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ABSTRACT
There is substantial interest in the use of machine learning (ML)-
based techniques throughout the electronic computer-aided design
(CAD) flow, particularly methods based on deep learning. How-
ever, while deep learning methods have achieved state-of-the-art
performance in several applications (e.g. image classification), re-
cent work has demonstrated that neural networks are generally
vulnerable to small, carefully chosen perturbations of their input
(e.g. a single pixel change in an image). In this work, we investigate
robustness in the context of ML-based EDA tools—particularly for
congestion prediction. As far as we are aware, we are the first to
explore this concept in the context of ML-based EDA.

We first describe a novel notion of imperceptibility designed
specifically for VLSI layout problems defined on netlists and cell
placements. Our definition of imperceptibility is characterized by a
guarantee that a perturbation to a layout will not alter its global
routing. We then demonstrate that state-of-the-art CNN and GNN-
based congestion models exhibit brittleness to imperceptible per-
turbations. Namely, we show that when a small number of cells (e.g.
1%—5% of cells) have their positions shifted such that a measure of
global congestion is guaranteed to remain unaffected (e.g. 1% of the
design adversarially shifted by 0.001% of the layout space results in
a predicted decrease in congestion of up to 90%, while no change
in congestion is implied by the perturbation). In other words, the
quality of a predictor can be made arbitrarily poor (i.e. can be made
to predict that a design is “congestion-free”) for an arbitrary input
layout. Next, we describe a simple technique to train predictors that
improves robustness to these perturbations. Our work indicates
that CAD engineers should be cautious when integrating neural
network-based mechanisms in EDA flows to ensure robust and
high-quality results.

1 INTRODUCTION
Electronic design automation (EDA) flows involve significant opti-
mization and verification challenges that continue to scale as the
complexity of designs increases. There is substantial interest in
using machine learning techniques for solving electronic computer-
aided design (CAD) problems ranging from logic synthesis to physi-
cal design and design for manufacturability (DFM) [15]. Prior work
has demonstrated that deep learning-enhanced design flows are
faster and more scalable, particularly when integrated to augment
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the time-consuming stages of layout [5, 13, 20], design space explo-
ration [11], logic optimization [21] and lithographic analysis [22].

However, although neural networks have been extremely suc-
cessful in the aforementioned EDA tasks, recent work [10, 18] has
demonstrated that image classifiers can be fooled by small, care-
fully chosen perturbations of their input. Notably, Su et al. [17]
demonstrated that neural network classifiers which can correctly
classify “clean” images may be vulnerable to targeted attacks, e.g.,
misclassify those same images when only a single pixel is changed.

The question that we aim to explore in this work is the following:

To what degree are neural network-based
congestion predictors vulnerable to small,
but valid, changes in layout input?

As the application of machine learning to production EDA tasks
becomes more widespread, understanding and addressing this ques-
tion will become increasingly critical. In this work, we provide
evidence that supports an affirmative answer:

Congestion predictors erroneously predict
large changes to routing congestion with
respect to changes to the layout that do not
change the global routing.

Specifically, we investigate a novel notion of validity and design two
efficient methods for finding perturbations that demonstrate brittle-
ness of recently proposed congestion predictors. Furthermore, we
describe one potential approach to address the highlighted issues
and demonstrate that modifying the training procedure to promote
robustness is one promising direction to address brittleness to im-
perceptible changes. Although we focus on congestion prediction,
our work generalizes to arbitrary predictive models integrated in
EDA pipelines. More generally, our work motivates the need for
careful evaluation of the generalization of ML-based EDA tools—in
excess of typical performance metrics reported on a train-test split.

1.1 Contributions
The primary contribution of this work is to demonstrate that mod-
ern deep learning-based EDA tools—specifically congestion predic-
tors—are vulnerable to valid perturbations to their inputs, i.e. may
exhibit poor generalization to perturbations of the cell layout.

Inspired by the perspective of adversarial perturbations, given
an input design layout, we characterize small perturbations as (1.)
perturbations that result in the adjustment of relatively few cell
positions and (2.) perturbations that maintain the global congestion
structure (Sec. 3). We describe a numerical algorithm to efficiently
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search the feasible adversarial neighborhood of an input to find
small perturbations that maintain validity of the input design while
drastically reducing the efficacy of ML-based EDA tool predictions
(Sec. 3). We describe two variants of the proposed method: while
both rely on knowledge of the predictor weights—known as a white-
box perturbation model—one method requires knowledge of the
underlying congestion structure, while the second method does
not necessitate such information. We then demonstrate (1.) that
congestion predictors are vulnerable to both models and (2.) that
adversarial training significantly improves robustness with only a
modest performance trade-off. We emphasize that while we frame
our discussion in the context of robustness to perturbations, our
findings motivate a broader need to study implications of poor
generalization when integrating ML-based tools into design flows.

In summary, our contributions include the following:
(1) A novel formulation of the feasible neighborhood of an in-

put design—i.e. given a layout, what small perturbations
maintain the relevant measures of congestion?

(2) Efficient supervised and unsupervised algorithms for com-
putationally searching the neighborhood of a layout.

(3) Exploration of adversarial training as a way to induce ro-
bustness and improve generalization.

(4) Under a previously defined characterization of predictive
quality for congestion tasks [1], we show that the bench-
mark layouts we evaluated can be perturbed such that the
congestion predictions on the perturbed layouts are poor.

2 PRELIMINARIES AND RELATEDWORK
In this section, we provide an overview of ML-based EDA methods
and adversarially robust prediction. Let 𝑥,𝑦 ∈ R𝑛 be vectors cor-

Number of components 𝑛 ∈ R+
Placement coordinates 𝑥,𝑦 ∈ R𝑛 , 𝑋 = [𝑥 : 𝑦] ∈ R𝑛×2
Placement perturbation 𝛿𝑥 , 𝛿𝑦 ∈ R𝑛 , Δ = [𝛿𝑥 : 𝛿𝑦] ∈ R𝑛×2
Neural network parameters 𝜃

Early global routing bins 𝑊 × 𝐻

Feature map 𝑀 ∈ R𝑊 ×𝐻

Predicted congestion map 𝑓𝜃 (𝑀)

Figure 1: Notation

responding to the coordinates of 𝑛 components such that the 𝑖-th
component has coordinates encoded in the 𝑖-th row of 𝑋 := [𝑥 : 𝑦];
[𝑥 : 𝑦]𝑖 . We aim to find perturbations to the layout so that the
resulting layout satisfies certain constraints (i.e. remains in the
neighborhood of the original layout with respect to global routing).

2.1 Global routing
The VLSI routing problem is usually solved in two steps: (1.) global
routing and (2.) detailed routing. The principle aim of the global
routing step is to generate a routing solution on a discretization of
the layout space, represented as a grid graph and provide a preferred
routing region (i.e. a route guide) for the detailed router.

A typical multi-commodity flow formulation of global routing
partitions the routing space into regular rectangles (G-Cells) and
generates a grid graph 𝐺 = (𝑉 , 𝐸) in which each vertex 𝑣 ∈ 𝑉

represents a G-Cell and each edge 𝑒 ∈ 𝐸 represents the connection
between adjacent G-Cells. The capacity of an edge represents the
maximum number of wires that can go through the edge and the
variable assignment of the edge corresponds the number of wires
that are currently using the edge, while the overflow is denoted by
the number of wires that exceeds the capacity. For each net, the
routing problem is to find a path that connects all the pins of a net in
the given grid graph while avoiding overflow on the edges. In other
words, the global router maximizes a measure of routability with
respect to the detailed router while satisfying certain constraints to
manage design rule violations (DRVs), pin accessibility, and irregu-
lar module geometries. An important concept is the construction
of the graph 𝐺 . The graph, global routing solution, and associated
congestion metrics remain consistent as long as individual cells
remain within their G-Cells, regardless of their precise positions
within each G-Cell.

2.2 RUDY
Rectangular Uniform wire Density (RUDY) [16] is a method to
estimates the wirelength density by uniformly spreading the wire
volume of nets into its bounding box. It is very commonly used as
a feature to indicate the relative congestion of a region. The RUDY
map of a net 𝑒 represents the average wirelength per unit area in
the bounding box of the net: 𝜇 (𝑒 ) ( 1

𝑥max−𝑥min
+ 1

𝑦max−𝑦min
) where the

net-map 𝜇 (𝑒 ) ∈ R𝑊 ×𝐻 is

𝜇
(𝑒 )
𝑥𝑦 =

{
1 𝑥min ≤ 𝑥 ≤ 𝑥max and 𝑦min ≤ 𝑦 ≤ 𝑦max
0 otherwise

𝑥min, and 𝑥max correspond to the maximum and minimum 𝑥 coor-
dinates of the associated net, and 𝑦min and 𝑦max correspond to the
maximum and minimum 𝑦-coordinate of the associated net. The
RUDY score assigned to a location (𝑥,𝑦) is computed by aggregating
RUDY scores over all nets 𝑒 ∈ 𝐸.

2.3 Machine learning and EDA
As previously mentioned, ML-based prediction has been explored
for various early-stage tasks in EDA flows including routability,
DRC, and IR drop prediction [5, 13, 20]. For the purposes of this
work, we focus on the congestion prediction framework proposed
by Liu et al. [13]. Notably, Liu et al. [13] use the Innovus global
router to obtain ground truth congestion hotspots, while an𝑊 ×𝐻×
3 feature map𝑀 , comprised of RUDY scores [16], an associated pin-
density variant PinRudy, and a macro placement map MacroRegion
is derived from the associated cell placement. A neural network is
used to learn a mapping from feature maps to congestion hotspots.
The authors of [13] also derive the gradients of the unsupervised
congestion penalty 1

𝐻𝑊
| |𝑓𝜃 (𝑀) | |2

𝐹
with respect to cell locations.

2.4 Machine learning and robustness
Consider the network 𝑓 : R𝑑 → R𝑘 , where the input is𝑑-dimensional
and the output is a 𝑘-dimensional vector of likelihoods. For ex-
ample, the input could be a 𝑑-dimensional image and the 𝑗-th
entry of the output could correspond to the likelihood the im-
age belongs to the 𝑗-th class. The associated prediction is then
𝑐 (𝑥 ;𝜃 ) = argmax𝑗∈[𝑘 ] 𝑓𝑗 (𝑥 ;𝜃 ).
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Recently, machine learning practitioners have not just been con-
cerned that the prediction be correct, but also want robustness to
random or adversarial noise, i.e. small perturbations to the input
which may change the prediction to an incorrect class. We define
the notion of 𝜖-robustness below:

Definition 2.1 (𝜖-robust). 𝑓 parameterized by 𝜃 is called 𝜖-robust
with respect to norm 𝑝 at 𝑥 if the prediction is consistent for a small
ball of radius 𝜖 around 𝑥 :

𝑐 (𝑥 + 𝛿 ;𝜃 ) = 𝑐 (𝑥 ;𝜃 ), ∀𝛿 : | |𝛿 | |𝑝 ≤ 𝜖. (1)

The minimal ℓ𝑝 -norm perturbation 𝛿∗𝑝 required to switch an
sample’s label is given by the solution to the following problem:

𝛿∗𝑝 = argmin | |𝛿 | |𝑝 s.t. 𝑐 (𝑥 ;𝜃 ) ≠ 𝑐 (𝑥 + 𝛿 ;𝜃 ).

A significant amount of existing work relies on a first-order approx-
imations and Hölder’s inequality to recover 𝛿∗.

ProjectedGradient Descent (PGD) is a first-ordermethod that can
be used to find an approximation of 𝛿∗𝑝 . PGD-type algorithms consist
of a descent step followed by a projection onto the feasible set 𝑆 .
Given the current iterate 𝑥 (𝑖 ) , the next iterate 𝑥 (𝑖+1) is computed
via a transformation 𝑠 applied to the gradient of the loss function 𝐿.
For example, if labels are available to the perturbation algorithm, 𝐿
could be the original loss used to train the network 𝑓 . Alternatively,
𝐿 can be substituted for an unsupervised metric.

𝑢 (𝑖+1) = 𝑥 (𝑖 ) + 𝜂 (𝑖 ) · 𝑠 (∇𝐿(𝑥 (𝑖 ) ))

𝑥 (𝑖+1) = 𝑃𝑆 (𝑢 (𝑖+1) )
(2)

𝜂 (𝑖 ) > 0 the step size at iteration 𝑖 , 𝑠 : R𝑑 → R𝑑 determines
the descent direction as a function of the gradient of the loss 𝐿
at 𝑥 (𝑖 ) and 𝑃𝑆 : R𝑑 → 𝑆 is the projection on 𝑆 . For example, an
ℓ1-perturbation model of radius 𝜖 , we denote by 𝐵∞ (𝑥, 𝜖) = {𝑧 ∈
R𝑑 | | |𝑧 −𝑥 | |∞ ≤ 𝜖}. A crucial choice is that of the descent direction
𝑠 (∇𝐿(𝑥𝑖 )), a mapping 𝑠 applied to a gradient. For example, the
steepest descent direction [2]:

𝛿∗𝑝 = arg max
𝛿∈R𝑑

⟨𝑤, 𝛿⟩ s.t. | |𝛿 | |𝑝 ≤ 𝜖 (3)

with 𝑤 = ∇𝑓 (𝑥𝑖 ) ∈ R𝑑 , the maximizer of a linear function over a
given ℓ𝑝 ball constraint. Thus one gets 𝛿∗∞ = 𝜖sign(𝑤) and 𝛿∗2 =

𝜖𝑤/| |𝑤 | |2 for 𝑝 = ∞ and 𝑝 = 2 respectively, which define 𝑠 .

3 A NOVEL NOTION OF IMPERCEPTIBILITY
FOR CONGESTION PREDICTION

In this section, we describe a method to compute layout perturba-
tions that guarantee consistency of the global routing. We present
a general illustration of our method in Fig. 2. In other words, given
a trained model, we seek to adjust a given layout (the coordinates
of a subset of the cells in a design) such that the adjusted layout
remains valid, but spoils the congestion predictions of the model.

In particular, we define the feasible set of perturbations that we
utilize in the context of congestion predictions and an algorithm to
perform a projection onto this set. Specifically, we discuss perturba-
tions of coordinate-based representations of chip layouts. Inspired by
earlier work on adversarial attacks designed for image classifiers [7–
9], we impose a natural set of constraints on the perturbation to

ensure that the global routing does not change. Individually, these
constraints prohibit cells from moving outside of their G-Cell tiles.

Let 𝑋 := [𝑥 : 𝑦]⊤ ∈ R𝑛×2 be the coordinate assignments to each
cell and 𝛿 := [𝛿𝑥 : 𝛿𝑦]⊤ ∈ R𝑛×2 be a perturbation. For simplicity,
and without loss of generality, let us consider the 1st column of
𝑋 and 𝛿 ; 𝑥, 𝛿𝑥 (i.e. the 𝑥-coordinate of each cell and associated
perturbations such that the perturbed cell 𝑥-coordinates of the
layout is given by 𝑥 + 𝛿𝑥 ).

We say that 𝛿𝑥 is an imperceptible perturbation in the context of
physical design if the following conditions hold:

(1) Global imperceptibility: the maximum number of cells that
can be moved is bounded by 𝜖0: | |𝛿 | |0 ≤ 𝜖0 (e.g. 1% of the
total number of cells.

(2) Local imperceptibility: a cell can only be moved within it’s
associated G-Cell: 𝑙𝑖 ≤ (𝑥 + 𝛿𝑥 )𝑖 ≤ 𝑢𝑖

Given 𝑥 ∈ [0, 1]𝑑 , we define the feasible set—the intersection of
the ℓ0-ball of radius 𝜖0, the upper and lower-bound—box—constraints
on each entry of 𝑥 , and the set [0, 1]𝑑 :

𝑆 (𝑥) =
{
𝑧 ∈ R𝑑 |

𝑑∑︁
𝑖=1

1 |𝑧𝑖−𝑥𝑖 |>0 ≤ 𝜖0,

𝑙𝑖 ≤ 𝑧𝑖 − 𝑥𝑖 ≤ 𝑢𝑖 , 0 ≤ 𝑧𝑖 ≤ 1
} (4)

First, note that intersection of the two constraints 0 ≤ 𝑧𝑖 ≤ 1 and
𝑙𝑖 ≤ 𝑧𝑖 − 𝑥𝑖 ≤ 𝑢𝑖 may be written:

max{0, 𝑙𝑖 + 𝑥𝑖 } ≤ 𝑧𝑖 ≤ min{1, 𝑢𝑖 + 𝑥𝑖 }

So, the feasible set may be simplified and re-written

𝑆 (𝑥) =
{
𝑧 ∈ R𝑑 |

𝑑∑︁
𝑖=1

1 |𝑧𝑖−𝑥𝑖 |>0 ≤ 𝜖0,

max{0, 𝑙𝑖 + 𝑥𝑖 } ≤ 𝑧𝑖 ≤ min{1, 𝑢𝑖 + 𝑥𝑖 }
} (5)

The Euclidean projection onto 𝑆 (𝑥); 𝑃𝑆 is then defined to be

min
𝑧

| |𝑦 − 𝑧 | |22 s.t.
𝑑∑︁
𝑖=1

1 |𝑧𝑖−𝑥𝑖 |>0 ≤ 𝜖0,

max{0, 𝑙𝑖 + 𝑥𝑖 } ≤ 𝑧𝑖 ≤ min{1, 𝑢𝑖 + 𝑥𝑖 }
(6)

Ignoring the combinatorial constraint, the solution is given by
𝑧∗
𝑖
= max{𝑙𝑖 +𝑥𝑖 ,min{𝑦𝑖 , 𝑢𝑖 +𝑥𝑖 }}. We re-integrate the ℓ0 constraint

and resolve the projection by sorting according to the gain 𝜙 :

𝜙𝑖 = (𝑦𝑖 − 𝑥𝑖 )2 − (𝑦𝑖 − 𝑧∗𝑖 )
2, 𝑧𝜋𝑖 =

{
𝑧∗𝜋𝑖 𝑖 = 1, . . . , 𝑘
𝑥𝜋𝑖 otherwise

Thus, the final solution will have 𝑘 entries—those with the highest
gain—and that differ by no more than 𝑙𝑖 or 𝑢𝑖 .

Importantly, the solution to this problem can be computed effi-
ciently; requiring a single backward pass through the trained model
to compute the perturbed layout 𝑦 and computation of the projec-
tion 𝑃𝑆 in linear time—note that when ignoring the combinatorial
constraint, Prob. 6 is a separable problem (can be computed in par-
allel) over the cells. Finding the subset of cells to shift (satisfying
the ℓ0 constraint) involves a linear-time scan over gains.
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(a.) Congestion Prediction

[
𝑥1
𝑦1

]
[
𝑥2
𝑦2

]

[
𝑥3
𝑦3

]
[
𝑥4
𝑦4

]
[
𝑥5
𝑦5

]

[
𝑥6
𝑦6

]

netlist
graph

cell
positions

Preprocessing
(i.e. RUDY)

GNN / MLP
predictor

Unperturbed Input

Model predicted congestion hotspots
shown as lighter pixels.

(b.) Perturbed Congestion
Prediction

[
𝑥 ′1
𝑦′1

]
[
𝑥2
𝑦2

]

[
𝑥3
𝑦3

]

[
𝑥 ′4
𝑦′4

]
[
𝑥5
𝑦5

]

[
𝑥6
𝑦6

]

netlist
graph

cell
positions

Preprocessing
(i.e. RUDY)

GNN / MLP
predictor

1% Cell Perturbed Input

Model predicts no conges-
tion hotspots.

Figure 2: General illustration of effect of imperceptible perturbations on EDA predictions (a.): Vanilla prediction framework.
The netlist-graph and cell attributes (i.e. positions) are used to make predictions (e.g. DRC locations or congestion hotspots) via
the neural predictor. (b.): The attributes of a subset of nodes are perturbed: 𝑥 ′ = 𝑥 + 𝛿𝑥 . The predictor is vulnerable (i.e. can be
made to predict that a design is congestion-free)—even when both 𝛿𝑥 and the number of perturbed nodes are small.

Global routing tiles

Module i
(x, y)

Perturbed 
module i
(x+δx, y+δy)

G-cell 
lower-bound 
li≤x+δx

G-cell 
upper-bound 
x+δx≤ui 

Figure 3: Local constraints for eachmovable cell (highlighted
in red) ensures cells do not move G-Cells.

4 EXPERIMENTS
In this section we describe a set of comprehensive experiments on
testcases from the CircuitNet suite [4]. Summary statistics of the
testcases are presented in Table 2. Our numerical experiments are
aimed at establishing the efficacy of our method with respect to
spoiling congestion predictions made by two trained architectures.

4.1 Experimental setup
We evaluate the impact of our small perturbations on the robustness
of ML-based congestion predictors. Moreover, we give illustrative
examples of such sparse and imperceivable perturbations.We utilize
the CircuitNet benchmarks [4] to validate our method. CircuitNet is
an open-source dataset consisting of more than 10K samples from
versatile runs of commercial design tools based on open-source
RISC-V designs with various features for multiple ML for EDA

Table 1: Vulnerability of ML-based EDA predictors to im-
perceptible perturbations. “*” denotes a perturbation that
induces congestion-free predictions. “†” denotes a perturba-
tion that induces mispredictions of hotspots.

1
𝐻𝑊

| |𝑀 | |2
𝐹

NRMS SSIM 1
𝐻𝑊

| |𝑀 | |2
𝐹

NRMS SSIM
FCN Model Vanilla training Robust training
Vanilla / none 0.010 0.0393 0.8044 0.010 0.0393 0.7970
Random noise 0.012 0.0420 0.7970 0.012 0.0420 0.7123
* 1% cells perturbed 0.0012 0.0791 0.6255 0.011 0.0561 0.6831
* 5% cells perturbed 0.0011 0.0945 0.5152 0.012 0.0533 0.6181
†1% cells perturbed 0.011 0.1055 0.4534 0.011 0.0431 0.7011
†5% cells perturbed 0.011 0.1467 0.4334 0.011 0.0440 0.7193
GNN Model
Vanilla / none 0.011 0.0348 0.8130 0.011 0.0393 0.7970
Random noise 0.013 0.0384 0.7974 0.011 0.0417 0.6933
* 1% cells perturbed 0.0013 0.0743 0.6129 0.0098 0.0403 0.7643
* 5% cells perturbed 0.0012 0.0892 0.5032 0.0097 0.0407 0.7392
†1% cells perturbed 0.011 0.1744 0.4461 0.011 0.0411 0.694
†5% cells perturbed 0.013 0.1835 0.4219 0.013 0.0417 0.695

applications. We summarize the designs and generation procedure
used to compose the CircuitNet dataset in Table 2.

Perturbations are generated using a momentum-based PGD algo-
rithm with restarts. We adapt the standard PGD iterations outlined
in Eq. 2 in two ways: (1.) we adjust the gradient-based update rule
to incorporate a momentum term:

𝑢 (𝑖+1) = 𝑃𝑆 (𝑥 (𝑖 ) + 𝜂 (𝑖 ) · 𝑠 (∇𝐿(𝑥 (𝑖 ) )))

𝑥 (𝑖 ) = 𝑃𝑆 (𝑥 (𝑖 ) + 𝛼 (𝑢 (𝑖+1) − 𝑥 (𝑖 ) ) + (1 − 𝛼) (𝑥 (𝑖 ) − 𝑥 (𝑖−1) ))
(7)

where 𝛼 ∈ [0, 1] regulates the influence of the previous update
on the current one and 𝑃𝑆 is described in Sec. 3. (2.) we introduce
“restarts”—i.e. we apply PGD to several random initializations and
select the best solution.
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Table 2: From [4]. Statistics of designs and variations.

Design Netlist Statistics Synthesis Variations

#Cells #Nets Cell Area
(𝜇𝑚2) #Macros Frequency

(MHz)
RISCY-a 44836 80287 65739

3/4/5

50/200/500

RISCY-FPU-a 61677 106429 75985
zero-riscy-a 35017 67472 58631
RISCY-b 30207 58452 69779

13/14/15RISCY-FPU-b 47130 84676 80030
zero-riscy-b 20350 45599 62648

Physical Design Variations
Utilizations

(%)
#Macro

Placement
#Power Mesh

Setting Filler Insertion

70/75/80/85/90 3 8 After Placement
/After Routing

(a) (b)

Figure 4: Performance metrics associated with a vanilla net-
work evaluated on unperturbed and perturbed layouts. (a)
Distribution shift in NRMS. (b) Distribution shift in SSIM.
Liu et al. [13] characterize a good predictor as achieving
𝑁𝑅𝑀𝑆 < 0.2 and 𝑆𝑆𝐼𝑀 > 0.8. Using our method, we are able
create valid inputs such that approximately 100% of samples
have 𝑆𝑆𝐼𝑀 < 0.8 and 60% of samples have 𝑁𝑅𝑀𝑆 > 0.15. 100%
of samples satisfy one of the two conditions.

4.1.1 Algorithm parameters. We adopt the same 70/30 train-test
split described in the CircuitNet paper.We perturb all samples in the
test. In Table 1 we report several metrics for each method including
our congestion score, NRMS, and SSIM. We set 𝛼 = 0.75 and fix 𝜂
to be 2 ·𝑤 , where 𝑤 is the width of each G-Cell. Each perturbed
example is generated by running PGD for 100 iterations with 5
restarts, and 𝜂 is linearly decayed to 1/10 ·𝑤 .

4.2 On the robustness of congestion predictors
In Table 1, we evaluate our method for producing valid and imper-
ceptible perturbations using the fully convolutional architecture
proposed in Liu et al. [13] and a single-layer graph convolutional
network (GNN Model) proposed in [12]. Two variants of our algo-
rithm are implemented. For rows denoted by a *, the perturbation
ascent direction is computed with respect to the congestion score
1

𝐻𝑊
| |𝑓𝜃 (𝑀) | |2

𝐹
. For rows denoted by a †, the perturbation ascent

direction is computed with respect to the supervised prediction loss.
We demonstrate that neural network predictors fail to accurately

predict congestion of layouts produced by ourmethod. Furthermore,
when a larger budget of cells are allowed to be shifted, performance

Figure 5: Mean relative unsupervised error of PGD over iter-
ations. Shaded region denotes 1 standard deviation. Note the
log-scale in blue implies convergence in error.

is further degraded. In particular, we first observe that vanilla mod-
els are relatively robust to a random perturbation model. Namely,
we uniformly at random select 1% of cells and maximally perturb
their associated positions such that they remain within their asso-
ciated G-Cell. When the layout is altered in this way, we see that
neural predictors generally maintain their performance with only
a minor degradation in NRMS and SSIM observed.

Next, we demonstrate that perturbationsmay be carefully chosen
such that the associated predictions correspond to congestion-free
predictions, or even adversarial predictions- i.e. the model pre-
dicts congestion in regions which are congestion-free and predicts
congestion-free regions in areas which are highly congested (e.g. in
regions with macros). We provide examples to demonstrate these
instances in Figure 7. Distributions of SSIM and NRMS scores are
provided in Figure 4. Notably, the predictor violates the conditions
necessary for good performance (NRMS < 0.2, SSIM > 0.8) [1, 4].

When a budget of 1% of cells is prescribed, a degradation in SSIM
of 43.64% and a degradation in NRMS of 168.45% are observed for
the FCNN-based predictor. Likewise, when the budget is increased
to 5% of cells, degradations in SSIM and NRMS amount to 46.12%
and 273.28% are observed respectively. As expected, the GNN-based
model is also vulnerable to the aforementioned issues. Interestingly,
while the GNN-based method outperforms the FCN-based method
on unperturbed layouts, the GNN-based model is seemingly more
vulnerable to our proposed method with degradations in NRMS
and SSIM of up to 427.3% and 48.11% for a budget of 5% of cells.

4.3 Improving robustness of congestion
predictors via momentum-based PGD

A number of techniques [3, 14, 19] have been proposed to mitigate
the issue of robustness of deep networks, with some of the most reli-
able being certified defenses [6] and methods based on the principle
of adversarial training [14]. In this work, we forgo investigating
provable defenses and instead stick with PGD-based adversarial
training. More concretely, each iteration of SGD, a portion of each
batch (i.e. 50%) is perturbed via our method. Running PGD during
training is expensive. One may exploit the Fast-FGSM algorithm
proposed in [19], which demonstrates that by simply introducing
random initialization points from which to compute adversarial
perturbations, one projected gradient step is as effective as repeated
steps during training while being significantly more efficient.
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Figure 6: Robust congestion prediction statistic
( 1
𝐻𝑊

| |𝑓𝜃 (𝑀) | |2
𝐹
) and percentage of cells that are allowed to

move (looseness of 𝜖0 constraint).

(a) (b)

(c) (d)

Figure 7: (a—b): Predictions for robust and nonrobust esti-
mators (supervised loss). Both plots share the same gradient
scale. (c—d) Predictions for robust and nonrobust estimators
(unsupervised loss). Note the difference in gradient scale.

Using standard PGD, we train models on using the CircuitNet
split and report the robust test statistics in the left column of Ta-
ble 1. We see that models trained using adversarial training are
significantly more robust with respect to both unsupervised and
supervised perturbations. More concretely, we observe recovery
of predictive quality primarily with respect to the metric driving
perturbations (i.e. when predictors are trained to be robust to the
unsupervised congestion metric, robustness is improved across all
metrics, but most significantly for unsupervised congestion). In
Figure 6, we provide a comparison between a vanilla network and a
robust network trained via PGD. On the 𝑥-axis, we plot the 𝜖0 con-
straint, the percentage of cells that are free to be adjusted. On the
𝑦-axis, we plot the mean congestion metric 1

𝐻𝑊
| |𝑓𝜃 (𝑀) | |2

𝐹
across

the validation set. Note that the robust network maintains good
performance, even as the number of cells increases.

The congestion value 0.01 is from a baseline predictor—the blue
bar at 0% cells shifted. Note that the value may not be representative
of prediction quality (instead, see Figure 4). Ideally bars should be
the same height across perturbations. However, the vanilla model’s
predictions on perturbed layouts change significantly. In contrast,
robust predictors generalize (orange bars have similar height).

5 CONCLUSION AND FUTUREWORK
In this paper, we have demonstrated that CNN-based congestion
detection models are vulnerable to small perturbations. We have
proposed and evaluated layout perturbations that are guaranteed
to not alter a early global routing. To address these issues, we
have proposed to apply adversarial training, demonstrating that
such methods can improve robustness and generalization of deep
learning-based EDA systems. The implication of our work is that
designers should carefully evaluate deep learning-based models
when employing ML-based CAD systems in EDA pipelines. More
broadly, we hope that our perturbation methodology for evaluating
vulnerabilities in congestion prediction and our adversarial train-
ing approach to make congestion predictions more robust can be
adapted for evaluating ML-based EDA predictors.
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