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Abstract—We consider a non stationary multi-armed bandit in
which the population preferences are positively and negatively re-
inforced by the observed rewards. The objective of the algorithm
is to shape the population preferences to maximize the fraction
of the population favouring a predetermined arm. For the case of
binary opinions, two types of opinion dynamics are considered—
decreasing elasticity (modeled as a Polya urn with increasing
number of balls) and constant elasticity (using the voter model).
For the first case, we describe an Explore-then-commit policy
and a Thompson sampling policy and analyse the regret for
each of these policies. We then show that these algorithms and
their analyses carry over to the constant elasticity case. We also
describe a Thompson sampling based algorithm for the case when
more than two types of opinions are present. Finally, we discuss
the case where presence of multiple recommendation systems
gives rise to a trade-off between their popularity and opinion
shaping objectives.

Keywords:Multi-armed Bandits, Opinion Shaping, Con-
textual Bandits, Non-stationary rewards

I. INTRODUCTION

Stochastic multi-armed bandit (MAB) algorithms are used
in many applications. A canonical application is in recom-
mendation systems that suggest one or more items from a
fixed set of items to users of the system. Example uses of
these recommendation systems are for suggesting items on e-
commerce websites and on streaming services, recommending
friends and connections on social networks, and for placing
results and ads in search engines. The classical stochastic
MAB setting is as follows. Users arrive sequentially and are
recommended one of N arms. The system obtains a random
reward based on the user preference for the recommended arm.
The reward distribution of each arm is assumed independent
of all other rewards and is unknown. The objective of the
MAB algorithm is to learn the best arm while minimizing the
loss in cumulative reward, compared to that from an ideal or
a reference algorithm, over a finite time horizon. Among the
many extensions to this classical problem, the one relevant to
our work is that of contextual bandits where the algorithm also
has side information about the user’s preferences.

A key assumption made in the design and analyses of
classical MAB algorithms is that the reward distributions of
the arms do not change with time. This also implies that
the preferences of the user population are assumed to not
be affected by the sequence of arms that are played. From
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ones own experiences, the latter is clearly not always true—
user preferencess are affected by the recommendations. In fact,
the objective of advertisements is to persuade users to adopt
particular preferences. With this motivation, in this paper, we
make the reasonable assumption that user preferences are not
independent of the recommendations and are in fact influenced
by them. Specifically, we assume that the preferences of the
users at any time, and hence the reward distributions from the
arms, depends on the history of recommendations upto that
time and is a function of the arms that are played and rewards
accrued.

MAB algorithms are usually designed to find the best arm,
the one with the highest expected reward, by a judicious
combination of exploration and exploitation. Our objective
is a marked departure from this: the goal is to actively
use the preference reinforcements to influence the population
preferences. This objective is similar in spirit to the emerging
literature on opinion control, e.g., [5]–[7]. However, to the best
of our knowledge, such an objective has not been explored in
an MAB setting.

In this paper, we will assume that the recommendation
system uses a contextual MAB algorithm to serve a multitype
population with each type having a unique preferred arm. We
allow both positive and negative influences to be simultane-
ously present—influence is positive when the recommended
arm is liked by the user and the influence is negative when
the recommendation is not liked by the user. Furthermore,
we consider two kinds of time-dependent behavior of influ-
ence dynamics: (1) decreasing intensity of influence where
the population becomes increasingly rigid in its preferences,
and (2) constant intensity of influence where the degree of
influence remains constant throughout the period of interest.
The first model is motivated by the empirical observation that
advertising gives diminishing returns [8], [9] and the second
model is inspired by the popular voter model (introduced
in [10]) which has been widely studied in the literature on
opinion dynamics. For both these models we will first consider
a system that is serving a population of two types with type
1 being the preferred type, i.e., the objective of the algorithm
is to maximize the population of type 1 users at the ed of the
time horizon T.

The following are the key contributions in the paper.
• Optimal policy to maximize type 1 population when

reward statistics are known. Interestingly, the optimal
policy does not necessarily recommend the favoured arm.
[Section IV]
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• An explore-then-commit (ETC) policy to maximize type
1 population when the reward statistics are unknown.
This has to battle the twin tradeoffs—usual exploration-
exploitation tradeoff and the decreasing ability to shape
the preferences when the population has become more
rigid. This is also shown to have logarithmic regret in
the known time-horizon setting. [Section V]

• A Thompson sampling based policy to maximize type 1
population when the reward statistics are unknown. We
show that this policy gives us logarithmic regret even if
the time-horizon is unknown. [Section V]

• For the case of the constant influence model, we show
that the analyses and the algorithms we obtained for the
decreasing influence model stay valid. [Section VI]

• Finally, we present two different extensions, First, we de-
scribe an N -arm MAB for an N -type population. For the
objective of maximising the type 1 population, we obtain
the optimal policy when the reward matrix is known. We
then extend the Thompson sampling algorithm to this
case. This is considered in Section VII-A.
A second extension is a model for two recommendation
systems with competing objectives for the two-arm, two-
type case. Some preliminary results are presented Sec-
tion VII-B.

In the next section we discuss the related literature and
delineate our work. The model and some preliminaries are
set up in Section III. We conclude the paper with a discussion
on directions of future work. All the proofs are carried in the
appendix.

II. RELATED WORK

The literature on MAB algorithms is vast and varied and
excellent textbook treatments that describe the basic models
and several key variations are available in, e.g., [1]–[3], [11].
Our interest in this paper is on contextual bandits where the
MAB has side information about the user. An early analysis
of MABs with side information is in [12] although the term
was coined in [4]. In this paper we consider contextual bandits
where the type of the user is known to the algorithm before
the recommendation is made.

As we mentioned earlier, in the classical setting the reward
distributions on the arms remain the same and the rewards
are independently realized for each user. There is however, an
emerging literature on MAB algorithms that do not assume
that reward distributions are the same at all times. In [13] the
expected reward from any arm can change at any point and any
number of times; changes are independent of the algorithm
and the reward sequence. In rotting and recharging bandits,
the arms have memory of when they were last recommended
and the reward distribution depends on the delay since the
last use of the arm. In the rotting bandit model [14], the
expected reward from playing an arm decreases with the gap
since the last play. The recharging bandit model [15] is the
opposite—expected reward increases with the gap. The models
of [16], [17] have similar objectives but are developed in a
Markovian restless bandits setting. A generalisation of rotting
and recharging bandits is considered in [18] where the mean

rewards from the arms vary according to a Markov chain.
Positive reinforcement of the population preferences based on
the rewards seen is modelled in [19]. Here the preference in a
multi-type user population is positively reinforced by positive
rewards. However, this is not a contextual bandit setting and
negative reinforcements are not modelled here.

None of the preceding are contextual bandits, i.e., they do
not have side information about the user. Non stationary con-
textual bandits are considered in [20] but the time dependent
behaviour of the arms is independent of the sample path of
the user types and the rewards. In all of the preceding, the
objective is to maximize the cumulative reward (minimize
regret) and not to influence the population.

Our objective is to not maximize the rewards obtained but
shape the preferences. In this there are similarities with the
objectives in [5]–[7]. In [5], the objective is to rapidly converge
to a desired asymptotic consensus in a social network. In
[6], [7], open loop, optimal control techniques are used to
shape the opinions in a social network. We do not deal with a
social network, rather with the population that interacts with a
platform like a recommendation system. We believe that this is
the first work that models positive and negative reinforcements
due to the rewards and has the the explicit objective of shaping
the preferences in the population.

In the model that we describe in this paper, the preferences
of the user population will be tracked by a Polyà urn [21],
widely used to model random reinforcements; see [22] for
an excellent tutorial and survey. Much of this literature is on
characterization of the asymptotic composition of the urn. Our
interest in this paper is to influence the composition of the urn.

III. MODEL AND PRELIMINARIES

A population of two types of users is served by a recommen-
dation system S which recommends one of two arms to each
arriving user. The two types of users are distinguished by their
preference for one arm over another. Time is discrete and takes
values t ∈ [1 : T ]. At time t, a user of type Xt arrives, the
type is observed by S and the user is shown arm At. Since
the type is observed by S before the arm recommendation
is made, this is a contextual bandit. For much of the paper
we will assume At ∈ {1, 2} and Xt ∈ {1, 2}, i.e., we will
consider a two-arm system serving a two-type population.

The probability of the incoming user at time t being of a
specific type is proportional to the fraction of users of that
type in the population at time t. The fraction of users of a
specific type in the population evolves over time. Specifically,
the fraction of users in the population of a specific type at
a given time is a function of the recommendations made to
incoming users up to that time and the users’ response to those
recommendations. For ease of exposition, we track the fraction
of type 1 and type 2 users in the population via a virtual
urn containing colored balls (colors 1 and 2 corresponding to,
respectively, population types 1 and 2); the fraction of type 1
users in the population equals the fraction of type 1 balls in
the urn.

Reward Structure. Suppose Xt = i and At = j, i.e., user
at time t is of type i and is recommended arm j. The user
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gets a random Bernoulli reward Wt ∈ {0, 1} with mean bij .
Let B := [[bij ]] be the reward means matrix. Without loss of
generality, we assume that bii is the maximum in row i of B,
i.e., type i users prefer arm i over others.

Population Dynamics. Let Zi(t) be the number of type i
balls in the urn at time t. The user arriving at time t is of
type i with probability zi(t) = Zi(t)/(

∑
j Zj(t)). Wt is the

realization of the reward at time t and it causes the urn to be
updated reflecting the change in the population type effected
by the arm shown and the reward obtained. We consider two
ways in which the update occurs. N0 = Z1(0) +Z2(0) is the
total number of balls at t = 0.

1) Decreasing Influence Dynamics (DID) model. In this
model, the total number of balls increases by one in
each time-slot and the colour of the ball is determined
as follows. If the user arriving at time t is shown arm
j, and the user likes this arm (i.e., the random Bernoulli
reward obtained is one) then the number of balls of type
j, (i.e., the type that has preference for the arm shown)
increases by one. If the user does not like the arm shown,
then the number of balls of type −j, (i.e., the type that
has lower preference for the arm shown) increases by
one. Formally,

ZAt
(t+ 1) = ZAt

(t) +Wt,

Z−At
(t+ 1) = Z−At

(t) + (1−Wt). (1)

Here −At is the arm that was not recommended. The
population dynamics of (1) implies that the maximum
possible change in the value of zi(t) decreases with t.
Thus the population of users, and hence the preferences,
becomes less plastic with time. Real life examples of
this setting are applications like Yelp which recom-
mend restaurants to customers. Customers review or rate
restaurants once they visit them. The ratings influence
the preferences of future customors. Furthermore, since
the number of reviews for each restaurant increase over
time, the maximum possible change to the average rating
decreases with time.

2) Constant Influence Dynamics (CID) model . In this
model, the total number of balls in the urn remains
constant over time. The influence of the rewards over the
population is modeled as follows. If a user of type Xt

arriving at t yields reward 1 when shown arm At = −Xt

or reward 0 when shown arm At = Xt then one ball of
type −Xt changes its colour. The balls do not change
type in the other two cases. Formally, defining θt to be
the event {At = −Xt}, the urn evolution will be

ZAt
(t+ 1) = ZAt

(t) + (1θt ⊕Wt) ,

Z−At
(t+ 1) = Z−At

(t)− (1θt ⊕Wt) . (2)

Here the maximum possible change in the value of zi(t)
remains constant over time. This model is inspired by
the voter model of [10] which is usually defined on a
graph. Here the voters interact with the recommendation
system, one at a time, rather than with each other. Real
life examples of this setting include tracking polls that
use a focus group of the same set of individuals that

are polled periodically to track the evolution of their
collective opinion over time.

Observe that in both the models, the rewards are stationary,
i.e., bij does not chage with time. However, the preferences
for the arms in the population, z(t), is changing with time.
Thus this is a non stationary contextual multi-armed bandit.

Remark. It is easy to see that both the models are a special
case of the following general Markov decision process model.
Let (Z(t), Xt) be the state of the system with Xt being a
function of Z(t). The evolution of Z(t+1), and hence Xt+1,
depends on the action At and on the reward Wt.

Algorithmic Goal. The goal of the recommendation system
S is to follow a trajectory z(t) for 0 < t ≤ T that achieves the
maximum possible increase at at every time t. We will show
in Theorem 2 that this also corresponds to maximizing z(T )
as T →∞.

We now formally define a policy.

Definition 1 (Policy). A policy π is a time indexed sequence
of the tuples (pt, qt) where, for all t ∈ [1 : T ],

pt = P (At = a1|Xt = 1, z1(t))

qt = P (At = a2|Xt = 2, z1(t)). (3)

From the definition, pt is the probability of showing arm
1 to a type 1 user and qt is the probability of showing
arm 2 to a type 2 user. The sequence of tuples {pt, qt}t>0

uniquely identifies a policy for the two-armed influencing
bandit problem. We now formalize our goal by defining the
notion of an optimal policy.

Definition 2 (Optimal policy). An optimal policy for time t is
the value of (pt, qt) that maximizes the expected increase in
type 1 population in time slot t, given the population profile
at time t, i.e.,

(p∗t , q
∗
t ) = arg max

(pt,qt)
E(∆Z1(t) | z1(t)) (4)

where ∆Z1(t) = Z1(t+ 1)− Z1(t).

Remark. Observe that this definition is of a locally optimal
policy. However, in Theorem 2 of the next section we show
that the optimal policy is independent of z1(t) and thus the
locally optimal policy is also optimal in a broader sense that
is made more explicit.

Next we define the metrics of regret and cumulative regret
for preference shaping which will be used to compare the
performance of different policies. Let ∆Zπ

1 (t) (resp. ∆Z∗
1 (t))

be the change in the population of type 1 balls in the urn at
time t given that we follow the policy π (resp. the optimal
policy) at time t.

Definition 3 (One-step regret). Regret in a time slot t, for
policy π, denoted by Rπ

t , is defined as

Rπ
t = E(∆Z∗

1 (t)−∆Zπ
1 (t) | Z∗

1 (t) = Zπ
1 (t)) . (5)

The definition of cumulative regret follows naturally.

Definition 4 (Cumulative regret). Cumulative regret (Rπ
[1:T ])

of a policy π is defined as

Rπ
[1:T ] =

T∑
t=1

Rπ
t .
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Observe that in the definition of one-step regret, the expec-
tation is conditioned on the population profile Z1(t) for both
the optimal policy and candidate policy π being the same at
time t−, before the policy is applied. The cumulative regret is
just the sum of these one-step deviations.

We argue that a meaningful comparison between two poli-
cies in a time slot can be done when both are operating on
the same composition of population. Hence, when defining
one-step (or instantaneous) regret, we specify the population
composition on which the optimal policy is being played. Such
a metric is a useful, and informative, to compare policies, be-
cause if policy A is better than another policy B in maximizing
the expected increase in type 1 balls in the urn at all time
instants conditioned on the same initial state, then it will also
incur a lesser regret for all time instants.

Adapting the commonly used definition of regret for our
setting would define the regret of a candidate policy as the
difference between the maximum possible value of zT and
the value of zT under a candidate policy. We make a precise
comparison between this commonly used definition and our
definition in (5) in Appendix A.

IV. PREFERENCE SHAPING WITH KNOWN REWARDS
MATRIX

In this and in the next section we consider the DID model
in which the influence of the actions of S and the observed
rewards decreases with time. We begin by assuming that S
knows the reward means matrix B and wants to maximize the
expected proportion of type 1 users in the population at time
T. This case is interesting in its own right because it is directly
useful when B is exogenously available, e.g., from previously
collected data. It also provides insight into the behavior of
the optimal influence process. Thus it is a preliminary result
that informs the design of algorithms for the case when B is
unknown.

The following theorem describes the optimal policy.

Theorem 1. The optimal policy at time t is

(p∗t , q
∗
t ) = (1{b11+b12−1>0},1{b21+b22−1<0}) (6)

where 1{·} is the indicator function.

The optimal policy would have S recommending arm 1 to
a type 1 arrival for all t if b11 > 1 − b12 and recommending
arm 2 otherwise. Recall that arm 1 is the preferred arm for
type 1 arrivals. We can interpret this to mean that S should
always recommend arm 1 to type 1 users if they like arm 1
more than they dislike arm 2, and should recommend arm 2
otherwise. This is a result of the negative reinforcement that
can happen if arm 1 is not liked sufficiently strongly or if arm
2 is liked strongly. Thus, for optimal preference shaping, the
system may recommend arms which have a lower preferrence
for the user.

Clearly, the policy of (6) in Theorem 1 gives us zero
cumulative regret. However, it is not immediately clear if
this policy maximizes the proportion of type 1 users in the
population at time T. To show that this is indeed the case, we
first analyze the time evolution of the expected proportion for
policy π and state the following lemma.

Lemma 1. Let d1 := p(1 − b11) + (1 − p)b12 and d2 :=
q(1 − b22) + (1 − q)b21. Further, let z1(0) be the proportion
of type 1 users at t = 0. For a policy π with (pt, qt) = (p, q),
the expected proportion of type 1 users at time t is

z1(t) =
d2

d1 + d2
+

(
z1(0)−

d2
d1 + d2

)(
1 +

t

N0

)−(d1+d2)

(7)

Lemma 1 tells us that the expected proportion of type 1
users monotonically approaches d2/(d1 + d2) as t → ∞
and is independent of z1(0). Thus, this is the maximum
proportion that can be achieved using a policy of the form
(pt = p, qt = q). It turns out that the policy from (6) of
Lemma 1 does indeed maximize the proportion of type 1 users
in the population.

Theorem 2. The optimal policy of (6) of Lemma 1 maximizes
the expected asymptotic proportion of type 1 users and the
maximum proportion is

(
d2

d1+d2

)
.

Thus, if the matrix of mean rewards B is known, we can
obtain a zero regret policy that also provably maximizes the
expected proportion for the goal of preference shaping.

The preceding results are aimed at optimizing metrics that
are in expectation. We can say more; specifically, we can
provide long and short term sample path guarantees via
stochastic approximation theory. Furthermore, the derivation
of the mean trajectories as in Lemma 1 through the formation
of an o.d.e can also be justified using this theory. We do this
below.

Sample path guarantees. Recall that the classic stochastic
approximation equation for which we have long term con-
vergence guarantees is the following equation, introduced by
Robbins and Monro in [23]

xt+1 = xt + a(t)(h(xt) +Mt+1).

Here h is Lipschitz, Mt is a zero-mean martingale difference
sequence and {a(t)} are coefficients which satisfy the two
conditions (1)

∑
t a(t) = ∞ and (2)

∑
t a

2(t) < ∞. For
such an iteration, it is guaranteed that all sample paths of xt

will converge to the equilibrium point of the o.d.e. ẋ(t) =
h(x(t)) (i.e. h(x) = 0) almost surely as t→∞. Further, the
maximum deviation from the o.d.e. trajectory in a fixed length
time window [t, t+T ] also goes to 0 almost surely as t goes to
∞. A weaker error bound for finite time and constant stepsize
a(t) = a is given in [24].

We now analyze the difference between the trajectory of
the o.d.e. obtained in the proof of Lemma 1 and a sample
path of the stochastic sequence evolving according to (1) using
stochastic approximation theory. Towards this goal, we first
rewrite (1) into the classical Robbins-Monro form. For a fixed
policy, the stochastic sequence of the number of type 1 balls,
Z1(t), evolves as

Z1(t+ 1) = Z1(t) + ∆Z1(t)

= Z1(t) + (E[∆Z1(t)|z1(t)]
+(∆Z1(t)− E[∆Z1(t)|z1(t)])) ,
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Fig. 1: Trajectory of proportion of type 1 population. Com-
parison of o.d.e. solution and averages from 1, 10 amd 100
sample paths. We used B with the values b00 = 0.9, b01 = 0.4,
b10 = 0.2, and b11 = 0.6.

where E[∆Z1(t)|z1(t)] = z1(t)(1 − d1) + (1 − z1(t))d2
(which can be shown directly from the definition of the
DID model). Since E[∆Z1(t)|z1(t)] is Lipschitz in Z1(t) and
Mt = ∆Z1(t) − E[∆Z1(t)|z1(t)] is a zero mean martingale
difference sequence, this equation is in a constant stepsize
form of the Robbins-Monro iteration and has been used to
obtain the o.d.e. in the proof of Lemma 1. To get long term
convergence guarantees, we divide the above equation by
(N0 + t+ 1) on both sides to obtain the following.

z1(t+ 1) =
1

N0 + t+ 1
(Z1(t) + E[∆Z1(t)|z1(t)] +Mt)

=
N0 + t

N0 + t+ 1
z1(t) +

1

N0 + t+ 1
(E[∆Z1(t)|z1(t)] +Mt)

= z1(t) +
1

N0 + t+ 1
(E[∆Z1(t)|z1(t)]− z1(t) +Mt)

= z1(t) +
1

N0 + t+ 1
(d2 − (d1 + d2)z1(t) +Mt)

In the preceding we have used Z1(t+1)/(N0+t+1) = z1(t+
1). This last equation is now in the standard Robbins-Monro
form as in [23], since

∑
t 1/(N0+t+1) =∞ and

∑
t 1/(N0+

t + 1)2 < ∞. Therefore, all sample paths followed by z1(t)
converge asymptotically almost surely to z1 = d2/(d1 + d2).

Figure 1 shows an example comparison between the trajec-
tories from 1, 10, and 100 samples paths. The figure also plots
the trajectory of the o.d.e. obtained in Lemma 1. Observe that
although a single sample path can have substantial deviations,
averages of even a small number begins to track the o.d.e.
rather closely. This observation was seen in all of our many
simulations.

V. PREFERENCE SHAPING WITH UNKNOWN REWARDS
MATRIX

When the rewards mean matrix B is unknown, we face
a two-fold trade-off in preference shaping. The first trade-
off is the classical exploration-exploitation trade-off, where
exploration involves correctly estimating the matrix B and
exploitation involves using the optimal policy derived in the
previous section to maximise the fraction of type 1 population.

The second trade-off is the decreasing plasticity (DID model)
of the preferences modelled by the increasing number of balls
in the urn. This puts additional pressure on exploitation of the
estimated B as soon as possible.

We consider two algorithms to address the two-fold trade-
off. We first describe and analyze a naive explore-then-commit
(ETC) algorithm. Next we describe a Thompson sampling (TS)
based algorithm and also analyze it. We will see that if the
time horizon T is known, ETC can give logarithmic regret.
The TS algorithm also gives logarithmic regret and has the
advantage of not needing to know T in the parametrization of
the algorithm.

Our analyses of the algorithms will obtain upper bounds
on the cumulative regret accrued by each algorithm. First we
obtain the regret for a general policy π = {pt, qt}t>0 in the
following lemma.

Lemma 2. Define ∆1 := |b11 + b12 − 1| and ∆2 := |b22 +
b21−1|. The regret Rπ

t of a policy π that has parameter values
(pt, qt) is given by

Rπ
t = z1(t)|1{b11+b12−1>0} − pt|∆1

+ (1− z1(t))|1{b21+b22−1<0} − qt|∆2.

A. The Explore-Then-Commit (ETC) Algorithm

This algorithm has two phases. The exploration phase lasts
for m time units when each arm is recommended uniformly
and the rewards mean matrix is estimated. This estimate is
used to determine the optimal policy and commit to it during
the remaining (T − m) time units. Based on the preceding
section and assuming that the estimates then use the optimal
policy of the previous section (evaluated for the estimate
B̂ = [b̂ij ]2×2) to maximize the proportion of type 1 users.
Algorithm 1 describes the scheme in detail.

Algorithm 1: The Explore-Then-Commit algorithm

1 Initialize bij = 0, nij = 1 for all i, j ∈ {1, 2};
2 for t = [1:m] do
3 i←Type of user arrived;
4 Show arm j chosen uniformly from {1, 2};
5 Collect reward Wt;
6 bij+ = Wt;
7 nij+ = 1;
8 end
9 b̂ij ← bij/nij for all i, j ∈ {1, 2};

10 for t = [m+1:T] do
11 i←Type of user arrived;
12 if i == 1 then
13 Show arm 1 w.p 1{b̂11+b̂12−1>0} else show

arm 2;
14 else
15 Show arm 2 w.p 1{b̂22+b̂21−1<0} else show arm

1;
16 end
17 end

We now use Lemma 2 to find the regret for this policy.
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Lemma 3. The cumulative regret, for the Explore-then-
Commit policy with m time units for exploring is

Rπ
[1:T ] = Rexplore +Rcommit,

where

Rexplore = 0.5

(
m∑
t=1

z1(t)

)
∆1 + 0.5

(
m−

m∑
t=1

z1(t)

)
∆2

Rcommit = perr

(
T∑

t=m+1

z1(t)

)
∆1

+ qerr

(
T −m−

T∑
t=m+1

z1(t)

)
∆2

perr = P ((b̂11 + b̂12 − 1)(b11 + b12 − 1) < 0)

qerr = P ((b̂22 + b̂21 − 1)(b22 + b21 − 1) < 0)

It now remains to derive bounds on the cumulative regret so
that this policy can be compared to others. The general result
has eluded us. However, we state the following result for the
the special case of b11 = b22 and b12 = b21.

Theorem 3. If B is such that b11 = b22 and b12 = b21, the
cumulative regret for the Explore-Then-Commit (ETC) policy
is bounded above by

RETC
[1:T ] ≤ m∆1/2 + (T −m)∆1e

−m∆2
1/8 (8)

Further, using m = 8 log(T )/∆2
1 (to bound the regret in

terms of T and eliminate m), we get a logarithmic regret, i.e.,

RETC ≤
4

∆1
log(T ) +O(1/T ). (9)

Thus for a finite time horizon for some B, we can indeed get
logarithmic regret. A situation obeying the conditions specified
in the previous theorem has been shown in Fig. 3.

The performance of the general ETC is open; the optimal
m is not known. Even for the special case, m requires T
to be known. Furthermore, the ETC algorithm is inherently
inefficient because it has to spend a significant amount of
time in the initial slots, when the preferences are more plastic
(equivalently, the influence of the rewards is higher), doing
exploration to estimate B. Both of these drawbacks suggest
that a better policy could be to estimate B as well as track a
confidence level of that estimate, which would tell us whether
to explore or not. We outline such a policy next.

B. Thompson Sampling

The Thompson sampling algorithm that we present in
Algorithm 2 seeks to overcome the drawbacks of the ETC
policy.

Algorithm 2 maintains a prior on the bij and in each time
slot, values are updates it based on the reward obtained. The
estimate for bij in every time slot is sampled by a Beta
distribution that decreases its variance with every new sample
obtained. This automatically takes care of the exploration-
exploitation trade-off.

The following theorem shows that the Thompson sampling
policy can provide logarithmic regret in general.

Algorithm 2: The Thompson sampling algorithm.

1 Initialize αij = 1, βij = 1 for all i, j ∈ {1, 2};
2 for t = [1:T] do
3 i←Type of user arrived;
4 Sample b̃ij ∼ Beta(αij , βij) for all i, j ∈ {1, 2};
5 if i == 1 then
6 Show arm 1 w.p 1{b̃11+b̃12−1>0}, else show

arm 2;
7 else
8 Show arm 2 w.p 1{b̃22+b̃21−1<0}, else show

arm 1;
9 end

10 j ← Arm showed;
11 Rt ← Reward obtained;
12 αij ← αij +Rt;
13 βij ← βij + (1−Rt);
14 end

Theorem 4. The cumulative regret for the Thompson sampling
policy is bounded above by

RThomp
[1:T ] ≤ (z∗)2

4

(
1

f1(1− f1)∆1
+

1

f2(1− f2)∆2

)
log(T ).

(10)
Here z∗ is the asymptotic proportion reached by the optimal
policy for the matrix B, and f1, f2 < 1 are constants
that depend on the parameters of the Thompson sampling
procedure.

C. Simulations

We have performed extensive simulations to study the
performance of the two policies. In all of these, we see that the
Thompson sampling policy far outperforms ETC in both maxi-
mizing the required population proportion and minimizing the
cumulative regret. Some representative results are presented
below. The details of the simulations are specified in Appendix
L.

Figure 2 shows the evolution of the proportion of type 1
population as a function of time for the ETC, TS, and the
optimal policies for various values of B. To obtain the plot for
the ETC algorithm we tried all values of m, 1 ≤ m ≤ T and
the plot for the best choice of m, i.e., the m that maximizes
type 1 population at the T, is shown. The plot for the optimal
policy assumes B is known and uses the policy from (6) of
Lemma 1.

In all the cases, the TS policy does significantly better. In
Fig. 3, we consider the symmetric Bsym = (b11 = 0.9, b12 =
0.7, b21 = 0.7, b22 = 0.9) for which Theorem 3 is applicable
and we have a prescribed optimum exploration duration m for
logarithmic regret. We see that even here the TS scheme does
significantly better than ETC.

VI. PREFERENCE SHAPING WITH CONSTANT INFLUENCE

In this section, we focus on the CID model in which the
influence of the rewards on the population preferences is
constant over time. Recall that the basic setup and reward
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(a) B1 = (b11 = 0.9, b12 = 0.4, b21 = 0.2, b22 = 0.6). Optimal
policy is (p = 1, q = 1) with asymptotic z1 = 0.80.

(b) B2 = (b11 = 0.9, b12 = 0.4, b21 = 0.6, b22 = 0.7). Optimal
policy is (p = 1, q = 0) with asymptotic z1 = 0.86.

(c) B3 = (b11 = 0.7, b12 = 0.1, b21 = 0.3, b22 = 0.5). Optimal
policy is (p = 0, q = 1) with asymptotic z1 = 0.83.

(d) B4 = (b11 = 0.7, b12 = 0.1, b21 = 0.6, b22 = 0.6). Optimal
policy is (p = 0, q = 0) with asymptotic z1 = 0.86.

Fig. 2: Expected population proportion vs time (left) and
cumulative regret vs time (right) for the ETC, TS, and the
optimal policy that knows B. The B used for each of the
plots and the optimal policy are also shown.

Fig. 3: Expected population proportion vs time (left) and cu-
mulative regret vs time (right) for the ETC, TS, and the optimal
for Bsym = (b11 = 0.9, b12 = 0.7, b21 = 0.7, b22 = 0.9)

structure remain the same as that of the DID model. However,
the impact of the reward, Wt, accrued in each time slot
changes. If a user of type i arrives and gets a unit reward
when At = −i, or if it gets reward 0 if At = i then one
ball of type i changes its color to the other color, −i. The
composition of the urn remains unchanged in the other two
cases. Clearly, the ETC and Thompson sampling algorithms
of, respectively, Algorithm 1 and Algorithm 2, can be used
for the CID model without any change. In the following we
will analyze their performance.

We first present the counterpart to Theorem 1. Assuming
that B is known, the trajectory of the fraction of type 1
population for policy (pt, qt) = (p, q) is given by the following
lemma.

Theorem 5. For the CID model,for a policy π such that
(pt, qt) = (p, q), the time evolution of the expected fraction of
type 1 users is given by

z1(t) =
d2

d1 + d2
+

(
z01 −

d2
d1 + d2

)
e−t

d1+d2
N0 . (11)

Here d1 = p(1−b11)+(1−p)b12, d2 = q(1−b22)+(1−q)b21
and z1(0) is the initial proportion of type 1 users.

We see that, with a fixed (p, q), the asymptotic fraction
of type 1 in the population for the CID model has the same
value as that of the DID model. The difference though is in
the rate at which the asymptotic value is approached. Since the
expressions for the asymptotic proportions for CID and DID
are the same, their optimizers would also be the same. Thus,
it follows that the optimal policy for DID model as stated in
Theorem 1, is also optimal for the CID model. This is counter-
intuitive, since we expect that, because of the two-fold trade-
off in the former case, the asymptotic value would be lesser
than in the latter. An explicit proof is given in Appendix J.

A comparison between the trajectories of z(t) for the opti-
mal (p, q) for both the decreasing and the constant influence
models is shown in Figure 4 for some sample values. We
see that in the CID model, the asymptotic value is reached
much more quickly due to the exponential decay term in (11)
in Theorem 5 as opposed to polynomial in (7) for the DID
model.

Next, we show that the other results, i.e., the bounds on the
one-step regret, the cumulative regret for the special case of
b11 = b22 and b12 = b21, and the cumulative regret for the
Thompson sampling scheme of Algorithm 2, also carry over
from the DID model to the CID model.

Lemma 4. Let ∆1 := |b11+b12−1| and ∆2 := |b22+b21−1|
and let (pt, qt) be the strategy in slot t. The general expression
for regret for the CID model is

Rt(pt, qt) = z1(t)|1{b11+b12−1>0} − pt|∆1+

(1− z1(t))|1{b21+b22−1<0} − qt|∆2

Note that the general expression for regret for the model
presented in this section is same as the expression we obtained
for the previous model in Lemma 2. Thus it follows from the
above result that all regret bounds stated in Section V hold
for the constant influence model.



8

(a) B1 = (b11 = 0.7, b12 = 0.1, b21 = 0.2, b22 = 0.5). Optimal
policy is (p = 0, q = 0).

(b) B2 = (b11 = 0.9, b12 = 0.7, b21 = 0.7, b22 = 0.9). Optimal
policy is (p = 1, q = 0).

Fig. 4: Expected population proportion vs time for optimal
policies that knows B. for DID model and the CID model.
The B used for each of the plots is also shown.

Theorem 6. 1) For the special case of b11 = b22 and
b12 = b22, the upper bound on the cumulative regret
is given by (8).

2) The cumulative regret bound for the ETC algorithm
(Algorithm 1) with population dynamics following CID
model is given by (9).

3) The cumulative regret bound for the Thompson sampling
algorithm (Algorithm 2) with population dynamics fol-
lowing CID model is given by (10).

VII. EXTENSIONS

We consider two different extensions in this section.

A. Generalizing to N arms

We now consider an MAB with N arms and N user types.
As with the two-type case, the evolution of the population
types is tracked using an urn that has balls of N different
colours. Following from the previous sections, B[[bij ]] is an
N ×N matrix of reward means, where bij is the mean reward
obtained when a user of type i is shown arm j. The mechanism
for user arrival is the same as that in the two-arm case:
Denoting the fraction of balls of color i in the urn at time
t by zi(t), the user is of type of i with probability zi(t).
Furthermore, we consider the contextual bandit in which S
knows the type of the user.

We consider the following natural extension to the de-
creasing influence dynamics model for the two-arm case of
Section III.

• If At ̸= Xt then ZAt
(t+1) = ZAt

(t)+Wt and ZXt
(t+

1) = ZXt
(t) + 1 −Wt. This update is exactly like the

updates of the two-arm DID model of Section III.
• If At = Xt then

– If Wt = 1 then ZAt(t + 1) = ZAt(t) + 1. This is
also like in Section III.

– If Wt = 0 then Zj(t+1) = Zj(t)+1 where j(̸= At)
is an arm chosen uniformly at random from the set of
all arms excluding arm At. Note that for N = 2, this
reduces to the two-arm DID model of Section III.

In each time step t, the MAB uses a randomised policy
defined by an N ×N stochastic matrix P = [[pij ]], where pij
is the probability that arm Aj is shown to a user of type i. As
before, we will consider a contextual bandit where S knows
the type of the user before recommending. Further, we will
also assume that S knows the population profile determined
by the number of balls of the different colors in the urn,
i.e., S knowns Z(t) = [Z1(t), Z2(t), . . . , ZN (t)]T for all t.
As before, we seek the optimal policy P ∗ for maximizing
E[∆Z1(t)|Z(t)]. The following lemma gives us the optimal
policy, the extension to Theorem 1.

Lemma 5. The optimal policy P ∗ for the N -arm decreasing
influence dynamics model is given by

• For Row 1 of P ∗ :
– P ∗

11 = 1 if B11 > max(1−B12, . . . , 1−B1N )
– else P ∗

1j = 1 where j = argmaxk(1−B1k)

• For Row i (̸= 1) of P ∗ :
– P ∗

i1 = 1 if Bi1 > (1−Bii)/(N − 1)
– P ∗

ii = 1 otherwise

We remark here that this policy is more generally applicable.
For example, even if the population dynamics were changed
as follows: for the case At = Xt and Wt = 0, then
choose j with probability proportional to the j-type population
instead of choosing uniformly at random, the optimal policy
would be of a form similar to that in Lemma 5. This is
because the derivation would still involve maximizing a convex
combination like the one we see while proving the lemma (see
the Appendix).

For the case when the matrix B is unknown, once we have
the expression for an optimal policy for the N -arm model (like
the one in Lemma 5), we can apply Thompson sampling (with
the optimal policy applied on a sampled matrix B̃ in each time
slot instead of B) to maximize the proportion of type 1 users.

The optimal and Thompson sampling based strategies men-
tioned above have been simulated for the N−arms case and
the trajectory of the type 1 population for a few example cases
are shown in Figure 5. Even in the N > 2−armed bandit
examples, we observe that the Thompson sampling does not
fall far behind the optimal trajectory and gives us a healthy
majority of type 1 users (≈ 80% in all cases). We have not
obtained analytic guarantees on the population trajectories for
these cases, and a regret-based analysis remains open.
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(a) Preference shaping with 3 arms. Matrix B is 3× 3 with diagonal
terms = 0.9 and off-diagonal terms = 0.7.

(b) Preference shaping with 4 arms. Matrix B is 4×4 with diagonal
terms = 0.9 and off-diagonal terms = 0.6.

(c) Preference shaping with 5 arms. Matrix B is 5× 5 with diagonal
terms = 0.9 and off-diagonal terms = 0.7.

Fig. 5: Expected population proportion vs time for optimal
policy and Thompson sampling policy for N−arm case. The
N and B used for each of the plots is also shown.

B. Two competing recommendation systems

Consider the same two-arm model as before, but we have
two recommendation systems S1 and S2 instead of just one.
Assume that S1 is trying to maximize the number of type
1 users while S2 is trying to achieve the opposite. Had the
recommendation systems been alone, we saw that they may
adopt optimal policies that recommend a disliked arm to a
user. In real life, such an action might make the user dislike
the recommendation system itself. Therefore, when multiple
systems are present, we need to keep track of a “popularity”
metric that measures how popular a particular system is among

a certain type of user. In a time slot, a user either goes to
be served by S1 or S2. The probability of a user going to
a recommendation system is determined by the popularity of
the system among users of the same type. The popularity of
a system should increase on receiving a positive reward and
decrease on receiving a negative (or zero) reward. We now
make this more precise.

Competing recommendation systems (CRS): Define the

popularity matrix P t =

[
P t
11 P t

12

P t
21 P t

22

]
.

The row number of an element represents the user type, and
the column number represents the recommendation system. If
a user of type Xt arrives, it chooses to be served by the system
S1 with probability

P t
Xt1

P t
Xt1

+P t
Xt2

. For the case when the user
goes with system S1, we update the popularity matrix in the
following way.

P t+1
Xt1

= P t
Xt1 +Wt (12)

P t+1
Xt2

= P t
Xt2 + (1−Wt) (13)

where Wt is the reward obtained after an arm is recommended
by the system. This is similar to the population preference
dynamics. The population of users is updated in the DID or
the CID models from Section III. Thus we have both the popu-
lation preference for arm and the population preference for the
recommendation system interacting with the recommendations
made and the rewards seen by the users.

In this setup of recommendation systems with opposing
objectives, an interesting question is whether there are any
equilibrium strategies that balance the popularity of the rec-
ommendation system, akin to market share, as well as their
population preference shaping objectives. If the objective of
S1 and S2 were to only increase their popularity, they would
both follow the policy (p = 1, q = 1). However, since the
optimal population preference shaping policy might not always
be (p = 1, q = 1), each faces a tradeoff between their goals
of increasing popularity and of preference shaping. In this
preliminary study, we assume that each system is concentrating
solely on preference shaping and ran some simulations. We
note that depending on the structure of matrix B, we obtain
two kinds of behaviours.

1) Case 1 (Uniform Population): This is the case where
the matrix B is such that the optimal policy in Theorem 1 is
either (0, 0) or (1, 1). Note that the optimal policy of S1 and
S2 come out to be exactly the opposite of each other (i.e. if
(p∗, q∗) = (1, 1) for S1, then it is (0, 0) for S2 and vice-versa).

In this case, the popularity of the same recommender system
dominates in both type of user populations; see Fig. 6 and 9).
In the former case, the optimal policy for S1 is (1, 1). Here, S1

clearly has no incentive to deviate from this policy since this
policy increases both type 1 preferences and its own popularity
among all users. At the end of 1000 time slots, therefore, we
observe that a large fraction of the user population is using
the services of S1. This makes the type 1 users the majority in
the population. Note that this majority is still less than what
it could have been had S2 not been present. In Fig. 9, the
opposite happens, i.e., S2 dominates.
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Fig. 6: Expected population proportion vs Time (left) and
Popularity vs Time (right) for optimal policies for B1 =
(b11 = 0.9, b12 = 0.4, b21 = 0.2, b22 = 0.6).

Fig. 7: Expected population proportion vs Time (left) and
Popularity vs Time (right) for optimal policies for B2 =
(b11 = 0.7, b12 = 0.5, b21 = 0.6, b22 = 0.8).

In both cases above, a large fraction of the population end
up preferring one recommender over the other, regardless of
their type.

2) Case 2 (Polarized Population): This is the case where
the matrix B is such that the optimal policy in Theorem 1 is
either (0, 1) or (1, 0).

In this case, the popularity of the different recommender
system dominates in different type of user populations (See
Fig. 7 and 8). Take the former case where the optimal policy
for S1 is (1, 0). At the end of 1000 time slots, we observe that
the vast majority of the user population of type 1 is using the
services of S1, and those of type 2, are using the services of
S2. In the next figure, the opposite happens.

In both cases, we see that each type of user dominates the
user base of different recommendation systems.

VIII. CONCLUDING REMARKS

In this paper, we considered the problem of preference shap-
ing in a user population using multi-armed bandit algorithms.
We presented a simplified version of this problem for two

Fig. 8: Expected population proportion vs Time (left) and
Popularity vs Time (right) for optimal policies for B3 =
(b11 = 0.6, b12 = 0.2, b21 = 0.2, b22 = 0.6).

Fig. 9: Expected population proportion vs Time (left) and
Popularity vs Time (right) for optimal policies for B4 =
(b11 = 0.7, b12 = 0.1, b21 = 0.3, b22 = 0.9).

arms and two corresponding user types, where the preferences
of a user change in response to the random Bernoulli reward
obtained (can be thought of as like/dislike) in response to the
recommendation. We found how the population behaves if the
recommender follows a certain policy and hence found the
optimal policy to be followed if the Bernoulli reward means
are known. We then used Explore-then-Commit and Thompson
sampling algorithms to get policies that approach the optimal
in the case when the Bernoulli reward means are unknown. We
also extended these algorithms for the cases when we have N
arms or more than one recommender.

Clearly both the DID and the CID models can be gener-
alised in many ways. For example, in the DID model, the
composition of the urn could be changed by adding K balls
to the urn at every step of which m balls are of one color
and K − m balls are of the other color. The rate at which
the influence decreases can be tuned using different K and
m. The theory for this would be similar to that derived in this
paper. Similarly, in the CID model, the composition of the urn
could be changed with probability β in every step. Once again,
a suitable choice of β will determine the degree of change in
every step.

There are two possible directions in which one can further
extend our models and results. Firstly, we can generalize by
evolving the type of a user via an underlying Markov Decision
Process rather than the urn model that we considered. Note that
mapping our model to an MDP requires an MDP where the
transition probabilities are affected by the rewards that are
accrued. Since many recommendation systems may not have
an estimate about the composition of the user population, one
can further extend this to the case where the type of a user is
not visible.

A second direction would be to keep the existing two
recommendation system model and introduce different rewards
for opinion shaping and popularity. This maps to the problem
that a real-life recommendation system may have between,
say PR/advertising money (opinion shaping) and maintaining
popularity among its current user base. This model would
provide a trade-off between the algorithms discussed in [19]
and the ones discussed in this paper, and it would be interesting
to see whether we arrive at some equilibrium strategy and
population distribution for such a setting.

Understanding and modeling the interaction between a
recommender system’s learning algorithm and the preferences
of the user population is becoming increasingly important.
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Specifically, the ‘exploration’ part of the algorithm could
‘expose’ the user to possibilities that in turn might make them
to also explore and possibly start preferring other options. Sim-
ilarly, the exploitation part of the algorithm may reinforce the
users’s possibly weak preferences. We believe that the models
that we have presented here could be used in understanding
and modeling such behaviour.
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APPENDIX

A. Comparison between regret definitions

The commonly used definition of regret would compare the
difference in the population trajectories of the optimal and
the candidate policies directly. Specifically, let Z∗

1 (t) be the
trajectory of the population of type 1 balls in the urn when the
optimal policy is applied and let Z1(t) be the population when
the candidate policy is applied. Thus the following definition
of regret, denoted by R

′

t, is more like what is commonly used
in the literature when the objective is to learn the best arm.

R
′

t = E[∆Z∗
1 (t)|Z∗

1 (t)]− E[∆Z1(t)|Z1(t)] (14)

Let us now compare this with our definition of regret Rt in
(5). Taking the difference between the two definitions gives
us

Rt −R
′

t = E[∆Z∗
1 (t)|Z1(t)]− E[∆Z∗

1 (t)|Z∗
1 (t)]

= (z1(t)− z∗1(t))
(
(b11 + b12 − 1)+ + (1− b12)

−(1− b21 − b22)
+ − b21

)
,

where x+ = max(x, 0). In the second equality above we
have used the optimal policy for the DID model obtained
in Theorem 1 to derive the expressions for E[∆Z1(t)|Z1(t)].
(From the results in Section VI this is also applicable to CID
model.) We know, by definition, that the trajectory followed
by the optimal policy is always above that followed by any
other policy. Therefore, (z1(t)− z∗1(t)) < 0. Thus the lemma
below follows immediately.

Lemma 6. R
′

t is bounded above by the regret Rt if and only
if (b11 + b12 − 1)+ + (1− b12) ≤ (1− b21 − b22)

+ + b21.

B. Proof of Theorem 1

The expression for expected increase in type 1 balls in time
slot t is given by

E [∆Zπ
1 (t)|z1(t)] = P (∆Zπ

1 (t) = 1|z1(t))

=
∑
i=1,2

P (Xt = i|z1(t))P (∆Zπ
1 (t) = 1,

|Xt = i, z1(t))

= z1(t)(pt(b11) + (1− pt)(1− b12))+

(1− z1(t))((1− qt)(b21) + (qt)(1− b22))

= z1(t)(pt(b11 + b12 − 1) + 1− b12)+

(1− z1(t))(qt(1− b22 − b21) + b21)

The last expression above is to be maximized over all pos-
sible (pt, qt). This is a simple linear expression in terms
of both these variables. Hence, since z1(t), 1 − z1(t) > 0,
E[∆Zπ

1 (t)|z1(t)] is maximized when

(pt, qt) = (1{b11+b12−1>0},1{1−b21+b22>0}).

which proves the theorem ■
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https://arxiv.org/pdf/1802.05693.pdf
https://arxiv.org/pdf/1802.05693.pdf
https://doi.org/10.1145/3209978.3210051
https://doi.org/10.1145/3209978.3210051
https://doi.org/10.1214/07-PS094. https://projecteuclid.org/euclid.ps/1172244137
arXiv:1802.07759
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C. Proof of Lemma 1
For d1 and d2 as defined in the statement of the lemma, and

referring to the proof of Lemma 1, we get:

E[∆Zπ
1 (t)|z1(t)] = z1(t)(1− d1) + (1− z1(t))d2

This corresponds to o.d.e

Żπ
1 (t) =

Z1(t)(1− d1) + (N0 + t− Z1(t))d2
N0 + t

We can now substitute Zπ
1 (t) = (N0+ t)z1(t) to get the o.d.e.

ż1(t) =
d2 − (d1 + d2)z1(t)

N0 + t

Solving this o.d.e gives us the desired result. ■

D. Proof of Theorem 2
The proportion d2

d1+d2
is to be maximised over the variables

(p, q). Since d1 is only a function of p, we first minimize that
with respect to p since it is in the denominator.

p∗ = argmin
p

d1

= argmin
p

p(1− b11) + (1− p)b12

= argmin
p

p(1− b11 − b12) + b12

= 1{b11+b12−1>0}

Now, d2 (which depends only on q) appears both in the
numerator and the denominator. But we can use the easily
verifiable fact that d2

d1+d2
is a strictly increasing function of

d2. This means maximizing d2 also maximizes the proportion.

q∗ = argmax
q

d2

= argmax
q

q(1− b22) + (1− q)b21

= argmax
q

q(1− b22 − b21) + b21

= 1{b22+b21−1<0}

We see that (p∗, q∗) derived here indeed match with the results
in Lemma 1

■

E. Proof of Lemma 2
We know that:

∆Zπ
1 (t) = Wt1At=1 + (1−Wt)1At=2

= b̃111At=1,Xt=1 + b̃211At=1,Xt=2+

(1− b̃12)1At=2,Xt=1 + (1− b̃22)1At=2,Xt=2

where b̃ij are independent samples of the Bernoulli rewards
with the respective means as bij .

Therefore,

E[∆Zπ
1 (t)|z1(t)] = b11z1(t)pt + b21(1− z1(t))(1− qt)+

(1− b22)(1− z1(t))qt+

(1− b21)z1(t)(1− pt)

= z1(t)pt(b11 + b12 − 1)+

(1− z1(t))qt(1− b22 − b21)+

b21(1− z1(t)) + (1− b21)z1(t)

For the optimal policy, the same expression becomes:

E[∆Z∗
1 (t)|z1(t)] = z1(t)1{b11+b12−1>0}(b11 + b12 − 1)+

(1− z1(t))1{b21+b22−1<0}(1− b22 − b21)+

b21(1− z1(t)) + (1− b21)z1(t)

Substituting these results in the definition 3, we get :

Rπ
t = E[∆Z∗

1 (t)−∆Zπ
1 (t)|Z∗

1 (t) = Zπ
1 (t)]

= z1(t)(1{b11+b12−1>0} − pt)(b11 + b12 − 1)+

(1− z1(t))(1{b21+b22−1<0} − qt)(1− b21 − b22)

Since 0 ≤ pt, qt ≤ 1, it means that (1{b11+b12−1>0}−pt)(b11+
b12 − 1) and (1{b21+b22−1<0} − qt)(1− b21 − b22) are always
positive. This proves the desired result. ■

F. Proof of Lemma 3

The expression for Rexplore is obtained by substituting
(pt, qt) = (0.5, 0.5) in the regret formula of Lemma 2 and
summing from t = 1 to t = m.

The expression for Rcommit is obtained by substituting
(pt, qt) = (1{b̂11+b̂12−1>0},1{b̂22+b̂21−1<0}) in the regret
formula of lemma 2 and summing from t = m to t = T . ■

G. Proof of Theorem 3

For b11 = b22 and b12 = b21, we get

Rexplore =
m∆1

2
Rcommit = perr(T −m)∆1

The term perr can be bounded in the following way:

perr = P ((b̂11 + b̂12 − 1)(b11 + b12 − 1) < 0) (15)

≤ P (|b̂11 + b̂12 − b11 − b12| > ∆1) (16)

This is because the event in 15 is a subset of the event in 16.
Now, we know that Bernoulli random variables are

1/2−sub-Gaussian. Since we show arm 1 and 2 with equal
probability in the exploration phases, the expected number of
times b11 and b12 are sampled is m/2 for each of the arms.
This implies that b̂11− b11 is 1/

√
m/2−sub-Gaussian, which

in turn implies that b̂11 + b̂12 − b11 − b12 is 2/
√
m−sub-

Gaussian. Therefore we can use the Hoeffding bounds on sub-
Gaussian random variables to further put a more useful bound
on perr, i.e.,

perr ≤ e−m∆2
1/8.

Therefore, we get a ∆i dependent bound on the regret to
be

Rexplore +Rcommit ≤ m∆1/2 + (T −m)∆1e
−m∆2

1/8.

■
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H. Proof of Theorem 4

Using Lemma 2, the expression for the regret Rt in time
slot t for Thompson sampling becomes:

Rt = z1(t)p
err
t ∆1 + (1− z1(t))q

err
t ∆2

where

perrt = P ((b̃t11 + b̃t12 − 1)(b11 + b12 − 1) < 0)

qerrt = P ((b̃t22 + b̃t21 − 1)(b22 + b21 − 1) < 0)

Here, the variables b̃tij denote the sampled matrix elements
based on the Beta(αij , βij) distribution at that time.

Let us now put a bound on perrt .

perrt ≤ P (|b̃t11 + b̃t12 − b11 − b12| > ∆1)

≤ V ar(b̃t11 + b̃t12)

∆2
1

where the second inequality is a direct application of
Chebyschev’s inequality.

Since b̃t11 and b̃t12 are independently sampled, we have:

V ar(b̃t11 + b̃t12) =
αt
11β

t
11

(αt
11 + βt

11)
2(αt

11 + βt
11 + 1)

+
αt
12β

t
12

(αt
12 + βt

12)
2(αt

12 + βt
12 + 1)

where we have used the expression for the variance of Beta
distributed random variables.

Let us assume that xt
ij =

αt
ij

αt
ij+βt

ij
. Substituting these in the

expression for the variance, we get,

V ar(b̃t11 + b̃t12) =
xt
11(1− xt

11)

αt
11 + βt

11 + 1
+

xt
12(1− xt

12)

αt
12 + βt

12 + 1

≤ 1

4

(
1

αt
11 + βt

11 + 1
+

1

αt
12 + βt

12 + 1

)
=

1

4

αt
11 + βt

11 + αt
12 + βt

12 + 2

(αt
11 + βt

11 + 1)(αt
12 + βt

12 + 1)

Now, αt
11 + βt

11 +αt
12 + βt

12 is the expected number of times
a type 1 user appears. Out of that, let f1 be the fraction of
the time arm 1 was recommended. Therefore, by definition,
z∗t ≥ αt

11+βt
11+αt

12+βt
12 and (αt

11+βt
11+1)(αt

12+βt
12+

1) ≈ (f1t)((1− f1)t) Substituting these observations, we get:

V ar(b̃t11 + b̃t12) ≤
z∗t

4(f1t)((1− f1)t)

=
z∗

4f1(1− f1)t

This gives us:

perrt ≤ z∗

4∆2
1f1(1− f1)t

Therefore,

Rt ≤
z∗

t

(
z1(t)

4∆1f1(1− f1)
+

1− z1(t)

4∆2f2(1− f2)

)

where f2 is the fraction of time arm 2 was recommended when
a user of type 2 showed up. By definition, z∗ ≥ z1(t), 1−z1(t).
Therefore, using this and summing over t, we get

RThomp
[1:T ] ≤ (z∗)2

4

(
1

f1(1− f1)∆1
+

1

f2(1− f2)∆2

) T∑
t=1

1

t
.

This leads to the desired result by bounding the summation
by an integral.

■

I. Proof for Lemma 4

In the proof of the Lemma 5, we had obtained :

E[Z1(t+ 1)− Z1(t)|Z1(t)] = p2 − p1

=⇒ E[∆Z1(t)|z1(t)] = z1(t)(p(1− b11) + (1− p)b12)+

(1− z1(t))(q(1− b22)+

(1− q)b21)

= z1(t)p(1− b11 − b12)+

(1− z1(t))q(1− b21 − b22)+

z1(t)b12 + (1− z1(t))b21

Similarly, we get (since the optimal policy is same as the one
given in Lemma 1) :

E[∆Z∗(t)|z1(t)] = z1(t)p
∗(1− b11 − b12)+

(1− z1(t))q
∗(1− b21 − b22)+

z1(t)b12 + (1− z1(t))b21

where p∗ = 1{b11+b12−1>0} and q∗ = 1{b22+b21−1<0}.
Using the expression in definition 3 for regret directly gives

us the desired result. ■

J. Proof of Lemma 5

From the model, we know that

Z1(t+ 1) = Z1(t)− 1 w.p p1 = Z1(t)d1/N0

= Z1(t) + 1 w.p p2 = (1− Z1(t)/N0)d2

= Z1(t) w.p 1− p1 − p2

Therefore,

E[Z1(t+ 1)− Z1(t)|Z1(t)] = p2 − p1

= d2 −
Z1(t)

N0
(d1 + d2)

Thus gives us the corresponding o.d.e. as

Ż1(t) = d2 −
Z1(t)

N0
(d1 + d2)

Solving for Z1 and dividing the solution by N0 gives us the
required solution for z1(t). ■



14

K. Proof of Lemma 5

For this model, we have

E[∆Z1(t)|z̄(t)] = P (∆Z1(t) = 1|z̄(t))

= z1(t)(P11B11 +

N∑
j=2

P1j(1−B1j))+

N∑
i=2

zi(t)

(
Pi1Bi1 +

Pii(1−Bii)

N − 1

)
Since zi(t) are known constants and we are optimizing over

all Pij such that
∑

j Pij = 1, we observe that each term in
brackets that is multiplying zi(t) is a convex combination of
terms containing Bij . To maximize a convex combination, we
set the coefficient of the largest term to be 1. This gives us
the stated result. ■

L. Simulation details

All of the regret and population proportion curves generated
for comparison of ETC and TS policies in the context of an
unknown rewards matrix have been done after averaging over
1000 simulations and letting each of the simulations run for
1000 time steps.

In each simulation, the type of the arriving user is sampled
from a Bernoulli distribution with the probability of type 1 user
arriving being z1(t) and the user being type 2 otherwise. The
arm is then chosen according to the prescribed policy (ETC,
TS or optimal). The arms and type together specify an element
of the rewards matrix. The reward is thus sampled from a
Bernoulli RV with this element as the mean. The population
of users is updated according to the CID or DID model (as
specified in Section III) and then we move on to the next time
step where the above sequence of events is repeated.
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