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The goal of quantum metrology is to improve measurements’ sensitivities by harnessing quantum
resources. Metrologists often aim to maximize the quantum Fisher information, which bounds the
measurement setup’s sensitivity. In studies of fundamental limits on metrology, a paradigmatic
setup features a qubit (spin-half system) subject to an unknown rotation. One obtains the maximal
quantum Fisher information about the rotation if the spin begins in a state that maximizes the
variance of the rotation-inducing operator. If the rotation axis is unknown, however, no optimal
single-qubit sensor can be prepared. Inspired by simulations of closed timelike curves, we circumvent
this limitation. We obtain the maximum quantum Fisher information about a rotation angle,
regardless of the unknown rotation axis. To achieve this result, we initially entangle the probe
qubit with an ancilla qubit. Then, we measure the pair in an entangled basis, obtaining more
information about the rotation angle than any single-qubit sensor can achieve. We demonstrate this
metrological advantage using a two-qubit superconducting quantum processor. Our measurement

approach achieves a quantum advantage, outperforming every entanglement-free strategy.

Introduction.—Phase estimation is crucial to quantum
information processing. Several quantum algorithms use
phase estimation as a subroutine for finding unitary oper-
ators’ eigenvalues [IHG]. Furthermore, phase estimation
is used in quantum metrology, the field of using quan-
tum systems to probe, measure, and estimate unknown
physical parameters [7H9]. Conventionally, phase estima-
tion requires a priori knowledge about the unitary being
inferred about.

For example, consider a unitary e generated by a
Hamiltonian H. In quantum algorithms, phase estima-
tion encodes in a qubit register an estimate of an e
eigenvalue [10, 11]. To perform this encoding, one must
initialize another qubit register in an H eigenstate. With-
out information about H, conventional algorithmic phase
estimation fails.

In quantum metrology, phase estimation is often used
to infer some unknown parameter « in a unitary U, =
¢4, The Hermitian generator A = Y, a;|a;Xa;| has
eigenstates |a;) and eigenvalues a;. Physically, « could
quantify an unknown field’s strength. One can estimate
a by applying U, to several quantum systems and mea-
suring them. The optimal single-qubit probe states are
the equal-weight superpositions of the A eigenstates as-
sociated with the greatest and least eigenvalues, e.g.,
(|@min) + |amax)) /v/2 [TH9]. The optimal measurement
observables depend on A, too. Without information
about A, therefore, conventional metrological phase esti-
mation fails.

If H or A is unknown, one can learn about it
through quantum-process tomography [12-15], then op-
timize probes. However, process tomography requires
many applications of e’ or U,, plus many measure-

ments. The number of applications of a unitary quan-
tifies resource usage in quantum computing and metrol-
ogy. Hence tomography is costly. Furthermore, one of-
ten cannot rely on process tomography to prepare opti-
mal quantum systems. For example, consider a magnetic
field whose direction changes. We might wish to measure
the field strength a at some instant. The probes must be
prepared optimally beforehand.

A recent work [I6] outlined a phase-estimation pro-
tocol for when information about A becomes available
after the unitary is applied. The protocol harnesses the
mathematical equivalence between certain entanglement-
manipulation experiments and closed timelike curves, hy-
pothetical worldlines that travel backward in time [I7-
22]. In the protocol of [16], one entangles a probe with
an ancilla. After information about A becomes available,
one effectively updates the probe’s initial state, by mea-
suring the ancilla, using the equivalence. The results in
[16] inspire metrological protocols that leverage entan-
glement to circumvent requirements of a prior: informa-
tion. Optics experiments have explored the relationship
between entanglement manipulation and closed timelike
curves [23] 24]. Additionally, delayed-choice quantum-
erasure experiments [25] 26] resemble the protocol in [16]
conceptually. However, metrological protocols inspired
by closed timelike curves have not been reported, to our
knowledge.

In this Letter, we show that entanglement manipula-
tion can enable optimal estimation of «, even sans in-
formation about A. We consider a common scenario:
an arbitrary unbiased estimator & is calculated from N
measurement outcomes. The Fisher information (FI) I,
quantifies the outcome probabilities’ sensitivity to small



changes in . We define I, below; it limits the estima-
tor’s variance through the Cramér—Rao bound: var(&) >
1/(N1,). We theoretically prove that entanglement can
boost the FI of o by 50%. Our protocol is optimal,
achieving the FI of the optimal protocol that leverages
knowledge of A. Using a two-qubit superconducting pro-
cessor, we experimentally demonstrate the advantage.

The rest of this paper is organized as follows. The
next four sections present and experimentally demon-
strate four strategies for inferring about a without knowl-
edge of the rotation axis n. A single-qubit sensor can ex-
tract no information about . Two time-travel-inspired
protocols follow: hindsight sensing consumes a maxi-
mally entangled two-qubit state. The protocol achieves
an FI of 1 if information about m becomes available
eventually. Agnostic sensing requires a maximally en-
tangled two-qubit state and an entangling measurement.
The protocol achieves an FI of 1 even if n remains un-
known. We compare these entanglement-boosted proto-
cols to entanglement-free sensing with an ancilla, which
achieves an FI of 2/3. The final section clarifies our re-
sults’ significance and the opportunities they engender.

Single-qubit quantum sensor.—We start with the sim-
plest quantum sensor: a qubit probe subject to an ar-
bitrary unknown rotation, represented by the operator
U = exp (—ian - 0/2). The unknown rotation angle is
@, . = sin 6 cos ¢ & +sin 0 sin ¢ g + cos 6 2 defines the un-
known rotation axis, and o = (X, Y, Z) denotes a vector
of Pauli operators. Figure [I|(a) illustrates the protocol:
the probe is prepared in |1}, is mapped to [1,) = Uy |¥),
and is projectively measured in a chosen basis. The pro-
tocol’s goal is to infer the rotation angle a.

Consider measuring the probe in an arbitrary basis
{li)}. Outcome i occurs with probability P; = | (i|[va) |*.
The FI quantifies these probabilities’ a-sensitivity: I, =

Zi:o,l %. The FI is upper-bounded by the quantum
Fisher information (QFI), Z, [7, 27):

I £ To = 4 ((0ataldutia) = [Waldata) ?) . (1)

The QFI, in turn, is upper-bounded by the maximum
variance of the operator 7o -6 /2 that generates U,: Z, <
4max|y){var(n - 6/2)} = 1. Consider the limit of many
trials (as N — oo). If n is known, all bounds (including
the Cramér-Rao bound from the introduction) can be
saturated:

var(&) = Lo L. 1 -5
- NI, NI, 4Nmaxy, {var (%)} N’
(2)

If n is unknown, neither saturation happens, typi-
cally [28].

Figure (b) depicts the protocol on the Bloch sphere.
The red and blue lines represent possible initial states.
Without loss of generality, we choose for the rotation
axis to lie in the &—2-plane. We choose the pure initial
state’s Bloch vector to be 1) = sin(\)& + cos()\)Z, illus-
trating a range of metrological outcomes, from worst to
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FIG. 1. Fisher information achievable by a single-qubit
sensor. (a) Protocol for sensing the rotation angle . Time
runs along the vertical direction, as in the closed time-like-
curve representation introduced later. (b) Bloch-sphere rep-
resentation of the protocol. The red and blue lines represent
possible initial states. The green arrow indicates the rota-
tion axis. (c) Outcomes from preparing ) = 2, then rotating
about the &-axis through a varying rotation angle «. The red
points and curve represent the measured — (Y) values, from
which we infer the FI (£ one standard deviation). (d) FI
measured at various rotational axes parameterized by 6. If
the initial state is ¢ = 2 (red curve), the FI fails to achieve
its maximum value, except if # = 7/2 specifies the rotational
axis. An analogous statement concerns ¥ = (2 —)/v/2 (blue
curve) and 0 = 7 /4.

optimal. Figure (b) shows two possible initial states,
with A =0 (red) and A = —x/4 (blue). The Supplemen-
tal Material [28] details how we implement single-qubit
rotations. The rotation leaves the probe in the state |1),,).
Our later analysis governs all « € [—m, 7], but illustrating
with infinitesimal rotation angles da first is instructive.
An infinitesimal rotation displaces the Bloch vector by
an amount dy = 7 X ¢ do = sin(A — 0)§ do = § d (V).
Therefore, an optimal final measurement is of Y.

Figure c) displays data from optimal measurements.
We show — (V') at multiple « values for the initial state
A = 0 and rotation-axis parameter § = /2. We have
calibrated and corrected for the ~ 98 % measurement
fidelity throughout this work [28]. Fitting the outcomes
to a sinusoid, we infer the P;s at & = 0. From these P;s,
we calculate I, = 1.03+0.05, a value consistent with the
maximum predicted QFI.

Figure d) displays the measured FI for various rota-
tion axes. The red curve (initial state parameterized by
A = 0) shows that the maximum FI is achieved only when
6 = 7/2. The blue curve (initial state parameterized by



A = —7/4) shows a maximum FI only at § = 7/4. These
results illustrates a point stated above: one can gener-
ally obtain the maximum possible FI about a rotation «
only if a priori knowledge about € informs the probe’s
preparation and measurement. This limitation betrays a
deeper problem with the single-qubit probe, as discussed
in [28]: U, has three unknown parameters, whereas a
qubit has two degrees of freedom (DOF's). Estimating «,
when the rotation axis is unknown, is therefore typically
impossible.

Hindsight sensing.—Let us relax the requirement of a
priori knowledge about the rotation axis . We harness
the connection between closed timelike curves and entan-
glement [29H32]. Consider preparing a maximally entan-
gled (Bell) state [depicted by the symbol U in Fig. [[a)]
between two qubits at a time 7;. One can view this
preparation as the chronology-violating trajectory of one
qubit that travels backward in time, turns around at 77,
and continues forward in time [19H22]. We harness this
connection to effectively choose a probe’s initial state in
hindsight.

Figure a) illustrates this strategy. At T}, we initial-
ize a probe qubit and an ancilla qubit in a singlet. A
unitary U, rotates the probe’s state about an unknown
axis n. Afterward, n is revealed; Eq. can be satis-
fied. We measure the ancilla along an axis orthogonal to
n. The measurement projects the ancilla onto an opti-
mal rotation-sensing state. The probe’s state comes to
be orthogonal to the ancilla’s. One can imagine that the
time-traveling qubit in Fig. a) is flipped at T7. Hence
we say that our experiment is inspired by closed timelike
curves.

In previous metrology protocols [33H36], the mea-
surement of an ancilla determined whether the probe
would undergo a final, information-acquiring measure-
ment. QOur protocol always features measurements of
the probe and the ancilla. The ancilla-measurement
outcomes help us postprocess the data from probe-
measurement, outcomes to infer about a.

Four Bell states exist, and all serve equally well in our
protocol, we prove in the Supplemental Material [28]. We
illustrate with the singlet state, whose effectiveness one
can understand intuitively through the state’s rotational
invariance:

) = = (e D= D)) ©)

P denotes the probe; and A, the ancilla. The structure of
|W~) does not depend on the single-qubit basis {|b) , |0)};
|¥~) remains invariant under identical rotations of P and
A. We denote by |ag) and |a1) the —n - /2 eigenstates
associated with the eigenvalues —l—% and —%. Define the
superpositions |a*) = (Jag) £ |a1))/v/2. If the ancilla’s
{la*)} is measured, the probe is projected onto an opti-
mal state for measuring a.

Figure[2|details this protocol’s experimental implemen-
tation. Using a parametric entangling gate, we prepare
the probe and ancilla in a singlet [28]. We then rotate
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FIG. 2. Entangled sensor inspired by closed time-
like curve. (a) Protocol for sensing the rotation angle a by
mimicking a closed timelike curve. The ancilla’s state effec-
tively travels backward in time. It flips at 71, becoming an
optimal probe state. (b) The probe has no Pauli operator
whose expectation value carries information about a. (c) If
the rotation is about the z-axis (if @ = 7/2), the probe—ancilla
correlators (Y'Z) and (ZZ) contain information about «. (d)
However, for different rotations about the z-axis (8 = 0), the
same correlators contain no information about «. (e) The
correlator (Y A) depends on the optimal ancilla observable to
measure. (Y A) is sensitive to the rotational angle «, at ro-
tation axes parameterized by 6 = 0,7/4, and 7/2. (f) From
the correlator, we calculate the FI, for various rotational axes.
The FI remains close to the optimal value, 1. The subfigure
indicates the optimal ancilla measurement axis a.

the probe and perform tomography on the probe—ancilla
state. Figure b) displays the probe’s Pauli-operator
expectation values when § = 7/2 parameterizes the ro-
tation axis. These expectation values encode no infor-
mation about «, the flat curves indicate. This lack is
expected, since the probe’s and ancilla’s reduced states
are maximally mixed.

To learn about «, we must calculate two-qubit corre-
lators. Figure [2{c) illustrates with (Y'Z). We have used
entanglement to reproduce the results of Fig. (c): mea-
suring the ancilla’s Z projects the probe’s Bloch vector
onto =2, which are both optimal for sensing o. How-
ever, the sensor’s sensitivity depends on the rotation axis.
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FIG. 3. Agnostic sensing. (a) Protocol: The probe and
ancilla are prepared in a singlet. The probe is rotated, where-
upon we measure whether the qubits are still in the singlet.
(b) Py denotes the probability of obtaining the yes outcome.
From Py, we infer the FI. Different plots follow from rotations
about the &-, -, and 2-axes. (c) FI inferred after various ro-
tations in the &—2 plane.

(YZ) and (ZZ) cannot register rotations about the 2-
axis (0 = 0), Fig.[2(d) shows.

We interpret these results using the language of closed
time-like curves [37]. When the qubits are initialized
in a singlet at 77, the probe is configured agnostically:
for every axis m, (o - m) = 0. The probe is waiting
for the optimal-state input from the future. The probe
undergoes the rotation; and the ancilla’s optimal basis,
{la*)}, is measured at T. The measurement projects
the ancilla’s state onto |a®). This state is effectively sent
backward in time and flipped into |a¥F), to serve as the
probe’s time-T; state. Thus, the probe is retroactively
prepared in the optimal state; is rotated with U,; and,
at Ty, undergoes a Y measurement.

Figure 2 e) demonstrates that we can obtain the max-
imum FI by measuring the ancilla in an n-dependent
manner, e.g., by measuring {|a*)}. Figure f) displays
the FI obtained when 6 € [0, 7] parameterizes the ro-
tation axis. Regardless of the axis, we obtain a QFT of
~ (0.82. This value is less the maximum possible QFI,
due to the finite fidelity of the entangled-state prepara-
tion, detailed in [28].

Agnostic sensing.—The previous section’s protocol al-
lows us to effectively choose the probe’s initial state af-
ter U,. We now show that an entangling measurement,
beyond the entangled initial state, enables an optimal
sensing strategy that requires neither a priori nor a pos-
teriori knowledge of the rotation axis: what we term an
agnostic sensor. Similar protocols have been studied in
different settings, e.g., in Refs. [30] [38] [39].

Figure a) sketches the protocol. As before, we ini-
tialize the probe and ancilla in a singlet, |¥~). Then, the
probe undergoes an unknown rotation U,. The unitary

maps |¥7) to

) = %W% lao)p a1} + ¢ Jar)p lao)y ) (4)

Finally, we perform an entangling measurement of {1, :=
[T—XP~|, I :=1—Tl}. The possible outcomes’ prob-
abilities are

Py = [(¥ |1, |‘I’;>‘2 =cos?(a/2) and  (5)
Pro= (W [T |[W5)]7 = sin?(a/2). (6)

This strategy produces the maximum FI about «, re-
gardless of the rotation axis [7]. More broadly, Eq.
holds.

We can understand this result through closed timelike
curves. If a = 0, then U, does not perturb the initial
state |[¥7), and Py = 1. The ancilla—probe pair maps
onto a particle traversing a closed timelike curve infinitely
many times [21] 22]. If « # 0, the particle interacts with
the field that imprints a on the state. Consequently,
the experiment has a probability Py < 1 of successfully
simulating a closed timelike curve. Knowing this success
probability enables us to estimate a.

Figure 3] details our experimental demonstration of ag-
nostic sensing. We prepare the singlet via an viSWAP
gate [28]. The probe then undergoes U,. Finally, we
measure {I1g, IT; } by rotating the ancilla, performing an-
other viSWAP, (this process maps the singlet onto sep-
arable states) and measuring the probe’s and ancilla’s Z
eigenbases. From many trials’ outcomes, we infer F.

We measure P, for rotations about the #-, y-, and
z-axes, for several o values [Fig. Bb—d)]. As expected,
Py x cos?(a/2), independently of the rotation axis. We
fit Py near « = —7/2 to infer the FI. Figure e) displays
the measured FI for rotation axes 6 € [0, 7]: regardless
of the axis, Z, = 0.72.

The two-qubit gate’s fidelity limits the FI here, as in
the previous protocol. This protocol requires two such
gates, so the infidelity impacts the FI more. This propor-
tionality highlights a potential trade-off between quan-
tum advantage and circuit depth.

Entanglement-free sensing with ancilla.—To highlight
our agnostic sensor’s quantum advantage, we compare it
with an optimal entanglement-free sensor. Imagine re-
stricting the probes to identical single-qubit pure states.
All pure states serve equally well for sensing «, by sym-
metry: the rotation axis is unknown. Without loss of
generality, therefore, we suppose that the probes begin
in [¢) = |0). Three independent, unknown parameters
specify U,: the rotation angle «, as well as the rotation
axis’s zenith angle 6 and azimuthal angle ¢. We cannot
estimate 3 parameters using a qubit, whose state encodes
only 2 DOFs. For every single-qubit probe, there exist
(a, 0, ¢) values for which Z, = 0. Hence, no single-qubit
probes achieve Eq. , we prove in [28].

Nevertheless, one can estimate « without consuming
entanglement, e.g., by performing quantum process to-
mography on U, [41] [42]. Since 7 is unknown, the most
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FIG. 4. Entanglement-free sensing with ancilla (a)
Protocol: Single-qubit-probe states are tagged with classical
ancillas that determine the final-measurement basis (dashed
lines). (b) For a rotation about the (6 = 7/5,¢ = 7/9) axis,
different single-qubit-probe states yield different FI values.
(c) FI values inferred after various rotations [40].

reasonable prior distribution for 7 is uniform. We de-
scribe a strategy for garnering the greatest average FI
inferable from any entanglement-free input: prepare the
qubit probe in a state |¢);), tagged with an ancilla state
|7), with probability p;:

po =D p; [05)e| @ )] wherein 3 7p; =1, (7)

J

We show the following in [28]. First, for all pg, the QFI
about «, averaged over the m, equals 2/3. Second, not
all py achieve the first two equalities in Eq. . Third,
we derive the form of the states py for which (i) Z, =
2/3 independently of 7o and (ii) the first two equalities
in Eq. hold. Examples include p, = (|z+)z+| ®
[+ [y+Xy+|@[2)2]+ [+ )2+ @[3)3]) /3, where |z+)
denotes the eigenvalue-1 X eigenstate, etc. Preparing
and optimally measuring p, yields a FI of 2/3 about «
[Eq. (B33)], irrespectively of 7.

Figure 4] displays our experimental implementation of
this entanglement-free strategy. We prepare p,. If the
probe is in |x+), the optimal measurement is of X; if
ly+), then Y; and, if |2+), then Z. We use the ancilla as
a record of the initial probe state, to choose the optimal
measurement.

In this scenario, we can calculate the QFI by averaging
the QFI values obtained from the probabilistically com-
bined input states [28]: Z, = I, = %(IMJH_) + Lo y4) +
To,|24)) = 2/3. We measure the FI for different rotation
axes, as when demonstrating the previous sensing proto-
cols. We achieve an average axis-independent FI of 0.62,
consistently with the theoretical maximum of 2/3.

Discussion.—In the seminal review [43], the authors
distinguish a hierarchy of quantum sensors: those which
leverage energy-level quantization (type I), those which

leverage quantum coherence (type II), and those which
leverage entanglement (type IIT). We have introduced a
type-11I sensor. It achieves an advantage over the more-
classical type-II sensors. The 50 % improvement in the
QFI weighs against the cost of entanglement manipula-
tion. One cost that we avoid is postselection: we discard
no data. All measurement outcomes inform our inference
of «, despite a known relationship between postselection
and closed timelike curves [29] [30].

One can extend our hindsight and agnostic protocols
to improve our quantum sensors. As described above,
we applied U, to each probe once before measuring the
probe. Denote by v the total number of applications of
U, in all trials, and denote by & any unbiased estima-
tor of a. The estimator’s variance scales as d& ~ 1/v
in the large-v limit, by the Cramér—Rao bound. Instead,
we can apply U, to a probe multiple times before mea-
suring the probe. This strategy can achieve Heisenberg
scaling, the optimal scaling of & when U, applications
form the costly resource: 6& ~ 1/v? [8, Ol [44-46]. The
states usable to achieve Heisenberg scaling include those
prepared in our hindsight and agnostic protocols [46].

Several avenues for future research suggest themselves.
First, our protocol merits extending to optical and solid-
state systems that have concrete metrological applica-
tions. Second, our protocol may benefit phase estima-
tion in quantum algorithms. Third, our experiment was
inspired by the theoretical application of closed timelike
curves to metrology [16]. More precisely, the application
was to weak-value amplification, a technique for sensing
interaction strengths [47H53]. One can experimentally
implement the application to weak-value amplification or
to a more general technique, partially postselected am-
plification [35]. Fourth, we expect our technique to be
useful in metrology subject to time constraints. For ex-
ample, one may need to measure a time-varying field at a
certain instant [54H56]. To date, optimal sensing strate-
gies have required a priori knowledge about the unknown
unitary’s generator, A. Our agnostic protocol entails op-
timal state preparations and measurements without this
knowledge.
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Supplemental Information for “Agnostic Phase Estimation”

A. EXPERIMENTAL SETUP

The experimental measurements were made within a two-qubit subsection of a three-qubit device. Further details
about the overall setup at the hardware level appear in [57]. Figure a) displays a simplified schematic of the relevant
portion of the device. There are two transmon circuits; one is fixed-frequency, and one is frequency-tunable via a
fast flux line (FFL). This tunability allows us to activate parametric entangling gates by modulating the ancilla’s
frequency [Fig. (b)] In this appendix, we sometimes refer to a transmon circuit’s higher-energy eigenstates. We
label the energy eigenstates as |g), |e), and |f); and we refer to the circuits as qubits when only the two lowest levels
are relevant. The two qubits are coupled via an off-resonant bus resonator. Single-qubit rotations are applied via
independent drive lines. The qubits are also coupled to separate readout resonators, which are probed by a common
feedline.

1. Dispersive readout

The probe and ancilla qubits are dispersivley coupled to their respective readout resonators [58], allowing for
simultaneous high-fidelity single-shot readout [59]. We employ a heterodyne readout scheme: we multiplex the
readout signal by simultaneously sending in two pulses that have different frequencies. We separate the two readouts
in the frequency domain for processing. For low-noise amplification, we use a traveling-wave parametric amplifier
based on the SNAIL (Superconducting Nonlinear Asymmetric Inductive eLements) architecture [60]. The readout
fidelity is limited primarily by the narrow cavity bandwidths (k, as given in Table , requiring long integration
times. We apply m-pulses in the {|e) ,|f)}-submanifold to increase the signal-to-noise ratio. We optimize over readout
amplitude, frequency, and amplifier-bias settings with a gradient-free optimization algorithm [6I]. We determine
the multicomponent-pulse-integration envelopes via linear-discriminant analysis and principal-component analysis.
Ultimately, we achieve readout fidelities of 98.9 % for the ancilla and 97.8 % for the probe, utilizing a random forest
classifier [62]. After this calibration, all tomography results are corrected for these finite readout fidelities [Fig. [5|(c)]
via the iterative Bayesian-update correction method [63]. The high-fidelity readout is utilized to implement an active
reset protocol for the initial state preparation.

2. Single-qubit rotations

In this project, we use four types of single-qubit rotations:

e Single-qubit 7/2 rotations: The 7/2 rotations applied about the &- and g-axes are used in quantum state
tomography and in the arbitrary-axis rotations detailed below. The 7/2 rotations last for 72 ns (for the ancilla)
and 36 ns (for the probe). The pulse envelopes are obtained from the convolution of a square wave and two cosine-
DRAG-style spectrum filters [64]. (DRAG stands for derivative removal by adiabatic gate.) We have tuned the
two cosine-DRAG-style filters to minimize crosstalk between the two qubits, in addition to minimizing coupling
out of the qubit manifolds. The spectral leakage from all the sidelobes is minimized via numerical optimization.
We estimate these gates’ fidelity to be 99.6 %.

e Single-qubit 7 rotations: These are implemented in the same manner as the 7 /2 rotations. However, the pulse
durations are 120 ns (for the ancilla) and 64 ns (for the probe).

e The {|e),|f)} rotations are implemented in the same manner as the {|g) , |e) } rotations, described in the previous
two bullet points. The 7 /2-gate times are 64 ns (for the ancilla) and 36 ns (for the probe). The m-gate times
are 100 ns (for the ancilla) and 64 ns (for the probe).

e Single-qubit arbitrary-axis, arbitrary-angle rotations: We represent such a rotation with Euler angles:
(0u, du, Au). The corresponding unitary operator is expressed, relative to the Z eigenbasis, as

cos (92U> —e"\U gin <92U>
U(er ¢U7 AU) = . HU ) QU . (A]‘)
€U gin <2> e(PUtAu) cog <2>
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H wq/2m (GHz)|[a]/21 (MHZ) | xqe/27 (kKHz)|we/2m (GHz) |rw/2n (kHz) | Ty (18)| T3 (us)
Ancilla qubit| 4.2 212 230 6.94 270 32 | 41
Probe qubit | 4.65 180 250 7.09 206 31 | 39

TABLE I. Measured parameters of the device used in the experiment.

We realize this unitary (up to a global phase) by a combination of rotations,
7 T
U060, 30) = R (5,00 =) B (5,00 +6v ) Ra(0u + gu + M), (A2)

where R(7, ¢) is defined as a /2 rotation about the (cos ¢ & +sin ¢ ) axis. A general R(a, ¢), for an arbitrary
angle «, is expressed as

Rla.) = ( (43)

o e~ i &
oS 5 1€ smz).

—ie* gin & o
e’ sin 5 COS 3

We implement R, («) (a rotation about the 2-axis through an arbitrary angle «) through a combination of two
7 rotations:

R.(a)=R (7r, %) R (n,0). (A4)
The resulting R, produces a physical rotation of the qubit. This fact is important, because the agnostic-sensing

protocol relies on the accumulation of a physical phase difference between two qubits’ states. Combining
Eqs. (A2) and (A4)), we implement the arbitrary rotation through

Uy, éu, \v) = R (g b — 7r) R (g Oy + ¢U) R (w, %(HU + du + AU)) R (7,0). (A5)

Finally, we relate the Euler angles (6y, ¢y, Ay) to the arbitrary rotation through an angle «, about the axis
1 =sinfcos ¢ & +sinfsin ¢y + cos§ 2. Given the existence of nonunique solutions, the conversion formulae we
define are

Oy = 2 arcsin (sin % sin 0) ,

¢y = arctan (tan % cos 9) +¢——, and (A6)

NI R

Ay = arctan (tan % cos 9) — o+

These formulae are valid for —m < o < 7 and 0 < 6 < 7. For the boundary case where o = £, we define

Oy =m —|m — 20|,

= 20) = i d
¢u = sgn(m — )5—1—(;5—5, an (A7)
T

)\U:sgn(ﬂ—%)g—(b—i— 5"

3. Parametric gates

In our setup, parametric gates have been found to achieve the highest-fidelity entangled states. To implement such
a gate, we modulate the ancilla qubit’s frequency at approximately half of the probe—ancilla detuning, bringing the
qubits into parametric resonance [Fig. b)] When calibrated, the parametric resonance gives a probe—ancilla coupling
rate of 0.954 MHz, corresponding to an viSWAP-gate time of 524 ns. We have optimized over the pulse envelope,
obtaininga flux-modulation pulse with a gate time of 640 ns. We further find that entangling gate’s parameters drift
over time. Consequently, we stabilize the gate via feedback control.
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FIG. 5. Experimental setup. (a) The experiment involves a two-qubit section of a transmon-circuit-based processor. (b)
Parametric entangling gates are activated by modulation of the ancilla frequency via the fast-flux (FFL) line. (¢) Readout-
fidelity matrix for the probe (top) and ancilla (bottom).

The gate’s fidelity is estimated with quantum state tomography. We measure 9 Pauli-expectation-value pairs
(XpXa), with ¥p a € {X,Y, Z}, by measuring the qubits’ reduced states simultaneously [65]. We use maximum-
likelihood estimation [66] to identify the components of the probe—ancilla density matrix.

During the sensing protocol depicted in Fig. |3) we implement one viSWAP gate to initialize the entangled state.
Then, we projectively measure whether the system is in a singlet, |¥ ). That is, we measure {IIp,1 — Iy} (as in the
main text, IIp := ¥~ ) ¥~ |). This measurement consists of applying a second viSWAP gate, which maps the singlet
state to |e)p |g) ,. Because the qubits have different energies, they accumulate different dynamical phases between the
two ViSWAP gates. To remove this phase difference, we apply an additional physical rotation to the ancilla before
the second viSWAP gate. We implement this phase correction with the physical rotation described above.

4. Effect of the parametric gate’s fidelity on the QFI measurement

As discussed in Sec. [A 3] we use a ViSWAP gate to prepare and measure the singlet. We use quantum state
tomography to determine the estimated density operator pex,. We then define the fidelity to a target state o =

[W_XV_] as [67]
F = (bry /\/ﬁa\/ﬁ)2. (A8)

Experimentally, we obtain F = 0.94(.02). To model the finite fidelity’s effect on the measurement, we model the
experimentally realized state as

pexp=f|‘1f—><\1’f\+%(1—f)(1—I‘If—><\1’f\)~ (A9)

This is a mixture of the target state and a maximally mixed state. The partial mixing reduces both the QFI that
can be obtained and FI that we measure. From Eq. , we can calculate the FI about a by rotating the state,
measuring the whether the system is in a singlet, repeating this process many times, and inferring the possible
outcomes’ probabilities. The resulting FT is

(1 —4F)?sin?(a)
[=5 + 2F + (=1 + 4F) cos(a)][1 + 2F + (=1 + 4F) cos(a)]

Figure |§| displays the I, calculated via Eq. , versus . We note two important trends. First, the FI now
depends on «, indicating that the singlet—triplet measurement’s metrological performance depends on the rotation’s
magnitude. Second, the imperfect singlet-preparation fidelity crucially limits the advantage of manipulating entan-
glement to perform rotation-axis-agnostic sensing. A general analysis of the limits on the FI, in the presence of
finite-fidelity operations, will be an intriguing and important direction for future research.

In=— (A10)
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FIG. 6. FI of the agnostic-sensing protocol versus singlet-preparation fidelity.

H Resource ‘QFI, Ta H

Qubit probe —

Qubit probe & classical ancilla 2/3

Qubit probe & entangled ancilla 1

TABLE II. Summary of theoretical results.

B. THEORETICAL ANALYSIS OF SENSING PROTOCOLS

Here, we discuss theoretical background for the four sensing protocols laid out in the main text. First, we review
the estimation of phases from locally unbiased estimators (App. . In App. we identify a single-qubit sensor’s
limitations. A qubit has only two DOFs, whereas three DOFs specify an arbitrary rotation. Hence more than one
qubit is necessary for sensing a rotation about an unknown axis. In App. we detail the entanglement-free sensor
whose qubit probe is tagged by an ancilla. A similar strategy underlies quantum process tomography [I2HI5]. This
sensor’s QFT is 2/3, we show. In App. we prove that the qubit probe entangled with an ancilla achieves the
maximum QFI over input states, 1. Table [[I| summarizes (i) the resources required by each sensing strategy and (ii)
the strategy’s effectiveness, as quantified by the QFI.

1. Summary of local estimation theory

A typical quantum estimation problem is structured as follows. M continuous parameters o := (a1, g, ..., ap) are
encoded in a parameterized quantum state p,. The goal is to infer the parameters’ values. This parameter-estimation
problem is addressed within the field of quantum estimation theory. We focus on the well-established subfield of local
estimation, in which a is unknown but fixed [68]. One aims to minimize the estimators’ covariances, at fixed values
of the parameters. A general scheme consists of three steps [69]:

1. Prepare a parameter-independent probe state pg.
2. Evolve the state under a parameter-dependent unitary Us: pa = UapoUL .

3. Measure the state. The most general measurement is a positive-operator-valued measure (POVM) [70]. A
POVM is a set {F}} of positive-semidefinite operators (Fj, > 0) that sum to the identity (3, F, = 1). The

measurement yields outcome k with a probability p(k|a) = Tr[Fypa -

The probability distribution p(k|a) encapsulates information about the parameters a;.

The parameters are estimated through an estimator &(k) = & = (a1,42,...an). Each &; implicitly has an
argument k, which we sometimes omit for conciseness. An estimator is a map from the space of measurement
outcomes to the space of possible parameter values. We use locally unbiased estimators &:

> la—a(k)] pkla) =0, and Y (k) 9;p(kla) = 6i; . (B1)
k

k
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The indices i,j € {1,2,...,M}, and J; = 0/0a;. The constraints in Eq. ensure that the estimator tracks

the parameter’s true value faithfully, to first order around the point ce. The second constraint excludes pathological

estimators. Examples of such include estimators that return a fixed value, irrespective of the measurement outcome.
For unbiased estimators, the accuracy of & is quantified by its covariance matrix,

Cov(a) =" [a—a(k)][e— a(k)]  plkla). (B2)

k

Using Egs. (Bl]) and (B2)), one can show that the covariance matrix obeys the Cramér—Rao bound [7T [72],
1
Cov(a) > —I(a)™". (B3)
N
N denotes the number of measurements, and I(e) denotes the Fisher-information matriz (FIM):

I(a);j =Y p(kla)[0;log p(k|r)] [0; log p(k|ar)] . (B4)
k

The FIM relates how easily we can distinguish neighboring probability distributions (parameterized by close-together
values). Therefore, the FIM quantifies the information that a probability distribution encodes about the parameters «;.
The choice of measurement (step 3) affects the probabilities p(k|a) and hence (). Certain measurements maximize
the amount of information extractable form the probe. For every measurement, the inverse FIM is lower-bounded by
the inverse quantum-Fisher-information matrix (QFIM):

I(e)™" > Z(atlpa) ™" (B5)
That is, I(a) ™! — Z(a|pa) ! is positive-semidefinite. The QFIM is defined as [T3HT75]

I(a‘pa)i,j =Tr [Az ajpa] , (BG)

1
where A; denotes the symmetric logarithmic derivative (SLD), defined implicitly by 9;pa = i(AZ-pa + pa\;) [76].

By the bound (B5|), the QFIM can replace the FIM in Eq. (B3]). The replacement leads to the quantum Cramér—Rao
bound (QCRB),

Cov(a) > %I(odpa)_l . (B7)
Before analyzing the QCRB in full, we impart intuition through the special case of single-parameter estimation.

Consider estimating only one parameter, a (M = 1). The matrix inequality becomes a scalar inequality.
Furthermore, in the limit N — oo, the bound can always be saturated [73]. To elucidate the saturation, we denote by
A, the SLD operator associated with the parameter ae. Consider a POVM whose elements project onto the eigenspaces
of A,. This POVM saturates the QCRB.

Now, consider estimating multiple parameters. The matrix inequality is not generally saturable, for the follow-
ing reason. An optimal measurement basis, from which to infer about «;, is the eigenbasis of A;. This measurement
basis may be far from optimal for inferring about «;. That is, parameters’ SLD operators A; might not (weakly)
commute with each other. If they do not, then one cannot achieve the optimal precision for all the parameters
simultaneously. [77H80].

Furthermore, the bound has another problem, even in classical estimation theory. Consider two experimental
strategies specified by two distinct POVMs, IT; and IIs. Let I; () and I () denote the corresponding FIMs. There
can be situations in which both I1(a)™! £ Iry(a)™! and I3(a)™' £ Ii(a)~!. The covariance matrices Covy ()
and Covy (d) lack partial ordering, defined in terms of the positive-semidefinite relation. Therefore, which strategy
performs best can be unclear.

To compare strategies effectively, we introduce a scalar bound, using a real, positive-semidefinite M x M weight
matriz W. In terms of W, the matrix bound is recast as

Tr[WCov(&)] > %Tr[wz(ama)*l]. (B8)

We choose W in accordance with the parameter-estimation experiment’s goal. In the next subsection (B 2|), we choose
a weight matrix to use throughout the remainder of the appendix. Particular choices of W can lead to different
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optimal estimation strategies [8I]. For instance, let W = 1, and let & be an arbitrary unbiased estimator. The
left-hand side of Eq. equals the sum of the mean-square errors of the parameters in &.

Inequality motivates the QFIM as a useful performance metric in multiparameter metrology. However, for
Ineq. is not generally saturable. However, for locally unbiased estimators, in the asymptotic limit of many
measurements (as N — oco) [80],

%Tr[WI(odpa)_l] < min e[V Cov ()] < 2%Tr[WI(a|pa)_1] . (BY)

where M is the set of all possible measurements. Therefore, the QFIM bounds the covariance to within a factor of 2.
Often, one repeats the protocol N > 1 times, using identical copies of the state pg. One measures p&~. The QFIM
turns out to be additive, Z(a[p@Y) = N Z(a|py), implying that

Tr [WCov(&)] > Tr [WZ(a|pEN) 7] = %Tr (WZ(alpa)™'] - (B10)

Hence, one can decrease the estimator’s variance in two ways: first, one can increase the number N of measurements.
Second, one can design a setup that reduces Tr[WZ(a|pa) ]

Finally, one can optimize the pg in step 1. The QFIM Z(a|pq ) is convex [82]. Therefore, pure probe states achieve
the maximum QFIM [83] 84].

2. Agnostic phase estimation

In the experiments described in the main text, the probe undergoes an arbitrary unknown rotation, represented
by Uy = exp (—ian - 6/2). The unknown rotation angle is a, i = sinfcos & + sinfsindy + cosd 2 defines the
unknown rotation axis, and o = (X,Y, Z) denotes a vector of Pauli operators. The number of unknown parameters
is M = 3. One unknown parameter is a. The other two, § and ¢, parameterize 7. In the rest of this appendix, we
will denote by a == («, 8, ¢) the parameters to be estimated.

We aim to calculate the precision with which a can be estimated. We do not aim to estimate 6§ and ¢. Hence, we
set the weight matrix to

100
W=1000 (B11)
00O
The scalar bound (B10|) becomes
. 1 _
Var (&) > NI(a\pa) 11,1. (B12)
Due to the form of W, if the QFIM takes the form
Zo, 00
Z(apa) =1 0 * x| forall e, (B13)
0 = %

then the variance Var(&) > 1/(NZ,), irrespectively of the lower right-hand 2 x 2 block Z(c|pe). (Multiplication
by W always maps this block’s inverse to zero.) We denote the QFT of « by Z,, to distinguish it from the QFIM,
Z(ct|pa). When the QFIM is singular and not in the form (B13)), one cannot estimate o without knowledge of #.

In the next section, we will see that, for every pure initial state, the single-qubit-probe protocol leads to a singular
Z(at|pea), which does not decompose in the form . Therefore, this protocol cannot produce any estimate of «.
In contrast, we show, ancilla-assisted entanglement-free sensing and entangled-sensor sensing lead to QFIMs of the
desired form . The QFIs for « are 2/3 and 1, respectively. Hence entanglement can boost the QFT of « by 50 %.

3. Single-qubit sensor initiated in a pure state

We first address a particular pure state, then generalize. Consider preparing a single-qubit probe in |¢g) = |0),
the eigenvalue-1 eigenstate of Z. The probe undergoes an arbitrary unknown rotation, represented by U, =
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exp (—ian - 0/2), as detailed in the previous subsection. The state |1)o) = Uq |0) achieves the QFIM

sin?(#) —2cos(f) sin®(f) sin? (%) sin(a) cos(f) sin(#)
—2cos(6) sin?(0) sin? (%) 4sin®(0) sin? (%) (1 — sin?(6) sin? (g)) 2 sin®(6) sin? (%) sin(a)
sin(a) cos(f) sin(6) 2sin®(0) sin? (%) sin(a) 4 sin? (%) (cosQ(H) + sin?(0) sin? (%))

(B14)
This matrix’s determinant is always zero; the matrix is not invertible. Indeed, the first line of Eq. is a linear
combination of the second and third lines. We can check this fact by adding the second line, multiplied by —% secd, to
the third line, multiplied by %cot (a/2) tan §. Furthermore, for most a values, the QFIM does not satisfy Eq. (B13]).
Similarly, we can calculate the QFIM for any other pure input state |g) = a|0) + b|1), with a,b € C and
la|? 4+ |b|?> = 1. The evolved state is |t)a) = Uq |t0). The corresponding QFIM is not invertible, and there are values
of a for which the QFIM does not satisfy Eq. (B13]). We conclude that « cannot be estimated from a qubit probe
initiated in any pure state.
We can understand this conclusion intuitively through an example. Consider aiming to measure the strength of
a magnetic field B whose magnitude and direction are unknown. Suppose that we employ three (non-coplanar)
detectors, each measuring the field component that points along some axis (e.g., By, By, or B;). The magnitude

of B (or a, in our case) follows from |B| = /B2 + BZ 4+ BZ. The field’s direction (or n, in our case) follows from

cos¢ = B;/\/BZ+ B2 and cosf = B./|B|. Three parameters specify the field, so one cannot measure the field’s

magnitude and direction using only one detector (or, in our case, a qubit probe in a pure state).

4. Ancilla-assisted entanglement-free sensing

We can enhance the pure-state single-qubit probe (App. even without introducing entanglement. Before
showing how to do so, we elucidate a subtlety of the term single-qubit probe. Each of our sensing strategies requires
many identical trials. Hence even the single-qubit-probe strategy (App. requires many qubit probes. However,
those qubits are prepared and used independently of each other.

This subsection likewise concerns a sensing strategy that involves many identical trials. In each trial, a single-qubit
probe is prepared in a pure state [¢);) selected randomly according to a probability distribution {p;}. An ancilla in
the state |j) records which [¢;) was prepared. The ancilla may be a qubit or a classical bit. In experiments, one tends
to keep a classical record of which |¢;) was prepared. The probe and ancilla begin in the mixture

po = pj )il @ |j)il, wherein Y p; =1. (B15)
J J

Suppose that one lacks knowledge of a and ni. The prior distribution most reasonably attributable to n is uniform.
We define an optimal entanglement-free input state as a state that achieves the first two equalities in Eq. , on
average with respect to the uniform distribution over . We will show that the optimal input states have the form

po = 5 (1o @ 100] + e [o=E)at] @ [1X1] + € lyeNy| @ |22 ) (B16)

The bases {|z+)}, {|ly£)}, and {|z%)} (as defined in the main text) are mutually unbiased: for every a,b € {x,y, z}
such that a # b, | (a£|b%) | = | (a%|bF) | = 1//d, wherein d = 2 denotes the Hilbert space’s dimensionality. po is a
1:1:1 mixture of elements of three mutually maximally incompatible bases. The relative phases e®* and e'®v are
arbitrary.

In the experimental implementation, we program three different pulse sequences. Each sequence prepares one pure
state (Jzt), |yt), or |z4)), applies the unknown unitary, and then measures the probe in a chosen basis. For each
sequence, a register stores the ancilla label (effectively, 0, 1, or 2), which we use to determine which measurement
(mentioned above) to perform. We perform enough experimental trials to reduce the binomial errors in our estimates
of the measurement outcomes’ probabilities.

Now, we show that the family of states is optimal. First, we bound the best precision attainable with any
state of the form 7 averaged over all directions 1. Next, we show that the state saturates this bound. This
state leads to a QFIM of the form , with a QFT for « of Z, = 2/3. Recall that the entanglement-assisted-sensing
strategy (discussed in the main text) leads to Z, = 1. The entanglement-assisted strategy therefore performs 50 %
better than the best entanglement-free strategy.
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i. Bound on the best precision attainable with ancilla-assisted entanglement-free sensing

In this section, we bound the best precision attainable without entanglement. Equation (B15|) specifies the input
state. The unitary U, = exp (—ian - 0/2) evolves the probe state to

ij Ua [95)(45| UL @ [5)] = Zpgpa ® 15l , (B17)

where p(j ) = o |0 0| UL. I. We calculate the QFIM achievable with p,,, using the (extended) convexity bound on
the QFIM [85],

N
T(elpa) < I(lfp}) + Y- p, T (@l © li)il) - (B13)

I(a|{p;}) denotes the FIM, which describes the information accessible via sampling from the probability distribution

{pj}- In this case, the convexity bound is saturated [86]. The reason is that the states p(J)

orthogonal.

® |j)(j] are mutually

N
T(alpa) = I@l{p}) + Y p; T (o) @ 1)) - (B19)
j=1
The probabilities p; depend on neither o nor fi. The first term therefore vanishes: I(a|{p;}) = 0. Furthermore,
the QFIM is additive, since the ancilla state |j)j| is parameter-independent: Z <a|p(3) ® |iXj ) (a|p(3))

Z (o] i)il) = Z (alpl). Therefore,

Z(alpa) Zp Z(alpd)) . (B20)

Recall that we aim to lower-bound the variance of «, using Eq. (B12). We need the (1, 1) component of the inverse

QFIM, Z(«| pa)_ll,l. In App. we showed that the matrices Z(a|pe) are neither invertible nor generally diagonal.
Therefore, calculating the inverse QFIM, Z(a|po )™}, is nontrivial. Instead, we provide a method for lower-bounding
Z(elpa) ™y 1

The method begins with the following expression for the 3 x 3 QFIM for a:

T(alon) = (7 7.) (B21)

T. denotes a two-column vector that quantifies correlations between « and 1. Zj is a 2 X 2 matrix that quantifies the
information about fv. If Z(ax|pe,) is invertible, one can represent its inverse using the Schur complement [87]:

1
L(alpa) ' = | T —I7 TaZ. " | (B22)
*

*

Since Z(a|pa ) is positive-semidefinite, also Zp, is positive-semidefinite. (A positive-semidefinite d x d matrix A satisfies
2T Az > 0 for all = in Rd.) All the QFIM’s entries are real, so the column vector Z. is in R%. Hence, Z! Zp Z. is
non-negative. Therefore,

T, >T, — I T4 T, . (B23)

C
Inverting each side of the inequality yields

1 1 1

> 7 e Tale) 2 g
)11

S — B24
To—ITIpT, ~ Ia (B24)

By Eq. (B20), the (1,1) matrix element Z(c|pa)1,1 equals a weighted sum of the elements Z(cx|pa’)1,1: Z(ct|pa)i,1 =
>-ipi (el p(] ))171 . Recall that the prior distribution most reasonably attributable to 7 is uniform. We must average
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over this distribution to evaluate the expected performance of our estimate of a. We can substitute into the right-hand
side of Ineq. (B24)), if Z(cx|p) is invertible:

1 1 3
Ave, [Z(alpe)™t, ;] > , = == B25
gn[ ( ‘/) ) 1,1] Zj ijvgﬁ [I(a|p,(§))1,1] 2/3 Zj D 9 ( )
Avg, denotes the average with respect to a uniform distribution over the axes n. The first equality follows from a
fact proved in the next subsubsection: consider preparing an arbitrary single-qubit pure state. It achieves a QFI that,
averaged over all n, is 2/3. That is, Avg,, [I(a|p(of))1’1] =2/3.

According to the argument above, every ancilla-assisted entanglement-free input state py leads to an average-over-n
quantum Fisher information Z, = 2/3. For such an input to be optimal, it must achieve the first two equalities in
Eq. (2). po achieves this condition only if the estimation of « is independent of the estimation of . As discussed in
Sec. this happens if and only if Z, = 0. When Z; = 0, Ineq. is saturated, and hence the bound is
achieved. We therefore reach a necessary criterion for an entanglement-free input state to be optimal: the state must
entail a QFIM of the form (B13).

In Sec. we derive the optimal input states’ form. We prove these states’ optimality by computing the QFIM
of a general one of these states. We calculate the QFIM using a convexity bound on the QFIM and exploiting the
fact that the convexity bound is saturated in this case [86].

7. Average quantum Fisher information achievable with arbitrary pure single-qubit state

We now prove that, for every pure single-qubit state, averaging the QFI of a over all n yields 2/3. Our proof
strategy is direct calculation. First, we recall the forms of n, A and U,, in terms of the parameters «, 6, and ¢. Then,
we calculate the most general evolved state |1, ) and its derivative 9, |10, ). We substitute into a formula for the QFI,
then average over n.

We have expressed the rotation axis as 1o = (cos ¢ sin 8, sin ¢ sin 6, cos §). In terms of this notation, the U, generator
A = —n-0/2 has the form

_ 1 —cos(8) —e"sin(h)
A= 4 <—e“i’ sin(f)  cos(f) ) : (B26)

Hence the unitary Uy = €*4 has the form
o o : o
cos (=) —icos(f)sin ( = —ie" " sin ( = ) sin(f)
U, = ( 2 ) Can ( 2 ) o . ( ) a
—iel? sin <§> sin(6) cos (§> + i cos(f) sin (5)

The most general input state has the form [1y) = a|z+) + b|z—), with a,b € C and |a|? + |b|> = 1. From this
expression and the previous paragraph, we can calculate |¢o) = Uq |tg) and its derivative, J, |[1). We substitute

into the QFI formula Z, = 4Re{<8a1/)a|8az/)a> - |<8a1/1a|@/1a>|2} [Eq. in the main text]:

(B27)

T, = %{1 +2[b]* — 2/b[* + (=1 + 6[b]* — 6]b|*) cos(26)
4 4b [b(—l + b]?) cos(26) sin®(a) + a(—1 + 2/b|?) cos(¢) sin(29)] } . (B28)

Next, we average ¢ and 6 over their values on the unit sphere:

2m ™
Avg, (T) = % /0 /O Tosinfdodp = ; (B29)

1i.  The optimal ancilla-assisted entanglement-free input state saturates the lower bound in Eq. (B25)

The optimal family of ancilla-assisted entanglement-free sensors has the form

po = %(|zi><zi\ ® [0)0] + €= |z )z, +| @ [1)(1] + e jy£Ny+| @ |2><2|) . (B30)
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As noted above, pp is a 1:1: 1 mixture of elements of three mutually maximally incompatible bases. The relative
phases e'®* and e'®v are arbitrary.

Using Eq. (B30)), we can write down different optimal input states: first, for each of X, Y and Z, we can choose
the eigenstate corresponding to the positive or negative eigenvalue. For example, |2+)(2+| and |z—)(2—| work equally
well. Second, the arbitrary phase factors e’®= and e*®» do not affect the QFIM. One such optimal input state is

(lz)(z+[ @ [0)0] + |z+Naz+[ @ [1)L] + |y+)y+] @ [2)X2]) - (B31)

Wl =

Po =
By Eq. (B20)), the corresponding QFIM is
1
T(epa) = g(zw + T +I|y+>). (B32)

Zi4,+) denotes the QFIM achievable with an input state equal to the eigenvalue-1 eigenstate of n. Calculating the
expressions for 7.y, 7,4y, and Z, 4y, we calculate the QFIM:

2
3 0 0
8
I(apa) =10 3 sin?(#) sin® (%) 0 . (B33)
8 . 5/
T )
This QFIM’s inverse is
3
3 0 0
Z(alpa) "= 0 gCSCZ(a) csc? (%) 0 (B34)
3 L/«
0 0 ngc (5)

The (1,1) entry equals 3/2, the lower bound presented in Ineq. (B25). Saturating this bound, the state (B31) is an
optimal entanglement-free probe.

5. Entanglement-assisting sensing inspired by closed time-like curves

As before, we consider a probe undergoing an unknown rotation described by the operator Uy = exp (—ian - o /2).
The rotation angle is «, 1o = sin 6 cos ¢ & + sin 0 sin ¢ g + cos § 2 defines the rotational axis, and o = (X,Y, Z) denotes
a vector of Pauli operators. Relative to the Z eigenbasis, the eigenstates of A = —n - o/2 are

) 6 . 0
i pan L i eyt
|a+>—19< ¢ tan2> and |a_>—19<e C%). (B35)
,/1+tan25 1 \/1+cot2§ 1
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Hence, U, can be expressed as

e = T o Y|+ e fa_Ya| (B36)
—ia/2 —id 0 0 —ia/2 —id 0 0
e _ Z ) e Z )
=7 ¢ tan 2 (—e’¢ tan — 1) +—r € cot 2 (6“75 cot — 1) (B37)
1 2 1 2 5 0 1 2
+ tan® — 1+ tan® —
2 2
0 ) [ 0 ) 0
e—te/2 tan? = —e " tan - e~ /2 cot? = e cot —
=— | %y 2+ ——5 | % 2 (B38)
1+ tan? 3 —e'? tan 3 1 1+ tan? 3 €' cot 3 1
1 . 1 .
) sin? Q ——e " "®gind ) COSQQ —e~"®ging
— 67204/2 2 + eza/Z 2 (B39)
—Ze?gin b cos? Q lei‘z5 sind  sin? =
2 2 2 2
) 0 ) 0 .
e~i/2gin? Z 4 ei0/2 cog2 — isin@sin —e~ ( )
= B40
isin #sin iei‘b ei®/2 gin? 3 + e71/2 g2 3

- (g 2’;) . (B41)

The final equation defines ¢ and b implicitly. The evolution of the probe and ancilla acts on their joint Hilbert space
as

a0 b 0
_iaﬁ.g/g i 0a O b*
0b 0 a*

Suppose that the probe and ancilla are prepared in an arbitrary Bell state |B). Define the projector g = |BYB].
Recall that we aim to infer a. An optimal measurement is entangling and has the form {ﬁB, 1- fIB}.

For instance, suppose that the probe and ancilla begin in |®T). If g+ = |®T)PTF|, the optimal measurement is
{fLI,+, 1- fLI,+}. The possible outcomes obtain with the probabilities

a 0b° 0 1\ o
1 0a 0 b* 0 a+a*|? «
ro=l@tulen)P=|50 00 ) |y oo | o] | =15 =3 (B43)
0b 0 aF 1

and P, =1 — Py = sin? 5. The resulting Fisher information is FI = 1 and equals the maximum QFI. Regardless of
the choice of |B), if the measurement is optimal, the FIM assumes the form

I(alpa) = (B44)

OO =
o OO
o OO

This FIM has the form in , with Z, = 1.

The previous strategy provides no information about n: Z; = 0. Suppose that we wish to garner information
about mn, while optimally measuring a. Our protocol’s measurement basis can be modified to achieve this goal, we
now show. First, we calculate the QFIM achievable with a general initial Bell state, |B). This calculation bounds the
attainable precision:

1 0 0
TI(alpa) = | 0 4sin*(a/2)sin® 0 0 ) (B45)
0 0 4sin®(ar/2)
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Now, we choose for the measurement basis to be {|UT), [¥~) |®T)  |®~)}. We calculate the FIM for this choice.
The FIM, we show, equals the QFIM in Eq. . Therefore, this basis is the optimal basis for inferring about «,
while garnering information about 7.

Suppose that the input is the singlet state, |[¥~). One can perform similar calculations for input states equal to
the other Bell states. The measurement’s possible outcomes are obtained with probabilities

Pys = [ (WH| U |W) 2 = cos?(6) sin® (‘;‘) , (B46)
Py = (| U[g7) 2 = (3‘) (B47)
Py = (@ U [07) [2 = cos?(¢) sin®(9) sin? () , and (B48)
Py = [(®|U[T)|? = sin?() sin?(0) sin? (%) . (B49)

We differentiate these probabilities with respect to «, 8, and ¢. We can then calculate the FIM using the formula

I(a);,; = > (0:P:)(0;F) (B50)

P2
ke{®d+ o~ W+ T} k

The result is

1 0 0
I(o) = I(alpa) = [0 4sin?(a/2)sin?6 0 : (B51)
0 0 4sin®(ar/2)

which has the form of the optimal QFIM [Eq. (B45)].
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