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One-dimensional systems, such as nanowires or electrons moving along strong magnetic field
lines, have peculiar thermalization physics. The binary collision of point-like particles, typically the
dominant process for reaching thermal equilibrium in higher dimensional systems, cannot thermalize
a 1D system. We study how dilute classical 1D gases thermalize through three-body collisions. We
consider a system of identical classical point particles with pairwise repulsive inverse power-law
potential Vij ∝ 1/|xi − xj |n or the pairwise Lennard-Jones potential. Using Monte Carlo methods,
we compute a collision kernel and use it in the Boltzmann equation to evolve a perturbed thermal
state with temperature T toward equilibrium. We explain the shape of the kernel and its dependence
on the system parameters. Additionally, we implement molecular dynamics simulations of a many-
body gas and show agreement with the Boltzmann evolution in the low density limit. For the inverse

power-law potential, the rate of thermalization is proportional to ρ2T
1
2
− 1

n where ρ is the number
density. The corresponding proportionality constant decreases with increasing n.

I. INTRODUCTION

A. Technological Motivation

With the advance of technology, very thin sys-
tems can be produced that can be approximated as
one-dimensional (1D). Examples of 1D gases include
quantum-wires made of GaAs [1] or carbon nanotubes
[2]. Other examples come from plasma physics where
electrons are confined to move along strong magnetic field
lines [3], or isolated, far-from-equilibrium, Bose gases [4].
Thus, the properties of 1D systems are of some interest.

One dimensional confinement considerably affects sys-
tem properties, such as thermalization process [5], en-
hanced correlations and collective behavior [6], and
anomalous transport and diffusion [7]. In the present
work, we study the rate of thermalization of certain
1D systems. This rate measures how fast the equilib-
rium state is reached if the system starts from a non-
equilibrium state. From another perspective, it measures
how fast the system loses memory of its initial state.

Unique features of 1D thermalization have been
demonstrated. Optical measurements have shown that
carrier relaxation is much slower in quantum wires than
in bulk and two-dimensional forms [8]. Additionally,
molecular dynamical (MD) simulations of a 1D line of
electrons have shown the system thermalizes in the order
of 10ns [5], which is a relatively slow rate. On the other
hand, the dynamics of thermalization of quasi-1D sys-
tems, consisting of nearly decoupled chains, was shown
to exhibit non-exponential approach to equilibrium [9].

For this paper, we simulate the interaction of classi-
cal point-like particles that are confined to move in 1D.
We define the thermalization rate by how fast a special
velocity of a particle irreversibly diffuses into the distri-
bution of the rest of the system. With this definition,
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we show that the 1D gases under study exhibit very slow
thermalization rates.

B. Theoretical Motivation

1. Two-body thermalization

In the kinetic theory of 3D gases, thermalization
through binary collisions has been thoroughly studied
[10]. Binary collisions are the dominant interaction if
the gas is dilute; many-particle collisions are suppressed
by powers of the density [11]. Although a binary collision
is tightly constrained by several conservation conditions,
there is freedom for the particles to change their direc-
tions based on their impact parameter.
In the center of mass frame of the two colliding bodies,

the equations of motion can be integrated and a non-zero
differential cross-section can be obtained. Subsequently,
the cross section determines the rate of scattering from
and into a tiny volume in coordinate-velocity space of
the one-particle distribution. These rates can be used in
the Boltzmann Equation to propagate the distribution
[10]. By Boltzmann’s H theorem, a non-zero cross sec-
tion guarantees the thermalization of the system to equi-
librium. Binary collisions also lead to thermalization in
2D although the details are different.
Thermalization through binary collisions, however,

does not work in a 1D gas of identical point like particles.
Consider two particles of massm elastically colliding with
incoming velocities v1, v2, and outgoing velocities w1 and
w2. Conservation of energy and momentum must hold.
This, in 1D, entails two equations which completely de-
termine that w2 = v1 and w1 = v2. This is a trivial
swapping that leads to the same velocities and, there-
fore, to an unchanged velocity distribution[5].
The triviality of the binary collision in 1D hinges

on two assumptions [5]: 1- the dispersion relation is
parabolic which is well established. 2- there is no ex-
change of momentum with the substrate (the crystal or
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the medium the particles live in). The latter assumption
works well in regimes of energy less than 1eV for crystal
spacing 10−10m, or if the particles live in 1D vacuum. In
this work, we assume that the particles are constrained
to move on a ring or a line with no external forces.

2. Many-body thermalization in 1D

It was shown in [5] that many-body Coulomb scat-
tering can thermalize a one-dimensional electron gas in
a single-subband GaAs quantum wires. This was done
through classical molecular dynamics (MD) simulations.
In the study, the gas is dense enough such that the mean
potential energy is of the order of the mean kinetic energy
∼ 100K ∼ 10meV . It was calculated that the relaxation
time is of order 10ns and increases rapidly for lower den-
sities.

3. Three-body thermalization in 1D

Since binary collisions cannot thermalize a 1D sys-
tem, we study thermalization through the next simplest
process, the three-body (ternary) collisions. In very di-
lute gases, which is our main focus, the ternary colli-
sion is dominant over the higher order collisions. The
ternary collision is generally non-trivial and can generate
new velocity states. For long-range interacting homoge-
neous 1D systems, it was shown that they can thermalize
through 3-body effects, but their relaxation is drastically
slowed down [12]. The 3-body problem, however, is non-
integrable [13] (except in very special cases [14]), so we
study its trajectories numerically.

Three-body thermalization has also been addressed in
[15] for a model problem. The scattering rate from a
triple of initial momenta to a triple final momenta was
assumed for simplicity to be constant as long as the in-
coming momenta and the outgoing momenta satisfy en-
ergy and momentum conservation. In such cases, the
Boltzmann Eq. (B1) is exactly solvable. This constant
scattering rate, however, was not derived from an inter-
particle potential energy. Additionally, it was found that
the rate of collisions, and hence the rate of thermaliza-
tion, goes as ρ2 but is not affected by temperature or the
average kinetic energy. With the rates computed from
an inter-particle potential, we will show that if we start
from a quasi-thermal distribution of temperature T , the
rate of thermalization depends not only on ρ but also on
T .

C. Goal and Plan

In the present paper, we first introduce a model of a
1D gas on a ring and a model of thermalization. We
consider a system with pairwise inverse power potential
with power n ≥ 2. This potential is formally long-range,

since any particle can affect any other particle with non-
zero force. But for low densities and high temperatures,
which we assume, this force is small enough that long-
range effects can largely be ignored [16]. We consider the
evolution of a ‘delta-perturbed’ thermal state. Previous
studies [5], [9] considered the evolution of a bimodal dis-
tribution or a modified Gaussian [16].
Second, we implement MD simulations and discuss the

scaling of the thermalization rate, which we define as the
initial rate of the spread of the perturbation. Third, us-
ing Monte Carlo simulations, we calculate a three-body
collision kernel for the inverse power potential and the
Lennard-Jones potential. Using the kernel information,
we show how the transition rates scale with ρ and T and
compute the thermalization rate for a range of parame-
ters. Fourth, the collision kernel is used in the Boltzmann
equation to evolve the perturbation and this method is
shown to be in agreement with the MD simulations. Fi-
nally, we discuss the shape of the kernel and how it
changes with the inverse potential power n.

II. GAS AND THERMALIZATION MODEL

We consider N identical particles of mass m con-
strained to move on a ring of radius R as in Fig. 1 with
pairwise repulsive inverse power-law potential

U(d) = ϵ

(
l0
d

)n

, (1)

where d is the pairwise separation, l0 is the basic unit
of length at which the potential energy is equal to some
interaction strength ϵ > 0, and n is an even integer ≥ 2.
The locations of the particles are parameterized by the

angles ϕi and the mutual distance between particles i and
j is

dij = 2R sin

(
|ϕi − ϕj |

2

)
. (2)

The energy of the system is

E =

N∑
i=1

mR2ω2
i

2
+ ϵ

(
l0
2R

)n N∑
i,j>i

[
sin

(
ϕi − ϕj

2

)]−n

,

(3)
where ωi is the angular velocity of particle i.
We consider a thermal initial condition sampled from a

Boltzmann distribution with temperature T . In particu-
lar, the initial velocity v(t = 0) = Rω(t = 0) of a particle
follows the Maxwell-Boltzmann statistics with probabil-
ity density function:

f0(v) =
1√
2πv2th

e−v2/2v2
th (4)

where vth =
√
kT/m is the velocity scale set by the tem-

perature. k is the Boltzmann constant.
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In this work, we assume high enough T and small
enough number density, N/(2πR), so that the average
kinetic energy is much greater than the potential energy
(unlike in Ref. [5], where the energies are comparable).
In this regime, correlations between positions of the par-
ticles, higher order collisions, and collective effects can
be ignored as in Ref. [16].

FIG. 1. Particles on a ring of radius R. All but one parti-
cle are initialized from a thermal distribution. The ‘special’
particle (in blue) is initialized with a special velocity v′. The
special particle represents a perturbation to the thermal state.

We choose a ring to represent the 1D system instead
of a line so that particles do not escape to infinity under
repulsive forces. Modeling a line would require a con-
fining potential which leads to the particles at the edges
experiencing a different environment from those in the
center of the range. We are aware of the two artifacts of
the ring: curvature and periodic effects. To simulate a
particular linear number density, ρ, we tackle the ring ef-
fects by doubling R and the number of thermal particles,
N − 1, until our results converge.
We consider a perturbation to the thermal state by

starting the N th particle at velocity v′ as in Fig. 1. We
refer to such a particle as the ‘special’ particle and its
velocity as the ‘special velocity’, while we refer to the
rest of the particles as ‘thermal’. The velocity probability
density function of the total system is

f(v, t = 0) =
N − 1

N
f0(v) +

1

N
h(v, t = 0), (5)

where h(v, t) is the normalized perturbation (integral
over v is 1) such that

h(v, t = 0) = δ(v − v′). (6)

If we introduce the scaled velocity u = v/vth, then the

normalized (integral over u is 1) initial distribution is

f(u, t = 0) =
N − 1

N

1√
2π

e
−u2

2 +
1

N
δ(u− u′), (7)

Our goal is to study the evolution of h. According to the
Boltzmann H-theorem [10], the steady state distribution
f(v,∞), and therefore h(v,∞), is the equilibrium dis-
tribution f0. This is strictly true in the thermodynamic
limitN → ∞. For finiteN , however, the steady state has
a slightly different temperature Tf ≃ (N−1+u′2)T/N ≈
T for large N , which is a result of energy conservation.
We run many MD simulations where the N − 1 thermal
particles are randomly chosen from a thermal distribu-
tion. Averaging over these many runs gives an average
h(u, t).
From our MD simulations (as described in Appendix

A), the average h(u, t) starting from δ(u) is shown for two
times in Fig. 2. As expected, the perturbation’s peak
height decreases and its width increases as the system
evolves. The times shown are early in the thermaliza-
tion process where the population only spreads to small
velocities (|u| < 0.06). However, the cusp feature of the
delta function is maintained throughout this time period,
which is an indication that the gas is far from equilib-
rium. The parameters of the simulated gas are l0 = 1µm,
ϵ = 1 eV , kT = 100meV , m = me (mass of the electron),
n = 6, N = 41, and R = 6400µm. The times shown are
tf = 960, 3200ns = 0.48, 1.6× 10−4/Γ (Γ being the rate
of thermalization defined in Eq. (8)).

1x10-2

1x100

1x102

-0.04 -0.02  0  0.02  0.04

h

u

0.48
1.6

FIG. 2. MD simulated evolution of the perturbation initially
δ(u) for parameters N = 41 and R = 6400µm. The times
shown are tf = 960, 3200ns = 0.48, 1.6 × 10−4/Γ, and the
x-axis is the scaled velocity u. Comparing the distribution
at these two time instants and at t = 0 (not shown), the
perturbation width increases with time as its height drops.

To investigate the rate of thermalization, we introduce
Γ to be the initial rate of change of the variance of the
perturbation:

Γ =
d⟨(u− u′)

2⟩h
dt

∣∣∣∣∣
t=0

. (8)
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This definition of Γ implies that if the perturbation con-
tinues spreading at the initial rate, then it takes time of
order 1/Γ for the perturbation h(u) to reach variance∼ 1,
i.e., the special particle reaching the temperature of the
bath. In the rest of the paper, we show how Γ depends
on the system parameters {R,N,m, T, l0, ϵ, n, u

′}. To ex-
tract this dependence, we do MD simulations for different
parameter sets; however, as argued in Appendix A, such
N -body simulations are computationally very expensive
when N is large or the propagation time, tf , is large.

III. BOLTZMANN EVOLUTION OF THE GAS

A more efficient method to study Γ is to consider the
simpler process by which our system thermalizes, the
ternary collision. By knowing the frequency of such colli-
sions and how they change the particle velocities, we can
propagate the velocity distribution in time. The recipe of
such method is the Boltzmann equation. For those rea-
sons, we choose to focus on the Boltzmann method and
limit ourselves to a few MD simulations. In particular,
we use the MD simulations to extract some preliminary
scaling for Γ and as a benchmark to verify our Boltzmann
calculations.

The Boltzmann evolution is an example of a continuous
time Markov chain in which the next step distribution is
only dependent on the current distribution. If the pertur-
bation is initially localized at v′, h(v, 0) = δ(v−v′), then
after infinitesimal duration dt, the perturbation becomes

h(v, dt) = δ(v − v′) + dtKv′→v, (9)

where the kernel Kv′→v is the rate of transitioning from
velocity v′ to the range between v−∆v

2 and v+∆v
2 per ∆v

in the limit ∆v → 0 . After a finite time, the perturba-
tion delocalizes to a continuous range of v; the evolution
equation then becomes

h(v, t+ dt) = h(v, t) + dt

∫ ∞

−∞
Kv′→vh(v

′, t) dv′ (10)

Numerically, we work with a discretized version of the
distribution and the kernel. The velocity axis is divided
into bins of width ∆v, which we choose as a fraction of
vth. Each bin is labeled by its center velocity vi = i∆v
and extends from vi − ∆v

2 to vi +
∆v
2 . Equation (10)

becomes

hi(t+ dt) ≈ hi(t) + dt

j=∞∑
j=−∞

Kvj→vihj(t), (11)

where hi∆v is the population in bin vi,
To ensure that the population (particle number) is con-

served, the scattering rate out of velocity bin vi (Kvi→vi)
must equal the scattering rate into any other velocity vj .

That is,

Kvi→vi = −
∑
j ̸=i

Kvi→vj . (12)

where the minus sign indicates that population is lost
from bin vi.

A. Monte Carlo Simulation of K

To calculate the transition rates Kv′→v, we focus on
the special particle with velocity v′ and treat the rest
of the system as a thermal bath of temperature T and
number density ρ. Through a Monte Carlo (MC) simu-
lation on a line [17], we simulate the possible collisions
the special particle (referred to as particle 1) encounters
with two other thermal particles (referred to as particles
2 and 3).
The set of all possible 3-body collisions can be deter-

mined by first changing to an inertial frame moving with
velocity v′ where the special particle is at rest before
the collision. In this frame, particle 1 is initialized with
velocity v1 = 0 at the origin x = 0. We consider an ob-
servation region of length L centered around the special
particle. In a small time duration, there is a probability
that a thermal particle (particle 2 or 3) will enter the ob-
servation region from either side at x = ±L/2 with some
velocity (v2 or v3). We model the ‘launching’ of the parti-
cles into the observation region as a Poisson process with
rate r. The rate r determines the distribution for the de-
lay ∆t between the launched particles. By studying the
phase space distribution of a particle in the considered
thermal bath, we determine r and the statistics of the
launched particles. These statistics and the steps of the
algorithm are described in Appendix C.

IV. RESULTS

A. Scaling Behavior of the N-body Gas

In this section, we extract the 3-body scaling using MD
simulations. Before presenting the results of the simula-
tions, we predict the scaling by analyzing the equations
of motion of the N -body gas on the ring. The equations
of motion follow from the energy in Eq. (3):

mR
dωi

dt
=

N∑
j ̸=i

nϵ

2

(
l0
2R

)n
R
[
sin

(
ϕi−ϕj

2

)]n+1 cos

(
ϕi − ϕj

2

)
,

dϕi

dt
= ωi. (13)

These equations can be scaled resulting in equations of
motion independent of all dimensional parameters.
We reduce the number of parameters by first identi-

fying the length, time, and angular velocity scales. The
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angular velocity scale comes naturally from the thermal
velocity: ωth = vth/R, where vth was defined in the con-
text of Eq. (4). The dynamical time scale is proportional
to the average orbital time: td = 1/ωth. The simple form
of the inverse power potential is utilized to find the length
scale. The pairwise interaction can be rewritten as

U(d) = kT

(
l

d

)n

, (14)

where

l = l0

( ϵ

kT

) 1
n

(15)

is the length scale (closest approach distance) set by the
temperature.

If the scaled angular velocity is ω̃ = ω/ωth and the
scaled time is t̃ = t/td then

dω̃i

dt̃
=

N∑
j ̸=i

n

2

c[
sin

(
ϕi−ϕj

2

)]n+1 cos

(
ϕi − ϕj

2

)
,

dϕi

dt̃
= ω̃i, (16)

where

c =

(
l

2R

)n

. (17)

The dynamics of two systems in terms of the scaled vari-
ables is identical if their corresponding c, n, and N pa-
rameters are the same. The disappearance of the energy
scales (kT or ϵ) in the scaled Eq. (16) is owed to the scale
invariance of the inverse power potential. In Sec. IVF,
we demonstrate how the energies re-enter the dynamics
if we consider other potentials such as the Lennard-Jones
potential, which does not lead to scaled equations of mo-
tion.

From the definition of l in Eq. (15), kT scales as l−n.
Furthermore, the density ρ of the particles for a given
N scales as R−1. Thus, c scales as T−1ρn. If one scales
ρ→aρ and T→anT , c remains the same. Therefore, the
scaled dynamics (Eq. (16) alongside the scaled initial
conditions) remains the same . Given this constraint, one
can show that the most general time scale must be pro-

portional to ρ−sT−( 1
2−

s−1
n ), where s is an integer. These

time scales are also obtainable from dimensional analysis
of the system’s parameters. The most general rate γ is
thus governed by terms of the form (rewritten using l and
vth)

γ ∼ ρsls−1vth. (18)

Cases where s ≥ 0 have physical interpretations. s = 0
gives a time scale tc = l/vth which is proportional to the
interaction time during a binary collision. s = 1 gives the
dynamical time scale td which is proportional to the mean
time between binary collisions. Similarly, s = 2 gives

the rate of ternary interactions. The probability that
two particles existing in an interaction region of length l
scales as ρl, and the rate of a third particle entering this
region to interact with the other two particles is ρvth.
Thus the ternary interaction rate scales as ρ2lvth.
For each additional particle colliding, there is one more

factor of ρl. For small densities where ρl ≪ 1, the rel-
evant term for thermalization is the 3-body interaction
term since the two body collision is trivial. In the thermo-
dynamic limit N → ∞, we get the scaling of the 3-body
thermalization rate in Eq. (8):

Γ = an ρ
2lvth, (19)

where an is a dimensionless quantity depending only on
n in Eq. (1).
From Eq. (19), we expect that the evolution rate is

proportional to ρ2 T 1/3 for n = 6. To test this scaling, we
compare a gas with density ρ and temperature T evolving
for time tf with two other cases: 2ρ, T evolving for tf/4
and 2ρ, 8T evolving for tf/8. Figure 3 shows the evolved
distribution in the three cases. All three curves are the
same within statistical uncertainty, which confirms the
predicted scaling.
Parameters used in the MD simulation are N = 161

particles for three cases: R = 51200µm, kT = 100meV ,
tf = 12800ns; R = 25600µm, kT = 100meV , tf =
3200ns; and R = 25600µm, kT = 800meV , tf =
1600ns. In all cases, l0 = 1µm, ϵ = 1 eV , m = me,
and n = 6. In all cases, the final time tf = 1.6× 10−4/Γ
as computed from Eq. (19).

 0

 200

 400

 600

-0.02 -0.01  0  0.01  0.02

h

u

ρ,T,tf
2ρ,T,tf/4

2ρ,8T,tf/8

FIG. 3. Three different parameter sets with respective tf ∝
1/(ρ2 T 1/3) give identical final distributions.

B. Scaling of the Collision Kernel K

A necessary condition for Eq. (10) to reproduce the
MD evolution is that K∆v as computed from the MC
simulations must have the scaling of Γ in Eq. (19). We
show that K indeed has the desired scaling under the
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assumption that ρl ≪ 1, where l is defined in Eq. (15).
If we define x̃ = x/l, u = v/vth, and t̃ = tvth/l, then
those equations are

dui

dt̃
=

2∑
j=0,j ̸=i

n

(x̃i − x̃j)n+1
, (20)

dx̃i

dt̃
= ui. (21)

Since the length scale is l, we set the length of the
region L to scale with l. In our calculations, for example,
we get converging results for the scaling of K at L = 90l
and ρl = 5× 10−5. The scaled dynamics (Eq. (20)) of a
single trajectory only depends on n; that is, scaled initial
velocities and positions map to scaled final velocities and
positions irrespective of ρ and T . If ρ or T changes, the
rate r of launching changes according to Eq. (C1), and
the average time spent in the observation region scales
as l/vth.

Not all simulated trajectories result in a non-trivial
change in velocities. Only trajectories where the two
launched particles coincide for some time in the region
result in effective 3-body scattering. Otherwise, the col-
lision is just a sequence of binary collisions that only swap
velocities just like in a Newton’s cradle.

This coincidence rate Γcoin is calculated according to a
Poisson process with rate r and observation time window
tob ∝ l/vth.

Γcoin =
probability of two arrivals

tob

=
(rtob)

2 e−rtob

2tob
≈ 1

2
r2tob ∝ ρ2vthl (22)

The coincidence rate (rate of effective 3-body colli-
sions) is proportional to the rate of thermalization, Γ,
in Eq. (19) and the kernel K∆v, which we verify by
introducing the dimensionless scaled kernel

Gu′→u∆u =
Kv′→v∆v

ρ2lvth
, (23)

where u = v/vth. We show in Fig. 4 that G is indepen-
dent of T and ρ given that ρl ≪ 1, L/l ≫ 1. The scaled
kernel G0→u (denoted by G in the y-axis label) is plotted
against the scaled velocity u = v/vth. The parameters
used in the MC simulations are v′ = 0 (initially station-
ary special particle), n = 6, kT = 100meV , l0 = 1µm,
ϵ = 1 eV , m = me, bin width ∆v = 0.1vth/2000,
ρl = 5 × 10−5 and L = 90l, where l is defined in Eq.
(15).

Since G is independent of ρ and T , the kernel scales like
K∆v ∝ ρ2lvth. Although we do not explicitly show the
scaling with the other parameters (m,ϵ, l0), it is implied
in the definition of l and vth as described in the scaling
argument. The scaling of the kernel K with most of the
system parameters {m, ϵ, l0, T, ρ} means that effectively

1x100

1x102

1x104

-0.04 -0.02  0  0.02  0.04

G

u

ρl,T
ρl,T/2
ρl/2,T

fit

FIG. 4. G0→u for different values of T and ρl. The height
and shape of all curves are identical which demonstrates the

universal scaling. A fitting function α
|u|β e

−u2/2σ2

is also plot-

ted and explained in Sec. IVE.

we only need to simulate one representative case for dif-
ferent values of the remaining parameters {u′, n} in order
to cover the whole parameter space. We implement this
idea in a later section.
Using the generated values for G in Fig. 4, the rate

Γ in Eq. (19) can be computed using Eq. (11) and Eq.
(23) as the rate of change of the variance of h:

Γ =
d⟨(u− u′)2⟩h

dt

∣∣∣∣
t=0

= ρ2lvth

j=∞∑
j=−∞

Gu′→uj (uj − u′)2 ∆u

= anρ
2lvth, (24)

so the proportionality constant an is given by the vari-
ance of G:

an = ⟨(u− u′)2⟩G. (25)

C. MD and Boltzmann Evolution Comparison

To show that the kernel, K, contains the informa-
tion of the thermalization dynamics, we use it to evolve
h(v, 0) = δ(v) according Eq. (11) and compare the
evolved distribution to that of the MD simulation. We
tested several values of the evolution time tf and differ-
ent values for the system parameters. When N is big
and ρ is small, the Boltzmann and the MD evolved dis-
tributions are in agreement as shown in Fig. 5. This
demonstrates that the collision kernel, K, describes the
thermalization process in the low density limit. For
the comparison presented here, we use system param-
eters N = 161, R = 51200µm, l0 = 1µm, n = 6,
ϵ = 1 eV , kT = 100meV , m = me, and tf = 12800ns =
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1.6× 10−4/Γ, where Γ is computed from Eq. (19) using
ρ = (N − 1)/(2πR) ≈ 0.5mm−1.

 0

 200

 400

 600

-0.02 -0.01  0  0.01  0.02

h

u

MD
Boltzmann

FIG. 5. MD and Boltzmann evolved distributions are in
agreement. See text for relevant simulation parameters.

For smaller N or bigger ρ, we get a slight disagreement
between the two methods. Four-body collisions are sig-
nificant when ρ becomes large, which is not accounted
for in the collision kernel, K. Moreover, at fixed ρ, the
MD simulations require large N for convergence because
the perturbation, h, has a large effect on the thermal
particles for smaller N .

Equipped with the kernel, we can evolve the system
for longer times using the Boltzmann Eq. (11). First, we
calculated the kernel for a slow moving special particle
u′ = −0.25 and found the kernel G is approximately
translation invariant as later demonstrated in Fig. 8.
That is,

G0→u ≈ Gu′→u′+u. (26)

for |u′| ≪ 1. Therefore, the only information needed to
propagate small velocities to good accuracy is G0→u. In
this limit, the change in h during successive time steps
in Eq. (10) becomes a repeated convolution integral.

Figure 6 shows the evolution of the delta perturba-
tion over a time scale tf = 0.01/Γ as computed from
the Boltzmann Eq. (10). The system’s parameters are
N = 161, R = 51200µm, n = 6, ϵ = 1 eV , kT =
100meV , m = me, where Γ is computed from Eq. (19)
and ρ = (N − 1)/(2πR). At early times tfΓ < 1× 10−3,
h has a cusp maximum which resembles that of G. That
is because the change in h is approximately proportional
to G as in Eq. (9) when G is highly localized. At later
times tfΓ ∼ 1 × 10−2, the cusp flattens out as repeated
convolutions relax the population to a Gaussian distribu-
tion, which subsequently spreads at a steady rate during
the range of time considered. The relaxation to a Gaus-
sian is a consequence of the repeated convolution and the
Central-Limit theorem[18].

The spread of the perturbation in Fig. 6 indicates
that its variance (which is proportional to the energy) is
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FIG. 6. Evolution of the perturbation, h(u, t), at different
times and approach toward equilibrium. Gas parameters are
N = 161, n = 6, R = 51200µm, ϵ = 1 eV and kT = 100meV ,
m is the mass of the electron. Figure legends represent the
time for the distribution in fraction of 0.01/Γ, where Γ is
computed from Eq. (19). There are two stages for the peak of
the perturbation: non-Gaussian cusp and smooth Gaussian.

growing with time which is shown in Fig. 7. The linear
evolution of the perturbation’s energy in the time range
considered suggests modelling the thermalization process
as a random walk of the velocity u′ of the special particle.
The standard deviation of h is proportional to

√
t, just

like the standard deviation of displacement in a random
walk is proportional to the square root of the number of
steps taken.
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t (10-2/Γ)
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FIG. 7. The variance ⟨u2⟩h of the perturbation growing
linearly with time. The evolution of h itself is plotted in Fig.
6.

Each 3-body collision with the thermal particles gives
the special velocity a random kick leading to a random
walk in velocity space. Using the order of magnitude of
an in Tab. I, it takes ∼ 1/an ∼ 104 kicks to thermalize,
i.e., the variance ⟨u2⟩ approaching 1. The kick magnitude
is ∼ √

an ∼ 0.01, which is of the order of magnitude of
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the strongest kick in a 3-body collision (as explained in
Sec. IVE).

D. G for a moving special particle u′ ̸= 0

In this section, we demonstrate how other velocity
perturbations u′ ̸= 0 (moving special particles) scatter
within the bath due to 3-body collisions. Since the kernel
is proportional to the transition rates, Fig. 8 shows that
a perturbation near the tail of the Maxwell-Boltzmann
distribution at u′ = −3.0 scatters to neighboring veloci-
ties more rapidly than from u′ = 0. On the other hand,
scattering from small velocities such as u′ = −0.25 is
almost identical to u′ = 0.

1x100

1x102

1x104

-0.04 -0.02  0  0.02  0.04

G

∆u

0.00
-0.25
-3.00

FIG. 8. Kernel G for different special velocities. A pertur-
bation at the tail scatters faster than a perturbation at the
center. The u′ = −3.0 curve is slightly skewed to the right as
shown in the first moment ⟨u⟩ in Fig. 9. The x-axis here is
∆u = u− u′.

For several values of u′, the initial rate of change of
the mean scaled velocity d⟨u⟩/dt and the variance d⟨(u−
u′)2⟩/dt are calculated as in Eq. (24) and are shown
in Fig. 9. In particular, negative velocity perturbations
have a positive initial rate of change of the average, which
is a drag effect that slows down the special velocity. Also,
we note that the initial rate of change of the variance
only changes by a factor of ∼ 2. This indicates that the
definition of Γ in Eq. (8) leads to a reasonable estimate
of the time required for thermalization (i.e., Γ does not
strongly depend on u′).

From the ⟨(∆u)2⟩ curve, bigger velocity perturbations
transition faster to neighboring velocities. This is an in-
dication of detailed balance [19] which we numerically
checked for pairs of velocity states. For example, the
bins at u = −3.00 and u = −2.96 exchange popula-
tions at rates compatible with the steady state Maxwell-
Boltzmann distribution. That is, for n = 6 we numeri-
cally found that

-10

-5

 0

 5

10

-3 -2 -1  0  1  2  3

ra
te

 (
1

0
-4

)

u’

d<u>/dt
d<(∆u)2>/dt

FIG. 9. Initial rate of change (scaled by ρ2lvth) of the first
moment ⟨u⟩ and the variance ⟨(u − u′)2⟩ for perturbations
localized at different velocities. The calculations were done
for negative u′, but were reflected to extend over positive u′

for clarity. The small fluctuations in the curves are due to
statistical noise.

G−3.00→−2.96

G−2.96→−3.00
= 1.12± 0.04, (27)

while the ratio between the Maxwell-Boltzmann popu-

lation at the corresponding bins is e−2.962/2/e−3.002/2 =
1.13.

E. Dependence of G on the Potential Power n

Figure 10 shows how the kernel compares for different
powers n in the inverse power potential, Eq. (1). The
scaled kernel is generally smaller for bigger n, indicating
that the special particle scatters more slowly when the
potential is steeper. Particularly, in the limit n → ∞,
the potential in Eq. (1) approaches hard walls at |d| =
l0, and the binary collision is an instantaneous velocity
swap of two particles of size 2l0. In such limit, a ternary
coincidence (Eq. (22)) necessary for thermalization is
impossible. This is reflected in the decrease of an with
increasing n, where the values of an computed using Eq.
(25) are shown in Tab. I.
To understand why the kernel has its shape and why

different values of n produce different shapes, we fitted
the kernel guided by the details of the MC simulation. In
Fig. 8, the kernel G−3.0→−3.0+∆u near ∆u = 0 decreases
rapidly with increasing |∆u|, and decreases more rapidly
for |∆u| >∼ 0.03. To capture both of these features, G
can be fitted to a Gaussian modulated power law:

g(u) =
α

|u|β
e−u2/2σ2

(28)

as shown in Fig. 4 for n = 6. The parameters α, β,
and σ are shown for several values of n in Tab.I. The α
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FIG. 10. The collision kernel G0→u for different potential
power n values. G0→u is generally bigger for smaller n for the
range of u shown.

parameter is proportional to the over all scattering rate
K0→0, Eq. (12), and the power β measures how fast
the kernel drops with increasing |u| near u = 0 as in
Fig. 4. We observe that both α and β decrease as n
increases (i.e., when the potential is becoming steeper
and approaching hard walls).

The choice of such fitting function can be explained by
inspecting mono-energetic collisions in which the incom-
ing energies are fixed as opposed to having a continuous
‘thermal’ distribution. Figure 11 shows the effect on the
special particle starting from zero velocity in two launch-
ing cases: a symmetric case v2 = vth, v3 = −vth, and
an asymmetric case v2 = 1.1vth, v3 = −0.9vth. The final
kick the special particle receives, u1f , is plotted against
the delay ∆t between launching particles 2 and 3. Both
curves look similar with long tails for |∆t| ≳ 3l/vth. The
long tails happen because a large delay results in a tiny
momentum transfer to the special particle. They are re-
sponsible for the fast drop of the kernel G0→u around
u = 0, which is captured in the power-law term of the
fitting function g. Moreover, both curves peak at a max-
imum momentum transfer u1f,max ∼ 0.03. The Gaussian
modulation term in Eq. (28) is a way to average over the
distribution of the launched particles from the thermal
environment. Its width σ is not of order 1 but rather
reflects the value of the fractional momentum transfer
u1f,max. In particular, σ correlates with |u1f,max|; they
both peak at n = 6 and drop monotonically away from
n = 6 as shown in Tab. I.

For n = 2, |u1f,max| was found to be ≈ 1×10−7 which
is not different from 0 within errors resulting from the nu-
merical solution of the equations of motion, Eq. (20). In
fact, for the inverse square power potential it was shown
that the equations of motion are integrable and the po-
tential is, surprisingly, isospectral (momenta only triv-
ially swap) [14]. That means that a system with such
pairwise interaction can only thermalize through four or
higher body collisions.

-0.04

-0.02

0.00

0.02

0.04

-4 -2  0  2  4

u
1

f

∆t (l/vth)

symmetric
asymmetric

FIG. 11. Scaled kick u1f as a function of the scaled delay
∆t (in units of l/vth) between launches. The symmetric case
is for u2i = 1 and u3i = −1, while the asymmetric case is for
u2i = 1.1 and u3i = −0.9. The curve for the asymmetric case
was shifted horizontally for clarity. Both curves have long
tails and peak at u1f,max ∼ 0.03.

TABLE I. Rate constants an and fitting parameters for dif-
ferent potential powers n. The uncertainty in α, β, and σ is
±0.001.

n an α β σ |u1f,max|
2 0 0.000 1× 10−7

4 3.49× 10−4 0.237 1.182 0.022 2.69× 10−2

6 2.58× 10−4 0.182 1.117 0.027 3.06× 10−2

8 1.62× 10−4 0.148 1.076 0.025 2.76× 10−2

10 1.02× 10−4 0.129 1.046 0.021 2.37× 10−2

12 6.55× 10−5 0.115 1.023 0.018 2.04× 10−2

F. Broken Scaling in Lennard-Jones potential

In constrast with the inverse power law potential in
Eq. (1), the Lennard-Jones potential is

ULJ(d) = ϵ

[(
l0
d

)12

−
(
l0
d

)6
]
. (29)

This potential is different from the inverse power poten-
tial in important ways. First, it is attractive at long
distance. Moreover, there is possibility of 3-body recom-
bination. Most importantly, the scaling of the inverse
power potential is lost in the Lennard-Jones potential.
That is, we cannot fix the potential energy scale to kT
as we did in Eq. (14).
Figure 12 shows G0→u for the Lennard-Jones poten-

tial for three different temperatures kT = 0.1, 0.8, and
10 eV . In all cases, the potential energy scale ϵ = 1 eV .
When the kinetic energy (kT ) is small compared to the
potential energy, the scaled G0→u is almost the same
for different temperatures as seen in the 0.1 and 0.8 eV
curves. When the kinetic energy is larger, G0→u has a
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significantly different shape as seen in the 10 eV curve.
This shows the universal scaling (compare to Fig. 4) re-
mains approximate at low T but is lost at high T . The
simulation parameters are the same as those used for Fig.
4. The G kernel here is still scaled by l defined through
Eq. (15) with n = 6. For kT = 100meV , the dimension-
less thermalization rate an is found to be 3.00 × 10−4,
which is bigger than that of the power law potential with
n = 6 by 16%. Thus, the Lennard-Jones potential gives
qualitatively similar thermalization rates to the inverse
power potential even with the differences noted above.

1x100

1x102

1x104

-0.04 -0.02  0  0.02  0.04

G

u

0.1eV
0.8eV
10eV

FIG. 12. Scaled collision kernel for different kT with ϵ = 1eV
and other parameters from Sec. IVB. The small temperature
curves overlap, but the high temperature curve deviates indi-
cating the lack of scaling symmetry.

It is interesting to compare the rate of 3-body recombi-
nation to the rate of thermalization for 1D and 3D gases.
In the present 1D gas, both processes involve three par-
ticles, and their rates scale like ρ2. In dilute 3D gases,
thermalization is a 2-body process (with rate ∝ ρ) and
happens at a much faster rate than 3-body recombina-
tion. Moreover, for fixed ρ in our 1D gas, we find that the
ratio of 3-body recombination rate to thermalization rate
drops rapidly with increasing T . This could be explained
by noting that at low T , a pair of particles approaching
each other from far distance have small positive relative
energy. If a third particle interact with the pair, there
is a high chance that the energy of the pair transfers to
the third particle, leaving the pair in a bound state with
negative relative energy. At high T , the chances of the
third particle taking away enough energy to switch the
sign of the energy of the pair is small.

V. CONCLUSION

We have studied the rates of classical three-body ther-
malization in dilute one-dimensional gases with inverse
power law interaction with n > 2 for various system pa-
rameters. Through MD simulations of the N -body gas
and MC simulations of the 3-body scattering kernel, we

showed that the gas relaxes with a rate proportional to

ρ2
√

kT
m l0(

ϵ
kT )

1
n . The scaling of the thermalization rate

in terms of T is exact for the inverse power potential,
but only approximate at low T for the Lennard-Jones
potential.
Classical 3-body thermalization in 1D is significantly

slow (compared to higher dimensional gases) not only due
to the ρ2 scaling, but also the smallness of the proportion-
ality constant, which comes from the weak redistribution
of energy in each collision. The implication is that di-
lute 1D gases preserve their out-of-equilibrium states for
a relatively long time. For example, a 1D Nitrogen atom
gas with ρ = 1 atom/10µm at T = 10K interacting un-
der the Nitrogen-Nitrogen Lennard-Jones potential takes
around 10s to thermalize according to Eq. (24) and pa-
rameters found in [20].
By rewriting the equations of motion in a dimension-

less way, we provided arguments for the scaling of both
MD and MC simulations, which we verified numerically.
Moreover, we have shown that the Boltzmann equation
using a three-body collision kernel is sufficient to repro-
duce the evolution of low density N -body gas calculable
from MD simulations. Additionally, the collision ker-
nel behaves like a power law for small momentum trans-
fer. For bigger momentum transfer, it is modulated by a
Gaussian with width of order of the maximum momen-
tum transfer during a mono-energetic collision. Finally,
the collision kernel provided us with an understanding of
how the overall rates and the statistical details of three-
body scattering depend on the potential power n.
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Appendix A: Molecular Dynamics Simulation

In this appendix, we provide details and analysis of the
MD simulations. To simulate the gas of N particles in
Fig. 1, the initial velocities are chosen as per Eq. (5),
whereas the initial locations are chosen randomly accord-
ing to a relative potential energy Boltzmann factor. We
evolve the system from time ti = 0 to time tf according
to Eq. (13) using Runge–Kutta methods with adaptive
time step [21]. At tf , we subtract the background ther-
mal distribution as per Eq. (5) to single out the pertur-
bation h(v, tf ). We average over many trajectories and a
window of time around tf to reduce the statistical noise.
The number of terms in the force calculation in Eq.

(13) scales like N2 for a single time step, which makes
it difficult to simulate more than 30 particles. To de-
crease the computational time, we utilize that the inverse
power potential in Eq. (1) is relatively ‘short-range’ for
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n ≥ 2 and small density ρ. In this regime, particles
are only interacting significantly with their close neigh-
bors, while the interaction with further particles can be
ignored. This allows us to do nearest neighbors calcu-
lations for the force, which results in a time complexity
that scales like N . The neighbors are selected by order-
ing the particles according to their initial locations. For 3
nearest neighbors, for example, particle number 5 experi-
ences a force from particles numbered 2-4 and 6-8. Since
the potential is infinitely repulsive at short distance, the
particles cannot pass through each other and the particle
order is fixed. We checked that the results converged for
3 nearest neighbors which was used for all MD simula-
tions in this paper. Using this method, we could simulate
more than 160 particles.

To ensure that 3-body collisions are the largest effect,
we choose a small density ρ = (N − 1)/2πR. We verify
the ρ2 scaling by simulating a density ρ for time tf and
comparing the final h to that of another simulation with
ρ/2 (by doubling R for a given N) for time 4tf . The
results converge for densities near (ρl ∼ 1× 10−3). From
analysis of the Runge-Kutta with adaptive time step al-
gorithm, the related best-case time complexity scales like
1/ρ.

Once we fix the convergence density, we double N and
R in steps to obtain thermodynamic convergence. The
results converge for particle number near N = 160. Once
we fix the convergence particle number, we run the simu-
lation for a longer time to get appreciable evolution of h.
All these considerations combined render the MD simu-
lations computationally expensive, and we chose to limit
the simulation time to tf of the order 1× 10−4/Γ, where
Γ is from Eq. (19).

Appendix B: Boltzmann Equation

In the kinetic theory of gases, the state of a gas in 1D
is described by the aggregate one-particle distribution in
coordinate-velocity space f(x, v, t) dxdv. The evolution
of such distribution is described by the Boltzmann equa-
tion [22]:

∂f

∂t
+ v

∂f

∂x
+

f

m

∂f

∂v
=

(
∂f

∂t

)
c

, (B1)

where f is the external force and m is the mass of the
particle. For an isolated system with uniform density
ρ, which we assume in our work, the velocity and space
derivative terms drop out. In this case, the only way to
change f is through inter-particle interactions dictated by
the collision term on the right hand side. (Henceforward,
we use f to represent the distribution in velocity only.
The one-particle velocity-space distribution is ρf , where
ρ is the number density.) The collision term is modelled
and computed in the MC simulation in Appendix C.

Appendix C: Monte Carlo Simulation

In this Appendix, we provide the relevant distributions
and steps of the Monte Carlo Algorithm for generating
the discrete version of Kv′→v. First, we treat the case of
an initially stationary special particle, v′ = 0. The one-
particle phase space thermal distribution is given by ρf0
where f0 is the equilibrium velocity distribution in Eq.
(4). At x = L/2, particles are entering the observation
region with negative velocity. The rate of entry is equal
to the probability current (flux) ρf0|v| integrated from
v = −∞ to 0. We get the same rate from the left. So
overall we get a rate of

r =

∫ +∞

−∞
ρf0(v)|v| dv = ρvth

√
2

π
, (C1)

and a velocity distribution of the launched particles

Plaunch(v) = ρf0(v)|v|/r, (C2)

which is the probability that v lies between v−dv/2 and
v + dv/2 per dv (normalized so the integral over all v is
1).
To treat the case v′ ̸= 0, we go to the reference frame

moving with v′. The distribution in that frame is ρf0(v+
v′); therefore, the launching rate is generally

r =

∫ ∞

−∞
ρf0(v + v′)|v| dv

=
ρvth√
2π

∫ ∞

−∞
e−(u+u′)2 |u| du

=
ρvth√
2π

[
2e

−u′2
2 +

√
2πu′ erf

(
u′
√
2

)]
, (C3)

where erf is an error function. The general launch dis-
tribution for velocity is

Plaunch(v) = ρf0(v + v′)|v|/r. (C4)

The rate r determines the probability distribution for a
delay time between the launching of particles 2 and 3:

Pdelay(∆t) = re−r∆t. (C5)

Using these distributions, we implement the MC sim-
ulation as follows: 1) At time t = 0, particle 1 is ini-
tialized at x = 0 with v1 = 0. 2) Particle 2 is initial-
ized with a random velocity v2 picked from the distri-
bution Plaunch(v) in Eq. (C4) at x = ±L/2 depending
on the sign of v2. 3) Particle 3 is initialized with a ran-
dom velocity v3 picked from the distribution Plaunch(v)
at x = ±L/2 depending on the sign of v3, with a ran-
dom time delay ∆t chosen according to Pdelay(∆t) in Eq.
(C5). 4) The 3 initial velocities v1, v2, and v3 are added
to the appropriate bins (histogram) of the discretized
approximation of K, Eq. (11), with a value of −1 be-
cause these velocities are destroyed through the collision.



12

5) Using Runge-Kutta methods, the particles are prop-
agated until they collide and separate appreciably. 6)
The final velocities w1, w2, and w3 are added to the his-
togram with a +1 because these velocities are created. 7)
Steps 1-6 are repeated for a number of trajectories Ntraj

until the statistical noise decreases to a sufficient level.
8) The histogram is divided by Ntrajtavg∆v where tavg
is the inverse of the rate r. This discretized approxima-
tion converges to Kv′→v′+v in the limit Ntraj → ∞ and
∆v → 0.

This prescription is a Monte Carlo evaluation of the
scattering kernal where our delta-perturbative model of
the collision term can be read from Eq. (10) as(

∂h

∂t

)
c

=

∫ ∞

−∞
Kv′→vh(v

′, t) dv′, (C6)

where K is computed from the MC simulation. For v′ =
0,

K0→v =

∫ ∫ ∫
dv2dv3d∆t

ρf0(v2)|v2|
r

ρf0(v3)|v3|
r

× re−r∆t × r[−δ(v)− δ(v2 − v)− δ(v3 − v)

+ δ(w1 − v) + δ(w2 − v) + δ(w3 − v)].
(C7)

where w1, w2, w3 are the outgoing velocities of the colli-
sion and are functions of the incoming velocities v2, v3
and the time delay ∆t. r is the rate of launching in Eq.
(C1), and f0 is the Maxwell distribution in Eq. (4). The
first three terms in the integrand are the normalized dis-
tributions (integral over the respective domain being 1)
of v2, v3, and ∆t. The last term (r×the square bracket)
is the rate of destruction subtracted from the rate of cre-
ation of velocity v. For special velocity v′ ̸= 0, we get
a similar integral expression but with the velocity argu-
ments shifted as in Eq. (C4) and r defined in Eq. (C3).

Our collision term is comparable to that in Ref. [10]
which is derived for 2-body collisions in 3D using the
differential cross-section. It is also comparable to that
in Ref. [15], which handles 3-body collisions in 1D but
assumes constant transition rates for all v1, v2, v3 →
w1, w2, w3 interactions compatible with energy and mo-
mentum conservation. The collision term in Ref. [15]
yields an analytically solvable Boltzmann Equation, but
is not derivable from an inter-particle interaction.
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