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Three-dimensional Dirac semimetals can be driven into an insulating state by coupling to a
charge density wave (CDW) order. Here, we consider the quantized crystalline responses of such
charge-ordered Dirac semimetals, which we dub Dirac-CDW insulators, in which charge is bound
to disclination defects of the lattice. Using analytic and numeric methods we show the follow-
ing. First, when the CDW is lattice-commensurate, disclination-line defects of the lattice have a
quantized charge per length. Second, when the CDW is inversion-symmetric, disclinations of the
lattice have a quantized electric polarization. Third, when the CDW is lattice-commensurate and
inversion-symmetric, disclinations are characterized by a “disclination filling anomaly” — a quan-
tized difference in the total charge bound to disclination-lines of Dirac-CDW with open and periodic
boundaries. We construct an effective response theory that captures the topological responses of the
Dirac-CDW insulators in terms of a total derivative term, denoted the R∧F term. The R∧F term
describes the crystalline analog of the axion electrodynamics that are found in Weyl semimetal-CDW
insulators. We also use the crystalline responses and corresponding response theories to classify the
strongly correlated topological phases of three-dimensions Dirac-semimetals.

I. INTRODUCTION

Three-dimensional (3D) Dirac semimetals (DSMs) and
Weyl semimetals (WSMs) are quintessential examples of
gapless phases of matter that harbor topological fea-
tures [1–12]. These systems are characterized by lin-
ear bulk band crossings (nodal points) that are well-
described at low energies by the 3D Dirac and Weyl
equations, respectively. The gaplessness of Weyl nodes
can be viewed as a consequence of band topology. Each
node is a monopole of Berry curvature in momentum
space, and, since the total number of Berry curvature
monopoles must vanish, single Weyl nodes cannot be
added or removed. This reasoning also indicates that
Weyl nodes come in pairs having opposite monopole
charge [2, 3, 13, 14]. The gaplessness of Dirac nodes
is also protected, but requires additional symmetry, e.g.,
time-reversal, inversion, and spatial rotations [15, 16].
While the individual nodes of the DSM and WSM are
locally stable in momentum space, pairs of nodes can
acquire a gap. Normally, this cannot occur since the
nodes are located at different points in the Brillouin zone.
However, if, for example, translation symmetry is broken
(such as by charge density wave order) then nodes at
different momenta can couple to each other and form a
correlated insulator.

It has been shown that when an inversion-symmetric
WSM is gapped out via a translation symmetry breaking
charge density wave (CDW), the resulting insulator ex-
hibits axion electrodynamics [17–21]. The axion electro-
dynamics is described by a 3D Θ term [22–24], and when
the WSM has inversion symmetry, Θ is quantized to val-
ues of 0 or π [25–27]. In addition to axion electrodynam-
ics, the inversion-symmetric Weyl-CDW insulator also
exhibits a quantized 3D anomalous Hall response [28–30].

When inversion-symmetric open boundaries are present,
the Θ = 0 and Θ = π Weyl-CDW insulators can be dis-
tinguished by their total Hall conductances, which differ
by e2/h [21].

DSMs can similarly be gapped out via a CDW to
produce a Dirac-CDW insulator [31]. The resulting
insulator can be understood by treating the DSM as
two copies of a WSM related by time-reversal symme-
try [6, 7]. This intuition reveals that the Dirac-CDW
insulator cannot display a quantized 3D Hall response,
as the 3D Hall response is odd under time-reversal sym-
metry. The Dirac-CDW insulator also has trivial ax-
ion electrodynamics (i.e., a vanishing 3D Θ term) since
Θ is defined mod (2π). Despite the absence of these
effects, there is more to the story of the Dirac-CDW
insulator topological responses. In this work, we con-
sider the crystalline-electromagnetic (CEM) responses of
Dirac-CDW insulators. Similar to how electromagnetic
responses describe charge fluctuations induced by elec-
tromagnetic fields, crystalline-electromagnetic responses
describe how charge fluctuations are induced by lattice
deformations (e.g., shears, strains, and defects) [32–50].

Since Dirac-CDW insulators have rotation symmetry,
they inherit a natural sensitivity to disclination defects,
which are line-like fluxes of rotation symmetry. However,
the exact nature of the CEM response to disclinations
depends on: (i) if the CDW is in/commensurate with the
lattice and (ii) if the Dirac-CDW insulator has inversion
symmetry. When the CDW is commensurate with the
lattice, the Dirac-CDW insulator has residual discrete
translation symmetry determined by the CDW period.
In this case we will show that disclination loops in the 3D
Dirac-CDW insulator bind a quantized charge per length.
The charge per length is determined by a combination of
the Frank angle of the disclination and the length of the
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CDW period. This response can be considered as a CEM
analog of the 3D Hall effect, as the former describes how
charge per length is bound to disclination lines, while
the latter describes how charge per length is bound to
magnetic flux lines. In fact, the disclination response is
essentially a layered version of the 2D discrete Wen-Zee
response that describes how charge is bound to point-like
disclinations of 2D lattices [46, 47, 51–59]. Hence, we
refer to this response of the 3D Dirac-CDW insulator as
the 3D discrete Wen-Zee (dWZ) response. Furthermore,
we will show that in the effective response theory, the 3D
dWZ response is captured by a layered version of the 2D
Wen-Zee term.

Just like the case for Weyl-CDW insulators, we find
that there are two distinct classes of Dirac-CDW insula-
tors when inversion symmetry is preserved. The differ-
ence between the two classes of insulators manifest as a
difference in the parity of charge bound to disclination
lines that terminate on the open boundaries of a system.
In analogy to axion electrodynamics, we find that the
effective response theories for the two classes of Dirac-
CDW insulators differ by a quantized total derivative
term. This term, called the R ∧ F term, was previously
discussed by some of us in Ref. 60. Similar to the 3D
Θ term that describes axion electrodynamics, the R ∧ F
term is a total derivative term that leads to anomalous
boundary physics that we discuss in detail below.

Generically we show that when the CDW is com-
mensurate and preserves the inversion symmetry of the
DSM, it is possible to define a “disclination filling
anomaly” [61, 62]. A disclination filling anomaly occurs
when it is impossible to change from periodic to (gapped)
open boundary conditions while preserving both inver-
sion symmetry and conserving charge on the disclina-
tion line. Alternatively put, we show that when the
disclination filling anomaly is present, disclination lines
of an inversion-symmetric insulator must bind different
amounts of charge for open and periodic boundary condi-
tions. This difference in charge is quantized and cannot
be removed by boundary effects, provided they do not
break inversion symmetry. This serves to further classify
crystalline insulators by considering filling anomalies in
the presence of topological defects such as a disclination.

The rest of this paper is organized as follows: in Sec-
tion II we provide an overview of Dirac semimetals, in-
cluding lattice models, protecting crystalline symmetries,
and their unquantized quasi-topological responses. In
Section IV we describe how adding a CDW to the DSM
model can give rise to correlated topological crystalline
insulators. In Section III we discuss relevant topological
response terms, such as the discrete Wen-Zee and R ∧ F
terms. Equipped with this knowledge, in Section V we
analytically and numerically demonstrate the topologi-
cal crystalline-electromagnetic responses of Dirac-CDW
insulators. Finally, in Section VI we conclude with a dis-
cussion and outlook, and include technical details in the
appendices.

II. DIRAC SEMIMETALS: LATTICE MODEL,
TOPOLOGY, AND RESPONSES

In this section we will review the relevant properties
of DSMs. We will pay particular attention to the sym-
metries that protect the DSMs. We will also discuss the
anomalous responses of the gapless DSM in the presence
of probe gauge fields. Physically, we will demonstrate
that these anomalous responses manifest as charge bound
to disclination defects of the lattice.

A. Lattice model

In this subsection we briefly review some of the band
theory of DSMs. Generically, DSMs are classified into
two groups: symmorphic DSMs whose low-energy gapless
features are protected by symmorphic symmetries and
translation symmetry; and non-symmorphic DSMs where
Dirac nodes arise from non-symmorphic symmetry-
enforcement of band crossings with four-dimensional ir-
reducible representations at high-symmetry points at the
Brillouin zone edge [1, 6, 7, 63]. We will focus on sym-
morphic DSMs, and study only a minimal modle host-
ing a pair of Dirac nodes that are protected by time-
reversal, inversion, rotation, and translation symmetry.
Such DSMs are known to possess unquantized anoma-
lous responses [42, 64].
Our starting point for the symmorphic DSM will be the

following Bloch Hamiltonian for spin-1/2 fermions on an
orthorhombic lattice [7],

HDSM(k) = sin(kxax)Γ1 + sin(kyay)Γ2

+ [cos(kzaz)− cos(Kaz)]Γ3

− bxy[2− cos(kxax)− cos(kyay)]Γ3,

(1)

where ax,y,z are the lattice constants in the x, y, and z
directions, respectively. The Γa matrices are defined as

Γ1 = σxsz, Γ2 = −σy, Γ3 = σz,

Γ4 = σxsx, Γ5 = σxsy.
(2)

where σ and s are Pauli matrices acting on the sublattice
and spin degrees of freedom, respectively. We note that
this identification will not be important for our further
discussion. Here and throughout we leave any 2×2 iden-
tity matrices implicit, (i.e., Γ2 = −σys0, and Γ3 = σzs0,
where s0 is the 2× 2 identity in spin space).

The (doubly-degenerate) energy bands of this model
are given by

E±(k) =±
[
sin2(kxax) + sin2(kyay)

+
(
cos(kzaz)− cos(Kaz)

− bxy[2− cos(kxax)− cos(kyay)]
)2]1/2

.

(3)

From this equation we see that the parameter K de-
termines the location of the Dirac nodes at which the
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bands become four-fold degenerate: kDN ≡ (0, 0,K),
E±(kDN) = E±(−kDN) = 0. Intuitively, K parame-
terizes a process wherein two pairs of doubly-degenerate
bands are inverted. At K = 0 the bands are not inverted
and have a quadratic band touching at k = 0. At K = π
the bands are fully inverted and have a quadratic band
touching at k = (0, 0, π). For other values of K, the
two pairs of bands are partially inverted and have linear
crossings at k = (0, 0,±K). Additionally, the parame-
ter bxy determines the gap away from the high symmetry
line kx = ky = 0. As expected, the Bloch Hamiltonian
near the four-fold degenerate nodal points takes on the
Dirac-form

HDSM(±kDN + q) ≈ qxaxΓ1 + qyayΓ2

± qzaz sin(Kax)Γ3.
(4)

Here, and throughout, we will take the system to be half-
filled, i.e., two electrons per unit cell, such that the chem-
ical potential intersects the Dirac points.

B. Symmetries

For generic values of K, the Hamiltonian in Eq. 1 con-
sists of two doubly degenerate bands that meet at a pair
of four-fold degenerate Dirac nodes. The degeneracies are
stabilized by the combination of: C4z symmetry (four-
fold rotation symmetry around the z-axis), T z transla-
tion symmetry (translation symmetry in the z-direction),
U(1) charge conservation symmetry, time-reversal sym-
metry, and inversion symmetry.

C4z rotation symmetry, T z translation symmetry, and
U(1) charge conservation symmetry are all necessary for
the Dirac nodes in Eq. 4 to remain gapless. The C4z

operator is given by

U4 = exp
(
i
π

2
[ 12σ

zsz − sz]
)
. (5)

where (U4)
4 = −1, since we have spin-1/2 fermions. This

symmetry prohibits mass terms ∝ Γ4, and ∝ Γ5. The T
z

translation symmetry prevents the Dirac node at +kDN

from hybridizing with the Dirac node at −kDN. The U(1)
charge symmetry prevents the inclusion of superconduct-
ing pairing terms.

The two-fold degeneracy of the bands of Eq. 1 away
from the Dirac nodes is ensured by the combination
of time-reversal and inversion symmetry: time-reversal
symmetry guarantees that a state with momentum k is
accompanied by a degenerate state at −k with oppo-
site spin (σ) projection. Similarly, inversion symmetry
guarantees that for a state with momentum k, there is
a degenerate state at −k with the same spin (s) pro-
jection. The combination of time-reversal and inver-
sion symmetries therefore guarantees that all states are
at least two-fold degenerate. Furthermore, time-reversal
and inversion symmetry also protect the four-fold degen-
eracy of the Dirac nodes at k = ±kDN, and prevent the

DSM phase from being deformed into a Weyl semimetal
phase. For example, adding a time-reversal breaking
term, such as a magnetic Zeeman term ∝ sz, will split a
Dirac nodes into one positive-chirality and one negative-
chirality Weyl node. If inversion symmetry is preserved,
then this splitting of Dirac nodes must occur in pairs, and
if there is a positive chirality Weyl node at k, there will
be a negative chirality Weyl node at −k. This may be
understood via the requirement that the Berry curvature
satisfies Ω(k) = −Ω(−k) because of inversion symmetry.
This Dirac node splitting procedure results in a magnetic
Weyl semimetal that possesses an anomalous Hall con-
ductivity. Alternatively, if inversion symmetry is broken
and time-reversal symmetry is preserved, we may arrive
at a time-reversal invariant Weyl semimetal, where a pos-
itive chirality Weyl node at k, is accompanied by a second
positive chirality Weyl node at −k. This naturally arises
as a consequence of time-reversal symmetry which im-
plies Ω(k) = Ω(−k). Analogous to the magnetic WSM
case, such a material is known to possess an unquantized
momentum anomaly response that describes non-trivial
charge responses to dislocations [42, 50, 65, 66] .

The time-reversal operator is given by T = −isyκ,
where κ is the complex conjugation operator (T 2 = −1
for spin-1/2 fermions). For the lattice model in Eq. 1
there are multiple inequivalent choices of inversion sym-
metry, which correspond to different choices of inversion
center. The different inversion centers are related by a
half-translation in a given direction. Since we are go-
ing to consider breaking translation symmetry in the z-
direction, we will pay special attention to the two inver-
sion symmetry definitions that differ by a half-translation
in the z-direction:

Is = σz,

Ib = eikzazσz.
(6)

We will call Is the “site-centered” inversion symmetry
since it sends r = (rx, ry, rz) → (−rx,−ry,−rz) and
leaves the site (0, 0, 0) invariant. Similarly, we will call
Ib the “bond-centered” inversion symmetry since it sends
(rx, ry, rz) → (−rx,−ry,−rz + az) and leaves the bond
(0, 0, az/2) invariant. There are other choices of inversion
symmetry that differ by half a translation in either the x
or y-directions from those above. However, these other
inversion symmetry definitions are unimportant for our
forthcoming analysis.

The distinction between the site- and bond-centered
inversion symmetries has important implications when
considering systems with open boundary conditions.
Namely, for a system of length Lz = azNz in the z-
direction (i.e., Nz lattice sites along the z-direction) and
open boundary conditions, site-centered inversion sym-
metry necessitates that Nz is odd, while bond-centered
inversion symmetry necessitates that Nz is even. We will
discuss the interplay between inversion symmetry and
CDWs in Sec. IV below.
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C. Anomalous topological response

As shown in Ref. [42], the DSM in Eq. 1 possess an
anomalous topological response to fluxes of C4z rotation
symmetry. This response can be expressed in terms of
probe (non-dynamic) gauge fields for the U(1) charge
symmetry (Aµ) and C4z rotation symmetry (ωµ) as

Lanom =
ν

2π2
Gzϵ

ijkωi∂jAk, (7)

where i, j, k run over t, x, y, ν = 2K/2π, and Gz = 2π/az
is the reciprocal lattice vector along the z direction. The
origin of such a term may be understood via the lowest
Landau level (LLL) picture wherein a uniform magnetic
flux is turned on in the z-direction: such a system pos-
sesses two LLLs with different C4z charges, giving rise
to a filling-type anomaly that protects the bands from
gapping out [42]. We also note that Eq. 7 is not gauge
invariant for arbitrary values of ν, and gauge invariance
is restored by the gapless degrees of freedom at the nodes
of the DSM.

Fluxes of the rotation gauge field, ω, encode discli-
nations with a Frank-vector ∝ ẑ. In 3D lattices, the
disclinations are line-defects that extend parallel to their
Frank-vector. Because of this, we will implicitly take all
disclinations to stretch along the z-direction in this work.
One can think of these disclination lines as stacks of 2D
disclinations of the xy-planes, as shown in Fig. 1. At the
level of gauge field configurations, considering disclina-
tions that stretch along only the z-direction amounts to
the condition that

∮
Cxz

ω =
∮
Cyz

ω = 0, where the loop

integrals are over curves Cab in the ab-plane that do not
intersect the cores of any disclinations.

While the (discrete) gauge field ω is formally charac-
terized only by its holonomies, previous works [57, 60]
have shown that it is possible to treat ω as a con-
tinuous gauge field, but having only quantized fluxes,∮
ω ∈ [0, π

2 , π,
3π
2 ). This flux quantization can be thought

of as arising from a Higgs mechanism, similar to the elec-
tromagnetic flux quantization in superconductors, where
the analogy of the electric charge is replaced by angular
momentum. Here and throughout, we shall treat ω as
smoothly varying, but with quantized fluxes.

Now that we have discussed the probe fields we can in-
terpret the anomalous response. We find that Eq. 7 im-
plies that disclinations in a DSM bind charge per length
determined by ν. To demonstrate, let us take a func-
tional derivative of the action generated by Eq. 7 with
respect to A0. Hence, the contribution to the charge
density from the DSM anomalous response is

ρanom =
ν

2π2
Gz[∂xωy − ∂yωx]. (8)

For a thin-core disclination parallel to the z-axis, ∂xωy −
∂yωx = ΘF δ(x)δ(y), where ΘF is the Frank angle and
is quantized to ΘF = 2πs/4 with s ∈ Z. For a system
of length Lz = azNz with Nz ∈ Z, the disclination has

total charge

Qdisc =
ΘF

π
νNz + δQ. (9)

Here we have assumed that the system is charge neu-
tral in the absence of any disclinations. Physically, this
amounts to adding negatively-charge background ions to
each site of the lattice. In addition to the topological con-
tribution ∝ ΘF , we have included an additional contri-
bution to the disclination charge, δQ. This contribution
is O(1) and arises from the gapless particles that are nec-
essary to restore the gauge invariance of the anomalous
DSM response [42]. In Fig. 2(a) we plot the disclination
charge as a function of ν using the DSM tight binding
model in Eq. 1, and find that the disclination charge
follows the predicted trend, Qdisc/Nz ≈ ΘF

π ν.
A useful way of understanding the disclination re-

sponse of the DSM is to treat the momentum kz of Eq. 1
as a tunable parameter, such that gapped planes with
fixed kz are trivial 2D insulators for |kz| > K and quan-
tum spin Hall (QSH) insulators for |kz| < K [67, 68]. The
Dirac nodes at |kz| = K mark the band crossings that
connect the topologically distinct insulators. In this way,
the DSM with K ̸= 0, π can be viewed as an intermediate
phase between a trivial insulator (K = 0), and a weak 3D
topological insulator (K = π) [64, 69]. As we shall discuss
in Sec. III A 1, disclinations of the 2D QSH insulator bind
charge ΘF /π. For a system of length Lz = azNz, kz is
discretized in steps of size 2π/Nz. Each kz slice will bind
charge ΘF /π to a disclination if |kz| < K, and charge 0
if |kz| > K, as shown in Fig. 2(b). The disclination will
therefore bind a total charge

Qdisc =

κ∑
kz=−κ

ΘF

π
≈ ΘF

π
2KNz

2π
=

ΘF

π
νNz. (10)

If we add in the extra O(1) contribution, δQ, that arises
from the gapless modes at kz = ±K, we arrive at Eq. 9.

III. TOPOLOGICAL
CRYSTALLINE-ELECTROMAGNETIC

RESPONSES OF CRYSTALLINE INSULATORS

In preparation for our discussion of the topological
crystalline-electromagnetic responses of the Dirac-CDW
insulator in Sec. V, we will first discuss the crystalline-
electromagnetic responses that are relevant for insula-
tors having C4z rotation symmetry, as well as Tz discrete
translation and/or inversion symmetry. These responses
are similar to the anomalous response of the DSM dis-
cussed in Sec. II C. However, unlike the DSM responses,
the topological responses of insulators are quantized be-
cause of gauge invariance and symmetry (DSMs can have
unquantzed responses since the there are low energy gap-
less degrees of freedom that restore gauge invariance).
We will mainly consider insulators composed of spin-1/2
fermions with TRS, which is the relevant case for DSMs.
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(a) (b) (c) (d)

FIG. 1. (a) A lattice with C4z symmetry and no disclinations. Upon cutting out the greyed-out quadrant and re-gluing, we
arrive at (b) a disclinated lattice. (c) A stack of disclinations of 2D layers forms a disclination line of a 3D crystal, as shown
in (d).

0.2 0.4 0.6 0.8
0.0
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z

/3 /3
kz (1/az)
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1

|Q d
isc

(k z
)|

(a)

(b)

FIG. 2. (a) The numerically computed charge per layer bound
to a ΘF = π/2 disclination as a function of ν for the Hamil-
tonian Eq. 1 with bxy = 1 (black circles). The dashed line
for comparison has slope 1

π
ΘF ν and vanishing intercept, in-

dicating the theoretical prediction. The disclinated lattice is
constructed as in Ref. [60] for Nx = Ny = 39 lattice sites in
the xy-plane, and 250 momentum points along the kz axis.
(b) The bound charge resolved in kz (momentum parallel to
the disclination line) for K = π/3. The deviations from 0 and
1/2 near kz = ±π

3
1
az

are the result of finite size effects and
the small size of the gap near the Dirac nodes.

Similar responses also exist for spinless fermions, and sys-
tems without TRS, and the quantization of the responses
will be different [46, 60].

For spin-1/2 systems with TRS and C4z rotation sym-

metry, we will show that crystalline-electromagnetic re-
sponses lead to: a Z4 classification when the system has
additional T z discrete translation symmetry; a Z2 classi-
fication when the insulator has additional inversion sym-
metry; and a Z4 × Z2 classification when the system has
both T z discrete translation and inversion symmetry. We
will also show that for a system with discrete translation
rz → rz + az, the Z4 index indicates that disclinations
with Frank angle ΘF bind a charge per length of 2n ΘF

2πaz

(n ∈ Z4) when the system has periodic boundaries in the
z-direction. The effective response theory for the insula-
tor with a non-trivial Z4 index also contains a 3D discrete
Wen-Zee (dWZ) term. The Z2 index corresponds to the
charge parity of a disclination when inversion-symmetric
open boundary conditions are present. Insulators with
different Z2 indices have effective response theories that
differ by a quantized total derivative term that was re-
ferred to as the R∧F term in Ref. 60. When the insulator
has both T z discrete translation and inversion symmetry,
the Z2 index can be equivalently understood as the pres-
ence or absence of a filling anomaly [61, 62] of the 1D
disclination lines, which we will define more formally in
Sec. III B.

To prevent confusion we note that here we are dis-
cussing only the topological crystalline-electromagnetic
responses of insulators in various symmetry classes. This
is not an exhaustive list of all topological responses. No-
tably, we are ignoring any purely electromagnetic re-
sponses in the section.

A. The discrete Wen-Zee response

To begin, we will consider the dWZ response in 2D
and 3D. The dWZ response of a 2D system describes how
disclinations bind a quantized charge [46, 47, 51–59]. The
3D dWZ response is essentially a layered version of the
2D dWZ response, and describes how disclination lines
bind a quantized charge per length.
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1. The discrete Wen-Zee response in 2D

The 2D dWZ response corresponds to the following
topological term in the effective field theory,

L2D-WZ =
S2D

2π
ϵijkωi∂jAk, (11)

where i, j, k run over t, x, y. Here, fluxes of ω (which
are point-like in 2D) are disclinations of the 2D lattice.
For spin-1/2 fermions with TRS (which will be the focus
of this work) S2D is quantized to be an even integer 1

and defined mod (8) in the case of insulators with C4

symmetry (four-fold rotations of the plane) 2. Therefore
the allowed inequivalent values are S2D = 0, 2, 4, or 6 for
time-reversal and C4 symmetric insulators.
A representative 2D insulator with S2D = 2, is realized

by the following 4-band Hamiltonian,

HQSH(kx, ky) = sin(kx)Γ1 + sin(ky)Γ2

− [m− cos(kx)− cos(ky)]Γ3,
(12)

with C4 rotation given by Eq. 5, and TRS given by T =
−isyκ. This Hamiltonian is a QSH insulator for 0 <
|m| < 2 and a trivial insulator for 2 < |m| [67, 68]. The
QSH insulator has a 2D dWZ response with S2D = 2,
while the 2D dWZ response vanishes (S2D = 0) in the
trivial phase3 [57]. We note that Eq. 12 can be extended
to Eq. 1 by fixing bxy = 1 and setting M = 2+cos(kz)−
cos(Q).
The 2D dWZ response indicates that a disclination

with Frank angle ΘF binds charge

Qdisc = S2D
ΘF

2π
mod (2), (13)

where we have added additional negative background
charges such that the system is charge neutral in the ab-
sence of disclinations. The mod (2) ambiguity in defin-
ing Qdisc arises from the fact that for spin-1/2 insulators
with TRS, it is possible to add a Kramers pair of particles
to the disclination core without changing any topological
properties. Since ΘF is a multiple of π/2, the disclina-
tion charge is always trivial if S2D = 8. This is why S2D

is defined mod (8) as noted before.

1 For insulators composed of spinless fermions with TRS or spin-
1/2 fermions without TRS, S2D is quantized as an integer. For
insulators composed of spinless fermions without TRS, S2D =
C/2 mod (1) where C is the Chern number.

2 For spin-1/2 fermions with TRS, S2D is defined mod (2n) in
Cn symmetric insulators. For spinless fermions either with or
without TRS, or spin-1/2 fermions without TRS, S2D is defined
mod (n) in Cn symmetric insulators

3 In Ref. [59], a trivial insulator has a non-zero discrete shift. This
difference arises because Ref. [59] considers the charge contri-
bution from only the electrons. Here we are considering the
contribution from the electrons, and the contribution from the
background ions, which are effectively a trivial insulator com-
posed of negative charges.

2. The discrete Wen-Zee response in 3D

For insulators having T z discrete translation, z →
z + az, the 2D dWZ response can be extended to 3D
as a layered response. The 3D layered response can be
expressed as the following topological term in the effec-
tive response theory,

L3D-WZ = S3D
Gz

4π2
ϵijkωi∂jAk, (14)

where Gz = 2π
az

is the reciprocal lattice vector along the
z-direction. Here, as in Sec. II, flux-lines of ω are discli-
nation lines with Frank-vector ∝ ẑ. Again, we take all
disclination lines to extend along the z-direction. This
response is a layered version of the 2D dWZ response
having one 2D layer per lattice period, az. The coef-
ficient S3D, which we will call the 3D discrete shift, is
defined mod (8) and quantized as an even integer for
spin-1/2 fermions with TRS and C4z rotation symmetry,
i.e. S3D = 0, 2, 4, or 6. Because of the this, the value
of S3D defines a Z4 index for insulators in this symmetry
class.
This quantization of S3D is directly inherited from the

quantization of S2D. The 3D dWZ term, Eq. 14, has
the same form as the unquantized anomaly of the DSM,
Eq. 7. However, the coefficient of the 3D dWZ term, S3D,
is quantized, while the coefficient of the DSM anomaly
equation, ν, is not (recall that ν is not quantized due to
the gaplessness of the DSM).
The 3D dWZ response physically manifests as a quan-

tized charge per length bound to disclination lines as
illustrated in Fig. 3a. If we take a system of length
Lz = azNz that includes a disclination line with Frank
angle ΘF , Eq. 14 indicates that the total charge on the
disclination line is

Qdisc =
ΘF

2π
S3DNz mod (2Nz). (15)

Here we have again implicitly added negatively charged
background ions, such that the system is charge neu-
tral without any disclinations. The mod (2Nz) ambi-
guity arises from the fact that it is possible to change the
disclination charge by embedding a 1D insulator in the
disclination core without changing any topological prop-
erties of the system. Due to the Kramers degeneracy and
the Lieb-Schultz-Mattis theorem [70], the charge per unit
length must be an even integer for translation invariant
spin-1/2 1D insulators with TRS. From the mod (2Nz)
ambiguity, and the fact that the Frank angles of disclina-
tions of a C4z symmetric insulators are quantized in units
of π/2, we also find that S3D = 8 leads to a trivial charge
of the disclination, confirming our earlier assertion that
S3D is defined mod (8).
Without T z discrete translation symmetry, the charge

per length of a disclination line is not a well-defined quan-
tity, as it is possible to add local charges to arbitrary
points along the disclination. An important consequence
of this is that the charge per length of a disclination is not
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(a) PBC (b) OBC

Qdisc = ΘF

2π
𝒮3DNz mod 2Nz

Φ(0) ∈ {0,2π}

Qdisc = Φ(0)
π

ΘF

2π
mod 2ΘF

π

Inversion center

̂z

0

FIG. 3. (a) The total charge per length, Qdisc/Nz, of an insu-
lator with a disclination with Frank angle ΘF is proportional
to S3D, the coefficient of the dWZ term. (b) The disclination
charge parity, Qdisc mod (2ΘF /π), of a ΘF -disclination of an
inversion-symmetric insulator with open boundary conditions
is determined by Φ(0) = {0, 2π}, the value of the coefficient
of the R ∧ F term at the inversion center.

a topological, quantized quantity for insulators with in-
commensurate CDWs, as it is possible to shift the charge
per length of a disclination by an arbitrary amount. How-
ever, for systems that are finite in the z-direction, the to-
tal charge on a disclination line Qdisc is still a quantized
multiple of ΘF /π. This can be understood by treating
the z-coordinate as an internal degree of freedom of an
effectively 2D system with TRS and C4z rotation sym-
metry. A disclination-line of the finite 3D system is also
a disclination of the effective 2D system, and the total
charge bound to the disclination is therefore quantized
according to the 2D dWZ response (Eq. 11).

B. The R ∧ F Term

In Ref. 60 some of us showed that the effective re-
sponse theory of 3D crystalline insulators with rotation
symmetry around a fixed axis can contain the following
topological term,

LR∧F = ϵµνλη
Φ

4π2
∂µων∂λAη. (16)

where µ, ν, λ, η run over t, x, y, z, and Φ can generally be
a function of position and time. We denote this response
as the R ∧ F term, since it couples the lattice curvature
Rµν = ∂µων −∂νωµ to the electromagnetic field strength
Fµν = ∂µAν − ∂νAµ [60]. The R ∧ F term has a similar
form to the Θ term, F ∧ F , that describes axion elec-
trodynamics in 3D topological insulators [17, 22]. Like
the Θ term, the R ∧ F term has a periodic coefficient
and is a total derivative when the coefficient is constant.
For spin-1/2 insulators with TRS, Φ is 4π periodic. In
general, the periodicity of Φ depends on the spin of the
fermions and the presence of TRS, as discussed in Ref.
60.

The charge responses associated with the R ∧ F term
are

jµ = ϵµνλη
1

4π2
(∂νΦ)∂λωη. (17)

If we fixed ω to the configuration of a disclination line,
∂xωy−∂yωx = ΘF δ(x)δ(y), the charge responses simplify
to

ρdisc =
ΘF

4π2
(∂zΦ)δ(x)δ(y),

jzdisc = −ΘF

4π2
(∂tΦ)δ(x)δ(y).

(18)

The first lines indicates that spatial fluctuations of Φ
bind charge along disclination lines. The second line in-
dicates that temporal fluctuations drive a current along
the disclination line. Together, these two responses indi-
cate a charge polarization in the z-direction proportional
to ΘF localized on the disclination line.
Based on Eq. 18, if we adiabatically increase Φ ho-

mogeneously by an amount δΦ over some time T (i.e.,
Φ(t) = Φ0 + δΦ t

T ), then the polarization on the disclina-
tion line, P z

disc, will change by

∆P z
disc =

∫ T

0

dt∂tP
z
disc =

∫ T

0

dtjzdisc =
δΦ

2π

ΘF

2π
. (19)

We therefore find that if the effective response theories
of two insulators differ by an R∧F term with a constant
coefficient δΦ, the polarization of disclination lines will
differ by δΦ

2π
ΘF

2π between the two insulators. 4

1. R ∧ F term with discrete translation symmetry

We now turn our attention to the connection between
the R ∧ F term and the 3D dWZ response. We will
consider a system having T z discrete translation, z →
z + az, and, since the disclination responses in Eq. 18
primarily involve the dependence of Φ on z and t, we will
suppress any dependence on x and y here. Interestingly,
the coefficient of the R ∧ F term can be non-constant
for a system with T z discrete translation symmetry, as
Φ(z) = Φ(z + az) mod (4π) has non-constant solutions.
We can characterize the solutions by their winding across
a single unit-cell period

∫ az

0
dz∂zΦ(z), which will be an

integer multiple of 4π. Examples of different winding
configurations are shown in Fig. 4.

4 Note that two systems can have a well-defined difference in polar-
ization even if the systems do not have a well-defined polarization
individually. For example, a system with a net charge does not
have a well-defined polarization, as the polarization will depend
on the choice of origin. However, the difference in polarization
between two systems with the same net charge is independent of
the choice of origin.
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0 az
z

0

2

4

FIG. 4. Two examples of how Φ can wind across the unit
cell. Both lines wind by −4π across the unit cell, but one has
Φ(0) = 0 (red dashed) and the other has Φ(0) = 2π (black
solid).

With this in mind we can compute the total charge
bound to a disclination for a periodic system of length
Lz = azNz (using Eq. 18):

Qdisc =
ΘF

2π

∫ Lz

0

∂z
Φ(z)

2π
dz mod (2Nz)

=
ΘF

2π
Nz

∫ az

0

∂z
Φ(z)

2π
dz mod (2Nz),

(20)

where the mod (2Nz) ambiguity again arises from the
fact that it is possible to change the disclination charge
per length by embedding a 1D insulator in the disclina-
tion core. Comparing to Eq. 15, we find a relation for
the dWZ response coefficient:

S3D =
1

2π

∫ az

0

dz∂zΦ(z), (21)

from which we see that the winding of Φ over one period,
az, generates a 3D dWZ response.
We can make the connection between the R ∧ F and

3D dWZ terms more concrete by setting

Φ(z) = Φ0 + S3DGzz, (22)

where Φ0 is an arbitrary constant. This solution pre-
serves the T z discrete translation symmetry when Gz =
2π/az. Plugging this value of Φ(z) into Eq. 16 leads to
the 3D dWZ term in Eq. 14, after an integration by parts.
Because of the mod (2Nz) ambiguity, the R ∧ F term
identifies a Z4 classification of insulators with T z dis-
crete translation symmetry, exactly as discussed in Sec.
IIIA 2.

Although it is not manifest in Eq. 22, it is important
to note that the coefficient of the R ∧ F term, Φ, is a
4π-periodic variable. Importantly, when Φ has a winding
there is no discontinuity between z = 0 and z = Lz, since
S3D is an even integer and S3DGzLz = S3D2πNz = 0
mod (4π). The expression for Φ(z) given in Eq. 22 is

therefore smooth everywhere with ∂zΦ(z) = S3DGz. The
same would be true if we replaced the linear interpolation
in Eq. 22 with a more complicated function like those
shown in Fig. 4.

2. R ∧ F term with inversion symmetry

Let us now consider the R ∧ F term for a system with
inversion symmetry. We again take Φ to be independent
of the x and y coordinates but allow for Φ to depend on z.
We will now show that we can use the R∧F term to re-
solve a Z2 distinction between inversion-symmetric insu-
lators. Inversion symmetry requires that Φ(z) = −Φ(−z)
mod (4π), i.e., Φ must be an odd function of z. Here we
take the inversion center to be in the z = 0 plane. It
is also possible to have an inversion center at z = az/2,
but the difference between the two inversion centers can
be accounted for by a redefinition of the coordinate sys-
tem. In continuum effective field theory, such a coordi-
nate change is innocuous. However, such a change is not
innocuous for lattice systems, as the discrete lattice sites
lead to a unique choice of origin (modulo lattice trans-
lations). At z = 0, inversion symmetry requires that
Φ(0) = −Φ(0). Since Φ is 4π periodic, Φ(0) = 0 or
Φ(0) = 2π are both allowed values satisfying this condi-
tion. The choice of these values defines two classes (i.e., a
Z2 classification) of inversion-symmetric insulators. Al-
ternatively expressed, the response theories of insulators
with different Z2 indices differ by a R ∧ F term with
Φ(0) = 2π.
Importantly, the value of Φ(0) has a direct physical in-

terpretation when switching from periodic boundaries to
open boundaries in the z-direction. We will show below
that with open boundaries, a disclination will have charge
Qdisc = 0 mod (2ΘF

π ) when Φ(0) = 0, and charge ΘF

π

mod (2ΘF

π ) when Φ(0) = 2π. We will refer to the quan-

tity Qdisc mod (2ΘF

π ) as the disclination charge par-
ity. The disclination charge parity is a natural quantity
to consider for inversion-symmetric systems with open
boundary conditions, as purely 2D boundary effects can
at most change the disclination charge by an integer mul-
tiple of 2ΘF

π , provided they respect inversion symmetry.
Hence the charge parity is a physical observable that de-
termines the Z2 classification.
To show why the value of Φ(0) determines the disclina-

tion charge parity, let us consider a system of length Lz

with periodic boundaries in the z-direction, and use lo-
cal perturbations to “cut” the system and generate open
boundaries at z = ±Lz/2. We assume that the resulting
open boundary system satisfies the following four condi-
tions:

1. Changing from periodic to open boundary condi-
tions preserves inversion symmetry around z = 0.

2. The system with open boundaries is gapped, such
that Φ(z) can be defined over the entire system.



9

3. The value of Φ at the inversion center, Φ(0) re-
mains constant when changing from periodic to
open boundaries. This condition is satisfied if the
gap at the inversion center remains open when
switching the boundary conditions.

4. At the boundaries of the system, Φ vanishes (i.e.,
Φ(z) = 0 for |z| ≥ Lz/2). This choice of boundary
conditions is equivalent to requiring that the R∧F
term fully vanishes outside the boundaries of the
system.

Let us now add a disclination to the system with open
boundary conditions. Using Eq. 18, the total charge
bound to the disclination is

Qdisc =
ΘF

2π

1

2π

∫ Lz/2

−Lz/2

∂zΦ(z)dz

=
Φ(0)

π

ΘF

2π
+ 2n

ΘF

π
,

(23)

where n ∈ Z is the number of times Φ fully winds
by 4π, between 0 and Lz/2, and we have used that
Φ(z) = −Φ(−z), and Φ(Lz/2) = 0. This equation re-
flects how if Φ(0) = Φ(Lz/2) = 0, Φ must wind by
an integer multiple of 4π between 0 and Lz/2, while if
Φ(0) = 2π and Φ(Lz/2) = 0, Φ must instead wind by
a half-integer integer multiple of 4π. This is illustrated
in Fig. 3b, and two representative configurations of Φ(z)
are shown in Fig. 5, where n = 3. We therefore find that

Qdisc =
Φ(0)

π

ΘF

2π
mod (2

ΘF

π
). (24)

The difference between the Φ(0) = 0 and Φ(0) = 2π
insulators is therefore manifest in the value of Qdisc

mod (2ΘF

π ) when open boundaries are present. Specif-

ically Qdisc = 0 mod (2ΘF

π ) and ΘF

π mod (2ΘF

π ) for
Φ(0) = 0 and 2π respectively. We also find that Qdisc = 0
mod (2ΘF

π ) for Φ(0) = 4π, in agreement with Φ being 4π
periodic.

3. The R ∧ F term with discrete translation and inversion
symmetry

If an insulator has both inversion symmetry and T z

discrete translation symmetry (z → z + az), then the
values of Φ(0) and S3D from Eq. 21 lead to a Z4 × Z2

classification based on the phenomena associated to the
R ∧ F term. We stress that this classification is not ex-
haustive, but it is sufficient to characterize the Dirac-
CDW insulators we will discuss in the following sections.

If two insulators have the same 3D dWZ response (i.e.,
the same value of S3D in Eq. 21), but different values of
Φ(0), the polarization of disclination lines will differ by
δΦ(0)
2π

ΘF

2π , where the difference between the value of Φ(0)
between the two insulators, δΦ(0), is equal to either 0 or

0

2
4

Lz/2 0 Lz/2
z

0

2
4

(a)

(b)

FIG. 5. The disclination charge parity of inversion-symmetric
insulators is determined by the value of Φ(z) at the inversion
center (the z = 0 plane here). Figures (a) and (b) show two
windings of Φ(z) with n = 3 but different values of Φ(0).
Figure (a) has Φ(0) = 2π and thus winds a total of seven
times, producing an odd disclination charge parity. Figure
(b) has Φ(0) = 0 and therefore winds only six times, yielding
an even disclination charge parity.

2π based on our previous discussions. To show why dif-
ferent values of Φ(0) lead to a difference in polarization,
we take a given Φ(z) that is invariant under T z discrete
translation and inversion symmetry, and define an adia-
batic evolution where Φ(z) increases by 2π over a time T ,
Φ(z) → Φ(z) + 2πt/T . Inversion symmetry is broken for
0 < t < T but is restored at t = T . During this process,
Φ(0) changes by 2π, and

∫ az

0
dz∂zΦ(z) remains constant

(i.e., S3D remains constant). Based on Eq. 18, and 19 the
polarization of a disclination line changes by ΘF

2π during
this process. Recall that disclinations of insulators with
a non-zero S3D have a finite charge per length. There-
fore, the polarization of a disclination is not strictly well-
defined for insulators with finite S3D. However, the differ-
ence in the polarization of disclinations between insula-
tors with the same S3D is well-defined. This is analogous
to discussions of polarization in Chern insulators[71, 72].

For insulators having S3D = 2, the two classes of
inversion-symmetric insulators are related to each other
by a half-translation z → z + az/2. For S3D = 2, this is
clear if we set Φ(z) = 2Gzz, for which Φ(0) = 0. Trans-
lating the system by az/2 shifts Φ(z) → 2π + 2Gzz, for
which Φ(0) = 2π. This relationship can be naturally un-
derstood if we treat the 3D dWZ response as arising from
a stacking of 2D systems having S2D = 2. In order to pre-
serve inversion symmetry around z = 0, the 2D systems
must be centered at either z = naz or z = naz + az/2
with n ∈ Z. A disclination line of such a system, will
have charge ΘF /π centered at z = naz or z = naz+az/2
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respectively. This is the same charge configurations that
are realized by the two topologically distinct phases of
the 1D inversion symmetric Su–Schrieffer–Heeger (SSH)
model [73, 74], if we set the electron charge to be ΘF /π
instead of 1 in the SSH model.

We similarly have that the two insulators with S3D = 6
are related by a half-translation. This can be under-
stood using that S3D = 6 = −2 mod (8), and hence the
S3D = 6 dWZ response is captured by Φ(z) = −2Gzz. A
half translation then shifts Φ(0) → Φ(0)−2π = Φ(0)+2π
mod (4π). We can also invoke a similar stacking argu-
ment to the one used above, but instead stacking 2D
systems with S2D = −2.
The two inversion symmetric insulators having S3D =

4 are related to each other by a quarter translation,
z → z+az/4. Here, we can imagine the 3D dWZ response
as arising from having two 2D systems between z = naz
and z = (n + 1)az, each with S2D = 2. To preserve in-
version symmetry, these 2D systems must be stacked in
one of two classes of configurations. In the first class of
stacking configurations, one insulator is at z = naz + δz
and one is at z = (n + 1)az − δz for each n ∈ Z, where
δz ∈ [0, az) is a constant offset. Since inversion symmetry
is preserved for all δz here, stacking configurations hav-
ing different values of δz are adiabatically connected. In
the second class of stacking configurations, one insulator
is at z = naz and one is at z = naz + az/2. It can be di-
rectly confirmed that the second stacking configuration
is distinct from the first stacking configuration for any
value of δz. Furthermore, if we take the second stack-
ing configuration and perform a quarter translation, we
arrive at the first stacking configuration with δz = az/4.
As we have discussed, the value of Φ(0) determines

the disclination charge parity for a system having open
boundaries. However, as we discuss in Appendix A, the
absolute disclination charge parity is not a very practical
quantity to consider since it can depend on the choice of
inversion center. For insulators having T z discrete trans-
lation symmetry, a more useful quantity to consider is the
difference in the value of the disclination bound charge
Qdisc mod (2ΘF

π ) between a system with open bound-
aries and a system of the same size with periodic bound-
aries. For a system of size Lz = azNz, the difference in
charge is

QFA =
ΘF

2π

[
Φ(0)

π
− S3DNz

]
mod (2

ΘF

π
). (25)

Since S3D is an even integer for spin-1/2 insulators with
TRS, QFA = 0 or ΘF

π are the distinct values. When
QFA is non-zero, we will refer to the system as hav-
ing a disclination filling anomaly. The usual filling
anomaly[61, 62, 75, 76] reflects an inability to symmet-
rically deform from periodic to open boundary condi-
tions while keeping the charge in the system constant.
Here, the disclination filling anomaly reflects an inabil-
ity to change from periodic to open boundary conditions
while keeping both inversion symmetry and the charge
on disclination lines constant.

In Appendix A we argue that the disclination-line fill-
ing anomaly necessarily vanishes for any layered insula-
tor. Here we are specifically defining a layered insulator
as an insulator where electrons from different unit cells in
the z-direction are fully decoupled. Indeed, cutting a lay-
ered system to change from periodic to open boundary
conditions is completely a trivial procedure under this
definition. Hence, insulators that exhibit a disclination
filling anomaly are not layered in this way.
In summary, we find that we can use the R∧F term to

characterize the 3D dWZ response, and the disclination
filling anomaly of insulators. The response phenomena
lead to a Z4 × Z2 classification for insulators having T z

discrete translation symmetry and inversion symmetry.
On the one hand, the Z4 index is determined by calcu-
lating the disclination charge per length for a system with
periodic boundary conditions. On the other, the Z2 in-
dex is determined by calculating and comparing the total
disinclination charge for a system having periodic bound-
ary conditions and one having open boundary conditions
(with the same length).
For systems that do not have translation symmetry,

the value of Φ(0) remains quantized, since its quantiza-
tion requires only inversion symmetry. This means that
for systems with only inversion symmetry, there should
be two distinct insulators characterized by Φ(0) = 0 and
Φ(0) = 2π respectively. For open boundary conditions,
the two classes of insulators will have different disclina-
tion charge parities. However, without translation sym-
metry, it is not possible to define the disclination filling
anomaly. The disclination charge parity will therefore be
significant when considering DSMs with an incommensu-
rate CDW, which lack any form of translation symmetry.

IV. GAPPING A DIRAC SEMIMETAL WITH A
CHARGE DENSITY WAVE

The gapless nodes of the DSM are protected by transla-
tion, rotation, and U(1) charge conservation symmetries.
By spontaneously breaking one of these symmetries it is
possible to drive the system into a gapped phase with
charge density wave (CDW), nematic, or superconduct-
ing orders, respectively. Here, we consider the gapped in-
sulating phase that is generated by breaking translation
symmetry using CDW order (see Ref. [31] for a discus-
sion of the instabilities of a DSM to CDW formation).
We will pay special attention to the inversion symmetry
of the DSM, and show that there are two distinct classes
of inversion-symmetric, Dirac-CDW insulators. The dif-
ferences between these two classes of insulators will be
further discussed in Sec. V.
To consider the effects of a CDW distortion on the low-

energy degrees of freedom, we start with a DSM with two
Dirac nodes at ±kDN , and expand the fermion creation
operators around the two Dirac points, as

cr ≈
∑
q

eir·q+irzKcq,R + eir·q−irzKcq,L, (26)
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and introduce a new set of Pauli matrices τ , where τz =
+1 (−1) for the fermions in the R (L) valley. In terms of
the R and L fermions, the 8× 8 low-energy Hamiltonian
for the DSM is

H =qxaxΓ1 + qyayΓ2 + qzaz sin(Kax)Γ3τ
z. (27)

The crystalline symmetries act on the low-energy
Hamiltonian as follows. The C4z rotation symmetry acts
as

R4 = exp
(
−i

π

4
[σzsz − 2sz]

)
. (28)

As discussed previously, there are two possible inver-
sion symmetries, site-centered and bond-centered. The
site-centered inversion symmetry acts on the low-energy
Hamiltonian as

Is = σzτx = Γ3τ
x. (29)

The bond-centered inversion symmetry can be similarly
written as

Ib = Iseiqzaz+iKazτ
z

. (30)

This expression can be simplified if we perform a unitary
transformation, U = exp(−iKazτ

z), which leaves the
Hamiltonian unaffected, but reduces the bond-centered
inversion symmetry to

Ib = Iseiqzaz . (31)

This unitary transformation will simplify our later dis-
cussions, and so we will implicitly assume such a unitary
transformation has been performed when discussing con-
tinuum models with bond-centered inversion symmetry.

A CDW can be dynamically generated through inter-
actions, as discussed in Ref. [31]. In the mean field
limit, a CDW order corresponds to a translation sym-
metry breaking term. We consider two possible types of
translation symmetry breaking terms here. First there
is an onsite term that is given in terms of the original
lattice model by

Ĥsite =
∑
r

|∆s| cos(2Krz + θs)[c
†
rΓ3cr]. (32)

where |∆s| is the amplitude of the onsite CDW, and θs
is its phase. Second, there is a bond-order term in the
z-direction that modulates the hopping terms by

Ĥbond =
∑
r

|∆b| cos(2Krz + θb)[c
†
rΓ3cr+z] +H.c., (33)

where |∆b| is the amplitude of the bond-order CDW,
and θb is its phase. Note that we are explicitly choos-
ing terms that carry momentum equal to the separation
of the Dirac nodes (2K). This nesting condition allows
the mean field term to couple the low-energy degrees of

freedom at the two Dirac nodes. We also could have cho-
sen different Γ-matrix structure in Eqs. 32,33, but the
choice of Γ3 ensures these terms can open a mass gap in
the continuum Hamiltonian.
Returning to the low-energy theory, Eq. 27, the CDW

mean field terms in Eq. 32 and 33 generically induce the
following terms in the continuum Hamiltonian

Hmass = M(q)Γ3τ
x +M ′(q)Γ3τ

y. (34)

The two mass terms are off diagonal in τ and, hence,
couple the two Dirac-nodes. The spectrum of the con-
tinuum Hamiltonian with the M and M ′ terms is 4-fold
degenerate with energy eigenvalues

E±(q) = ±
[
(qxax)

2 + (qyay)
2 + (qzaz sin(Kaz))

2

+M(q)2 +M ′(q)2
]1/2

.
(35)

For our analysis, we are interested in the situation where
the CDW is weak, and tangibly affects the low-energy
modes along only the kx = ky = 0 high symmetry line.
In terms of the original lattice model, this leads to the
requirement that |∆s/b| ≪ bxy (recall that bxy determines
the gap away from kx = ky = 0).
Now let us consider the effects of inversion symmetry.

By comparing Eq. 31 and 29 to Eq. 34, we find that in
presence of inversion M and M ′ must be an even and odd
functions of q, respectively. ThereforeM ′(q) must vanish
at the Dirac point, q = 0 in inversion-symmetric systems.
This leads to two distinct inversion-symmetric insulators,
one with and M ′(0) = 0 and M(0) > 0, and one with
M ′(0) = 0 and M(0) < 0. We now wish to relate the
values of the M and M ′ to the microscopic mean-field
CDW parameters, |∆s|, |∆b|, θs and θb. Recall that we
are implicitly using a unitary transformation when con-
sidering bond-centered inversion symmetry, such that the
inversion operation takes on the simple form in Eq. 31.
Because of this, we will have to consider the site-centered
and bond-centered cases (i.e. those with and without the
unitary transformation) separately when relating M and
M ′ to the mean-field parameters. Plugging Eq. 26 into
Eq. 32 and 33, we find that for site-centered inversion
symmetry M and M ′ are related to the mean-field terms
as

M(0) = |∆s| cos(θs) + |∆b| cos(θb −Kaz),

M ′(0) = |∆s| sin(θs) + |∆b| sin(θb −Kaz).
(36)

To be compatible with inversion symmetry we need
M ′(0) to vanish, hence, the onsite term is compatible
with site-centered inversion symmetry when θs = 0, or
π, and the hopping term is compatible with site-centered
inversion symmetry when θb = Kaz, or Kaz + π. Sim-
ilarly, for bond-centered inversion symmetry (using the
unitary transformation discussed above) M and M ′ are
related to the mean-field terms as

M(0) = |∆s| cos(θs +Kaz) + |∆b| cos(θb),
M ′(0) = |∆s| sin(θs +Kaz) + |∆b| sin(θb).

(37)
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Hence, the onsite term is compatible with bond-centered
inversion symmetry when θs = −Kaz, or −Kaz + π, and
the hopping term is compatible with bond-centered in-
version when θb = 0, π.

We note that the commensurate CDW with period 2
(K = π/2az) is a special case, since the corresponding
onsite term is compatible with site centered inversion
symmetry for all values of θs, while the hopping term is
not compatible with site-centered inversion symmetry for
any value of θb. Similarly, the hopping term is compatible
with bond-centered inversion symmetry for all θb, while
the onsite term is never compatible with bond-centered
inversion symmetry. This can be confirmed by direct in-
spection of Eq. 32 and 33.

The two inversion-symmetric Dirac-CDW insulators
(M(0) ≶ 0, M ′(0) = 0) are anisotropic topological crys-
talline insulators (TCI). As we shall show in the next
section, these have different Z2 indices using the classi-
fication scheme discussed in Sec. III B 2. Although they
have different crystalline-electromagnetic responses, both
classes of insulators share many important physical prop-
erties. Namely, both classes of insulators have symme-
try protected gapless surface states on boundaries nor-
mal to the x and y directions. This can be understood
by noting that the Dirac-CDW insulator is adiabatically
connected to two TRS-related copies of the Weyl-CDW
insulator. Since the Weyl-CDW insulators have gapless
1D chiral surface modes on the x and y surfaces that cir-
culate around the z-axis [21], the Dirac-CDW insulator
has helical surface modes that counter-propagate around
the z-axis [31]. These edge modes match those that are
found in a stack of 2D quantum spin Hall (QSH) layers.
The helical surface modes also indicate that edge and
screw dislocations of the CDW bind helical modes [31].
The helical modes of the Dirac-CDW insulator are in-
teresting in their own right, but they do not have an
immediate impact on our forthcoming discussion of the
disclination responses of the Dirac-CDW insulator, pro-
vided that disclinations are far away from any bound-
aries normal to the x or y directions. We note that while
the surfaces normal to the x and y directions are gapless
due to time-reversal symmetry, surfaces normal to the
z direction can be gapped while preserving all relevant
symmetries.

V. CRYSTALLINE-ELECTROMAGNETIC
RESPONSES OF THE DIRAC-CDW INSULATOR

We now turn our attention to the topological responses
of Dirac-CDW insulators. The usual topological electro-
magnetic responses, namely the 3D Hall response and ax-
ion electrodynamics, are trivial for a Dirac-CDW insula-
tor since such an insulator is essentially two time-reversal
symmetry related, Weyl-CDW insulators. However, even
though Dirac-CDW insulators have trivial electromag-
netic responses, they can host non-trivial crystalline-
electromagnetic responses. The exact nature of these re-

sponses depends on if the CDW preserves a subgroup of
the T z discrete translation symmetry of the lattice (i.e.,
if the CDW is commensurate with the lattice) and if the
CDW preserves inversion symmetry.
Below we will show the following results. If the CDW is

commensurate, the Dirac-CDW insulators have a quan-
tized 3D dWZ response. If the CDW preserves inversion
symmetry but is incommensurate, we find there are two
distinct inversion-symmetric Dirac-CDW insulators that
differ by a Φ = 2π R ∧ F term. Based on our previous
arguments, two insulators differing by an R∧F term will
have different disclination charge parities. If the CDW
is both commensurate and preserves inversion symmetry,
we find that there are two distinct inversion-symmetric
Dirac-CDW insulators that have the same 3D dWZ re-
sponse, but differ by a Φ = 2π R ∧ F term. One of
these insulators has a disclination filling anomaly, while
the other does not. We will establish these results an-
alytically, and confirm them through explicit numerical
lattice model calculations.

A. The 3D discrete Wen-Zee response of the
Dirac-CDW insulator

In this subsection, we will show that the Dirac-CDW
insulator realizes the 3D dWZ response when the CDW is
commensurate. Such a response cannot occur for an in-
commensurate CDW, as a well-defined 3D dWZ response
requires discrete translation symmetry.
To this end, let us consider a Dirac-CDW insulator

generated by a commensurate CDW with a period p
qaz,

where az is lattice constant along the z-direction (K =
q
p

π
az

in Eq. 1). Such a system has an enlarged unit cell

of length ãz = paz, and a reduced T z discrete translation
symmetry z → z+ paz. The 3D dWZ response of such a
system can be written analogously to Eq. 14 as

L3D-WZ CDW = S3D
G̃z

4π2
ϵijkωi∂jAk,

G̃z =
2π

paz
,

S3D = 2q.

(38)

Here, G̃z is the reciprocal lattice vector along the z-
direction with respect to the enlarged lattice. This re-
sponse indicates that a disclination line of a system of
size Lz = azNz binds charge

Qdisc = S3D
ΘF

2π
Nz/p mod (2Nz/p),

= 2
q

p

ΘF

2π
Nz mod (2Nz/p),

(39)

where the mod (2Nz/p) ambiguity comes from adding
a local Kramers degenerate pair of electrons to each en-
larged unit cell. Note that we assume Nz is a multiple
of p in order for the system to be invariant under the
reduced translation symmetry.
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We can arrive at Eq. 38 by starting with the anomaly
equation of the DSM, Eq. 7, and enlarging the unit cell,

az → ãz = paz,

Gz → G̃z = Gz/p
(40)

Using that ν = q/p, we then arrive at Eq. 38. Note that
after this redefinition of the unit cell, Eq. 7 has an integer
coefficient and is therefore gauge invariant and anomaly
free. The system no longer needs to have gapless degrees
of freedom to compensate. Indeed, the Dirac nodes can
be gapped out after enlarging the unit cell, as discussed
previously. The 3D dWZ response of the Dirac-CDW
insulator is therefore the descendant of the anomalous
DSM response, when the anomaly is removed by breaking
translation symmetry.

We can also argue that the commensurate Dirac-CDW
insulator realizes the response in Eq. 38 by treating the
DSM (without a CDW) as a family of 2D insulators that
are parameterized by kz. We recall from above that
in this interpretation, the 2D insulators with |kz| < K
are QSH insulators with S2D = 2, the insulators with
|kz| > K are trivial (S2D = 0), and the system is gap-
less at |kz| = K. The total charge on a disclination in the
DSM is then simply the sum of contributions coming from
the QSH insulators, and the gapless degrees of freedom at
kz = ±K. To get an insulator we can turn on the CDW
which will couple the 2D system indexed by kz to the
2D system indexed by kz +2K. If the CDW is small but
finite, the coupling will affect only the gapless systems at
kz = ±K. The effect of the CDW on the gapped states
that are initially indexed |kz| < K and |kz| > K will be
negligible and will therefore not affect the topological re-
sponses of these states. In particular, at weak coupling
the topological responses of the |kz| < K (i.e., the QSH
insulators) will not be affected. Therefore, if we add a
disclination to the system, each of the |kz| < K insulators
will still bind charge ΘF

π . Additionally, a direct calcula-
tion shows that the two hybridized states at kz = ±K,
bind a net charge of ΘF

π . The states for |kz| > K corre-
spond to trivial 2D insulators and therefore do not bind
any charge. For a system of size Lz = azNz, where kz
is quantized as a multiple of 2π/Nz (assuming periodic
boundary conditions), there will be a total of q

pNz − 1

states with |kz| < K (recall that Nz must be a multiple
of q). A disclination therefore binds a total charge of
2 q
p
ΘF

2π Nz, in agreement with Eq. 39.

B. The disclination filling anomaly of the Dirac
semimetal-charge density wave insulator

In Sec. IV we showed that for a given K, there are
two distinct inversion-symmetric Dirac-CDW insulators.
In this section, we will show that the effective response
theories for these insulators differ by an R∧F term with
Φ = 2π. If the CDW is commensurate, such that the
system has T z discrete translation symmetry, one of these

insulators will have a disclination filling anomaly, and the
other will not (see Sec. III B). More generally, i.e., even
in incommensurate CDWs, the difference in the R ∧ F
term indicates that the disclination charges of the two
insulators will differ by ΘF /π mod (2ΘF /π) when open
boundaries are present.
To show that the two inversion-symmetric insulators

differ by a Φ = 2π R ∧ F term, we consider the low-
energy Lagrangian for the DSM subject to a mean-field
CDW term (see Sec. IV and Eq. 34), and minimally
couple the Dirac fermions to the U(1) charge and C4z

rotation gauge fields,

L = Ψ̄[iΓ̄µDµ +M +M ′Γ̄5]Ψ,

Dµ = ∂µ − iAµ − iωµ

[
1

2
σzsz − sz

]
,

(41)

where Ψ is an 8 component spinor, Ψ̄ = Ψ†Γ̄0, and

Γ̄x = σyszτx, Γ̄y = σxτx, Γ̄z = τy,

Γ̄0 = σzτx, Γ̄5 = τz.
(42)

The covariant derivative Dµ minimally couples the low-
energy fermions to the U(1) gauge field, Aµ, and the C4z

gauge field, ωµ. The latter couples via the C4z angular
momentum operator, 1

2σ
zsz − sz [60]. In this minimal

coupling procedure, we are treating ω as a continuous
gauge field with fluxes that are quantized in multiples of
π/2 as discussed before. Compared to Eq. 34, we are sup-
pressing any momentum dependence of the CDW mass
termsM andM ′, as it is either irrelevant at this order, or
can be absorbed into a redefinition of the Fermi velocity.
We are interested in the difference between the topo-

logical response of the two gapped inversion-symmetric
phases, i.e., inversion symmetry sets M ′ = 0, and we
want to compare the insulators having M > 0 or M < 0.
To this end, we set M = M̄ cos(θ) and M ′ = M̄ sin(θ),
and consider a process where θ is smoothly increased
from 0 to π. The fermions remain gapped during this pro-
cess (Eq. 35), and the effective response theory (treated
as a function of θ) is found by integrating out the massive
fermions. The resulting effective response theory con-
tains the topological term,

Ltop[θ] =
θ

2π2
ϵµνλη∂µων∂λAη , (43)

which arises from a triangle diagram with external legs
Aµ, ωµ, and θ. The θ = 0 and θ = π inversion-symmetric
insulators therefore differ by a Φ = 2π R ∧ F term (Eq.
16).
Based on this, and our discussions in Sec. III B

and VA, we therefore conclude that the two distinct
inversion-symmetric Dirac-CDW insulators differ by a
Φ = 2π R ∧ F term. For commensurate CDWs, this
difference is related to the presence or absence of a discli-
nation filling anomaly. For incommensurate CDWs, the
difference in R∧F term indicates that the two insulators
have different disclination charge parities.
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FIG. 6. Layered construction of the period-2 Dirac-CDW
insulators, where a two adjacent z-layers (teal) pair up to form
a QSH insulator (dashed box) with S3D = 2. For a system of
length Lz = azNz with open boundaries, this stacking can be
done such that there are Nz/2 QSH insulators (a) or Nz/2−1
QSH insulator layers (b). This describes Eq. 49 with |∆b| = 1,
and θb = 0 and π respectively. When there Nz/2 − 1 QSH
insulator layers, there are a pair of decoupled z-layers on the
top and bottom surfaces (orange).

C. Analytic solution for the period 2 charge
density wave

To demonstrate the Dirac-CDW insulator responses we
will first consider the insulators that form when a DSM
with K = π/2az is driven into a massive phase by a
period-2 CDW with inversion symmetry. As noted in
Sec. II, there are two types of inversion symmetries to
consider, the site-centered inversion symmetry that sends
z → −z, and the bond-centered inversion symmetry that
sends z → −z + az. For a system with open bound-
aries, the site-centered inversion symmetry requires an
odd number of sites, while the bond-centered inversion
symmetry requires an even number of sites. For an in-
sulator with a period-2 CDW, it is natural to require
an even number of sites for commensurability, and so we
will consider a lattice model with bond-centered inversion
symmetry.

The mean field limit of the DSM (Eq. 1) having a pe-
riod 2 CDW hopping term (Eq. 33) is

HDSM-CDW =

[
Hxy Hz

Hz† Hxy

]
Hxy = sin(kxax)Γ1 + sin(kyay)Γ2

− bxy(2− cos(kxax)− cos(kyay))Γ3

Hz = (1 + |∆b| cos(θb))Γ3

+ eik̃z ãz (1− |∆b| cos(θb))Γ3

(44)

where k̃z = kz/2 is the momentum of the folded Brillouin
zone with conjugate position, z̃ = 2z. The unit cells in-
dexed by z̃ are twice as large as in the gapless DSM, and
have length ãz = 2az. We will consider a weak CDW
where |∆b| ≪ bxy. The bond-centered inversion symme-
try acts on HDSM-CDW as

Ib = σztx (45)

where the t Pauli matrices act on the 4 × 4 blocks that
make up HDSM-CDW. The even-z (odd-z) sublattices of
Eq. 1 correspond to tz = +1(−1) in Eq. 44. The t
Pauli matrices should not to be confused with the τ Pauli
matrices that differentiate the two Dirac nodes in the
low-energy Hamiltonian, Eq. 27.
There are two inversion-symmetric gapped phases to

consider, cos(θb) > 0 and cos(θb) < 0. For simplicity, we
will restrict our attention to the cases where θb = 0 or
θb = π. For the period-2 CDW, other values of θb are
equivalent to one of these two values by a redefinition
of |∆b|. To demonstrate that the θb = 0 and θb = π
insulators differ by a Φ = 2π R ∧ F term we can add an
inversion symmetry breaking onsite term

H ′ = 2∆′Γ3t
z (46)

which is simply the onsite CDW term, Eq. 32 with
∆′ = |∆s| cos(θs). Indeed, in the continuum limit,
HDSM-CDW + H ′ is equivalent to Eq. 41 with M ∝
|∆b| cos(θb) and M ′ ∝ ∆′. Hence, based on Sec. VB
the θb = 0 and θb = π phases differ by a Φ = 2π R ∧ F
term.
To analyze the full lattice model, it is useful to consider

|∆b| = 1 and θb = 0 where the Hamiltonian is indepen-

dent of k̃z, and can be treated as a stack of 2D insulating
layers. The tx = ±1 sectors of each layer are equivalent
to QSH Hamiltonians, Eq. 12, with masses m = 2∓ 2

bxy

respectively. Recalling that we have set bxy ≫ |∆b| = 1 ,
the tx = −1 sector is in the QSH phase, while the tx = +1
sector is in the trivial phase. We can therefore conclude
that for |∆b| = 1 and θb = 0 each CDW period hosts a
single 2D QSH insulator, in agreement with our earlier
arguments.
To determine the 3D dWZ response in this layered

limit, let us consider adding a disclination to a lattice
of length Lz = azNz having periodic boundary condi-
tions. In order for the system to preserve the reduced
translation symmetry, z → z + 2az, Nz must be an even
integer such that there are Nz/2 CDW periods. Since
each CDW period contains a single QSH insulator which
has a S2D = 2 2D dWZ response, the charge bound to a
disclination is

Qdisc =
1

2

ΘF

π
Nz mod (Nz). (47)

Comparing this to Eq. 39, we find that the full 3D system
has a 3D dWZ response with S3D = 2, as expected for a
layered system.
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Next let us consider the |∆b| = 1 and θb = π insulator.
This insulator is related to the θb = 0 insulating phase
by a translation in the z-direction by half of the doubled
unit cell (i.e., translation by one unit cell of the original
DSM lattice model)

Tz−1/2 =

[
0 eikz

1 0

]
. (48)

The |∆b| = 1 and θb = π insulator can therefore also be
treated as a stack of 2D insulating layers. The 2D insula-
tors equally occupy the tz = +1 sublattice of layer z̃ and
the tz = −1 sublattice of layer z̃+1. Based on our previ-
ous results, the bulk of the |∆b| = 1 and θb = π insulator
also hosts a single 2D QSH insulator per CDW period,
and therefore has S3D = 2. Hence, both the |∆b| = 1 and
θb = 0, π insulators have an identical 3D dWZ response
with S3D = 2. Since the 3D dWZ response is quantized
for insulators with rotation symmetry and charge con-
servation, we conclude that all insulating phases of our
model with bxy ≫ |∆b| ≠ 0 have this response.

While these phases are not distinguished by their dWZ
response, based our previous discussions in Sec. III B, we
expect two distinct classes of inversion-symmetric insula-
tors can be distinguished by another response. In fact, we
have shown that the effective response theories for these
insulators differ by a Φ = 2π R ∧ F term. Based on our
results from Sec. VB, the θb = 0, and θb = π insulators
should fall into different classes, and one of these insula-
tors should have a disclination filling anomaly, while the
other should not. As we shall show, the θb = π insula-
tor has a disclination filling anomaly, while the θb = 0
insulator does not.

To show this, let us consider a system described by
Eq. 44 of length Lz = aNz (Nz even) having open
boundaries in the z-direction. Using position space in
the z-direction, and momentum space in the x and y-
directions, the Hamiltonian is

ĤDSM-CDW =

Nz/2∑
z̃=1

[c†kx,ky,z̃
Hxyckx,ky,z̃

+ (1 + |∆b| cos(θb))c†kx,ky,z̃
Γ3t

xckx,ky,z̃

+ (1− |∆b| cos(θb))c†kx,ky,z̃
Γ3t

xckx,ky,z̃+1],

(49)

where z̃ = 2z labels the doubled unit cells along the
z-direction. As before, we consider the representative
insulators with |∆b| = 1 and θb = 0 or π.

For |∆b| = 1 and θb = 0, the spectrum is fully gapped,
and different z̃-layers are fully decoupled. Furthermore,
each of these layers has S2D = 2, and constitutes a QSH
insulator, i.e. one non-trivial QSH per z̃. This stacking
configuration is shown in Fig. 6(a). If we add a π/2
disclination-line to the insulator, each z̃-layer will bind
charge ΘF /π. For a system of length Lz = azNz, the
total charge on the disclination line is the sum of the

charges on the 2D layers,

Qdisc =
1

2

ΘF

π
Nz mod (2

ΘF

π
), (50)

where the 2ΘF /π ambiguity comes from the ability to
add 2D insulators having S2D ∈ 2Z to the top and bottom
surfaces while preserving inversion symmetry (recall that
S2D is an even integer for spin-1/2 insulators with TRS).
Comparing Eq. 50 and 47, we find that the disclination
charge of the |∆b| = 1 and θb = 0 insulator changes
by 0 mod (2ΘF /π) when changing boundary conditions,
indicating that this system does not have a disclination
filling anomaly.
We can similarly find the charge on the disclination

line when |∆b| = 1 and θb = π. For open boundaries,
the tz = −1 sublattice of the z̃ = 1 layer is fully de-
coupled. The Hamiltonian for the fermions in this sub-
lattice/layer sector is just Hxy from Eq. 44, which has
a gapless point at kx = ky = 0. The fermions on the
tz = +1 sublattice of the z̃ = Nz/2 layer at the top are
also decoupled from the other layers/sublattices and are
gapless. These sectors can be gapped out, with inver-
sion symmetry preserving mass terms ∝ Γ3. When such
a perturbation has been applied we can determine the
charge distribution on a π/2-disclination line. As noted
previously, the bulk of the |∆b| = 1, θb = π insulator is
composed of layers of QSH insulators having S2D = 2.
These insulators have equal weight on the tz = +1 sub-
lattice of z̃ and the tz = −1 sublattice of z̃ + 1. Since
these QSH insulators live between z̃ layers, a system of
length Lz = aNz with open boundaries in the z-direction
will have Nz/2− 1 QSH layers. This stacking configura-
tion is shown in Fig. 6(b). To compute the disclination
charge we also note that the gapping perturbation on the
surfaces can generate boundary insulators that also have
2D dWZ responses with S2D-bnd ∈ 2Z. However, the
discrete Wen-Zee shift of the boundary insulators at the
top and bottom must be the same because of inversion
symmetry. Counting up the contributions from the bulk
QSH layers and the boundary insulating layers, the total
charge on the disclination line is

Qdisc =
1

2

ΘF

π
(Nz − 2 + 2S2D-bnd) mod (2

ΘF

π
). (51)

Using Eqs. 51 and 47, we find that the charge on the
disclination lines of the |∆b| = 1, θb = π insulator
changes by ΘF /π mod (2ΘF /π) when changing bound-
ary conditions. The θb = π insulator therefore has a
disclination filling anomaly. Physically, the difference in
charge can be traced back to the fact that if we place the
QSH insulators between z̃ layers (as we did for the θb = π
insulator), there will be one less QSH insulator than if we
place the QSH insulators on the z̃ layers (as we did for
the θb = 0 insulator). Boundary effects can, effectively,
add a QSH insulator to the top and bottom layers. But
even with the effect, the parity of the number of QSH
insulators is fixed in each stacking configuration. This
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Kaz |∆s| |∆b| θs/b Nz
Qdisc

OBC
Qdisc

PBC
DL Filling
Anomaly

π/2 0 1/2 0 14 7/2 7/2 No

π/2 0 1/2 π 14 4 7/2 Yes

π/3 1/2 0 0 15 5/2 5/2 No

π/3 1/2 0 π 15 3 5/2 Yes

π/2
√
2 1/2 0 0 15 5/2 N/A N/A

π/2
√
2 1/2 0 π 15 3 N/A N/A

TABLE I. Summary of the numerical analysis of the
crystalline-electromagnetic responses of the Dirac-CDW in-
sulator. The Hamiltonian for the DSM is given by Eq. 1 with
Dirac nodes at k = (0, 0,±K) and bxy = 1. The CDW is in-
cluded at the via either an inversion-symmetric onsite poten-
tial (Ĥs in Eq. 32 with θs = 0 or π) or an inversion-symmetric

hopping amplitude (Ĥb in Eq. 33 with θb = 0 or π) with pe-
riod π/K. For the commensurate values of K = π/2 and
π/3) the total charge bound to a disclination is calculated
for periodic and open and boundary conditions, the differ-
ence of which gives the disclination filling anomaly, defined in
Sec. III B 3. However, periodic boundary conditions are not
compatible with the incommensurate value of K = π/2

√
2,

precluding the calculation of the disclination filling anomaly.

leads to the quantized difference in disclination charge
found above.

In summary, we find two distinct inversion-symmetric
insulators can arise from the coupling a K = π/2az DSM
to a CDW. As expected, both insulators have a S3D =
2 3D dWZ response, and one has a disclination filling
anomaly while the other does not.

D. Numeric analysis

In this subsection, we numerically calculate the
crystalline-electromagnetic responses for the inversion-
symmetric Dirac-CDW insulators that form when a DSM
is coupled to: a commensurate K = π/2az (period 2)
CDW, a commensurate K = π/3az (period 3) CDW,

and an incommensurate K = π/2
√
2az CDW. These cal-

culations are performed using the DSM Hamiltonian in
Eq. 1 with bxy = 1. The K = π/2az CDW is imple-
mented via the hopping mean field term in Eq. 33 with
|∆b| = 1/2 and either θb = 0 or π, both of which pre-
serve bond-centered inversion symmetry. The K = π/3az
CDW is implemented via the onsite mean field term in
Eq. 32 with |∆s| = 1/2 and either θs = 0 or π, preserving

the site-centered inversion symmetry. The K = π/2
√
2az

CDW is similarly implemented with the onsite mean field
term in Eq. 32 with |∆s| = 1/2 and either θs = 0 or π,
also preserving site-centered inversion symmetry.

For each system, we evaluate the Hamiltonian on a lat-
tice having open boundary conditions and a ΘF = π/2
disclination line. The disclination line is located at the
center of the lattice and stretches straight along the z-
direction. To reduce the impact of finite size effects, we

also add an inversion-preserving perturbation of the form
H ′

surf = ∆surfΓ3 (∆surf = 1/4 on both the top and bot-
tom layers) to increase the gap on the z-normal surfaces.
Then we calculate the disclination charge by summing
the charge density over all sites within some radial dis-
tance from the disclination core. To further reduce the
impact of finite size effects, we perform these calcula-
tions over a range of system sizes and extrapolate to the
infinite-size limit. The details of how the integration ra-
dius is determined and how the extrapolations are per-
formed, are provided in Appendix B.

As expected from our analysis in previous sections,
we find that charge is bound to the disclination line for
all Dirac-CDW insulators, as shown in Fig. 7f. Specif-
ically, in Fig. 7 we plot the layer-resolved disclination
charge for each insulator at the largest accessible sys-
tem size. For the commensurate CDWs, K = π/2az and
K = π/3az, we find that the charge distribution oscillates
with a period matching the CDW period, with deviations
at open boundaries. There is no notable periodicity for
the K = π/2

√
2az CDW, as it is incommensurate with

the lattice. The total disclination charges for each of
these insulators extrapolated to the infinite-size limit are
enumerated in Table I.

For K = π/2az, the total charge bound to the discli-
nation with open boundary conditions differs by 1/2 be-
tween the θb = 0 and θb = π Dirac-CDW insulators.
This difference in disclination charge is a direct manifes-
tation of the difference in the coefficient of the R ∧ F
term between the two Dirac-CDW insulators. Similarly,
the disclination charge differs by 1/2 between the θs = 0
and θs = π Dirac-CDW insulators with K = π/3az,

and K = π/2
√
2az. We therefore find that the two dis-

tinct inversion-symmetric Dirac-CDW insulators for each
CDW wavevector have different disclination charge par-
ities, matching our analytic predictions.

For the commensurate K = π/2az and K = π/3az
CDWs, it is also possible to have periodic boundary con-
ditions in the z-direction. Hence in these cases we can
determine the 3D dWZ response of the Dirac-CDW in-
sulators and whether or not the insulators host a discli-
nation filling anomaly. We find that for periodic bound-
aries, both the θb = 0 and π insulators with K = π/2az
bind charge 1/2 per CDW period (1/4 per original lat-
tice layer). The θb = 0 and π insulators with K = π/3az
also bind charge 1/2 per CDW period (1/6 per original
lattice layer). This is exactly the 3D dWZ response that
we have previously discussed. Furthermore, we find that
the disclination charges differ by 1/2 with periodic and
open boundary conditions for the K = π/2az, θb = π
and K = π/3az, θs = π insulators, indicating disclina-
tion filling anomalies. The presence of the disclination
filling anomaly can also be observed in the charge den-
sity profiles plotted in Fig. 7, in which it manifests as a
deviation at the boundaries of the disclination charge per
CDW period. The disclination charges for open and peri-
odic boundary conditions are identical for theK = π/2az,
θb = 0 and K = π/3az, θs = 0 insulators, marking the ab-
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FIG. 7. (a, b) The charge bound to a disclination as a function of z for K = π/2az, ∆s = 0, ∆b = 0.5, nx = 15, and nz = 14
with (a) open and (d) periodic boundary conditions. (b, e) The charge bound to a disclination as a function of z for K = π/3az,
∆s = 0.5, ∆b = 0, nx = 15, and nz = 15 with (b) open and (e) periodic boundary conditions. (c) The charge bound to a
disclination as a function of z for K =

√
2π/4, ∆s = 0.5, ∆b = 0, nx = 15, and nz = 15 with open boundary conditions. In all

cases we set bxy = 1.0 and ∆surf = 0.25. The solid black and dashed red lines indicate θb/s = 0 and θb/s = π, respectively. The
alternating gray and white shading indicates unit cells of the CDWs. (f) The charge density around a disclination summed
over the z-direction with K = π/2az, θb = π, ∆s = 0, ∆b = 0.5, bxy = 1.0, ∆surf = 0.25, nx = 15, and nz = 12. The charge
distribution is qualitatively identical for all other cases considered in this work.

sence of disclination filling anomalies. These results agree
with the analytic calculations presented in Sec. VC. As
discussed in Sec. III B 3, the disclination filling anomaly
is ill-defined for insulators with incommensurate K, like
the K = π/2

√
2az Dirac-CDW insulators, since they are

incompatible with periodic boundaries.

VI. CONCLUSION AND OUTLOOK

In this work, we have considered the topological re-
sponses of the insulating state that arises from coupling
a 3D DSM to a CDW. Unlike the related Weyl-CDW in-
sulators, the Dirac-CDW insulators do not display a Hall
effect or axion electrodynamics. Rather, the Dirac-CDW
insulators display novel crystalline-electromagnetic re-
sponses wherein charge is bound to disclination defects of
the lattice. These crystalline-electromagnetic responses
are encoded in a 3D discrete Wen-Zee term and an R∧F
term. Due to the inversion symmetry of the DSM, there
are two classes of insulating states where Φ = 0 and
Φ = 2π respectively. These two insulating phases can be

differentiated by considering the total charge bound to
disclination lines. These responses naturally arise from
the combination of topology and spatial symmetries that
stabilize the DSMs.

In terms of real materials, a potential material candi-
date for realizing the Dirac-CDW insulator is TaTe4, a
DSM that develops commensurate CDW order at finite
temperature [77]. The CDW momentum matches the
momentum space separation for a pair of Dirac points.
Despite this, the CDW phase of TaTe4 is not insulat-
ing, but rather has an 8-fold degenerate doubled Dirac
point in the folded Brillouin zone. Additionally, TaTe4
has Dirac points at other momenta that do not strongly
couple to the CDW, and are expected to remain gapless.
The gapless Dirac points prevent TaTe4 from realizing
the quantized crystalline-electromagnetic responses dis-
cussed, but it does indicate that the combination of Dirac
and CDW physics can occur in real materials.

There is also a much broader family of topological
semimetals protected by non-symmorphic crystal sym-
metries, for which there are many candidate host materi-
als and some experimentally confirmed examples [78, 79].



18

Understanding the mixed crystalline-electromagnetic re-
sponse of non-symmorphic topological semimetals is an
open question for future work, as the structure of non-
symmorphic symmetry fluxes is not currently under-
stood. In addition, it would be interesting to consider
the crystalline-electromagnetic responses of higher order
Dirac semimetals, both with and without interactions.
Previous studies of higher order semimetals [49, 80–83]
have already revealed novel behavior not found in their
first order counterparts, but a full understanding of the
topological responses of higher order semimetals remains
incomplete, even for symmorphic symmetries.
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Appendix A: Disclination charge parity and the
disclination filling anomaly in layered systems

In this Appendix, we will discuss why the disclination
charge parity is not a meaningful quantity for inversion-
symmetric insulators, as it depends on the choice of inver-
sion center for systems with open boundaries. However,
as we shall see, the difference between the disclination
charge parity for open and periodic boundary conditions
(referred to in the main text as the disclination filling
anomaly) does not depend on the inversion center, and
is therefore a more physically relevant quantity. We shall
establish this by considering layered insulators. Although
we are only considering specific systems, the dependence
of the disclination charge parity on the choice of inver-
sion center is general. We recall from the main text that
what we mean by a layered insulator is one that is adia-
batically connected to a limit of decoupled layers where
electrons are not hybrdized between different unit cells
in the z-direction.

To this end, let us consider an inversion-symmetric 3D
insulator composed of Nz layers of 2D insulators, stacked
along the z-direction. We further take the system to have
open boundary conditions in the z-direction. For such
a system, there are two choices of inversion symmetry
that differ with respect to their inversion center. First,
there is inversion symmetry where the inversion center
is in a given layer, such that this layer maps to itself
under inversion symmetry. This was referred to as site-
centered inversion symmetry in the main text. Second,
there is inversion symmetry where the inversion center
is in-between two adjacent layers. This was referred to
as bond-centered inversion symmetry in the main text.
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FIG. 8. An inversion-symmetric stack of 2D layers (green) for
site-centered inversion symmetry (a) and bond-centered in-
version symmetry (b). For site-centered inversion symmetry,
one layer maps onto itself under inversion symmetry, while
other layers map onto a partner, such that the total number
of layers, Nz is odd. For bond-centered inversion symmetry,
all layers map onto a partner, such that the total number of
layers, Nz is even.

For site-centered inversion symmetry and open bound-
aries, Nz must be odd, since under inversion symmetry,
one layer maps to itself, while all other layers must map
onto an inversion symmetry related partner. Similarly,
for bond-centered inversion symmetry, Nz must be even,
since all layers map onto an inversion symmetry related
partner. The two inversion-symmetric stacking configu-
rations are shown in Fig. 8(a),(b).

We now consider the disclination response of the lay-
ered insulator. For a 3D layered insulator, the discli-
nation response of the full system is simply the sum of
responses of the 2D layers. Each 2D layer is described
by a 2D dWZ term, with discrete shift S2D. For spin-1/2
fermions with TRS, S2D is quantized as an even integer.
Because of the 2D dWZ response, a ΘF disclination line
binds charge Qdisc-2D = S2D

ΘF

2π mod (2) on each layer,
where the mod (2) factor reflects that it is possible to
locally add a Kramers degenerate pair of electrons to the
disclination core. The total disclination charge of the full
3D system is then Qdisc-3D = NS2D

ΘF

2π mod (2). For a
finite size system of spin-1/2 fermions with time-reversal
symmetry (TRS), the disclination charge parity is equal
to the total charge on disclination line mod (2ΘF

π ),

Qdisc-3D mod

(
2
ΘF

π

)
= S2DNz

ΘF

2π
mod

(
2
ΘF

π

)
,

(A1)
where we have used the fact that ΘF is a multiple of 2π/n
for Cn symmetric insulators. The disclination charge par-
ity is therefore zero when NzS2D/2 is even, and non-zero
when NzS2D/2 is odd. From this, we can conclude the
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FIG. 9. The charge bound to a ΘF = π/2 disclination for a
Dirac-CDW insulator as a function of the integration radius
distance r with Q = π/2, bxy = 1, ∆surf = 0.25, ∆s = 0,
∆b = 0.5, Nx = 15, and Nz = 14. The radius r is scaled such
that the farthest point from the disclination core is at r = 1.
Note that the r-axis only extends from 0.1 to 0.6.

following: when S2D/2 is even, the disclination charge
parity always vanishes, but when S2D/2 is odd, the discli-
nation charge parity vanishes when Nz is even and is
non-zero when Nz is odd. So when S2D/2 is odd, the
disclination charge parity always vanishes for bond cen-
tered inversion symmetry, and is always non-zero for site-
centered inversion symmetry. This occurs for an insula-
tor composed of quantum spin Hall layers, each of which
have S2D = 2.
Having established that the disclination charge par-

ity depends on the choice of inversion center, let us now
consider the disclination filling anomaly. To do this, we
will take the layered system and “sew” the top and bot-
tom layers to one another such that the system has peri-
odic boundaries in the z-direction. For a layered system,
the sewing procedure is trivial by definition and will not
change the total disclination charge, or, by extension,
the disclination charge parity. The disclination filling
anomaly will therefore necessarily vanish for all layered
systems, regardless of the choice of inversion center or
the value of S2D.

Appendix B: Details of the numerics

Here we discuss the details of how we calculate the
charge bound to a disclination and the extrapolations in
system size that we performed. To calculate the charge
bound to a disclination, we sum the charge on all lat-
tice sites in each layer that are within some radius from
the disclination core. In Fig. 9 we plot the charge bound
to a disclination as a function of the integration radius
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for a Dirac-CDW insulator with Q = π/2, Nx = 15,
Nz = 14, bxy = 1, ∆surf = 0.25, ∆s = 0, ∆b = 0.5, and
both θb = 0 and θb = π. The radius r is scaled such
that the farthest point from the disclination core in the
lattice is at r = 1. The disclination charges approach
the theoretical predictions, marked by dashed horizon-
tal lines, for roughly r > 0.3, indicating the exponential
localization of the disclination charge. The disclination
charge approaches zero for both small and large r, and
the largest values of the disclination charge generally ap-
proach the theoretical predictions, except for very small
system sizes. However, the integration radius at which
the disclination charge most closely obtains the theoreti-
cal prediction varies significantly as a function of system
size and other parameters. As such, we always calculate

the disclination charge using a range of integration radius
and report the maximal absolute value.
To diminish the impact of finite-size effects, we calcu-

lated the charges for each case enumerated in Table I over
a range of system sizes and extrapolated to the infinite
system-size limit. We found that effects arising from the
finite extent of the lattice in the z-direction were minimal,
so for each calculation we fixedNz and variedNx, the side
length of the disclinated lattice. In Table II we plot the
disclination charges as a function of Nx along with fits to
a decaying exponential, |Qdisc(Nx)| = Q∞ + be−cNx . We
plot the infinite system size limit, Q∞, with red dashed
lines and report the values and uncertainties in the in-
sets. The values reported in Table I are the values of Q∞
rounded to the nearest half integer, which produces less
than a 1% error in all cases.
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Kaz
OBC PBC

θs/b = 0 θs/b = π θs/b = 0 θs/b = π
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|
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= 2.5187(7)
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10 15
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= 2.5045(1)

10 15
Nx

2.9

3.0
|Q

di
sc

|

= 3.0038(9)

TABLE II. System size extrapolations of the charge bound to a ΘF = π/2 disclination for K = π/2, π/3, and π/2
√
2 with

θs/b = 0 and π for both open and periodic boundary conditions. For each calculation we used bxy = 1, ∆surf = 0.25, and

∆s = 0. The system size along the disclination was set to Nz = 14 for K = π/2 and Nz = 15 for K = π/3 and π/2
√
2. The

solid red lines are fits to a decaying exponential, |Qdisc(Nx) = Q∞ + be−cNx . The value and uncertainty of the large-Nx limit,
Q∞, is reported in the legend and plotted with a red dashed line.
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