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Abstract  

For seven decades by A-15 superconductors we meant metallic A3B alloys (where A is a 

transition metal, and B is groups IIIB and IVB element) discovered by Hardy and Hulm 

(Phys. Rev. 89, 884 (1953)). Nb3Ge exhibited the highest superconducting transition 

temperature, Tc = 23 K, among these alloys. One of these alloys, Nb3Sn, is primary material 

in modern applied superconductivity. Recently Guo et al (arXiv:2307.13067) extended the 

family of superconductors where the metallic ions arranged in the beta tungsten (A-15) 

sublattice by observation of Tc,zero = 81 K in La4H23 phase compressed at P = 118 GPa. 

Despite the La4H23 has much lower Tc in comparison with near-room-temperature 

superconducting LaH10 phase (Tc,zero = 250 K at P ~ 200 GPa) discovered by Drozdov et al 

(Nature 569, 531 (2019)), the La4H23 holds the record high Tc within A-15 family. Cross et al 

(Phys. Rev. B 109, L020503 (2024)) confirmed the high-temperature superconductivity in the 

compressed La4H23. In this paper, we analyzed available experimental data measured in 

La4H23 and found that this superconductor exhibits nanograined structure, 5.5 nm ≤ D ≤ 35 

nm, low crystalline strain, |ε| ≤ 0.003, strong electron-phonon coupling interaction, 1.5 ≤ λe-

ph≤ 2.55, and moderate level of the nonadiabaticity, 0.18 ≤ ΘD/TF ≤ 0.22 (where ΘD is the 

Debye temperature, and TF is the Fermi temperature). We found that derived ΘD/TF and Tc/TF 

values for the La4H23 phase are similar to the ones in MgB2, cuprates, pnictides, and near-

room-temperature superconductors H3S and LaH10.   
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A-15 type superconducting hydride La4H23: Nanograined structure with low strain, 

strong electron-phonon interaction, and moderate level of nonadiabaticity  

I. Introduction  

In 1953 Hardy and Hulm1 discovered that A3B alloys (where A is one of the transition 

metals Ti, Zr, V, Nb, Ta, Cr, and Mo, and B is one element of groups IIIB and IVB, or the 

precious metals Os, Ir, Pt, and Au2) with A-15 lattice exhibit the superconducting transition 

temperature up to Tc = 23 K (for Nb3Ge3) and high values for low-temperature upper critical 

field, Bc2(4.2 K) ~ 37 T (for Nb3Ge4). One of these alloys, Nb3Sn, is primary material for 

superconducting wires in nearly all modern commercial magnetic systems, including 

magnetic systems for mega-science projects5–37.  

Primary physical reason why metallic hydrogen and hydrides are key materials in the 

quest of room temperature superconductivity can be understood based on two conclusions of 

the Bardeen-Cooper-Schrieffer theory38 of the electron-phonon mediated superconductivity:  

1. 𝑇 ≅ 1.17 × Θ × 𝑒 ∗        (1)  

2. 𝑇 ∝ √           (2)  

where Θ  is the Debye temperature, 𝜆  is the dimensionless electron–phonon interaction 

constant, 𝜇∗ is reduced electron–electron interaction constant (the Coulomb pseudopotential), 𝑀 is the mass of the metallic ion.  Despite strict theory of the electron-phonon mediated 

superconductivity39,40 and its later development41–43 are complicated, simplified Eqs. 1,2 are 

very useful tool to understand primary physical idea for the quest44–46 of room-temperature 

superconductivity, where the desirable parameters of the superconductor are:  

1. high Debye temperature, Θ ,  

2. strong electron-phonon interaction, 𝜆 ≥ 1.5, and 𝜆 ≫ 𝜇∗;  
3. as low as possible, the metal ion mass, 𝑀.  
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Hypothetical metallic state of hydrogen47 would satisfy these conditions. However, it is 

extremely difficult to create a metallic state in hydrogen in experiment48–51. In addition, the 

analysis52 of available experimental data measured in the most metallized state of hydrogen53, 

showed that there is a possibility that this state exhibits strong nonadiabatic effects41–43. This 

implies that the observed Tc in the experiment will be significantly suppressed from the value 

calculated by theoretical approach where the nonadiabatic effects were not counted.  

However, hypothetical possibility, that some alloys with high concentration of hydrogen 

(named superhydrides) can also exhibit mentioned above properties #1-#3, had been 

expressed years ago46,54.  

After nearly five decades of experimental quest48,49 of the terra incognita of room 

temperature superconductivity, Drozdov et al55 experimentally discovered the one in highly 

compressed H3S. To date, the highly compressed LaH10 holds record high Tc (with Tc,onset = 

280 K56,57 at pressure P ~ 200 GPa) for ever known superconductors48,58.  While the zero 

resistance and the Meissner effect in superhydrides had been registered already in the first 

report on H3S55, later these physical phenomena have been confirmed in LaH1057,59 and 

CeH960. The third fundamental phenomenon in the superconductors, which is the flux trap61–

63 effect, recently has discovered in H3S64, LaH1064 and CeH960.  

Returning now to the La-H binary system, we need to note that this system has a very rich 

phase diagram56,57,65,66. This was already shown in the first studies by Drozdov et al56. In the 

following extended study by Sakata et al 65 the multiphase feature of samples in the La-H 

system has been shown with a great clarity by reporting at least five fundamentally different 

XRD scans for La-H samples with the onset of transition temperature within a range of 65 𝐾 ≤ 𝑇 , ≤ 112 𝐾.  Later the crystalline structure for seven high-pressure LaxHy 

phases have been identified by Laniel et al66,  
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Recently, Guo et al67 showed that there is a superhydride phase in La-H binary system, 

with a stoichiometry of La4H23. This phase exhibits A-15 (beta tungsten) arrangement of 

lanthanum ions43, and Tc,zero = 81 K at pressure P = 118 GPa. Thus, A-15 superconductors’ 

family can be extended by the high-temperature hydride superconductor La4H23. Despite the 

La4H23 has much lower Tc in comparison with its near-room-temperature counterpart LaH10, 

the La4H23 holds the record high Tc within A-15 family.  

Soon after the report by Guo et al67, Cross et al68 confirmed the high-temperature 

superconductivity in highly compressed La4H23 phase with measured 𝑇 , →  ≅ 60 𝐾 (P = 

95 GPa), which was defined by strict resistive criterion:  

,, ≤ 1 × 10        (3)  

Recently two research groups69,70 specialized in the first-principles calculations of high-

pressure superconductors showed that the transition temperature of highly compressed 

superconductors should be affected by the crystalline lattice distortions (caused by either the 

presence of vacancies69, either by the anisotropic crystalline strain70). Considering that there 

is also a dependence of the Debye temperature, Θ , from the size of the crystals71, in this 

study we extracted the crystalline size, D, and the nanostrain, ε, in highly pressurized La4H23 

superconductors from the XRD data reported by two research groups67,68. From our view, 

these parameters are additional characteristics which can enrich our understanding of the 

near-room-temperature superconductivity in superhydrides.  

Thus, in this paper, we analyzed available experimental data measured in La4H23 by two 

research groups67,68, and we found that this superconducting phase exhibits:  

1. Nanograined structure, with average size of coherent-scattering regions, 𝐷, varied in 

the range 5.5 𝑛𝑚 ≤ 𝐷 ≤ 35 𝑛𝑚;  
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2. Low nanocrystalline strain, 𝜀, which is varied in the range −0.003 ≤ 𝜀 ≤ 0.003 

(where negative 𝜀 can be interpreted as the state with high concentrations of hydrogen 

vacancies);  

3. Relatively low Debye temperatures, Θ 𝑃 = 95 𝐺𝑃𝑎 ≅ 500 𝐾, and Θ 𝑃 =118 𝐺𝑃𝑎 ≅ 860 𝐾, which implies that the La4H23 is strong coupled superconductor 

with high electron-phonon coupling constant 1.5 ≤ λ ≤ 2.55;  

4. Moderate level of the nonadiabaticity, 0.18 ≤ ≤ 0.22 (where 𝑇  is the Fermi 

temperature).  

5. Deduced ratio of 0.020 ≤ ≤ 0.025 implies that the La4H23 phase falls to 

unconventional superconductors band in the Uemura plot.  

 

II. Experimental data sources and data analysis tool  

Primarily, we performed our analysis for experimental datasets provided by Cross et al 68 

as free online experimental data source at the University of Bristol data center 68. R(T) dataset 

for report by Drozdov et al56 provided as Data Source for Ref.56. Data for Guo et al67 and 

Sakata et al65reports were digitized from original plots in the papers65,67. Each section 

describes the models and mathematical routines used for the analysis. The Origin software 

was used to perform all data fits.  List of used designations is given in Table I.  

 

Table. I. The list of used designations.  

Designation Meaning  Equation Θ  Debye temperature  1,8,10-12,14,20 Θ  Einstein temperature  12 𝜆  Dimensionless constant of the electron-phonon interaction  1,14-16,18,19 𝜇∗ Dimensionless reduced electron–electron interaction 
constant (the Coulomb pseudopotential) 

1,14-16  𝜃 The Bragg angle  4,5,6 𝛽 𝜃  Instrumental breadth of the Bragg peaks in the XRD experiment  6 
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𝑈,𝑉,𝑊 Dimensionless parameters of the equation for instrumental 
broadening of the XRD experiments  

6 𝑘  Scherrer constant in the Scherrer and Willianson-Hall equation, 
usually assigned as 0.9 

5 𝜌  Saturated resistivity constant in parallel resistivity model  8 𝜌  Residual resistivity, 𝜌 ≡ 𝜌 𝑇 → 0 𝐾  8 𝛾 Sommerfeld coefficient in the equation for temperature 
dependent heat capacity 

9,11,12 𝛽 the amplitudes of the harmonic phonon contribution in the 
equation for temperature dependent heat capacity 

9,10 𝛿 the amplitudes of the anharmonic phonon contribution in the 
equation for temperature dependent heat capacity 

9  𝜀 Crystalline strain at nanoscale level  5 𝛼 ≡ 2 × Δ 0𝑘 × 𝑇  Dimensionless superconducting gap-to-transition temperature 
ratio  

18,19  

 

III. Results  

3.1. Size-strain analysis 

There are no direct macroscopical techniques which can be applied to study the 

microstructure (at the submicron level) of the sample in the diamond anvil cell (DAC). 

However, primary structural parameters of the sample in DAC can be extracted from classical 

Williamson-Hall (WH) analysis72 of the X-ray diffraction (XRD) data.  

We fitted XRD scans to multiple peaks Lorentz function73–75 (Figures S1,S2):  𝐼 2𝜃 = 𝐼 + ∑ × × × , ,     (4)  

where 𝐼  is the peak area, 2𝜃 ,  is the peak position, 𝛽  is peak integral breadth, and 𝐼 , 2𝜃 , , and 𝛽  are-free fitting parameters. We manually adjusted the 𝐼  level for 

each panel showed in all figures in this study.  

In Figure S1 we showed the fit of the XRD data reported by Cross et al68 to Eq. 4, where 

we designated by thick red curves all peaks described by Cross et al68 as peaks of the La4H23 

phase.  One can see (Figure S1) that there are many peaks which were not designated to the 

La4H23 phase by Cross et al68. This is another confirmation of the findings by Sakata et al65 

and Laniel et al66, that there are several La-H phases which can simultaneously exist in the 

DAC sample. However, we should stress that as it showed by the first-principles calculations 
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by Guo et al 67, high-temperature superconductivity with Tc ~ 80 K is associated exclusively 

with the La4H23 phase at the pressure range of ~ 100 GPa.  

Derived dataset for the peak breadth, 𝛽 𝜃 , and peak diffraction angle, 𝜃 , , for the 

La4H23 phase was fitted to WH equation72 (where we assumed that the instrumental broadening, 𝛽 , is negligible):  𝛽 𝜃,𝑃 = ×× + 4 × 𝜀 𝑃 × 𝑡𝑎𝑛 𝜃 ,     (5)  

where 𝑘  is the Scherrer constant usually assigned as 0.975–78, 𝜆 = 42.5 𝑝𝑚 is the 

wavelength of the radiation used in Ref.68, and 𝜆 = 41.24 𝑝𝑚 is the wavelength of the 

radiation used in Ref.67, and 𝐷 𝑃  is the mean size of coherent scattering regions, and the 𝜀 𝑃  

is the nanocrystalline strain.  

The reason for the assumption that the instrumental broadening, 𝛽 , can be omitted in both 

experiments67,68 because it is small in comparison with the broadening originated from the 

sample is based on the following facts:  

The assumption that the instrumental broadening, 𝛽 , can be omitted in both experiments67,68 

because it is small in comparison with the broadening originated from the sample is based on 

the following facts: 

1.  In synchrotron experiments (despite there are many experimental approaches and 

instrumental arrangements78–81) typical line broadening for the standardized samples and 

diffraction angles 2𝜃 ≲ 25°  is 0.0025° ≤ 𝛽 ≤ 0.005°. This implies that the upper limit 

for the crystalline size, which can be determined from synchrotron XRD data, is ~ 2.0 μm79 

(this is in ~10 times larger than the upper size limit for the laboratory machines data73–77).  

2.  Despite the XRD peaks in the high-pressure synchrotron experiments78,82–85 are broader in 

comparison with the ambient pressure experiments74,75,78–81, it should be noted, that it is 

difficult to ensure that at high-pressure conditions the sample remains the initial size of 
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coherent scattering regions and the strain. Reported values for the resolution of the high-

pressure synchrotron experiments are within the range of 0.01° ≲ 𝛽  ≲ 0.04° for 2𝜃 ≲ 25°.  

3.  Considering that both research groups67,68 did not report the instrumental broadening in their 

experiments, we can estimate this experimental characteristic in the following way. From 

reported XRD scan68 we choose three narrowest peaks (Figure S3), which are not the 

reflections of the La4H23 phase (for instance, the peak at 2𝜃 ≅ 7.640° has 𝛽 = 0.024° 
(Figure S3)). The fit of this 𝛽 2𝜃  dataset to Eq. 5 (Figure 1,a) shows that the crystalline 

size, associated with these reflections, is 𝐷 = 111 𝑛𝑚 and the strain is 𝜀 = 3 × 10 .   

 
Figure 1.  XRD peaks breadth, 𝛽 𝜃 , for three narrowest peaks recorded by Cross et al68 and the data 
fit to (a) Williamson-Hall equation72 (Eq. 5); and (b) to Caglioti equation86 (Eq. 6). 95% confidence 
bands are shown by pink areas. Deduced parameters are shown. Fit quality is (a) 0.99999; and (b) 
0.9987.  
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Because it is unlikely, that at harsh conditions of the La4H23 phase synthesis in the DAC67,68, 

some phase can exhibit conditions for perfect growth of large crystals, the revealed crystalline 

size 𝐷 = 111 𝑛𝑚 should not be associated with the upper limit for the experimental resolution. 

Instead, it is the broadening where some part of it originates from the sample size/strain and 

another part is from the instrument. However, because we do not have another suitable dataset, 

we assumed that this dataset represents the upper limit, 𝛽 , 2𝜃 , for the instrumental 

broadening for Cross et al68 experiment.   

We can use this dataset to estimate parameters in the Caglioti equation86:  

𝛽 , 2𝜃 = 𝑈 × 𝑡𝑎𝑛 + 𝑉 × 𝑡𝑎𝑛 + 𝑊     (6)  

where 𝑈, 𝑉, and 𝑊 are free-fitting parameters. Both research groups67,68 conducted 

experiments for 2𝜃 ≤ 22° and, because of the limited number of data points (only three), we 

omitted the term of 𝑈 × 𝑡𝑎𝑛 2𝜃 . Result of the fit is shown in Figure 1(b), where deduced 𝑉 

and 𝑊 parameters are shown. In Figure 2(a-c) we showed the extracted 𝛽 𝜃,𝑃 = 95 𝐺𝑃𝑎  

data for the La4H23 phase. In Figure 2 (d-f) we showed corrected peaks breadth by the equation:  𝛽 𝜃,𝑃 = 95 𝐺𝑃𝑎 = 𝛽 2𝜃,𝑃 = 95 𝐺𝑃𝑎 − 𝛽 , 2𝜃,𝑃 = 95 𝐺𝑃𝑎   (7)  

In Figure 2 we fitted data to the Williamson-Hall equation (Eq. 5).  

Figure 2 shows that deduced 𝐷 𝑃 = 95 𝐺𝑃𝑎 ~30 𝑛𝑚, and the strain is low 𝜀 𝑃 =95 𝐺𝑃𝑎 ≤ 0.005. One can see that when fits performed for the condition when both 

parameters are free (Figure 2(a,d)), then 2𝜎 uncertainties for both parameters are large. Based 

on that in Figures 2(b,e) we restricted fits to reveal the minimum size of the nanocrystals, 14 𝑛𝑚 ≤ 𝐷 𝑃 = 95 𝐺𝑃𝑎 ≤ 17 𝑛𝑚 (by applying the condition of 𝜀 𝑃 = 95 𝐺𝑃𝑎 ≡ 0).   
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Figure 2.  XRD peaks breadth (a-c) 𝛽 𝜃  and (d-f) 𝛽 𝜃 =  𝛽 𝜃 − 𝛽 , 𝜃   data and data 
fits to the Williamson-Hall equation72 (Eq. 5) for highly compressed single crystal La4H23 (P = 95 
GPa). Raw XRD scans reported by Cross et al68. 95% confidence bands are shown by pink areas.  
(a,d) 𝛽 𝜃,𝑃  data fit to Eq. 5 when 𝐷 𝑃  and 𝜀 𝑃  are free-fitting parameters. (b,e) 𝛽 𝜃,𝑃  data fit to 
Eq. 3 for the condition 𝜀 𝑃 ≡ 0.  (c,f) 𝛽 𝜃,𝑃  data fit to Eq. 5 for the condition 𝐷 𝑃 → ∞.  

 

In Figures 2(c,f) we restricted the fit to estimate the maximum of the strain in nanocrystals, 0.004 ≤ 𝜀 𝑃 = 95 𝐺𝑃𝑎 ≤ 0.005 (by applying the condition of 𝐷 𝑃 = 95 𝐺𝑃𝑎 → ∞). 

In overall (Figure 2), our analysis showed that the nanocrystalline strain in the La4H23 phase at 𝑃 = 95 𝐺𝑃𝑎 is low, because its maximum possible value of 𝜀 𝑃 = 95 𝐺𝑃𝑎 = 0.005 ±0.001 is approximately equal to the value determine by the same WH technique in high-quality 

epitaxial undoped YBa2Cu3O7-δ films87.  
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In the similar way, we analyzed XRD data reported by Guo et al67. In Figure 3 we showed 

the WH analysis for the La4H23 118 𝐺𝑃𝑎  sample, where we showed all peaks which we 

deduced from the experimental scan (Figure S2).  Figure 3 shows data fit to Eq. 5, where in 

panels (a,c) one can see a negative value for the crystalline strain 𝜀 118 𝐺𝑃𝑎 = −0.003 ±0.003.  

 
Figure 3.  XRD peaks breadth (a,b) 𝛽 𝜃  and (c,d) 𝛽 𝜃 =  𝛽 𝜃 − 𝛽 , 𝜃   data and data 
fits to the Williamson-Hall equation72 (Eq. 5) for highly compressed single crystal La4H23 (P = 118 
GPa). Raw XRD scans reported by Guo et al67. Pink areas show 95% confidence bands.  (a,c) 𝛽 𝜃,𝑃  
data fit to Eq. 5 when 𝐷 𝑃  and 𝜀 𝑃  are free-fitting parameters. (b,d) 𝛽 𝜃,𝑃  data fit to Eq. 5 for the 
condition 𝜀 𝑃 ≡ 0.  
 

Negative value for the strain is not what often reported, however, this is not unusual88, and 

the 𝜀 < 0 values are interpreted as the absence of the strain in the crystal88. Considering that 
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Figure 3 also shows that the instrumental broadening, 𝛽 𝜃 , for synchrotron 

experiments67, for sample with crystalline size of 𝐷 = 6 𝑛𝑚 can be completely omitted.  
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By omitting the stain contribution in the broadening, we can determine the grain size, 𝐷 118 𝐺𝑃𝑎 = 7 𝑛𝑚, with better accuracy by performing the fit at the condition of 𝜀 ≡ 0 

(Fig. 3 b,d). Considering that the lattice parameter 𝑎 118 𝐺𝑃𝑎 = 0.614 𝑛𝑚, we can 

conclude that this sample has a nanogranular structure 𝐷 118 𝐺𝑃𝑎 ≅ 11 × 𝑎.  

68In overall, we found that synthesized La4H23 samples by both research groups have 

nanograin structure with average grain size in the range of 5.5 𝑛𝑚 ≲ 𝐷 ≤ 35 𝑛𝑚 and low 

nanocrystalline strain |𝜀| ≤ 0.003.  

 

3.2. Debye temperature  

As we mentioned above, the Debye temperature, Θ , is one of primary parameters in the 

theory of the electron-phonon mediated superconductivity38. De facto the standard technique 

to determine the Debye temperature, Θ , for samples in DAC89–91 is the fit of the normal part 

of the temperature dependent resistance, 𝑅 𝑇 , to the saturated resistance model92–94 (where 

the Θ  is a free-fitting parameter):  𝜌 𝑇 = =
× ×

    (8)  

where 𝜌 , 𝜌 , 𝐴, and 𝑇  are free-fitting parameters.   

Recently Watanabe et al 95 reported a good agreement between the Θ  deduced from the 

fit of the 𝑅 𝑇  data to the Eq. 8 and from the fit of the low-temperature normal state specific 

heat capacity, 𝐶 𝑇 , in the η-carbide-type oxide Zr4Pd2O.  In the latter technique, the 𝐶 𝑇  

is fitted to the equation:  𝐶 𝑇 = 𝛾 × 𝑇 + 𝛽 × 𝑇 + 𝛿 × 𝑇               (9)  

where 𝛾 is the Sommerfeld coefficient, β and δ are the amplitudes of the phonon 

contributions for the harmonic and anharmonic terms, respectively; and the Θ  is calculated 

by the equation:  
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Θ =                   (10)  

where 𝑁 is the number of atoms per formula unit and 𝑅 = 8.31 𝐽𝐾 𝑚𝑜𝑙  is the universal 

gas constant.  It is important to noted that the approach expressed by Eqs. 9-10 is the standard 

way to determine the Debye temperature from the total specific heat data 95–102.  

Advanced approach 103–105 is to fit the 𝐶 𝑇  data to the Debye equation:  

𝐶 𝑇 = 𝛾 × 𝑇 + 9 × 𝑅 × 𝑁 × 𝑑𝑥            (11)  

where all parameters defined above, or to multichannel Debye-Einstein equation:  

𝐶 𝑇 = 𝛾 × 𝑇 + 9 × 𝑅 × ∑ 𝐴 , 𝑑𝑥, + 3 × 𝑅 × ∑ 𝐵 , ,
,     (12)  

where 𝐴  and 𝐵  are constants (depended from given crystalline structure and chemical 

composition), 𝑀 and 𝑃 are number of the channels for the Debye modes and the Einstein 

modes, respectively; Θ ,  is the Debye temperature of the i-channel, Θ ,  is the Einstein 

temperature of the j-channel. The use of the Eq. 11 requires high sensitivity measurements of 

the 𝐶 𝑇  and an addition, all measurements should be performed in a wide temperature 

range, 0 < 𝑇 ≲ Θ , with a small temperature step, Δ𝑇~ , between measurements, at least 

at low-T region of normal state 106.  

Because DAC has significantly larger thermal mass in comparison with the mass of the 

sample, this is practically impossible to extract the contribution of the sample in the total 𝐶 𝑇  from experimental measurements of the total heat capacity. Thus, to extract the Debye 

temperature for samples in DAC, temperature dependent resistive measurements are fitted to 

the Eq. 8.  

To answer a possible question about the comparison of the deduced Θ  values extracted 

from the fit of the 𝐶 𝑇  data to Eq. 11 and from the fit of the 𝜌 𝑇  data to Eq. 8, in Figure 4 
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we showed the 𝐶 𝑇  and 𝜌 𝑇  data fits for the cubic centrosymmetric η-carbide Nb4Rh2C1 –δ 

(raw datasets were reported by Ma et al107).  Deduced Θ = 290 ± 2  𝐾 (from 𝐶 𝑇  data) 

and Θ = 312 ± 3  𝐾 (from 𝜌 𝑇  data) are evidences that both methods (i.e. Eqs. 8,11) can 

be used to extract the Debye temperature from experimental data. For clarity, in Figure 4,c 

we showed two components of the 𝜌 𝑇  data fit, 𝜌  and 𝜌 𝑇 .  

In Figure 5 we showed the 𝑅 𝑇,𝑃 = 98 𝐺𝑃𝑎  curves68 for compressed La4Hi23 and data 

fits to Eq. 8.  Derived Debye temperature, 445 K ≤ Θ ≤ 583 𝐾, is significantly lower than 

the values of 1310 K ≤ Θ ≤ 1675 𝐾 determined for the LaH10 phase, which has 𝑇 >200 𝐾91.  

Surprisingly enough, we found that the sample designated by Drozdov et al56 as LaHx>3 

(compressed at pressure 𝑃 = 150 𝐺𝑃𝑎 and it has a designation of Sample 1156) exhibits very 

close Debye temperature Θ = 655 ± 2 𝐾 and 𝑇 , . = 66.2 𝐾 (Figure 6). This dataset was 

also analysed in Ref.91.  
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Figure 4.  (a) Temperature dependent heat capacity, 𝐶 𝑇 , and data fit to Eq. 11 for cubic 
centrosymmetric η-carbide Nb4Rh2C1 –δ (raw data reported by Ma et al107). (b) Temperature dependent 
resistivity, 𝜌 𝑇 , and data fit to Eq. 8 for Nb4Rh2C1 –δ (raw data reported by Ma et al107). (c) 
Temperature dependent resistivity, 𝜌 𝑇 , data fit to Eq. 8, and two components of this fit (𝜌  and 𝜌 𝑇 ) for Nb4Rh2C1 –δ (raw data reported by Ma et al107).  95% confidence bands are shown by 
pink areas. Green balls indicate the bounds for which 𝜌 𝑇  data was used for the fit.  Cyan balls 
indicate 𝑇 , . . Fit quality for all panels is better than 0.9995.  
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68

 
Figure 5.  Temperature dependent resistance, R(T,P=98 GPa), measured in compressed La4Hi23 and 
data fits to Eq. 8 (raw data reported by Cross et al68).  95% confidence bands are shown by pink areas.  
Green balls indicate the bounds for which R(T) data was used for the fit. Green balls indicate fitted 
data range. Cyan balls indicate 𝑇 , . . Fit quality for all panels is better or equal to 0.9995. (a) – 
cooling 1; (b) – warming 1; (c) – cooling 2; (b) – warming 2. Derived 𝜆  are for 𝜇∗ = 0.13.  
 

Similar surprise is the extracted Debye temperature Θ = 517 ± 13 𝐾 for the 𝜌 𝑇  curve 

reported by Sakata et al65 for LaHx<10 (compressed at pressure 𝑃 = 170 𝐺𝑃𝑎) (Figure 7). The 

deduced value is practically undistinguishable from the Θ  values deduced for four samples 

of the La4H23 phase synthesized by Cross et al68 (Figure 5).  

The fit of the reported R(T) data measured in the La4H23 114 𝐺𝑃𝑎  (data reported by 

Guo et al67) is shown in Figure 8.  Derived Debye temperature is Θ 114 𝐺𝑃𝑎 = 904 ±69 𝐾.  
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Figure 6.  Temperature dependent resistance, R(T,P=150 GPa), measured in compressed LaHx (x > 3) 
sample and data fit to Eq. 8 (raw data reported by Drozdov et al56; this sample was designated as 
Sample 11 by Drozdov et al56).  Pink area shows 95% confidence band. Green balls indicate fitted 
data range. Cyan balls indicate 𝑇 , . . Fit quality is 0.9955. Derived 𝜆  is for 𝜇∗ = 0.13. See also 
analysis of the same data in Ref.91.  

 

 
Figure 7.  Temperature dependent resistance, ρ(T,P=170 GPa), measured in compressed LaHx (x < 
10) sample and data fit to Eq. 8 (raw data reported by Sakata et al65 in their Figure 3). Pink area shows 
95% confidence band. Green balls indicate fitted data range. Cyan balls indicate 𝑇 , = 75 𝐾. Fit 
quality is 0.9971. Derived 𝜆  is for 𝜇∗ = 0.13. 
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Based on results showed in Figures 5-8 we can propose that it is quite possible that the 

Sample 11 reported by Drozdov et al56 and the sample by Sakata et al 65 are de facto first 

synthesized and studied samples of the La4Hi23 phase in the literature.  

 
Figure 8.  Temperature dependent resistance, R(T,P=114 GPa), measured in compressed La4Hi23 and 
data fits to Eq. 8 (raw data reported by Guo et al67).  95% confidence band is shown by pink area.  
Green balls indicate fitted data range. Cyan ball indicates 𝑇 , . . Fit quality is 0.9964. Derived 𝜆  
is for 𝜇∗ = 0.13. 
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where 𝜇∗ is the Coulomb pseudopotential.  In this work, we fixed 𝜇∗ ≡ 0.13, because this is a 

typical value for highly compressed electron-phonon mediated superconductors108–110. (It can 

be mentioned that Eqs. 14-16 are more complicated in comparison with Eq. 1, however, these 

equations remain primary dependences 𝑇 ∝ Θ × 𝑒 ).  

Derived 𝜆  values for the LaHx samples are shown in Figs. 4-8, where in Figure 7, the 

transition temperature was assumed to be at the inflection point of the 𝑅 𝑇  curve.  

 

3.4. The ground state coherence length  

To deduced the ground state coherence length, 𝜉 0 , which is one of two fundamental 

lengths in any superconductor, we fitted the data for upper critical field, 𝐵 𝑇 , to the 

equation proposed by Baumgartner et al111:  

𝐵 𝑇 = . × × 1 − − 0.153 × 1 − − 0.152 × 1 −        (17)  

Where 𝜙 =  is the superconducting flux quantum, ℎ = 6.626 × 10  𝐽 ⋅ 𝑠 is Planck 

constant, 𝑒 = 1.602 × 10  𝐶, and 𝜉 0 , and 𝑇 ≡ 𝑇 , . 𝐵 = 0  are free fitting 

parameters.  

We extracted raw 𝐵 𝑇  datasets from the 𝑅 𝑇,𝐵  datasets by the criterion described by 

Eq. 13. In Fig. 9 we showed the 𝐵 𝑇  data and data fits to Eq. 17, from which the derived 2.1 ± 0.1  𝑛𝑚 ≤ 𝜉 0 ≤ 3.0 ± 0.1  𝑛𝑚. 68 
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Figure 9.  The upper critical field data, Bc2(T), for compressed La4H23 and data fits to Eq. 17. Raw 
R(T) data reported by (a) Cross et al68and (b) Guo et al67.  Pink area shows 95% confidence band.   
 
 
3.5. The Fermi temperature  

To calculate the Fermi temperature, we used the equation112,113:  

𝑇 = ∙ ×  1 + 𝜆 × 𝜉 0 × × ×ℏ ,    (18)  

where 𝑚 = 9.109 × 10  𝑘𝑔 is bare electron mass, ℏ = 1.055 × 10  𝐽 ⋅ 𝑠 is reduced 

Planck constant, 𝑘 = 1.381 × 10  𝑚 ⋅ 𝑘𝑔 ⋅ 𝑠 ⋅ 𝐾  is Boltzmann constant, 𝛼 ≡ × ×  

is the gap-to-transition temperature ratio, where Δ 0  is the ground state amplitude of the 

superconducting gap.  
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In Sections 3.2.-3.4. we determined all terms in the Eq. 18, except the 𝛼 ≡ × ×  value.  

The linear empirical relation proposed in Ref.114 can estimate this value:  𝛼 ≡ ∙ = 3.26 + 0.74 × 𝜆        (19)  

Considering that the free-fitting value of 𝑇 , . 95 𝐺𝑃𝑎 = 77 𝐾 in Figure 9,a is close to 

the observed 𝑇 , . 95 𝐺𝑃𝑎 = 78.2 ± 0.1 𝐾 value in Figure 5,d, we substituted the derived 𝜆 = 2.30 for this sample (i.e. Fig. 5,d) in the Eq. 19, and calculated 𝛼 = 4.96.In the 

result, we estimated the 𝑇 95 𝐺𝑃𝑎 = 3.06 × 10  𝐾 in the La4H23 (𝑃 = 95 𝐺𝑃𝑎). It should 

be noted that our calculated the Fermi velocity, 𝑣 95 𝐺𝑃𝑎 = 1.68 × 10  , is in remarkable 

agreement with the value 𝑣 95 𝐺𝑃𝑎 = 1.80 × 10   reported by Cross et al68.  

For sample67 𝑇 , . 114 𝐺𝑃𝑎 = 81 𝐾 (Figure 9,b), 𝜆 114 𝐺𝑃𝑎 = 1.52 (Figure 8), 

from which calculated 𝛼 = 4.38, and 𝑇 114 𝐺𝑃𝑎 = 3.99 × 10  𝐾.  

 

3.6. Identification plots  

Utilizing deduced parameters, we found that the La4H23 phase falls to the unconventional 

superconductors band in the Uemura plot (Figure 10), and it locates near cuprates and another 

superhydride LaBeH8 (P = 120 GPa).  

We also deduced the ratios of 95 𝐺𝑃𝑎 = 0.176 and 114 𝐺𝑃𝑎 = 0.216 for the 

La4H23 phase. This value is used to locate this phase in the  vs 𝜆  diagram (Figure 11) 

(this type of diagram proposed by Pietronero et al 42,43,115,116).  
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Figure 10.  Uemura plot where the highly compressed 𝐿𝑎 𝐻  phase is shown together with the main 
families of superconductors: metals, iron-based superconductors, diborides, cuprates, Laves phases, 
and near-room-temperature superconducting. References to original data can be found in Refs. 
43,52,89,112,113,115,117–124.  
 

 
Figure 11. The  vs 𝜆  plot (this type of plot was proposed in Ref. 42,43,115,116) where several 
families of superconductors and the 𝐿𝑎 𝐻  phase. References are given in 43,52,89,112,113,115,117–124.  
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In addition, the derived ratios of  are used to locate the La4H23 phase in the  vs 𝑇  

diagram (Figure 12) (this type of diagram proposed in Ref. 117,121).  The advantage of this 

type of plot is that it links three primary thermodynamic quantities in superconductors, which 

are average energies per particles in the superconductor: the Cooper pairs, electrons, and 

atomic ions, while the Uemura plot (Figure 10) and the Pietronero plot (Figure 11) link only 

two characteristic energies per particles in superconductors.  All values (and references, for 

each value) showed in Figures 10-12 are given in Refs. 117,119,121.  

 

Figure 12. The  vs 𝑇  plot (this type of plot was proposed in Ref. 117,121) for several families of 
superconductors and highly compressed 𝐿𝑎 𝐻 . References are given in 43,52,89,112,113,115,117–124.  
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the use of the  ratio, without additional multiplication term 𝜆 , is also useful, because it 

utilizes only three fundamental temperatures of any conductor, and it does not use any 

multiplicative factor associated with any pairing mechanism (for instance, the electron-

phonon coupling strength, for the electron-phonon mediated mechanism).  

Despite there is no theoretical explanation for this (Figure 12) new empirical fact 117,121, 

the primary physics behind this observation is more likely related to the issue that high 

superconducting transition temperature, Tc, emerges in materials where the highest energy of 

the charge carriers exceeds, but not overwhelming, the energy of the coherent oscillations of 

the crystalline lattice. At this condition (if even in some materials the pairing of the Cooper 

pairs originates from different from the electron-phonon mechanism, for instance, in 

cuprates), the Cooper pairs are not disturbed by either very energetic coherent lattice 

oscillations (in cases of 𝑇 ≪ Θ ), or by uncorrelated random thermodynamic local 

distortions/fluctuations, which exist at high temperature in materials with low Debye 

temperature, Θ ≪ 𝑇 .  

Based on this picture, we can describe the physics behind the Uemura plot 122,123,126, as an 

alternative presentation of the same physical picture, where however, the third fundamental 

temperature of any superconductor, i.e. the Debye temperature, is missed.   

Empirical finding 89,90,112,113,117,118,121,127–129 that all highly compressed superhydrides fall 

to unconventional superconductors band in the Uemura plot (despite all these 

superconductors exhibit the electron-phonon pairing mechanism) and which was interpreted 

89,90,112,113,117,118,121,127–129 as the evidence for the unconventional pairing mechanism in the 

superhydrides, in fact reveals the issue that the  ratio for all high-temperature 

superconductors, 𝑇 ≥ 20 𝐾, falls to a narrow range of 0.04 ≤ ≤ 0.4.  
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Following recent theoretical understanding of the physics in superhydrides and other 

high-temperature superconductors43 we can characterize all superhydrides by:  

1. highest Debye phonon frequency, 𝜔 ≥ 50 𝑇𝐻𝑧, among all superconducting 

materials;  

2. high electron phonon coupling constant, 𝜆 ≥ 1.5;  

3. reasonably high, but not record high, Fermi temperature, 2,000 𝐾 ≤ 𝑇 ≤ 30,000 𝐾;  

4. significant quantum lattice fluctuations 130–133, due to high frequency for the lattice 

oscillations associated with the lightest chemical element;  

5. the presence of a Van Hove singularity close to the Fermi level;  

6. moderate level of the nonadiabaticity, 0.05 ≤ 𝜆 × ≤ 1.0;  

7. reasonably high  ratio, 0.005 ≤ ≤ 0.04, which implies that in the Uemura plot 

all superhydrides fall to unconventional superconductors band.  

 

As one can see from #1-#7 above, all electron-phonon mediated hydride superconductors 

have many properties which are similar or identical to cuprates and pnictides. Thus, from this 

point of view, all superhydrides can be classified as unconventional superconductors 

43,90,112,113,118,128, despite a fact that these superconductors exhibit electron-phonon pairing 

mechanism (which is clearly demonstrated by prominent isotope effect in direct experiments 

55,56).  

This paradoxical understanding is clearly expressed and explained by Cappelluti et al43 

now, while Luciano Pietronero presented this theoretical concept at the conference in May 

2017134. In peer-review form112,113 (see also135) and independently this paradox was first 

reported as empirical finding derived from the experimental data analysis for the temperature 

dependent upper critical field in highly compressed H3S and LaH10.  
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From our point of view, all mentioned above properties for high- and near-room-

temperature superconductors (including cuprates, pnictides, diborides, and hydrides) can be 

summarized in the empirical finding condition, where three fundamental temperatures of any 

superconductor are obeying the strict condition117,121:  𝑇 ≥ 20 𝐾 ⟹  0.04 ≤ Θ𝐷 ≤ 0.4       (20)  

Eq. 20 represents a problem which needs to be explained (graphical representation of Eq. 

20 is given in Figure 12). It should be also noted that this understanding/explanation might lie 

beyond the conventional first-principles calculation studies which is the dominant theoretical 

approach utilized in modern high-pressure superconductivity 50,67,108,130,136–161 and global view 

on high-pressure superconductivity, where will be presented hydrides48–50,55,56,59,60,64–

67,70,115,118,127,129–134,136,138–144,147,149,151,152,154–158,160–207, other high-pressure 

superconductors90,119,120,208–236 and ambient pressure superconductors62,95,99,237–273, including 

amorphous274–276 and quasicrystals277–282 would be considered from the unified theoretical 

concept.  

 

V. Conclusions  

In this work, we analyzed experimental data reported for highly compressed high-

temperature superconducting La4H23 phase.  This phase is a new A-15-type phase which 

simultaneously extends the family of highly pressurized hydrides, the family of A-15 

superconductors, and the family of high-pressure superconductors.  

We found a good agreement between derived Debye temperature ΘD for the La4H23 phase 

and the ΘD deduced for two samples with similar values of Tc ~ 70 K a phase reported by 

Drozdov et al 56 as the unknown phase with an approximate stoichiometry of LaHx (x>3) and 

by Sakata et al 65, who designated the sample stoichiometry as the LaHx (x<10). From this, 
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we proposed that de facto the La4H23 phase was first discovered in the experiment by 

Drozdov et al 56 and by Sakata et al 65.  

We also found that the La4H23 phase synthesised and studied by both research groups 67,68 

has nanoscale grain size and is very low, or even the absence, of the crystalline strain.  

In addition, we also deduced the values:  

(1) 0.020 ≤ ≤ 0.025;  

(2) 0.18 ≤ ≤ 0.22;  

(3) 1.5 ≤ 𝜆 ≤ 2.55.  
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Supplementary Materials  
 

La4H23 superconductor: Nanograined structure, low nanocrystalline strain, strong 
electron-phonon interaction, and moderate level of nonadiabaticity  

 
I.  XRD scans and data fit to multiple Lorenz function for data reported by Cross et 
al68.  

 

 
Figure S1.  XRD scans and data fits to multiple Lorentz peaks function for raw data reported by 
Cross et al68 for La4H23 compressed at P = 95 GPa.  
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II. XRD scans and data fit to multiple Lorenz function for data reported by Guo et 
al67 
 

 
Figure S2.  XRD scans and data fits to multiple Lorentz peaks function for raw data reported by Guo 
et al [42] for La4H23 compressed at P = 118 GPa.   
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III. Narrowest peaks in the XRD scan reported by Cross et al68.  
 

 
Figure S3.  Narrowest peaks (thick red lines) in the XRD scan for data reported by Cross et al68 for 
La4H23 compressed at P = 95 GPa.  
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