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(Dated: March 15, 2024)

Carroll black holes with an associated Carroll temperature were introduced recently. So far, it is unclear if
they exhibit a Hawking-like effect. To solve this, we study scalar fields on Carroll black hole backgrounds.
Inspired by anomaly methods, we derive a Hawking-like energy-momentum tensor compatible with the Carroll
temperature and the Stefan–Boltzmann law. Key steps in our derivation are the finiteness of energy at the
Carroll extremal surface and compatibility with the Carroll Ward identities, thereby eliminating, respectively,
the Carroll-analogs of the Boulware and Unruh vacua.

INTRODUCTION

Carroll symmetries [1, 2] were long overlooked by physi-
cists until their omnipresence was recognized. Their ubiq-
uity is partly due to the fact that Minkowski space, crucial
for quantum field theories, exhibits a Carroll structure at null
infinity. Remarkably, the asymptotic symmetries of asymp-
totically flat spacetimes known as Bondi, van der Burgh, Met-
zner, and Sachs (BMS) symmetries [3, 4] precisely align with
conformal Carroll symmetries [5–7]. Further insights into the
Carroll structure at null infinity can be found in Refs. [8–12].

Additionally, it was realized that generic null hypersur-
faces, prevalent in general relativity, possess a Carroll struc-
ture [13–21]. Hence, Carrollian symmetries emerge in both
pillars of theoretical physics, quantum field theories and gen-
eral relativity. A prominent application in both contexts is the
Carrollian approach to flat space holography, notably in three
[22–36] and four dimensions [8–12, 37–48].

Carrollian spacetimes are characterized by a Carroll met-
ric hµν with a degenerate signature (0,+, . . . ,+). An illus-
trative example is the limit of the Minkowski metric where
the speed of light vanishes, given by ds2 = limc→0(−c2 dt2 +

δi j dxi dx j) = δi j dxi dx j. Such spacetimes necessitate a Car-
roll vector vµ lying in the kernel of the Carroll metric, i.e.,
vµ hµν = 0. In the example, the vector field is v = vµ∂µ = ∂t

and the Carroll metric is hµν = δi j δ
i
µ δ

j
ν.

Whenever we had some global spacetime symmetries in
physics, it turned out to be fruitful to make them local. For
Poincaré symmetries, this leads to Einstein–Cartan theories,
including general relativity [49]. Conversely, Galilean sym-
metries yield Newton–Cartan theories [50–57]. It is therefore
natural to gauge the Carroll algebra [58] and formulate Carroll
gravity theories [59–71].

To advance, detailed examination of Carroll gravity theory
is crucial [89]. This is particularly manageable in two dimen-
sions (2d), where Carroll gravity allows for powerful mathe-
matical tools [72, 73]. These 2d models can be seen as toy
models or as dimensional reductions of higher-dimensional
Carroll gravity theories. For example, the Carroll limit of
the Schwarzschild black hole aligns with a specific 2d Car-
roll gravity model [74].

Recently, it was found that these models can feature Carroll

black hole solutions with an associated Carroll temperature
[74]. The presence of such a temperature raises the question
of whether a physical quantum process, akin to the Hawking
effect [75], underlies the temperature of Carroll black holes.

Our Letter demonstrates that indeed there exists a Carroll
Hawking effect.

To show this, we introduce a matter scalar field in ad-
dition to the 2d geometric variables and consider the con-
sequences of the Ward identities associated with diffeomor-
phisms, Carroll boosts, and Weyl rescalings. The latter turn
out to be anomalous, which we show both from a limiting
perspective and in an intrinsically Carrollian way. Our main
result is an anomaly-induced expectation value for the energy
density (29) that is precisely compatible with the 2d Stefan–
Boltzmann law, provided we identify the temperature therein
with the Carroll temperature derived classically in [74].

MATTER ON CARROLL BACKGROUNDS

In the present work, we focus on a massless Carrollian
scalar field ϕ with conformal coupling [76, 77]. We briefly
summarize the 2d case to fix the notation for the curved
space analogs of electric and magnetic scalar fields introduced
in [78]. The Carroll gravity backgrounds we have in mind
are Carroll black hole solutions of magnetic Carroll dilaton
gravity [74], but all results in this section are background-
independent.

Starting from the Lorentzian action on a manifoldM

I = −
1
2

∫
M

d2x
√
−g gµν(∂µϕ) (∂νϕ) (1)

we introduce pre-ultralocal variables [66] by VµTµ = −1,
TµEµ = 0, VµEµ = 0 as well as EµEν = δ

µ
ν + VµTν such

that the metric is given by gµν = −c2TµTν + EµEν and the
Lorentzian volume form is cT ∧E. For the Carrollian limit the
frame fields are expanded in powers of c2 as Vµ = vµ +O(c2),
Tµ = τµ + O(c2), Eµ = eµ + O(c2) and Eµ = eµ + O(c2). Local
Carroll boosts parametrized by λ(x) act as

δλe = 0 δλτ = −λe δλvµ = 0 δλeµ = −λvµ . (2)
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Local Weyl rescalings [76] parametrized by ρ(x) act on the
frame fields as

δρe = ρe δρτ = ρτ δρvµ = −ρvµ δρeµ = −ρeµ . (3)

Switching to a Hamiltonian formulation by defining the
pre-ultralocal momentum Π = c

√
−g

δL
δ(Vµ∂µϕ)

= π + O(c2) and
inserting the pre-ultralocal variables into the action (1) yields

I =
∫
M

T ∧ E
(
ΠVµ∂µϕ −

1
2
Π2 −

c2

2
(Eµ∂µϕ)2

)
. (4)

This is the starting point for obtaining two possible actions for
a Carroll invariant scalar field [78], which we discuss now.

Timelike (electric) scalar field. The electric contraction
is obtained by directly sending c → 0 in (4), replacing all
fields by their leading order expressions, and integrating out
the leading order momentum π,

Iel[ϕ] :=
1
2

∫
M

τ ∧ e
(
vµ∂µϕ)2 . (5)

The spatial dependence of the field ϕ is unconstrained, rep-
resenting the ultralocal character of Carrollian theories. It is
straightforward to check that this action is invariant under lo-
cal Carroll boosts as well as diffeomorphisms, as required.
Additionally, the action (5) is invariant under Weyl-rescalings
(3) of the background.

Spacelike (magnetic) scalar field. There is a second pos-
sibility to contract the Hamiltonian action where the fields are
rescaled as Π→cΠ, ϕ → 1

cϕ. Crucially, this rescaling pre-
serves the symplectic form δΠ∧δϕ on field space. The leading
order action

Imag[ϕ, π] :=
∫
M

τ ∧ e
(
πvµ∂µϕ −

1
2

(eµ∂µϕ)2
)

(6)

does not permit integrating out the momentum π since its
quadratic term cancels in the contraction. Instead, π acts
as a Lagrange multiplier enforcing time-independence of the
scalar field. Under local Carroll boosts, the momentum trans-
forms as δλπ = −λeµ∂µϕ such that the total action is invariant.
This transformation is compatible with Weyl-rescalings (3) if
they act on π as δρπ = −ρ π, rendering the magnetic action (6)
Weyl-invariant as well.

Carroll Ward identities. Both examples of classical matter
actions are invariant under local Carroll boosts and local Weyl
rescalings, which leads to Ward identities for the associated
Carroll energy-momentum tensor (CET). Taking the electric
scalar as an example, we define the one-forms T (v) and T (e) by

δIel = −

∫
M

τ ∧ e
(
T (v)
µ δv

µ + T (e)
µ δe

µ
)

(7)

which implies that their components transform under Carroll
boosts as

δλT (v)
µ = λT

(e)
µ δλT (e)

µ = 0 . (8)

The CET

T µν = vµT (v)
ν + eµT (e)

ν (9)

is gauge invariant [76, 79, 80]. Contracting the arbitrary vari-
ation (7) with a Carroll boost (2) yields the Carroll boost Ward
identity

T (e)
µ vµ = eµT µνvν = 0 (10)

while contracting with an infinitesimal diffeomorphism yields

1
e
∂µ

(
eT (v)
ν vµ + eT (e)

ν eµ
)
= −T (v)

µ ∂νv
µ − T (e)

µ ∂νe
µ (11)

where e := det(τµ, eµ). Weyl-invariance additionally requires
the trace of the CET to vanish,

T µµ = vµT (v)
µ + eµT (e)

µ = 0 . (12)

As we shall prove in our Letter, this last Ward identity be-
comes anomalous in the quantum theory.

Carroll–Schwarzschild black hole. Our prototypical ex-
ample for a Carroll black hole background is the spherically
reduced Carroll–Schwarzschild spacetime [65, 66, 74]

τ =
√
ξ dt̃ e =

dr
√
ξ

v = −
1
√
ξ
∂t̃ ξ = 1 −

rs

r
(13)

where we used temporal and radial coordinates (t̃, r) ∈ R ×
(rs,∞). We decorated the time coordinate with a tilde since
later we shall use t for the Wick-rotated time. While the full
solution of 2d Carroll dilaton gravity also contains the dilaton,
we do not display it here since the matter theories we consider
do not couple to it. The locus r = rs represents the Carroll
extremal surface of this geometry [74].

CARROLL HAWKING EFFECT AS A LIMIT

In this section, we extend to the Carrollian case the method
of Christensen and Fulling [81] that allows to recover the ex-
pectation values of the full Lorentzian energy-momentum ten-
sor through the conformal anomaly. We do so by carefully
implementing the Carrollian limit together with the definition
of the semi-classical theory.

Our starting point is the classically Weyl invariant “electro-
magnetic” scalar action [82]

Iem =

∫
M

τ ∧ e
√

g1g2

(
g1 (vµ∂µϕ)2 + g2 eµeν(∂µϕ)(∂νϕ)

)
(14)

which has the terms from both electric and magnetic actions
(5), (6) with coupling constants g1 and g2. This action is not
manifestly invariant under local Carroll boosts, but we will
remedy this by taking appropriate limits of g1 and g2 [90]. We
rewrite the action (14) more suggestively as

Iem =

∫
M

d2x
√

G
(
Gµν∂µϕ∂νϕ

)
(15)
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where we introduced a fiducial metric

Gµν(g1, g2) =
1
g1
τµτν +

1
g2

eµeν . (16)

The limit g1 → ∞, g2 = 1 renders Gµν Carrollian. Comparing
with (6), one can show that this limit corresponds to a mag-
netic limit on the level of the scalar action [83]. The inverse
of the fiducial metric (16) is Gµν(g1, g2) = g1vµvν + g2eµeν.

From this point we formally treat the electromagnetic scalar
theory as a Euclidean theory, which makes it natural to define
the path integral measure by

1 =
∫
Dϕ exp

(
−

∫
M

d2x
√

G(g1, g2) ϕ2
)
. (17)

This definition is invariant under diffeomorphisms as well as
local Carroll boosts for arbitrary g1, g2 but breaks Weyl sym-
metry. Non-invariance of the path integral measure under a
classical symmetry of the action is the hallmark of anomalies
[84], so we expect a Weyl anomaly and confirm this expecta-
tion below.

The partition function with the measure (17),

Z =
∫
Dϕ exp

(
−

∫
M

d2x
√

G ϕAϕ
)
= (det A)−

1
2 (18)

is given in terms of the determinant of the Laplace-type op-
erator A = −Gµν∇µ∇ν, where ∇ is the Levi–Civitá connec-
tion associated with Gµν. The broken Weyl symmetry implies
that the effective action W = − ln Z is not invariant under
rescalings. The associated trace anomaly is the standard re-
sult [81, 85],

⟨T µµ⟩ =
1

24π
R(G) (19)

where we used δρGµν = 2ρGµν and R(G) is the Ricci
scalar associated with ∇. The expectation value of the
fiducial energy-momentum tensor is defined by δW =
1
2

∫
M

d2x
√
−G ⟨Tµν⟩δGµν.

Let us consider now the Carroll–Schwarzschild background
(13). In the Ricci scalar R(G) =

2g2rs
r3 the parameter g1 drops

out because it can be absorbed into a redefinition of time
t̃. At this stage, the components ⟨T µν⟩ are not Carrollian as
they still depend on the gi and thus do not satisfy the Carroll
boost Ward identity. However, in addition to (19) they satisfy
the Euclidean diffeomorphism Ward identities, ∇µ⟨Tµν⟩ = 0,
which can be solved up to two integration constants in the
static case. Pretending that Gµν describes a Wick-rotated
Lorentzian geometry, we undo this Wick-rotation, t̃ → it,
v→ iv, τ→ −iτ and define adapted null coordinates [91]

x± =
1
√

2

(√
g2 t ±

√
g1z

) dz
dr
=

1
1 − rs

r

(20)

in terms of which the fiducial metric is

ds2
(G) = −

2
g1g2

e2ωdx+dx− ω =
1
2

ln
(
1 −

rs

r

)
. (21)

We solve the Ward identities by

⟨T±±⟩ =
1

24πg1

(
∂2

zω − (∂zω)2
)
+

t±
g1

t± ∈ R (22)

where t± are constants of integration. A locally Carroll boost-
invariant CET is only defined as a (1, 1)-tensor in a static co-
ordinate system [76]. Therefore, we invert the transformation
(20) and pull up one index with Gµν, leading to

⟨T t
t⟩ = −

g2

24π

(
∂2

rξ −
1
4ξ

(∂rξ)2 + 12π
t+ + t−
ξ

)
(23a)

⟨T t
r⟩ = −

√
g1g2

2
t+ − t−
ξ2

(23b)

⟨T r
t⟩ =

g2

2

√
g2

g1
(t+ − t−) (23c)

⟨T r
r⟩ =

g2

24π

(
−

(∂rξ)2

4ξ
+ 12π

t+ + t−
ξ

)
(23d)

with ξ = 1 − rs
r . The flux components can then be expressed

as

⟨T±±⟩ =
ξ

2g2
⟨T r

r⟩ ±
t+ − t−

2
−
ξ

2g2
⟨T t

t⟩ . (24)

Magnetic limit. One way to obtain a local Carroll boost-
invariant theory is to set g2 = 1 and g1 → ∞ corresponding
to a magnetic contraction. In this limit, ⟨T t

r⟩ → ∞ unless we
assume t+ − t− =

t0√
g1

with some fixed constant t0. With this
assumption, we obtain in the magnetic limit

⟨T t
t⟩ → ⟨T t

t⟩ = −
1

24π

(
∂2

rξ −
(∂rξ)2

4ξ
+

24πt+
ξ

)
(25a)

⟨T t
r⟩ → ⟨T t

r⟩ = −
1
2

t0
ξ2

(25b)

⟨T r
t⟩ → ⟨T r

t⟩ = 0 (25c)

⟨T r
r⟩ → ⟨T r

r⟩ =
1

24π

(
−

(∂rξ)2

4ξ
+

24πt+
ξ

)
. (25d)

This result satisfies the Carroll boost and diffeomorphism
Ward identities (10), (11) for a CET where

⟨T (v)
ν ⟩ = −⟨T

µ
ν⟩τµ ⟨T (e)

ν ⟩ = ⟨T
µ
ν⟩eµ . (26)

The trace Ward identity stays anomalous after the limit. Tak-
ing the limit of the flux components (24) leads to

⟨T±±⟩ := lim
g1→∞
⟨T±±⟩

∣∣∣∣
g2=1
=

1
96π

(
2ξ∂2

rξ − (∂rξ)2
)
+ t+ (27)

which shows that both fluxes have to agree, ⟨T++⟩ = ⟨T−−⟩.
This is unlike the situation in a true Lorentzian theory, where
⟨T±±⟩ would be associated with in- and outgoing matter
fluxes. They would behave independently from each other,
according to the physical situation at hand. The fact that both
fluxes have to agree in the present case is just another mani-
festation of no energy flux being possible in a Carrollian the-
ory [67]. It furthermore implies that not all vacuum choices
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of the analogous Lorentzian theory are possible anymore. In
particular, local Carroll boost-invariance is inconsistent with
the Unruh vacuum. The Boulware vacuum is ruled out by de-
manding finite energy density

⟨E⟩ = −τµ⟨T µν⟩vν =
1

24π

(
∂2

rξ −
(∂rξ)2

4ξ

)
+

t+
ξ

(28)

at the Carroll extremal surface. This leads to the unique
choice t+ = 1

96πr2
s

and defines the Carroll analog of the Hartle–
Hawking vacuum with asymptotic energy density

lim
r→∞
⟨EHH⟩ =

1
96πr2

s
=
π

6
T 2 . (29)

In the second equality we used the result for the Carroll tem-
perature T of the Carroll–Schwarzschild background, T−1 =

4πrs. This equality is our main result and shows that the
asymptotic energy density (29) is compatible with the 2d
Stefan-Boltzmann law.

CONFORMAL ANOMALY IN CARROLLIAN THEORIES

Instead of taking Carrollian limits, we consider in this sec-
tion the magnetic scalar action (6) from the start. Plugging it
into the path integral yields

Z =
∫
DπDϕ exp

(
− Imag[ϕ, π]

)
. (30)

Integrating out π produces a functional δ-function δ(vµ∂µϕ) so
that we remain with a path integral over a 1d time-independent
scalar field, but with a Jacobian factorJ = (det(vµ∂µ))−1. The
operator vµ∂µ contains a derivative along the time direction but
no derivative along the spatial direction. This means that the
operator is not elliptic, so there is no regular method known to
us to define its determinant [92]. Since a direct method fails,
we try a less direct one.

We assume that the path integral (30) exists and write a
conformal variation of the corresponding effective action [see
(3)]

δρW = −
∫
M

τ ∧ e
(
⟨T (v)
µ ⟩v

µ + ⟨T (e)
µ ⟩e

µ) ρ . (31)

Demanding that the conformal anomaly is local and Carroll
boost-invariant, the only choice with the correct mass dimen-
sion,

δρW = −α1

∫
M

d2x det(τ, e) R ρ (32)

contains an undetermined constant α1 that we shall fix be-
low. Here, R is the Carroll boost-invariant Carrollian curva-
ture scalar [74] given in terms of the 2d Carroll boost con-
nection ω by 2dω = R τ ∧ e. For the Carroll–Schwarzschild
background (13), it reads

R = −∂2
rξ − 2∂r

ξ

r
=

2r − 2rs

r3 . (33)

The Ward identities for Carroll boosts (10) and diffeomor-
phisms (11) read in this gauge

⟨T (e)
t ⟩ = 0 (34)

∂r⟨T (e)
r ⟩ +

∂rξ

ξ
⟨T (e)

r ⟩ = −
∂rξ

2ξ2
⟨T (v)

t ⟩ . (35)

Together with the anomalous trace given by (31), (32) they
have a family of exact solutions (a ∈ R)

⟨T (e)⟩ =
[α1

ξ
3
2

( r2
s

4r4 −
rs

3r3

)
+

a

ξ
3
2

]
dr (36)

⟨T (v)⟩ =
[
⟨T (e)

r ⟩ξ −
√
ξα1R

]
dt + ⟨T (v)

r ⟩ dr . (37)

The component ⟨T (v)
r ⟩ remains undetermined. This happens

since, on static backgrounds, the Ward identity (11) for ν = t
is satisfied automatically. Thus, in contrast to the Lorentzian
case, we do not have enough conditions to define all compo-
nents of the CET.

The energy density ⟨E⟩ = ⟨T (v)
µ ⟩vµ is finite at r → rs if

we choose the integration constant a = α1
12r2

s
, producing an

asymptotic energy density

lim
r→∞
⟨E⟩ =

α1

12r2
s

(38)

which coincides precisely with the Carroll–Hartle–Hawking
energy density (29) for α1 =

1
8π .

CONCLUSION

We have shown that the semi-classical theory of a free
scalar field on a Carroll black hole background exhibits a Car-
roll analogue of the Hawking effect. It manifests through a
non-vanishing energy density in the asymptotic region com-
patible with the Stefan–Boltzmann law (29). However, as
a consequence of the Ward identities the energy flux in any
Carrollian field theory has to vanish which prevents the Car-
roll black hole from evaporating. This implies that the Un-
ruh vacuum is incompatible with Carroll symmetries, leav-
ing only the Carroll analogue of the Hartle–Hawking vacuum
as a viable semi-classical vacuum state. For proving this we
used anomaly-based arguments going back to Christensen and
Fulling. The Carrollian quantum theory is thereby defined by
first regularizing the classical action (14) and then quantizing,
removing the regulator only in the end. While this initially
breaks local Carroll boost invariance we justify the procedure
by the absence of a Carroll boost anomaly after removing the
regulator.

We conclude by mentioning a number of further directions.
The derivation of the Carroll Hawking effect in this work did
not rely on the specific form of the scalar field action but
rather solved for the vacuum expectation values of the energy-
momentum tensor using symmetry-based arguments. It would
be interesting to see if the same conclusion can be reached by
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following a microscopic derivation along the lines of Hawk-
ing’s original work [75]. Another possibly interesting prob-
lem would be to consider the backreaction of matter on the
Carroll black hole backgrounds, classically as well as semi-
classically.
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dynamical Newton-Cartan geometry,” JHEP 07 (2015) 155,
1504.07461.

[56] R. Andringa, E. Bergshoeff, J. Gomis, and M. de Roo,
“’Stringy’ Newton-Cartan Gravity,” Class. Quant. Grav. 29
(2012) 235020, 1206.5176.

[57] E. A. Bergshoeff, J. Gomis, J. Rosseel, C. Şimşek, and Z. Yan,
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