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Calculations of heat transport in crystalline materials have recently become mainstream, thanks to machine-learned
interatomic potentials that allow for significant computational cost reductions while maintaining the accuracy of first-
principles calculations. Moment tensor potentials (MTP) are among the most efficient and accurate models in this
regard. In this study, we demonstrate the application of MTP to the calculation of the lattice thermal conductivity of
α and β -Ga2O3. Although MTP is commonly employed for lattice thermal conductivity calculations, the advantages
of applying the active learning methodology for potential generation is often overlooked. Here, we emphasize its
importance and illustrate how it enables the generation of a robust and accurate interatomic potential while maintaining
a moderate-sized training dataset.

I. INTRODUCTION

Lattice thermal conductivity (LTC) is an essential quan-
tity for a wide range of technological applications, includ-
ing thermal management of microelectronic devices1, thermo-
electrics2, and thermal barrier coating materials3. Accurate
experimental measurement of LTC is challenging and repro-
ducibility between different experimental groups is often not
guaranteed4. Consequently, despite the technological need,
reliable LTC data are known for only a small number of ma-
terials. At the same time, the theoretical formulation of heat
transport constitutes a mature research field5,6. From a prac-
tical perspective, calculations of the temperature-dependent
LTC are usually based on a perturbative approach, the Green-
Kubo approach (GK)7,8, or non-equilibrium molecular dy-
namics simulations (NEMD). In a perturbative approach9, cal-
culations are typically performed within the framework of
first-principles (or ab initio) density-functional theory (DFT).
In practice, perturbative approaches require calculation of the
so-called interatomic force constants (IFCs), which is time-
consuming, especially for structures with large unit cells and
low symmetry. This is because the number of structures with
displaced atoms needed to construct third-order IFCs grows
enormously fast with reduction of the crystalline symmetry10.

Materials with large anharmonicities are not rare and some-
times accurate evaluation of lattice dynamics of such materi-
als require to consider the inclusion of all orders of anhar-
monicity11. Already the influence of four-phonon scattering
processes on LTC of solids can have huge impact12,13. For
example, in the case of boron arsenide (BAs) and graphene,
better agreement between theory and experiment can only
be achieved when four-phonon scattering is taken into ac-
count14–17. In principle, lattice dynamics anharmonicity can
be fully and accurately taken into account in ab initio molec-
ular dynamics (AIMD) simulations. Hence, both the GK and
NEMD approaches utilize AIMD and allow for a more accu-
rate computation of LTC, as all orders of anharmonicity are
taken into account. However, these methods are computa-

tionally expensive. The Green-Kubo formula relates instan-
taneous fluctuations of heat current in terms of the autocorre-
lation function. While the formulation of GK was done long
ago, first-principles calculations of LTC using this approach
have only recently appeared18. The evaluation of LTC using
the Green-Kubo approach coupled with first-principles calcu-
lations is rare, albeit its profound influence on the understand-
ing of the heat transport19. However, converging LTC val-
ues is a challenging task, as AIMD simulations are severely
limited by system size (a few hundred atoms) and timescales
(tens of picoseconds). Thus, GK and NEMD approaches are
limited in applicability when coupled with first-principles cal-
culations.

Challenges associated with the experimental measurements
and theoretical calculations of the LTC lead to the lack of a
systematic understanding of the LTC beyond semi-empirical
and phenomenological trends in a very limited number of sim-
ple materials20. From the computational perspective, speed
up can be obtained by performing molecular dynamics (MD)
simulations using empirical potentials, which enables one to
efficiently predict properties of both bulk materials and nanos-
tructures, over a wider range of system sizes (up to hun-
dreds of nanometers)21 and timescales (up to tens of nanosec-
onds)22. However, the prediction accuracy will be highly de-
pendent on the fidelity of the potentials. On the other hand,
machine learning methods (ML) can be used to predict LTC
values. In some cases ML models are trained in a supervised
manner23–25 and in some cases machine-learned interatomic
potentials (MLIPs)26,27 are used to either compute IFCs28–30

or to directly perform MD simulations28,31–33. Among dif-
ferent MLIP models the moment tensor potential (MTP)34

showed substantial accuracy keeping the required training
data at a minimum size35, especially once the active learn-
ing (sometimes terms active sampling or learning on-the-fly
are used) methodology is used36. Despite wide application of
different MLIPs, the training process is still frequently done
without the active learning scheme. In this case the potential
is usually trained on some AIMD trajectories and its ability to
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extrapolate is typically limited only to this training set. Re-
cently, we demonstrated that low root-mean-squared errors on
the training and test sets do not guarantee the robustness of a
potential37, which we define as an ability to run long MD sim-
ulations without failure. This outcome underscores that while
low energy and force errors are achieved, applicability and ac-
curacy of such MLIP should be taken with a portion of scepti-
cism, even if the lattice dynamics calculations are performed
under the same thermodynamic conditions as those employed
during the training data generation.

In this work, we demonstrate how to generate a robust and
accurate MTP using the active learning approach. Its employ-
ment not only ensures the applicability of MTP for lattice dy-
namics simulations, but also substantially reduces the number
of the required DFT calculations. As a benchmark systems,
we used α- and β -Ga2O3. Both α and β phases of Ga2O3
are wide-bandgap semiconductors of significant technologi-
cal importance38–44. Consequently, these materials are well-
investigated both experimentally45–48 and theoretically49,50.
Moreover, given the large conventional cell of β -Ga2O3 con-
taining 20 atoms, the first-principles calculations are highly
time-consuming especially when extensive convergence tasks
need to be performed, which highlights the role of MLIPs us-
age as would be demonstrated here.

II. METHODOLOGY

A. Construction of a Moment Tensor Potential

The potential energy of an atomic system as described by
the MTP interatomic potential is defined as a sum of the ener-
gies of atomic environments of the individual atoms:

EMTP =
N

∑
i=1

V (ni),

where the index i label N atoms of the system, and ni describes
the local atomic neighborhood around atom i within a certain
cutoff radius Rcut, i.e., a many-body descriptor can comprise
the information of all neighbors of a centered atom up to a
given cutoff radius. The function V is the moment tensor po-
tential:

V (ni) = ∑
α

ξα Bα(ni),

where ξα are the fitting parameters and Bα(ni) are the basis
functions that will be defined below. Moment tensors descrip-
tors are used as representations of atomic environments and
defined as:

Mµ,ν (ni) = ∑
j

fµ

(∣∣ri j
∣∣ ,zi,z j

)
ri j ⊗ . . .⊗ ri j︸ ︷︷ ︸

ν times

,

where the index j goes through all the neighbors of atom i.
The symbol “⊗” stands for the outer product of vectors, thus
ri j ⊗·· ·⊗ ri j is the tensor of rank ν encoding the angular part

which itself resembles moments of inertia. The function fµ

represents the radial component of the moment tensor:

fµ

(∣∣ri j
∣∣ ,zi,z j

)
= ∑

k
c(k)µ,zi,z j Q

(k)(r),

where zi and z j denote the atomic species of atoms i and j,
respectively, ri j describes the positioning of atom j relative to
atom i, c(k)µ,zi,z j are the fitting parameters and

Q(k)(r) := Tk(r)(Rcut − r)2

are the radial functions consisting of the Chebyshev polyno-
mials Tk(r) on the interval [Rmin,Rcut] with the term (Rcut−r)2

that is introduced to ensure a smooth cut-off to zero. The de-
scriptors Mµ,ν taking ν equal to 0,1,2, . . . are tensors of dif-
ferent ranks that allow to define basis functions as all possible
contractions of these tensors to a scalar, for instance:

B0 (ni) = M0,0 (ni)

B1 (ni) = M0,1 (ni) ·M0,1 (ni) ,

B2 (ni) = M0,0 (ni)(M0,2 (ni) : M0,2 (ni)) .

Therefore the level of Mµ,ν is defined by levMµ,ν = 2µ + ν

and if Bα is obtained from Mµ1,ν1 , Mµ2,ν2 , . . . , then levBα =
(2µ1+ν1) + (2µ2+ν2) + . . . . By including all basis functions
such that levBα < d we obtain the moment tensor potential of
level d which we denote as MTPd .

As fundamental symmetry requirements, all descriptors for
atomic environment have to be invariant to translation, rota-
tion, and permutation with respect to the atomic indexing.
Particularly for structurally intricate Ga2O3 polymorphs, the
incorporation of many-body interactions is crucial to ensur-
ing the accuracy of the derived potentials. The MTP frame-
work satisfies all aforementioned conditions34. Importantly,
the MTP framework satisfies all aforementioned conditions34.
MTP methodology and tools to utilize it are implemented in
the MLIP-2 package52, which we used in this work.

B. Generation of a Training Set

We conducted aiMD simulations to collect the reference
data (potential energy, atomic forces, atomic coordinates))
for MTP training. aiMD simulations are conducted within
the DFT framework, employing VASP (Vienna ab initio
simulations package)53 with the projector augmented wave
method54. The Perdew-Burke-Ernzerhof generalized gradi-
ent approximation (PBE-GGA)55 was employed for the ex-
change–correlation functional. We used a plane wave basis set
cut-off of 550 eV, and a Gaussian smearing of 0.1 eV width.
The halting criterion for electronic density convergence dur-
ing self-consistent field calculations is set to 10−7 eV.

The corundum structure of α-Ga2O3 has a space group
R3̄c, while β -Ga2O3 has a monoclinic structure with the space
group C2/m. The optimized structural parameters obtained
in our calculations are shown in the Tab. I. These structural
parameters are in a good agreement with the experimental
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TABLE I. PBE-optimized unit cell vectors and angles of the α- and
β -Ga2O3 phases.

Phase a, (Å) b, (Å) c, (Å) α β γ

α-Ga2O3 5.065 5.065 13.64 90◦ 90◦ 120◦

β -Ga2O3 12.469◦ 3.087 5.882 90◦ 103.673◦ 90◦

data56. All lattice dynamics calculations in this work were
performed with these structures. The conventional cells was
sampled using 6×6×2 k-point grids for α-Ga2O3 and for β -
Ga2O3, respectively. In case of the lattice dynamics calcu-
lations, we used 2×2×1 diagonal transformation matrix to
generate a supercell with 120 atoms from the conventional
α-Ga2O3 cell. In the case of β -Ga2O3 we generated a su-
percell with 160 atoms expanding the conventional cell using
6×6×2 diagonal transformation matrix. For the calculations
with supercells, the k-point grids were adjusted to keep the k-
points’ mesh density as in the calculations with the unit cells,
this leads to the utilization of only one Γ-point in both cases.

Typically, two main approaches are employed to train a re-
liable MLIP capable of accurately representing a wide spec-
trum of local atomic environments. The first one involves the
inclusion of various systems, necessitating extensive AIMD
simulations. By incorporating a diverse range of systems, the
MLIP can effectively learn to capture the nuances of different
atomic environments. The second approach is called active
learning and it involves the selective addition of data points
to the training set, focusing on structures where the MLIP ex-
trapolates significantly. These are instances where the MLIP’s
predictions for energies and forces exhibit high uncertainty.
By strategically choosing a minimal yet diverse set of training
data in the feature space, this active learning strategy enables
effective fitting of the potential and helps overcome extrapo-
lation challenges. In this study, we generate a small dataset to
pretrain the MLIP. Subsequently, we employ an active learn-
ing strategy to iteratively expand this dataset, ensuring the
MLIP’s robustness and accuracy for lattice dynamics calcu-
lations. We advocate for the consistent use of the active learn-
ing methodology due to its efficacy in enhancing the MLIP’s
performance and thus, revisit it briefly here.

Various active learning schemes are employed in the de-
velopment of machine learning potentials57,58. In our study,
we utilized the D-optimality-based active learning procedure
developed in36 and available in the MLIP-2 package. The
initial training set was generated in aiMD simulations with
isothermal-isobaric (NPT) ensemble using the Nosé-Hoover
thermostat59. The initial dataset was generated at T=700 K
for α phase and at T=1800 K for β phase, respectively. Each
AIMD trajectory was simulated for 2 ps with a 1 fs time step.
Initial structures for AIMD were prethermalized following the
algorithm established in60, which allows to equilibrate simula-
tions at finite temperatures faster. The first picosecond of each
AIMD simulation was discarded, and the second picosecond
was subsampled with the 5 fs time intervals, resulting in a set
of 200 snapshots for each structure. These samples were em-
ployed to train an initial MTP of level 12.

Within the active learning algorithm, we initiate MD cal-

culations in LAMMPS (Large-scale Atomic/Molecular Mas-
sively Parallel Simulator)61 using a pretrained MTP as the
model for interatomic interactions in the NVE ensemble. At
each step of the MD simulations, the algorithm assesses the
extrapolation grade γ of the atomic configuration. The D-
optimality criterion guides the decision to include a config-
uration in the training set, based solely on atomic coordinates.
This unique feature, coupled with the linear form of the po-
tential, allows MTP to learn effectively on-the-fly. Configu-
rations with γ > 2 are added to the preselected set. When γ

exceeds 10, the MD simulation halts, and all sufficiently dif-
ferent configurations from the preselected set are incorporated
into the training, followed by the refitting of the potential.
This procedure repeats until MD simulations can run without
failure for 30 ps. In our case, MTP achieved robustness with
a training set comprising 439 samples in the case of α-Ga2O3
and 403 samples in the case of β -Ga2O3. This amount of sam-
ples is two times to an order of magnitude smaller than for
other machine-learning potentials16,62. The potential trained
in this manner demonstrated the ability to robustly conduct
MD simulations for 100 ps, showcasing the effectiveness of
the active learning procedure in terms of reducing the neces-
sary DFT data for training and enhancing potential robustness.
The training set generated during the active learning proce-
dure was then used to train MTP with level 16.

The fitting accuracy of obtained potential can be verified by
the agreement between MTP predictions and the benchmark
AIMD results. We compare the MTP-predicted energies and
forces for a separate testing dataset formed by running AIMD
for 1 ps with time steps of 1 fs (this dataset contains 1000
snapshots) at T=700 K for α and T=1800 K for β phases,
respectively. It is found that our MTP can provide the root
mean square errors of 0.2 and 0.6 meV/atom for the potential
energy of α and β phases. The RMSEs for the atomic forces
are 22 meV/Å and 46 meV/Å for α and β phases, respectively.
Therefore, MTP can accurately reproduce ab initio energies
and forces as also visually demonstrated in Fig. 1(a, b).

III. RESULTS AND DISCUSSIONS

Harmonic or second-order force constants can be used to
evaluate the accuracy of MTP compared to to DFT. We thus
calculate the phonon dispersion relation along selected high
symmetry paths, using the supercell approach and the finite
displacement method63, as implemented in the Phonopy pack-
age64. Figs. 2 (a, b) show calculated phonon dispersion re-
lations obtained using MTP and DFT for both polymorphs
of Ga2O3, respectively. We note good agreement between
both methods, which validates an ability of MTP to describe
the lattice dynamics in the harmonic approximation. No-
tably, existing empirical potentials frequently fail to capture
that65,66. The most observable differences in the phonon spec-
trum might be seen for high-frequency optical phonon modes
(especially at the Z-point in Fig. 2 (a)). This is a usual problem
frequently arising in the harmonic constants simulations with
MLIPs16,28. From our experience, it is possible to improve the
accuracy of optical phonon modes evaluation by performing
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simulations at high temperatures for a set of compressed and
expanded structures29,62. In this work we skipped this pro-
cedure, since obtaining precise values of LTC is not the pri-
marily goal of this work. Considering the low symmetry and
high anisotropy of β -Ga2O3, it is reasonable to see that the
phonon dispersion profile is much more complex than that of
many other wide-bandgap materials, such as GaN and ZnO67.
Due to the versatility stemming from the relatively high com-
plexity of the MTP functional form, harmonic force constants
can be accurately reproduced — this precision is crucial as it
serves as a fundamental prerequisite for conducting calcula-
tions of the LTC.

We next proceed towards LTC calculations, which was
evaluated by solving Boltzmann transport equation for
phonons in the relaxation time approximation as implemented
in the Phono3py package10,68,69. Here we should mention that
in the case of α-Ga2O3 one has to compute forces acting on
atoms in 4087 supercells (with 120 atoms) and in the case of
β -Ga2O3 in 15225 supercells (with 160 atoms). Albeit the
crystalline symmetry is taken into account to reduce the num-
ber of calculations, these numbers are tangible even for cal-
culations on modern high-performance clusters. Performing
these calculations with MTP as a model for interatomic inter-
actions takes minutes on a personal workstation.

Figs. 3 (a, b) present temperature dependence of the LTC
for α and β polymorphs. Values of LTC obtained using MTP
are in a good agreement with most recent DFT calculations51,
for example, at 300 K LTC values along [100] are identical
up to the second decimal. Since β -Ga2O3 has a monoclinic
structure, its [001] direction does not align with the z-axis.
Therefore, we calculated its LTC in the [001] direction as was
done in previous works16,51: κ[001]=cos2 βκxx + sin2βκxz +

sin2
βκzz. Notably, MTP caught the anisotropy in LTC val-

ues along different directions in both α- and β -Ga2O3, which
further validates its accuracy. The difference between our re-
sults and previous theoretical calculations51 is within 5-10%,
which might be easily associated with different structural pa-
rameters or calculations set up between studies. Taken into
account tremendous reduction of simulation time, we do not
consider this as a significant problem.

IV. CONCLUSION

In summary, we developed MTPs for atomistic simulations
of α and β -Ga2O3. Our potentials exhibit good accuracy in
reproducing the ab initio PES, attaining a total energy accu-
racy below 1 meV/atom and force accuracy below 50 meV/Å
for both polymorphs. We then compared phonon dispersion
and LTC values calculated using MTP with the results of DFT,
and obtained good agreement, which highlights the applicabil-
ity of MTP in calculating the lattice dynamics and heat trans-
port of solids. The proper choice of training data to generate
an accurate potential using as little data as possible is gov-
erned by the utilization of the active learning methodology.
Although the possibility of its usage is frequently ignored, the
active learning scheme plays a crucial role in enhancing the
robustness of the machine-learned interatomic potentials, as

demonstrated here.
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(a) (b)

FIG. 1. Comparison between DFT- and MTP-calculated (a) energies and (b) forces for both α- and β -Ga2O3 structures. Straight black line
represents a perfect linear dependence.
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FIG. 2. Phonon dispersion relation of (a) α- and (b) β -Ga2O3 along selected high symmetry Brillouin zone path. Calculations are done using
DFT and MTP.
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FIG. 3. Temperature dependence of the LTC of (a) α-Ga2O3 and (b) β -Ga2O3 for three different directions. LTC calculations with MLIP
(moment tensor potential in our case) are compared to the recent calculations, which were done in the DFT framework51.
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