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Abstract. Spiral waves are spatial-temporal patterns that can emerge in different

systems as heart tissues, chemical oscillators, ecological networks and the brain. These

waves have been identified in the neocortex of turtles, rats, and humans, particularly

during sleep-like states. Although their functions in cognitive activities remain until

now poorly understood, these patterns are related to cortical activity modulation and

contribute to cortical processing. In this work, we construct a neuronal network layer

based on the spatial distribution of pyramidal neurons. Our main goal is to investigate

how local connectivity and coupling strength are associated with the emergence of

spiral waves. Therefore, we propose a trustworthy method capable of detecting

different wave patterns, based on local and global phase order parameters. As a result,

we find that the range of connection radius (R) plays a crucial role in the appearance

of spiral waves. For R < 20 µm, only asynchronous activity is observed due to small

number of connections. The coupling strength (gsyn) greatly influences the pattern

transitions for higher R, where spikes and bursts firing patterns can be observed in

spiral and non-spiral waves. Finally, we show that for some values of R and gsyn
bistable states of wave patterns are obtained.

http://arxiv.org/abs/2403.00022v1
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1. Introduction

It has been identified astonishing spatiotemporal patterns which can be seen in 2D and

3D networks with non-local interactions, named spiral wave chimera states. It consists

of synchronous oscillators which rotate around a desynchronized core, which is called

phase singularity (PS) [1]. This pattern is seen in a variety of fields. In heart tissues

[2, 3, 4] spiral waves have been extensively studied due their correlation with some

heart issues, such as ventricular tachycardia and ventricular fibrillation. Davidenko et

al. [5] demonstrated the emergence of spiral waves in sheep and dog epicardial muscle

by means of potentiometric dye with charge-coupled device imaging technology. The

authors showed that sometimes the phase singularity drifted away from its original

position and dissipated in the tissue border, this drift was associated with a Doppler

shift. Supression of spiral waves in the atrial cardiomyocytes can be done by means

of optogenetics [6]. Spiral waves are able to emerge in ecological network composed

of diffusible prey-predator species locally coupled [7]. Totz et al. [8] observed the

emergence of spiral wave chimeras in large populations of coupled chemical oscillators,

they have studied the motion and splitting of the asynchronous core.

The chimera is defined as the coexistence of coherent and incoherent domains

when similar elements interact [9]. The notion of chimera states has been discussed

in the last decade [10]. Majhi et al. [11] reviewed important aspects of such dynamics

and highlighted the different types, as well as their relevance in a biophysical context.

Chimera states play an important role in empirical brain networks, specially in the

cerebral cortex [12]. It has been found in networks composed of coupled neurons, such as

integrate-and-fire [14, 13], Hodgkin-Huxley [9], Hindmarsh-Rose [15], FitzHugh-Nagumo

[17, 16], Morris-Lecar [18], Nekorkin maps [19] and others. The spatiotemporal patterns,

in which coherence coexists with incoherence, have been reported in local [20, 21] and

non-local network configurations [22, 23].

Many studies have improved the understanding of chimera states in neuronal

networks. The parameter regions for chimera states in a two coupling configuration

of identical thermally sensitive Hodgkin-Huxley neurons was characterized in Ref. [9].

Majhi [24] investigated chimera states in uncoupled neurons induced by multilayer

interactions. They found that the competition between electrical and chemical synapses

can lead to chimeras. Hövel et al. [25] studied the coexistence of chimera and traveling

waves, as well as multi-stability, in the parameter space of a neuronal system of

excitability type I. Chemical and electrical synapses can affect the features of chimera

states and traveling waves [26]. The coexistence of patterns can emerge due to electrical

and chemical coupling in a multi-weighted of the memristive Fitzhugh-Nagumo network

[16]. It was demonstrated the importance of such interactions to obtain synchronous

and desynchronous behaviours coexisting [27]. Chimera states were also reported in
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time-delay networks [28, 29].

Neuronal networks can exhibit spiral wave spatial patterns when in a sleep-like

state [31, 30]. It is able to modify ongoing activity in the cortex [30, 32]. Local

excitatory interactions are of great importance in the generation of spiral waves [30].

The role of spiral waves in the neocortex is not yet well understood, thus simulations

and experimental methods are crucial to better understand spiral wave dynamics. The

emergence of spiral waves in computational simulations has been observed in different

models throughout the time. Ma et al. [33] studied the robustness of the spiral wave

when noise is applied to ion channels of the standard Hodking-Huxley model. They

showed that the spiral wave does not sustain its activity, whether the noise increases or

the fraction of active channels is below a threshold. The transmission delay enhances the

coherence of spiral waves in a noisy network [34]. Spiral waves can be seen in non-locally

coupled maps for some coupling parameters [35]. Santos et. al. [36] demonstrated that

chimera spiral waves with multi-cores appear in regular and fractal networks. Their

study showed that the initial condition of the adaptation current has a crucial role in

the emergence of spiral waves.

The formation of spiral waves are not only observed in neuronal simulations, but

also in experimental data [37, 39, 38]. The effects of spiral waves in cognitive activity are

not well defined, although it influences the frequencies [30]. Prechtl et al. [38] used visual

stimuli to register the appearance of spiral waves in the turtle cortex. Furthermore,

Huang et al. [31] captured the emergence of spiral waves in rat cortex and its influence

in coordinating oscillations of neuronal populations. Spiral waves have been identified in

the neocortex during sleep-like states and pharmacologically induced oscillations [30].

It is theorized that such spatial pattern plays an important role in organizing and

modulating healthy and pathological brain activities, for instance, epilepsy [31, 30, 38].

In this work, we propose a neuronal network composed of pyramidal cells, that

are identified as excitatory neurons. Pyramidal neurons are the most common cells

in the brain, and the name is due to its characteristic shape [40]. This neuron type

is also the main one of the excitatory neuron family in the brain [40]. Our network

model is inspired by a two dimensional slice of pyramidal layer of the hippocampus [41].

The model considered to describe a single neuron membrane potential is the adaptive

exponential integrate-and-fire (aEIF) [42]. Besides the simplicity of this model and its

low computational cost, it exhibits a great biophysical accuracy [43, 44]. Due to the

lack of reliable tools able to characterize chimera spiral waves, we propose a method to

identify chimeras spiral wave, and analyze their dependence on the coupling radius (R)

and the synapse coupling strength (gsyn). Our results show that the spiral waves emerge

for different combinations of R and gsyn. We observe spiral waves when the value of the

global phase order parameter is low (Zg < 0.7), the local phase order parameter value

is high (ZL ≈ 1) and the amount of phase singularity is not greater than a maximum

value (Pmax ≤ 20). We observe for low R values the desynchronized patterns. Moreover,

there are many pattern transitions and bistable regions in which spiral and non-spiral

waves are possible for higher R values.
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The paper is organized as follows: In Section 2, we present our neuronal network

model. In Section 3, we show the diagnostic tools. Section 4 presents our results. In

the last Section, we draw our conclusions.

2. Neuronal Network Model

We consider a network composed of coupled adaptive exponential integrate-and-fire

(aEIF) neurons [42]. The dynamics of the neuronal network is given by

C
dVi

dt
= − gL(Vi − EL) + gL∆T exp

(

Vi − VT

∆T

)

− wi + I (1)

+ (Vrev − Vi)

N
∑

j=1

gjMij,

τw
dwi

dt
= a(Vi −EL)− wi, (2)

τg
dgi

dt
= − gi. (3)

where Vi is the membrane potential, wi is the adaptation variable, gi is the synaptic

conductance of the neuron i, I is the injected current, C is the membrane capacitance,

gL is the leak conductance, EL is the resting potential, ∆T is the slope factor, VT is the

threshold potential, Vrev is the potential reversal, τw is the adaptation time constant,

a is the level of subthreshold adaptation and τg is the synaptic time constant. The

parameter ∆T controls the sharpness of the initial phase of the spike [45]. This model

improves the standard leaky integrate-and-fire by adding the adaptation current and

the exponential term in the membrane potential. The adaptation current describes the

slow activation and deactivation of some potassium ionic channels [46]. Besides that,

a spike threshold mechanism represented by the exponential term describes the fast

arising when a action potential is generated [43, 42, 47]. For ∆T → 0, the neuron

model becomes a standard leaky integrate-and-fire neuron model [48]. If Vi reaches the

threshold Vpeak at a certain time t, the following reset conditions are applied: Vi → Vr,

wi → wr = w+ b and gi → gi+ gr. In our simulations, we consider the parameter values

in Table 1. We constructed a two-dimensional excitatory neuronal network with 1000

µm X 1000 µm dimensions and N = 17, 324 neurons in which the distance between each

neuron is 7 µm in x-axis and 8 µm in y-axis [41]. The neuron i is connected with its

neighbors that are within a radius R (Mij = 1), as displayed in Figure 1(a).

3. Diagnostic tools

To identify spiking and bursting firing patterns, we utilize the mean coefficient of

variation (CV) of the neuronal inter-spike interval (ISI) [49, 50], that is given by

CV =
σISI

ISI
, (4)
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Table 1. Description and values of the parameters in the AEIF system used in the

simulations [51].

Parameter Description Value

C Membrane capacitance 200 pF

I Constant input current 500 pA

N Number of aEIF neurons 17.324 neurons

a Subthreshold adaptation 2.0 nS

b Triggered adaptation 70 pA

ρ Superficial density of neurons 0.018 neurons/cm2

R Radius connection [10,80] µm

Mij Adjacency matrix elements 0 or 1

wi(0) Initial membrane potential [0, 70] pA

Vi(0) Initial membrane potential [-70, -45] mV

VT Potential threshold -50 mV

Vrev Reversal potential 0 mV

Vpeak maximum potential -40 mV

Vr Reset potential -58 mV

EL Leak reversal potential -70 mV

gL Leak conductance 12 nS

gsyn Excitatory synaptic conductance [0.0,0.25] nS

tini Initial time in the analyses 25 s

tfin Final time in the analyses 30 s

τw Adaptation time constant 300 ms

τs Synaptic time constant 2.728 ms

∆T Slope factor 2 mV

dx x-axis distance 7 µm

dy y-axis distance 8 µm

where σISI is the standard deviation of the ISI normalised by the mean ISI [52]. The ISI

is defined by ISIm = tm+1 − tm, where tm is the time of the m-th neuronal spike [53].

Spike pattern produces CV < 0.5, meanwhile, burst pattern produces CV ≥ 0.5 [50].

The mean firing rate is calculated by means of F = ISI
−1

[50].

To determine synchronous behaviour of the whole network, we consider the global

phase order parameter, that is defined as [54]

Z(t) =

∣

∣

∣

∣

∣

1

N

N
∑

j=1

exp(iφj(t))

∣

∣

∣

∣

∣

, (5)

where φj is the j-neuron phase, given by

φj(t) = 2πm+ 2π
t− tmj

tm+1
j − tmj

, (6)
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tmj corresponds to the time when a m-th spike (m = 0, 1, 2, . . .) of a neuron j happens

(tmj < t < tm+1
j ). When the network is totally synchronized Z(t) = 1, total

desynchronized states produce Z(t) = 0 and when 0 < Z(t) < 1 the network is partially

synchronized [54, 53]. To better understanding of the network dynamics, we calculate

the time-average of the order-parameter, that is given by

Zg =
1

tfin − tini

∫ tfin

tini

Z(t)dt, (7)

where tfin − tini is the time window. We use a time window equal to 5 s to compute Z

to avoid transient effects.

We consider the local phase order parameter to study the local synchronization of

each neuron. We separate the 1000 X 1000 µm network in 25 boxes in each dimension,

totalizing 625 boxes, then each box contains a significant amount of neurons. The boxes

are labeled by the subindex (i, j), where i indicates the x-axis and j the y-axis position

of the box, i, j = [1, 25]. The size of each box is 40 × 40 µm and each one of them

contains approximately 28 neurons. The local phase order parameter is given by [55]

Zi,j(t) =

∣

∣

∣

∣

∣

∣

[

A2

N2

]Xi+40
∑

m=Xi

Yj+40
∑

n=Yj

exp(kφm,n)

∣

∣

∣

∣

∣

∣

, (8)

where k =
√
−1, A is the total number of boxes, Xi is the x-axis position of the box,

and Yi is the y-axis position of the box. The mean value of Zi,j is

Z i,j =
1

tfin − tini

∫ tfin

tini

Zi,j(t)dt, (9)

the average of the local phase order parameter of the network is

ZL =
1

625

25
∑

i,j

Z i,j. (10)

Figure 1(a) displays an illustrative scheme of the connections in our neuronal

network, the neurons connect by means of chemical synapses. There are connections

among neurons within the radius R, otherwise there is no connection. The radius origin

is in the neuron position. Figure 1 (b-d) exhibit the time evolution of the membrane

potential of three different neurons. In panel (b), for a low coupling strength gsyn = 0.001

nS, the neurons are not synchronized. Increasing the coupling strength to gsyn = 0.1 nS,

the neurons fire in a synchronized spike pattern, as shown in panel (c). The panel (d)

shows neurons synchronized and firing according to a burst pattern for gsyn = 0.2 nS.

The values of the local and global phase order parameters are exhibited in panel (e),

where the circles, squares and triangles correspond to the firing patterns of the panels

(b-d). The neurons in the network synchronize (locally and globally) for small values of

gsyn and the global order parameter varies much more than the local order parameter.

The panel (f) displays the CV as a function of gsyn. The CV value below the dashed

line indicates the spike fire patterns. There is a maximum value of coupling strength

before the transition from spike to burst behaviors, gsyn = 0.2 nS.
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Figure 1. The panel (a) displays a schematic representation of the two-dimensional

network composed of coupled excitatory neurons. The panels (b-d) exhibit the time

evolution of the membrane potential V for three different values of gsyn. We observe

(b) desynchronyzed spikes for gsyn = 0.001 nS (blue circle), (c) synchronized spike

for gsyn = 0.1 nS (blue square), and (d) synchronized burst for gsyn = 0.2 nS (blue

triangle). The panel (e) shows the global and local Kuramoto order parameter as a

function of gsyn and the panel (f) exhibits CV as a function of gsyn. In panels (b-f),

we consider R = 70 µm.

4. Results

A bidirectional neuronal network is able to exhibit spiral wave activities [14] with

different amounts of phase singularities (PS) and spiral waves. PS is the spiral core

and is composed of asynchronous neurons. Each spiral wave rotates around its own PS

and can share the same core. We observe that the local order parameter is below 0.7

in the PS. We define a Z i,j threshold to characterize the phase singularities. In this

work, we focus on studying the correlation of spiral wave emergence with the network

parameter R and gsyn. We propose a reliable method to distinguish spiral wave from

other travelling waves in the cortex. We use the diagnostic tools shown in the previous

section.

Figure 2 displays three patterns of waves observable in the network and the local

phase order parameter. The panels (a), (b) and (c) exhibit the phase (color bar) of each

neuron in a time instant and the panels (d), (e) and (f) show the local order parameter

of each wave pattern. The ring waves are shown in Figure 2(a). The wave pattern

produces some dark orange dots in the panel (d), which are the origin of where the ring

waves propagate from. The dark orange spots are not PS due to the fact that the local

order parameter is not below 0.7. The spiral wave is displayed in the panel (b) and its

centre is shown in the panel (e), by the black region. In the panel (e), we calculate the

local order parameter of the spiral wave, where the black area corresponds to the phase

singularity (PS). The mean local order parameter (ZL) does not decrease significantly

with the presence of the phase singularity, due to the high quantity of local synchronous

neurons. For higher R values, it is possible to observe a burst spiral wave, shown in

Figure 2(c). There are some border abnormalities in this case. In Figure 2(f), the border
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has low values of ZL, however, we do not count it as PS due the fact that there is no

spiral wave rotating around it. To avoid mistakes in the PS counting, we discard the

borders. High values of R increase the border effects due to the high connectivity of

each neuron, although R influences the firing pattern.

ZL
0.7 1

t(s) 

0

x

y
y

y

(a) (d)

(e)

(f)

(b) (c)

1000

1000

y
0

0 2

x
x

y
y

y

28.4

28.6

28.8

29

29.2

Figure 2. (a) Spatial pattern of a synchronyzed spikes (R = 55 µm and Zg = 0.94),

(b) spiral wave pattern (R = 64.5 µm and Zg = 0.15), (c) burst spiral wave pattern

(R = 75 µm and Zg = 0.36), (d) local order parameter for (e) local order parameter

of spike spiral wave and (f) local order parameter of burst spiral wave of each neuron

i. We consider gsyn = 0.14 nS.

Figure 3 exhibits the parameter space of the four diagnostic tools for R = 75 µm.

The panel (a) shows the parameter space of the global phase order parameter. The dark

regions correspond to the asynchronous activity (Zg ∈ [0, 0.7]) and the brighter regions

are the synchronized states of the whole network. The network shows synchronous

behavior for high values of R. The value of gsyn also plays an important role in the

synchronization. Increasing it, we verify transitions from asynchronous to synchronous

and vice-versa. The local phase order parameter is displayed in the panel (b). The

coupling strength is of great importance for the emergence of synchronous states. The

CV suffers changes with the increase of R and gsyn. It is identified transitions from

spike-to-burst, shown in the panel (c). The panel (d) exhibits the average firing rate,

there is a quick increase for high values of R and gsyn. In some regions of high gsyn, it

occurs the synchronization of bursting, which is strongly related to pathological cases,

such as epilepsy seizures [50]. The panels (a) and (b) are quite different in some regions,

showing regions in which the network is globally desynchronized meanwhile local neurons

are synchronized, Zg < 1 and ZL ≈ 1. This result characterizes waves in the network,
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however, it is not enough to distinguish the wave types.
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Figure 3. (a-d) Parameter space of the network. The color code represents the values

of (a) the global order parameter, (b) the local order parameter, (c) the mean coefficient

of variation (CV) of the neuronal inter-spike interval and (d) the mean firing rate.

It is necessary more conditions to characterize spiral waves. The spiral waves have

a particular characteristic, that is the phase singularities (the centre which the waves

rotate around). However, high amounts of PS are related to asynchronous activity.

We establish a maximum value of PS to avoid asynchronous activity. We propose the

following conditions to detect spiral waves: (i) the mean global order parameter has to

point out asynchronous activity, Zg ≤ 0.7, (ii) the mean local order parameter has to

indicate a local-synchronized activity, ZL ≈ 1, (iii) there must be at least one phase

singularity and PS is characterized by a low local phase order parameter, Z i,j ≤ 0.7,

(iv) the number of PS is limited to a maximum number (Pmax), 0 < PS ≤ Pmax. We

consider Pmax = 20.

Conditions (i) and (ii) detect wave activity in the network, however, they do not

describe the type of wave. The main difference among the wave types is their local

phase order parameter pattern. For example, in the ring wave pattern, the local

order parameter does not exhibit PS, as shown in Figure 2 (d). The presence of PS

is characteristic of spiral waves, then at least one focus is necessary, condition (iii).

Multi-phase singularities can be observed and the network becomes asynchronous when

there are too many ones. We consider a maximum number of PS, condition (iv). These

conditions all together indicate spiral wave in the network. The color scheme in Figs.

4(a) and 4(b) show the transition of patterns for the region of R = 75 µm. The yellow

points denote the spiral waves, the gray points correspond to the non-spiral waves, the
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blue points indicate the asynchronous activity and the red points show the synchronized

states ((Zg, ZL) ≈ 1).

0.5

0
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0 0.05 0.1 0.15 0.2 0.25

Z
g

g
syn

0

5

10

15

20

0 0.05 0.1 0.15 0.2 0.25

P
S

g
syn

(a)

(b)

Synchronization

Spiral wave

Non-spiral wave

Desynchronization

Figure 4. In (a) and (b) we plot, respectively, the global phase order parameter and

the number of phase singularity as function of gsyn for R = 75µm. The colors in (a)

and (b) represent the dynamical pattern of the network.

The pattern parameter space of R× gsyn is shown in Figure 5(a), where the colors

yellow, gray, blue and red correspond to the spiral waves, non-spiral waves, asynchronous

and synchronous patterns, respectively. For R ≤ 20 µm, it only generates asynchronous

activity. Hence, the radius of connection has great influence in the type of pattern. There

are some non-spiral waves regions in the range 40 ≤ R ≤ 35 µm and 0.25 ≤ gsyn ≤ 0.05

nS, indicating a coexistence of synchronous and non-spiral waves pattern. It is important

to highlight that the radius of connection is about 70 µm or greater in the human

neocortex [41]. The emergence of burst spiral is intrinsically correlated with long range

connections (R ≥ 60 µm) and intense coupling strength (gsyn ≥ 0.12 nS). The greenish

and pinkish hexagons are the starting and ending point of the hysteresis analysis,

respectively. Hysteresis diagrams of Zg and CV are displayed in Figs. 5(b) and 5(c),

respectively. Asynchronous and synchronous initial conditions are considered in the

purple and green squares. The CV bistable region coincides with one of the regions in

the Zg, both are observed in the gsyn range [0.11, 0.13] nS. Two different outcomes are

possible, that are burst synchronization for asynchronous initial conditions and spikes

desynchronization for synchronous initial conditions. There is one more bistable region

in the panel (b), in which the spike desynchronization is easier achieved for synchronous

initial conditions.
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Figure 5. (a) Parameter space of the network activity pattern, where each color

represents one type of pattern. The yellow region corresponds to the spiral wave, the

gray area is related to the non-spiral wave (for example ring pattern), the blue region

denotes the desynchronized pattern and the red area corresponds to the synchronous

pattern. The panels (b) and (c) show the hysteresis diagram for R = 75 µm, (b) global

order parameter and (c) coefficient of variation. Asynchronous initial conditions are

considered in the purple squares, meanwhile, synchronous initial conditions are used in

the green squares. The greenish and pinkish hexagons exhibit the points which start

and end the hysteresis cycle, respectively.

5. Conclusions

In this work, we investigate the emergence of spiral wave patterns within a bidirectional

network composed of pyramidal neuron cells. The individual dynamics of each neuron

is described by the adaptive exponential integrate-and-fire model. The roles of spiral

waves in cognitive activities is not fully understood. In this way, comprehending how

network parameters influence the emergence of spirals and developing the capability

to detect them is crucial for advancing our understanding of their role in cognitive

activities. Hence, we investigate how network parameters influence the emergence of

spirals. Additionally, we introduce a novel method capable of identifying chimera spiral

waves.

We show that the network composed of coupled pyramidal neurons generates

different spatial-temporal patterns. The local and global phase order parameters

together have shown to be great tools of wave detection. We observe that wave activity

generate a specific range of values for both mean order parameters. Locally the neurons

are synchronized for almost all values of R and gsyn, indicating that waves do not

disrupt the local dynamics. The waves greatly affect the global dynamics and makes

the global order parameter goes to values close to 0, characterizing desynchronization in

the network. The low impact that waves have in local synchronization is due to the firing

of the closest neighbors when the travelling wave arrives at the neuron. In the entire

network, the passage of wave helps the local neurons to fire meanwhile the neurons that

are not at the wave location do not receive a firing support. These characteristics hold

great power to identify waves in the network, thus we suggest a diagnostic capable of
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identifying waves. They are identified by a low global and high local order parameters.

Applying this criteria, we identify some waves. Mostly spike waves are found for radius

lower than 55 µm. The type of wave is not pointed out by this diagnostic, then more

criteria to identify spiral waves are necessary.

The identification of spiral waves can not be done by using only the condition

proposed earlier, due to the fact that it does not specify the wave type. The spiral waves

generate a specific abnormality in the phase producing very low local order parameter

in it. The neurons localized in this abnormality are desynchronized and are the core of

the spiral, called phase singularity (PS). The neurons in the PS exhibit a low value in

the local order parameter inferior to 0.7, then we propose that PS are characterized by

Zi,j < 0.7. It is not necessary only one PS to exist spiral waves, multi-phase singularies

are possible. However, a great amount of PSs promote desynchronized activity. We

define a maximum number of PSs in the network, Pmax = 20. We propose four conditions

which must be met to identify spiral waves, these conditions regard the range of both

phase order parameters and the amount of PS. The synchronized states are defined by

high global and local order parameters, non-spiral waves are characterized by (ZL ≈ 1,

Zg < 0.7 and PS = 0, spiral waves exhibit the same conditions of non-spiral waves with

the addition of PS > 0 and desynchronized states are characterized by ZL ≈ 0 and

Zg ≈ 0.

The spiral waves are generated by different combinations of R and gsyn. This wave

pattern is not only restricted for spike firing, but also for burst spiral. With regard to

the burst spiral pattern, it is not as easily observed as spike spiral. The burst spiral

appearance is restricted for specific values of R and coupling strength, for example

R = 75 µm and gsyn = 0.14 nS. The emergence of non-spiral wave is related to the

initial conditions. To understand the initial conditions influence in the system, we

analyze the hysteresis diagram for a constant radius and vary the gsyn. Desynchronous

behavior is easier to achieve if the initial conditions are desynchronized. We find a region

of bistability in the range gsyn =[0.11, 0.13] nS. Depending on the initial conditions, it

is possible to verify the existence of spike or burst waves. The identification of bistable

state is crucial due to its strong correlation with epileptic seizures [56].
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