an overview. How-
ever, the problem with this approach is that the higher res-
olution, the larger state and action spaces become. This
will in turn increase the computational complexity of the
problem. To tackle this computational complexity, meth-
ods relying on function approximations are used. A rel-
atively simple approach from a complexity point of view
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Algorithm 1 Episodic Learning with Convex Optimization
1: Input~,p, R

2: Initialize uy, ..., up

3: Sample D by running uy, ..., ur
4: Initialize w

5: Setw; =w
6
7
8
9

: forepisode k =1, ..., K: do
Observe x1
Set uy = arg min,, Q(x1,u, wy)
for(t=1,...,7):do

10: Apply u; and observe z; 11

11: Set w41 = argmin, Q(zry1,u, wy)
12: Xe=(1 =] )

13: yr = (@, ug) + YQ(Xp41, Upt1, W)
14:  end for

15:  Solve (5) and obtain the solution w
16:  wp1 — wy + ag(w — wy)
17: end for

is to use linear function approximation (Melo & Ribeiro,
2007), where convergence is shown, given certain condi-
tions that could be too restrictive. Most recently, function
approximation based on Neural Networks have been widely
used, due to its success in the case of discrete state and
action spaces. However, the current methods suffer from
several drawbacks. First, there are no convergence guar-
antees when the () function is approximated with a neural
network. Second, even if the algorithms converge, it’s not
clear how far from the optimum they converge to. We re-
fer the reader to (van Hasselt, 2012) For a more thorough
literature review of Reinforcement Learning in continuous
state and action spaces.

1.3. Contributions

Our main contribution is the introduction of Algorithm
1, where we episodically use convex optimization to find
two-layer neural network approximation to the optimal Q-
function. The convex optimization approach guarantees
that the weights calculated at each episode are optimal,
with respect to the given sampled states and actions of the
current episodes. We show that the algorithm converges for
stable nonlinear systems, and that the converging parame-
ters of the trained neural network can be made arbitrarily
close to the optimal neural network parameters. In particu-
lar, if the regularization parameter is p and the time horizon
is T, then the algorithm parameters w distance from the op-
timal parameters w* is bounded O(pT ~!). That is, there is
a constant C' such that

lw—w|<C- 2.

N

For instance, by decreasing the regularization parameter
during the training phase and/or increasing the time hori-
zon of the optimal control problem, we can get arbitrarily
close to the optimal parameters. Finally, we provide exper-
imental results that show the performance of the proposed
algorithm with respect to a nonlinear dynamical system un-
der power constraints on the control signal.

1.4. Notation
N The set of positive integers.
R The set of real numbers.
Ps( - ) Pg(x) is the projection of z € R"

on the space S.
A; A; denotes ith i:th row of the matrix A.

[A];; Denotes the element of the matrix A
in position (i.j)

A Ay = [Alij

Il Il7 ||A|| denotes the Frobenius norm

of the matrix A.
|- 1] || A|| denotes the co-norm of the matrix A.
For a vector z € R, (z)4 = v, where
v; = max(x;, 0).
w— Given a sample wy, we have w_ = wg_1.

2. Episodic Deep Reinforcement Learning
with Convex Optimization

Consider a dynamical system given by

Ti41 = f(xtaut) (1)

where x € R" and © € R™. Suppose that the convex cost
function ¢(x, u) is non-negative and that it’s bounded by
some constant ¢ > ¢(x,u), for all stabilizing control sig-
nals u. The goal of the controller u; = g (x4, Tr—1, ..., T1)
is to minimize the cost

T
D A elwe,ur)
t=1

where v € (0, 1], subject to some power constraint on the
control signal, ||us]| < ¢y

Bellman’s equation gives the recursion
V(z) = rrbin {e(z,u) + YV (f(x,u))} (2)

where V () is the value function. Alternatively, we can use
the expression

Q) = clww) +yminQryuy) )

The @ function can be approximated by a neural network
as in (Silver et al., 2017). We let the activation functions be
given by the ReL.U function

(7)4 = max(z,0).
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Now suppose @ is represented by a two layer neural net-
work with layer parameters

w=(w,w'), weR>M o cRM,

Qz,u,w) = ([1 27 uTw) , w’

Let w* be the optimal network parameters. Then, they sat-
isfy the Bellman equation

Qe w) = ) + P (yin Qe w))
“4)

where
Q={Q:Q=(Xw)w,weR"Mw eRM M e N}

The training of the @) function parameters is to minimize
the squared error function with respect to the weights w of
a neural network, that is minimizing the loss

T
min Z I(w)
t=1

where

2
1) = (eo.) 471000 Qo w-) — Qi w))
+ pR(w)

and R(w) is some regularization term that can be chosen
appropriately.

The minimization with respect to the loss function [(w) is
not necessarily a convex optimization problem, and it could
be hard to find the right neural network approximation.
To get around this problem, we will consider a so called
episodic setting, which we will describe here. Consider
learning to control the dynamical system over K episodes,
where each episode has a time horizon of 7" time steps. The
input data will be given by

T T
1 x% u%
1 =z Uy
X = .
T T
1 ‘TT_Fl U‘T_Fl
1 z7 U

and output data will be given by

yr = (@, up) + YQ(Teg1, Utt1, Wi),

fort=1,...,T.
Now, let
c=[c(x1,u1) c(x2,us2) (xr, ur)]T
and
1 2l ul
1 xg ug
2 E
1 al ul
L ahiy upy

Suppose that the regularization term R is given by

R(w) = [[wlF + [w'”

The optimization problem of training a two layer neural
network becomes

. 2
min |(Xw)w' —y|" + p (|l + [w']*) =

2

M M
min [ (Xws) = | +p 3 (il +[uwff?)
i=1 i=1
where
w = [wy wa -+ wpl,
w' = [whwh - why]T,

w; € R, wh € R, fori=1,..., M.

Using the framework by Pilanci er. al. (Pilanci & Ergen,
2020), the optimization problem of minimizing the loss
I(w) becomes convex if we approximate the @)-function
with a two-layer neural network. We can use the result in
(Pilanci & Ergen, 2020) by generating a set of D) matrices
for each episode, and then optimize for the weights w.

The equivalent convex optimization problem is given by
2

P
i%gb E:;DPXXUMJ,—TUZp)_‘y
p=
. (5
40> (Jwip| + [way)
p=1

where w = (wy, ...,wp) € R2MFTn+VXP Note that the
optimization problem in (5) is equivalent to
2

P
mui}n Z Dp X (v1pw1,p — v2,pw2p) — Y
v>0  |p=1
P
+ pz(|1’17pwlﬂp| + [v2,pw2,p)) ©)
p=1

subjectto 0 < (2D, — 1)Xw1,p, p=1,...,P
0< (2D, — )Xws,, p=1,..,P.
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The learning algorithm we propose is given by Algorithm 1.
The main theoretical result of the paper provides conditions
for which Algorithm 1 converges. Before stating our theo-
rem, let v; ;, be the optimal solution in (6), , forp =1, .., P,
¢ =1, 2, and introduce

- p -
21}%’1
Fl _ 0 271%)2
0 0 |
—2'0%1 0 07
S
F2: 0 271%)2 0
00 7
and
[F 0
)

Now we are ready to state our main result.

Theorem 1. Consider Algorithm 1 and let A and 3 be pos-
itive real numbers with 3 > 1, such that

M = % <Zi: {_)gé] [Xe —Xi+ F)

and
|ut|2 S ﬁ7 |:Et|2 S ﬁ7

Further, let ay, be either a positive real constant, o = o <

1forall k € N, or such that o, = 1/k. If
3 (18
T 2 (22
(%)

[w —w| <C-

fort=1,...,T.

then wi — w where

Nl

for some positive real constant C.

Proof. The proof of this theorem is provided in a later sec-
tion.

Remark 1. Note that Algorithm I above is useful for both
cases when the system parameters are known as well as
when they are unknown. In the case of known parame-
ters, it’s hard in general to have a closed form solution
for the controller. Training a convex Q-function is a great
way to find a controller that is near optimal. In the case
of unknown system parameters and cost function, we can
Jjust use the measured values of c(x,u) and the state x. It
would be interesting to compare both results when assum-
ing known and unknown system parameters.

Initial State Lower Bound Convex Optimization

0.25 0.346 0.364
0.50 1.493 1.548
0.75 0.315 0.364
1.00 8.140 9.981

Table 1. The table shows the performance of the trained neural
network, compared to the lower bound given by the optimal fi-
nite horizon controller found by numerically solving the Bellman
equation. We considered a time horizon T' = 5, and tested differ-
ent initial states zo in the interval [0, 1]. We see clearly the the
convex optimization approach presented in this paper gets very
close to the optimal solution after 1000 episodes.

3. Experiments

In this section we will consider reinforcement learning for
nonlinear dynamical system given by

Ti4+1 — OQCC? + Olut
with a cost function given by
c(z,u) = 2% 4+ (0.1u — 2z)?

and constraint |u:| < 5. for simplicity, We restrict the train-
ing to initial states zy € [0,1]. Since it’s hard to numeri-
cally find the optimal stationary (time-invariant) controller
with full knowledge of the system model and cost func-
tion, we solve the finite horizon problem using dynamic
programming and gridding of the state space applied to
the Bellman equation, to find the optimal time-varying con-
troller. This would provide a lower bound to the cost using
a stationary controller. In particular we verify the cost over
5 time steps, that is 7" = 5. The number of episodes was
set K = 1000 to train a two layer neural network that ap-
proximates the optimal Q-function, and the regularization
parameter is set to p = 10~%. Table 3 summarizes the re-
sults for different initial states. We can see that the neural
networks found by the convex optimization based episodic
learning algorithm presented in this paper gets very close
to the lower bound of the optimal controller.

4. Proof of Theorem 1

Let
c(x1,u1)
c(x2,u9)
CcC =
c(xr,ur)
and
1 2l ul
1 2l ul

T T
Lz, upy,y
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We have that

P

y=ct Z D;Z(wl-,p-,k — W2 pk)
p=1

where wy, are the parameters used in episode k and

’ . [Dp](t-l—l)(t-l-l) for 1 <t< T-1
[Pyl = { 0 fort =T

Let WV be the linear space given by
W={w: 0< (2D, - 1)Xwp, p=1,..,P}
and let Q be the space of functions given by

P
= {Q P Q= ZDPX(U’LP — wa,p),

p=1

Q>0,0< (2D, — 1)Xwip,i=1, 2}.

The optimal weights w™* are given by the Bellman equation

P
> DX (wi, —wh,) =
p=1

P (7
c+Pg <~y min Z D, Z (w7, — w’ip))
p=1
Since
wiptipl < 5 (wipl? +02,).
with equality if and only if |w,| = v,, we see that (6) is

equivalent to

P 2

Z D, X (v1 pw1,p — V2 pWap) — Y

p=1
P

subject to 0 < (2Dp -DXw;p, p=1,..,P, i=1,2
®)
Now the transformation w; ,v; , — w;,, implies the equiv-
alent optimization problem

min
w
v>0

|wi;P|2 + ’Uiz,p)

wlb
l\DlP—‘

P 2
%1;8 Hgn Z Dy X (w1p —w2p) =y
P
F 23 (i 4 12, ©)
p=1
subjectto 0 < (2D, — 1)Xw1,p, p=1,...,P
0< (2D, — )Xws,, p=1,..,P.

Introduce
Dx =[D1X D:X -+ D,X]
Dz = [D'lZ DyZ - D]'DZ} ,
The objective function in (9) is given by

P

Z DpX(wip —w2p) —y

+

NI
Mwa

(|’LU17p/’U17p|2 + |w2710/v2710|2 + U%,p + Ug,p)
1

M~ =

DpX(wyp —wap) —c

1

p

P
_WZ D;Z(w]fyp - wgyp)
o &
+§Z |w1,p/U1p| +|w2p/v2p| +U1p+v2p)
p=1

I
Z DpX Wi,p — 1U27p)

p=1

P
—c—Pg <7 Z D;Z(wfp - w§7p)>

p=1

(I -Pg) (7213’ ,,>>

2

2

P
+ w] Flwy + wi Fws + gz |vp)?
p:

—

= |Dx(w —ws) — I*
(I-Pg) (7213’ ,,>>

P
+ wIFlwl + ’LU;-FQU}Q + gz |Up|2

2

p=1
g|" (9] L&
wa w9 p=1
where
I —Dx Dx
H = DY DUDx -+ F —D}(DX ,
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A= DY Dx + F, —-D\ Dx Now the update rule for wy, implies that
~| SDLDx DLDx+F
L=A"1 { D}T} W1 —w* = (1 — ag)(wgp — w*) + ag(wi, — w*)
DT
X and

M=1-LTA'L.
Using the Bellman equation (7), we get Wrt1 =W

_ = (1 — ag)(wr — w*) + ag(wy —w”)
y:c—l—PQ(WDZ(ka —w271€)) _ (1_ak)(wk _w*)
= Dx(w] —w3) —Po(vDz(w] —w3)) T
+ Pa(r Dzl s - 121 rapw(n | x| (o (lpz —paiun —w)
=[Dx —DxJw*++Po([Dz — Dzlwy) 3 A*le*)
—Po(v[Dz — Dzw*)

Then, completion of squares gives the relation

Introduce
g™ (9 . 4=[Px -Dx],
H =(w—Ly)'A(w—-Ly)+5" My
[w} [w] ( )AL ) Then,
A [ DX
Since A < 0, we may define the norm ATA = {—D}(] [DX _DX}
lw|[s £ wTAw. _ DYDx —DiDx
—-D\Dx DYDx |’
Let W be the linear space given by DT
AAT = [Dx —Dy] [ 5?}
W={w: 0< (2D, — )Xw,, p=1,...,P}. —Dx],
=2DxDY,
Standard Hilbert Space Theory implies that the optimal so-
lution w* to Also, note that
min f|lw— Lg]la - o
— t
is the projection of Lv on W under the norm || - || A, that is ATA+F = Z Z[DP]“ {—Xﬂ [Xi —X]+F
t=1 p=1
wi = Py (Ly). T P xT
=S [ —xger
Thus, t=1p=1 ‘
(D1 =T\
wi =Pw(a | 5 | (4 Pe 6Dz - Drjun))
X and
and IA-1F|| = |(ATA + F)~1F|
wi —w" <|(@-AD)~'F|
_ - -1 10
- PW(/V1 _%% (c+Po(7[Dz — Dzlwy)) —w*) < [T - XD ™ p fona| (10)
- DTXZ < P fmax
:PW(/V1 B (c+Po(v[Dz — Dzlwy)) =T
T
e q DDXT] [Dx —Dx] +F> w*) Now we have that
¢
[ DU T (ATA+ F) TATA(ATA+ F)™' < (ATA+ F)™!
- PW(A* | e+ Pa(vDz — Dalwi)
[~ x|
—[Dx — DxJuw*) — A*le*) Introduce |
Dt . fmin:min{ ) }
=P (s [ 5] e ipz — D~ ) Y
_Aile*) fmax—ng.%x{vip}v
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and note that for any f € (0, 00), we have the relation The inequality
3 (1B
(ATA+ fI)"TAT = AT(AAT + fI)~" T>§<7)
Thus implies that
’ 3B _
DX 2X2T
-1 X — T —1 T
HA [_D}JH H(A A+F)4 H Introduce
< |[(ATA+ pfuind) AT pe1- 228
222T

— J[ATAAT + o)

5] n-er|
= HD}( 2DXD.)I-( +pfminl)_l||
= ||2D% Dx + pfuinl) DX |

Since o, < 1, we have that
1 —pay < 1.

For the case where o, = «, for all £ € N, we see that the
inequality in (11) implies that wy — w* converges to some

< ||@D%XDx + pfuind) || I DX w — wx where
< (|27 AL + pfanD) ™| - VTB o — ] < £ LI e
VTB T 1 - pa AT
2T i
+ P i Similarly, for a; = f, we have that [|wy, — w*|| is the state
</ B Ay, of a stable dynamical system given by
—V4axT (an
Thus, Ap1 < (1= pag) - Ag + ay, pf;fx [[w]]
l[wer —w”| More explicitely, we have that

< (1= o)lfwr — w’

K
Py (A" {%T]PQ( D2 —DZ](wk—w*)))H AKgg 1 - pay) AO+Z H ) akpf;xﬂw*ﬂ

+ o
k=11i=k+1
+ o [[Pw (A7 Fu’)| (12)
< (1 — ag)||wk — w*|| Note that
_1 | DY, . K K
+ o ’PW(A 1 {_5%] )H Po(1[Dz — Dz])|| we — w*||
X H 1 — pay) H )
+ o [|[Pw (AT Fw*) || k=1 k=1
< (1~ o) [fw — |
= exp Ka

_1 [ DY, . Z k) (13)

+oa (AT | A0 ||| WPz — Dzl [lwk — w”||
X

< exp(—uan)

+ o AT o’ 1
< (1= o)lJwr — T Kn
+ ax (7606 ‘ { D } H flwi — w™| which goes to zero as K — oo. Similarly, for & > 0, we
IR have
+ oA P
5 K K
< (1= aw)Jw = w'l| + ax(/6B) | g llwn = w | [T @—pai) < J] exp(-pas)
L, i=k+1 i=k+1
+ o HA Fw H x
x 3y = _ .
= (1 — a)llw — w*|| + zxﬁr lw — w”| P < ui:kX;l 0‘1) (14)
+ o [[ATTFw| <exp(—p(nn—Ink —1))
372ﬂ2 * meax * ek "
< <1_Olk+05k g ) lws = wll + ax === flw]| “\x
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Thus, to fine-tuning Large Language Models, since the training
would be fast and computationally very efficient, and con-
K K K u . .
< ek\" 1 vergence to the optimal neural network parameters is guar-
Z H (1 = pevi)ay, < Z I anteed.
k=1i=k+1 k=1

1—
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p

T ’
for some constant C'. In particular, we can see that as reg-
ularization parameter p decreases and as the time horizon
T increases, the converging neural network parameters get
arbitrarily close to the optimal ones.

Jw—w] <C-

Future work includes applications to reinforcement learn-
ing for mixed continuous and discrete state and action
spaces. It would also be interesting to apply the algorithm
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