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Abstract

The demand for collaborative and private bandit learning across multiple agents is surging
due to the growing quantity of data generated from distributed systems. Federated bandit
learning has emerged as a promising framework for private, efficient, and decentralized
online learning. However, almost all previous works rely on strong assumptions of client
homogeneity, i.e., all participating clients shall share the same bandit model; otherwise,
they all would suffer linear regret. This greatly restricts the application of federated bandit
learning in practice. In this work, we introduce a new approach for federated bandits for
heterogeneous clients, which clusters clients for collaborative bandit learning under the
federated learning setting. Our proposed algorithm achieves non-trivial sub-linear regret and
communication cost for all clients, subject to the communication protocol under federated
learning that at anytime only one model can be shared by the server.

Keywords: Contextual Bandit, Federated Learning, Collaborative Bandit

1 Introduction

Bandit learning algorithms (Auer et al., 2002; Chapelle and Li, 2011; Li et al., 2010a;
Abbasi-Yadkori et al., 2011) have become a reference solution to the problems of online
decision optimization in a wide variety of applications, including recommender systems
(Li et al., 2010a), clinical trials (Durand et al., 2018), and display advertising (Li et al.,
2010b). Typically, these algorithms are operated by a centralized server; but due to the
growing quantity of data generated from distributed systems, there is a surge in demand
for private, efficient, and decentralized bandit learning across multiple clients. Federated
bandit learning has emerged as a promising solution framework, where multiple clients
collaborate to minimize their cumulative regret under the coordination of a single central
server (Wang et al., 2020; Dubey and Pentland, 2020a; Shi and Shen, 2021; Li and Wang,
2022; He et al., 2022). The server’s role is limited to facilitating joint model estimation
across clients, without having access to any clients’ arm pulling or reward history.
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Although federated bandit learning has gained increasing interest from the research
community, most existing approaches necessitate that all clients share the same underlying
bandit model in order to achieve near-optimal sub-linear regret for a population of clients.
This strong homogeneity assumption distills federated bandit learning to a joint estimation
of a single global model across clients, subject to the federated learning communication
protocol (Bonawitz et al., 2019; Kairouz et al., 2021). However, in reality, clients can have
diverse objectives, resulting in different optimal policies. Imposing a single global model on a
heterogeneous client population can easily cost every client linear regret (Hossain et al., 2021).
Consequently, rational clients should choose not to participate in such a federated learning
system, as they cannot determine if other participating clients share the same bandit model
with them beforehand, and they can already achieve sub-linear regret independently (albeit
inferior to the regret obtained when all clients genuinely share the same bandit model). This
seriously impedes the practical application of existing federated bandit learning solutions.

In a parallel line of bandit research, studies in collaborative bandits aim to improve
bandit learning in heterogeneous environments by facilitating collective model estimation
among different clients. For example, clustered bandit algorithms group similar clients and
use a shared bandit model for clients within the same group (Gentile et al., 2014; Li et al.,
2016; Gentile et al., 2017; Cesa-Bianchi et al., 2013; Wu et al., 2016). When the relatedness
among clients are provided, such as through an affinity graph, joint policy learning can
be performed analytically (Cesa-Bianchi et al., 2013; Wu et al., 2016). However, most of
the existing collaborative bandit learning algorithms operate under a centralized setting, in
which data from all clients is assumed to be directly accessible by a central server. As a
result, these methods cannot address the demand for privacy and communication efficiency
in online learning for distributed systems. Significant efforts are required to adapt these
algorithms to distributed settings Mahadik et al. (2020).

In this paper, we introduce a novel approach for federated bandit learning among
heterogeneous clients, extending collaborative bandit learning to the standard federated
learning setting. The goal is to ensure that every participating client achieves regret reduction
compared to their independent learning, thereby motivating all clients to participate. As the
first work of this kind, we focus on estimating a linear contextual bandit model (Li et al., 2010a;
Abbasi-Yadkori et al., 2011) for each client, which is also the most commonly employed model
in federated bandits. Not surprisingly, regret reduction in a population of heterogeneous
clients can be realized by clustering the clients, where collective model estimation is only
performed within each cluster. But the key challenges lie in the communication protocol in
federated learning. First, the server lacks real-time access to each client’s data, resulting in
delayed inferences of client clusters. Second, the server can only estimate and broadcast one
global model at a time (He et al., 2020; Foley et al., 2022). This can cause communication
congestion and delay the model updates. Both of them cost regret.

To address these challenges we develop a two-stage federated clustered bandit algorithm.
In the first stage, all clients perform pure exploration to prepare a non-parametric clustering
of clients based on the statistical homogeneity test (Li et al., 2021). Then in the second
stage, a first-in-first-out queue is maintained on the server side to facilitate event-triggered
communication (Wang et al., 2020) at the cluster level. We rigorously establish the upper
bounds of cumulative regret and communication cost for this algorithm. Then, we empirically
enhance the algorithm by allowing dynamic re-clustering of clients in the second stage and
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employ a priority queue to improve regret. We conduct comprehensive empirical comparisons
of the newly proposed federated bandit algorithm against a set of representative baselines to
demonstrate the effectiveness of our proposed framework.

2 Related Work

Our work is closely related to studies in federated bandit learning and collaborative bandits.
In this section, we discuss the most representative solutions in each area and highlight the
relationships between them and our work.

Federated Linear Contextual Bandits: There have been several works that study the
federated linear contextual bandit setting, where multiple clients work collaboratively to
minimize their cumulative regret with the coordination of a single central server (Wang et al.,
2020; Li and Wang, 2022; Huang et al., 2021). Wang et al. (2020) introduced DisLinUCB,
where a set of homogeneous clients, each with the same linear bandit parameter, conduct
joint model estimation through sharing sufficient statistics with a central server. Li and
Wang (2022) and He et al. (2022) extended this setting by introducing an event-triggered
asynchronous communication framework to achieve sub-linear communication cost as well as
sub-linear regret in a homogeneous environment. Additionally, Dubey and Pentland (2020b)
considers deferentially private federated contextual bandits in peer-to-peer communication
networks. Fed-PE, proposed in (Huang et al., 2021), is a federated phase-based elimination
algorithm for linear contextual bandits that handles both homogeneous and heterogeneous
settings. However, in their setting, the client is trying to learn the fixed context vectors
associated with each arm as opposed to the linear reward parameter (which is known in
their setting). With the exception of Fed-PE, which utilizes a different bandit formulation
altogether, all of these prior works rely on strong assumptions of client homogeneity, while
our work seeks to extend federated linear contextual bandit learning to a heterogeneous
environment.

Collaborative Bandits: Collaborative bandits seek to leverage similarities between het-
erogeneous clients to improve bandit learning. Clustered bandit algorithms are one example,
where similar clients are grouped together, and a shared bandit model is used for all clients
in the same group(Gentile et al., 2014; Li et al., 2016; Gentile et al., 2017; Cesa-Bianchi et al.,
2013; Wu et al., 2016). Gentile et al. (2014) assumed that observations from different clients
in the same cluster are associated with the same underlying bandit parameter. Gentile
et al. (2017) further studied context-dependent clustering of clients, grouping clients based
on their similarity along their bandit parameter’s projection onto each context vector. Li
et al. (2021) unified non-stationary and clustered bandit by allowing for a time varying
bandit parameter for each client, which requires online estimation of the dynamic cluster
structure at each time. Other works leverage explicit inter-client and inter-arm relational
structures, such as social networks (Buccapatnam et al., 2013; Cesa-Bianchi et al., 2013; Wu
et al., 2016; Hong et al., 2021; Caron et al., 2012; Mannor and Shamir, 2011) to facilitate
collaboration. However, most existing collaborative bandit solutions are designed under a
centralized setting, where all clients’ observation data is readily available at a central server.
Liu et al. (2022) and Korda et al. (2016) consider online cluster estimation in a distributed
setting. However, their federated learning architectures do not align with the standard
federated learning architecture and real world implementations where a single central server
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broadcasts a single global model at each timestep (McMahan et al., 2016; He et al., 2020;
Foley et al., 2022). Specifically, Liu et al. (2022) utilizes a hierarchical server configuration
that is distinct from the standard single-server FL setup. On the other hand, Korda et al.
(2016) is based on a peer-to-peer (P2P) communication network, which stands in contrast to
the centralized communication model and also overlooks the potential communication costs
associated with such a decentralized approach.

3 Methodology

In this section, we begin by outlining the problem setting investigated in this work. Then we
present our two-stage federated clustered bandit algorithm designed to serve a population of
heterogeneous clients under the standard communication setup in federated learning. We
provide theoretical analysis of the upper regret bound for our developed solution. Lastly, we
introduce a set of improvements to our proposed algorithm, including dynamic re-clustering
of clients using an adaptive clustering criterion, and the implementation of a priority queue
to enhance online performance, both of which were found empirically effective.

3.1 Problem Setting

A federated bandit learning system consists of two components: 1) N clients, which take
actions and get reward feedback from their environment (e.g., edge devices in a recom-
mendation system interacting with end users) and 2) a central server coordinating client
communication for collaborative model estimation. In each time step t = 1, 2, ...T , each
client i ∈ N chooses an action xt,i from its action set At,i = {xt,1, xt,2..., xt,K}, where
x ∈ Rd. Adhering to the standard linear reward assumption from (Li et al., 2010b), the
corresponding reward received by client i is yt,i = ⟨θ∗i , xt,i⟩+ ηt, where noise ηt comes from
a σ2 sub-Gaussian distribution, and θ∗i is the true linear reward parameter for client i.
Without loss of generality, we assume ∥x∥2 ≤ 1 and ∥θ∗i ∥ ≤ 1.

The learning system interacts with the environment for T rounds, aiming to minimize
the cumulative pseudo-regret RT =

∑T
t=0

∑N
i=0maxx∈At,i⟨θ∗i , x⟩ − ⟨θ∗i , xt,i⟩.

Following the federated learning setting, we assume a star-shaped communication network,
where the clients cannot directly communicate among themselves. Instead, they must share
the learning algorithm’s parameters (e.g., gradients, model weights, or sufficient statistics)
through the central server. To preserve data-privacy, raw observations collected by each
client (xt,i, yt,i) are stored locally and will not be shared with the server. At every timestep
t = 1, ...T , the central server is capable of using the shared learning algorithm to update
and broadcast one model to the selected clients. The communication cost is defined as
the amount of sufficient statistics communicated across the learning system over the entire
time-horizon.

Unlike existing federated bandit works (Wang et al., 2020; Li and Wang, 2022; He
et al., 2022) which assume homogeneous clients, we adopt the standard clustered bandit
setting to model a heterogeneous learning environment. Without an underlying cluster
structure in the environment, collaboration between clients would be infeasible. Therefore,
we assume that clients sharing similar reward models form clusters, collectively represented
as C = {C1, C2, ..., CM}. The composition and quantity of these clusters, are unknown to
the system, necessitating on-the-fly inference. Consistent with prevalent clustered bandit
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practices (Gentile et al., 2014, 2017; Liu et al., 2022), we use unknown environmental
parameters ϵ and γ to delineate the ground-truth cluster structures:

Assumption 1 (Proximity within clusters) For any two clients i, j within a particular
cluster Ck ∈ C, ∥θ∗i − θ∗j∥ ≤ ϵ where ϵ = 1/(N

√
T ).

Assumption 2 (Separateness among clusters) For any two clusters Ck, Cl ∈ C, ∀i ∈
Ck, j ∈ Cl, ∥θ∗i − θ∗j∥ ≥ γ ≥ 0 (Gentile et al., 2014, 2017; Li et al., 2021; Liu et al., 2022).

Contrary to previous clustered bandit assumptions of identical reward models within a
cluster, our Assumption 1 offers more flexibility. It enables similar clients (represented by
ϵ) to collaborate, amplifying the system’s collaborative benefit. We also adopt a standard
context regularity assumption found in clustered bandits.

Assumption 3 (Context regularity) At each time t, ∀i ∈ {N} arm set At,i is generated
i.i.d. from a sub-Gaussian random vector xt,i ∈ Rd, such that E[xt,ix⊤t,i] is full-rank with
minimum eigenvalue λc > 0 (Gentile et al., 2014, 2017; Li et al., 2019).

Notably, our context regularity Assumption 3 is weaker than those in (Gentile et al.,
2014, 2017; Li et al., 2019). Ours only requires the lower bound on the minimum eigenvalue
of E[xt,ix⊤t,i], while others require the imposition of a variance condition on the stochastic
process generating xt,i.

To facilitate our later discussions, we use Ht,i = {(xτ,i, yτ,i)}tτ=1 to represent the set of
t observations from client i. (Xi,yi) denote design matrices and feedback vectors of Ht,i

where each row of X is the context vector of an arm and the corresponding element in y is
the observed reward for this arm. Note that Xj only contains the observations made by
client j and does not include aggregated observations from other clients in the cluster. We
also define the weighted norm of a vector x ∈ Rd as ∥x∥A =

√
x⊤Ax, where A ∈ Rd×d is a

positive definite matrix.

3.2 Algorithm: HetoFedBandit

In this section, we present our two-stage federated clustered bandit algorithm. As discussed
in Section 1, there are two primary challenges associated with extending clustered bandit
learning to the federated learning setting. The first challenge is to identify the subsets of
heterogeneous clients that can benefit from collaboration among themselves. To achieve
this, in the first stage of our algorithm, all clients conduct random exploration ahead of
a non-parametric clustering of clients based on the statistical homogeneity test (Li et al.,
2021). The second challenge arises from the communication network setting in federated
learning framework, which allows only one model to be broadcast at each time step (He
et al., 2020; Foley et al., 2022). To accommodate this constraint, a first-in-first-out queue
is utilized on the server side, enabling event-triggered collaboration (Wang et al., 2020) at
the cluster level during our algorithm’s second phase. We provide an overview of the key
components of our algorithm, with the full details available in Algorithm 3.
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Figure 1: Execution of HetoFedBandit after pure exploration phase T0. Each client
i ∈ N is represented by a node in the client graph G on the left hand side. Edges between
clients indicate potential collaborators, as defined by the homogeneity test. The colored
ellipsoids represent the estimated clusters Ĉ = {Ĉ1, ..., Ĉ5}, which are the maximal cliques
of G. Clients exceeding their communication threshold are highlighted in orange. Currently,
client θ6 has exceeded the communication threshold D1 for cluster Ĉ1, which causes cluster
Ĉ1 to be added to the queue. The server pops cluster Ĉ2 from the queue and facilitates
collaboration among {θ1, θ3, θ7}. In the next timestep, the server will serve cluster Ĉ4,
queued for removal.

Pure Exploration Phase Under our relaxed context regularity assumption, we execute a
short exploration phase of length T0 to guarantee the accuracy of our homogeneity test. Our
discussion on the choice of T0 is deferred to Section 3.3. Although our derived theoretical
value for T0 depends on an unknown environmental parameter γ, in practice, T0 can be
tuned as a hyperparameter.

During this exploration stage, for each t ∈ {0...T0}, every client i ∈ [N ] selects an
action xt,i by uniformly sampling from At,i in parallel. After receiving reward yt,i, each
client updates their local sufficient statistics Vt,i = Vt−1,i + xt,ix

⊤
t,i and bt,i = bt−1,i + xt,iyt,i.

Upon completion of T0 rounds of pure exploration, each client then shares its sufficient
statistics (VT0,i, bT0,i) to the central server. We present the details of the exploration phase
in Algorithm 1.

Cluster Estimation The key challenge in online clustering of bandits is to measure the
similarity between different bandit models. Previous works identify whether a set of clients
share exactly the same underlying reward model; while we cluster similar clients (as defined
by ϵ) to widen the radius of beneficial collaboration. We realize this by testing whether
∥θ∗1 − θ∗2∥ ≤ ϵ via the homogeneity test introduced in (Li et al., 2021).
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Algorithm 1 Pure Exploration Phase

1: for t = 1, 2, ..., T0 do
2: for Agent i ∈ N do
3: Choose arm xt,i ∈ Ai,t uniformly at random and observe reward yt,i
4: Update agent i: Ht,i = Ht−1,i ∪ (xt,i, yt,i), Vt,i += xt,ix

⊤
t,i, bt,i += xt,iyt,i,

5: ∆Vt,i += xt,ix
⊤
t,i, ∆bt,i += xt,iyt,i,∆t0,i += 1

6: end for
7: end for

Specifically, we utilize a χ2 test of homogeneity, where the test statistic s(Ht,1,Ht,2) fol-
lows the non-central χ2-distribution (Chow, 1960; Cantrell et al., 1991). The test determines
whether the parameters of linear regression models associated with two datasets are similar,
assuming equal variance. Since θ∗1 and θ∗2 are unobservable, the test utilizes the maximum
likelihood estimator (MLE) for θ on a dataset H, which we denote ϑ = (X⊤X)−X⊤y, where
(·)− denotes the generalized matrix inverse:

s(Ht,1,Ht,2) =
||X1(ϑ1 − ϑ1,2)||2+||X2(ϑ2 − ϑ1,2)||2

σ2
(1)

where ϑ1,2 denotes the estimator using data from Ht,1 and Ht,2.
When s(Ht,1,Ht,2) exceeds a chosen threshold υc, it indicates a deviation between the

combined estimator and the individual estimators on the two datasets. Thus, we conclude
∥θ∗1 − θ∗2∥ > ϵ; otherwise, we conclude ∥θ∗1 − θ∗2∥ ≤ ϵ. Therefore, to determine the sets of
clients that can collaborate, the central server performs this pairwise homogeneity test among
each pair of clients. If two clients i, j satisfy the homogeneity test s(HT0,i,HT0,j) ≥ υc, then
we add an undirected edge between them in a client graph G indicating they benefit from
mutual collaboration.

Next, our algorithm uses G to determine the clusters of clients that can benefit from
collaboration. Because our algorithm allows collaboration between non-identical clients, we
must ensure every client within a cluster is sufficiently similar to every other; otherwise,
linear regret can be caused by the incompatible model sharing. For this purpose, we require
each of our estimated clusters be a maximal clique of G (line 5 in Algorithm 2). We denote
the set of resulting clusters as Ĉ = {Ĉ1, Ĉ2, ...ĈM̂} and the set of cluster indices in C that
client i belongs to as Ki.

Using the maximal cliques of G as the cluster estimates introduces a unique challenge
that affects our subsequent algorithmic design: the estimated clusters may not be disjoint.
In Figure 1, we can see that client 3, represented by θ3, is a member of two clusters, Ĉ2

and Ĉ4. Therefore, θ3 will receive shared model updates from clients {θ1, θ7, θ4}. However,
the absence of an edge between θ1 and θ4 implies that simultaneous collaboration between
{θ3, θ1} and {θ3, θ4} is not allowed by our algorithm. As a result, when θ3 is collaborating
with θ1, it should only share its local data, excluding what it has received from the server.
Later we describe our queue-based sequential approach to resolve this.

Optimistic Learning Phase Upon identifying client clusters suitable for collaboration,
we proceed to the optimistic learning phase of our algorithm. Here, clients optimistically
choose arms, utilizing the collaboration with other similar clients to enhance their local
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Algorithm 2 Cluster Estimation

1: for (i, j) ∈ N do
2: if s(HT0,i,HT0,j) ≤ υc then add edge e(i, j) to G
3: end for
4: Ĉ = {Ĉ1, Ĉ2, ...ĈM̂} = maximal cliques(G)
5: Set Ki = {k : i ∈ Ĉk} for each client i

model estimates. At each time step t ∈ {T0...T}, each client i ∈ [N ] optimistically selects an
arm xt,i ∈ At,i using the UCB strategy based on its sufficient statistics {Vt,i, bt,i}:

xt = argmax
x∈At,i

x⊤θ̂t−1,i +CBt−1,i(x) (2)

where θ̂t−1,i = V
−1
t−1,ibt−1,i is the ridge regression estimator with regularization parameter

λ; V t−1,i = Vt−1,i + λI; and the confidence bound of reward estimation for arm x is

CBt−1,i(x) = αt−1,i∥x∥V −1
t−1,i

, where αt−1,i = σ

√
2 log

(
det(V t−1,i)1/2

δ det(λI)1/2

)
+
√
λ. Note that Vt,i is

formulated using data locally collected by client i in conjunction with data from the clients
with whom client i has previously collaborated. After client i observes reward yt,i, it updates
its local sufficient statistics to improve the reward estimates in future rounds.

Communication Protocol Our algorithm integrates the event-triggered communication
protocol fromWang et al. (2020) to efficiently balance communication and regret minimization
within clusters. It uses delayed communication, where clients store observations and rewards
in a local buffer ∆Vt,i and ∆bt,i. Clients request server collaboration when the informativeness
of the stored updates surpass a certain threshold. Specifically, If ∆tt,i log(det(Vt,i)/det(Vt,i−
∆Vt,i)) ≥ Dk for any k ∈ Ki, with Dk as the communication threshold for the estimated
cluster Ĉk, the client sends a collaboration request for Ĉk.

Multiple clients across different clusters can trigger simultaneous communication requests,
and single clients can request collaboration for multiple clusters because the estimated clusters
are not disjoint. In such cases, the central server uses a first-in-first-out queue (FIFO) Q
to manage the clusters needing collaboration one-by-one. At each timestep t ∈ {T0...T}, it
serves one cluster from the queue, ensuring no inter-cluster data contamination by computing
Vt,sync and bt,sync using only the clients’ upload buffers. Despite the single global-model
restriction in federated learning, our algorithm still helps multiple groups of similar clients in
a pseudo round-robin manner. As a result, a cluster of clients can resume engaging with the
environment without being hindered by the server’s processing time for unrelated clusters
that don’t offer collaborative advantage.

This queuing strategy enhances the system’s efficiency, allowing clusters to re-engage
with the environment without idling for the server’s processing of all other clusters. However,
before computing and sharing {Vt,sync, bt,sync} for collaboration, our algorithm mandates
the complete upload of local buffers from every client in that cluster. This signifies that
our algorithm employs asynchronous communication at the cluster level but still requires
synchronous communication among clients within the same cluster. In practical distributed
systems, clients often exhibit variable response times and occasional unavailability. Adapting
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our algorithm to support asynchronous communication at the individual client level, such
that they can collaborate without awaiting updates from all other clients within the cluster,
remains an important open research question.

Algorithm 3 HetoFedBandit

1: Input: T , δ ∈ (0, 1), exploration length T0, λ > 0, neighbor identification υc

2: Initialization: Clients: ∀i ∈ N : V0,i = 0d×d, b0,i = 0d,H0,i = ∅,∆V0,i = 0d×d,∆b0,i =
0d,∆ti,0 = 0, Ki = ∅ ; Server: Client graph G with N nodes, FIFO queue Q;

3: Pure Exploration Phase (Algorithm 1)
4: Cluster Estimation (Algorithm 2)
5: Cluster communication thresholds D = [D1, ..., DM̂ ] where Dk = (T log |Ĉk|T )/(d|Ĉk|)
6: for t = T0 + 1, ..., T do
7: for Client i ∈ N do
8: Choose arm xt,i ∈ At,i by Eq. 2 observe reward yt,i
9: Update client i: Ht,i = Ht−1,i ∪ (xt,i, yt,i), Vt,i += xt,ix

⊤
t,i, bt,i += xt,iyt,i,

10: ∆Vt,i += xt,ix
⊤
t,i, ∆bt,i += xt,iyt,i,∆tt,i += 1

11: for k ∈ Ki do
12: if ∆tt,i log(det(Vt,i)/det(Vt,i −∆Vt,i)) ≥ Dk then
13: Collaboration Request: Server adds Ĉk to Q
14: end if
15: end for
16: end for
17: if Q is non-empty then
18: Server pops Ĉk from Q
19: Every client i ∈ Ĉk sends ∆Vt,j , ∆bt,j to server
20: Each client in Ĉk receives Vt,sync =

∑
j∈Ĉk

∆Vt,j , bt,sync =
∑

j∈Ĉk
∆bt,j from the

server
21: Local client updates: Vt,i += Vt,sync − ∆Vt,i, bt,i += bt,sync − ∆bt,i, ∆Vt,i = 0,

∆bt,i = 0,∆tt,i = 0
22: end if
23: end for

3.3 Theoretical Results

As presented in Section 3.2, our algorithm first utilizes a homogeneity test to cluster similar
clients in a heterogeneous environment. We prove that with our homogeneity test, Algorithm
2 correctly identifies the underlying clusters.

Theorem 1 (Clustering Correctness) Under the condition that we set the homogeneity
test threshold υc ≥ F−1(1− δ

N2 , df, ψ
c), with probability at least 1− δ, we have Ĉ = C.

F−1(·) is the inverse of the CDF of the non-central χ2 distribution, and ψc
.
= 1

σ2 . We
provide the complete proof of Theorem 1 in Appendix B. Moreover, Algorithm 3 adopts a
UCB-based arm selection, which requires the construction of a confidence ellipsoid.
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Lemma 2 (Confidence Ellipsoids) Suppose client i is a member of cluster Ĉk ∈ Ĉ, and
is therefore collaborating with clients j ∈ Ĉk. For any δ > 0, with probability at least 1− δ,
for all t ≥ 0 and all clients i ∈ N , θ∗i lies in the set:

βt,i =

{
θ ∈ Rd :

∥∥θ̂t,i − θ
∥∥
V t,i

≤ σ

√
2 log

(
det(V t,i)1/2

det(λI)1/2δ

)
+
√
λ+

∥∥∥∥ ∑
j∈Ĉk\{i}

X⊤
j Xj(θ

∗
j − θ∗i )

∥∥∥∥
V

−1
t,i

}

We provide the complete proof of Lemma 2 in Appendix C.

Our algorithm enables collaboration among heterogeneous clients, which introduces extra
biases represented by the term H = ∥

∑
j∈Ĉk\{i}X

⊤
j Xj(θj−θi)∥V −1

t,i
. With improved analysis

compared with Li et al. (2021), we utilize our cluster estimation procedure Algorithm 2 to
control the magnitude of the bias term H by judiciously picking the threshold υc.

Then, based on the constructed confidence ellipsoid, we prove Theorem 3, which pro-
vides upper bounds of the cumulative regret RT and communication cost CT incurred by
HetoFedBandit. While the good/bad epoch decomposition used in our analysis is first
introduced by Wang et al. (2020), additional care needs to be taken when bounding the
extra regret introduced by the delays in serving clusters before they can be removed from
the queue. We present the complete proof of Theorem 3 in Appendix D.

Theorem 3 (Regret and Communication Cost) With an exploration phase length of

T0 =
16ψdσ2

λcγ2
, with probability 1− δ our protocol achieves a cumulative regret of

RT = O

(
Nψdσ2

λcγ2
+

M∑
k=1

d
√

|Ck|T log2(|Ck|T )

+d|Ck|2M log(|Ck|T )
)
,

(3)

where ψd = F−1
(

δ
N2(M−1)

; d, υc
)
, with communication cost

CT = O(Nd2) +

M∑
k=1

O(|Ck|1.5 · d3). (4)

Remark 4 The regret upper-bound has three components. The first term is our version of
the ”problem hardness” (Li et al., 2021; Gentile et al., 2014) which is independent of T.
This ”hardness” factor is determined by the cluster separation parameter γ from Assumption
2. The second term is the standard regret upper bound from centralized clustered bandit
algorithms (Li et al., 2021; Gentile et al., 2014). The third term arises from the potential
waiting time clusters may experience in the queue before the server serves them. Our
communication cost matches that of an idealized algorithm executing DisLinUCB(Wang
et al., 2020) within each ground-truth cluster.
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We compare our regret and communication upper-bound under three cases. Case 1 - Single
cluster: Setting M = 1 reduces the problem to a nearly homogeneous setting, where every
client is within ϵ of everyone else. Under this setting, our regret becomes Õ(d

√
NT ) where

logarithmic factors and factors that do not depend on T (since it is assumed that T ≫ N)
are omitted in Õ. Additionally communication cost becomes O(N1.5d3). Our algorithm
matches the regret and communication cost of (Wang et al., 2020), which is designed for
homogeneous clients. Case 2 - N clusters: Setting M = N reduces the problem to a
completely heterogeneous setting, where no client can benefit from collaboration as each
client is at least ϵ away from others. Algorithm 3 has regret Õ(dN

√
T ), which recovers

the regret of running LinUCB (Abbasi-Yadkori et al., 2011) independently on each client.
In this setting our communication becomes O(Nd3). Case 3 - Equal Size Clusters:
Setting |Ck| = N/M,∀k gives us M clusters of equal size. In this setting our regret becomes
Õ(d

√
MNT ), where the first term recovers the results presented in Gentile et al. (2014); Li

et al. (2021). Our communication becomes O(d3N1.5/
√
M).

3.4 Empirical Enhancements: HetoFedBandit-E

In this section, we describe the details of our proposed empirical enhancements to our
HetoFedBandit algorithm, where we perform re-clustering to improve the quality of
estimated clusters of clients and replace the first-in-first-out queue with a priority queue
to help clusters where a shared model update can most rapidly reduce regret for clients
in that cluster. We present the details of our enhanced algorithm HetoFedBandit-E in
Algorithm 5.

3.4.1 Data-Dependent Clustering

We propose a data-dependent clustering procedure to enhance collaboration among clients
with similar observational histories. Our homogeneity test for cluster formation ensures
an upper bound on the bias term H, as outlined in Lemma 2. This term depends on the
differences in underlying parameters (θ∗i vs., θ∗j ) and each client’s observation history. For
instance, if client j’s observations are in the null space of (θ∗j − θ∗i ), collaborating with client
j will not introduce excessive bias to client i. But without further assumptions about the
context vector sequence, we must conservatively assume in our original design that every
client j’s entire observation history aligns with (θ∗j − θ∗i ).

Previously, we used a homogeneity test with threshold ϵ = 1
N
√
T

to verify clients’

collaboration across all timesteps. Now, we can relax the homogeneity test threshold to
check if two clients can collaborate at a specific timestep t by examining if ∥θi − θj∥ ≤
ϵ = 1/

(
N
√
λmax(X⊤

j Xj)
)
.To achieve this, we modify our algorithm to forgo single round

cluster estimation. Instead, every time a client requests collaboration, we re-cluster the
clients using the data-dependent thresholds for our pairwise homogeneity tests. By making
these thresholds data-dependent, each client can collaborate with more neighbors earlier,
boosting overall collaborative benefits in our learning system.
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Algorithm 4 Data-Dependent Clustering

1: Re-initialize client graph G with no edges
2: for (i, j) ∈ N do
3: Server Computes υc = F−1(1− δ

N2 , df, ψ
c) where

4: ψc = ϵ2

σ2λmax(X
⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1)
5: if s(Ht,i,Ht,j) ≤ υc then
6: Add edge e(i, j) to G
7: end if
8: end for
9: Ĉ = {Ĉ1, Ĉ2, ...ĈM̂} = maximal cliques(G)

10: Set Ki = {k : i ∈ Ĉk} for each client i
11: Cluster communication thresholds D = [D1, ..., DM̂ ] where Dk = (T log |Ĉk|T )/(d|Ĉk|)

Algorithm 5 HetoFedBandit-E

1: Input: T , δ ∈ (0, 1), regularization parameter λ > 0
2: Initialize Clients: ∀i ∈ N : V0,i = 0d×d, b0,i = 0d,H0,i = ∅,∆V0,i = 0d×d,∆b0,i =

0d,∆ti,0 = 0, Ki = ∅
3: Initialize Server: Client graph G with N nodes;
4: Initialize empty Priority Queue Q;
5: for t = T0 + 1, ..., T do
6: for Client i ∈ N do
7: V t−1,i = Vt−1,i + λI, θ̂t−1,i = V

−1
t−1,i bt−1,i

8: Choose arm xt,i ∈ At,i by Equation 2 observe reward yt,i
9: Update agent i: Ht,i = Ht−1,i ∪ (xt,i, yt,i), Vt,i += xt,ix

⊤
t,i, bt,i += xt,iyt,i,

10: ∆Vt,i += xt,ix
⊤
t,i, ∆bt,i += xt,iyt,i,∆tt,i += 1

11: if ∆tt,i log(det(Vt,i)/det(Vt,i −∆Vt,i)) ≥ Dk then
12: Empty Priority Queue Q;
13: Every client i ∈ N sends ∆Vt,j and ∆bt,j to server
14: Data Dependent Cluster Estimation (Algorithm 4)
15: Send collaboration request to server, which then adds Ĉk∀k ∈ Ki to Q
16: end if
17: end for
18: if Q is non-empty then

19: Server pops cluster Ĉk = argmaxĈk∈Ĉ
∑

i∈Ĉk
∆tt,i log(

det(Vt,i)
det(Vt,i−∆Vt,i)

) from Q

20: Server Computes: Vt,sync =
∑

j∈Ĉk
∆Vt,j , bt,sync =

∑
j∈Ĉk

∆bt,j

21: Each client in Ĉk receives Vt,sync and bt,sync from the server and updates their local
model

22: Vt,i += Vt,sync −∆Vt,i, bt,i += bt,sync −∆bt,i, ∆Vt,i = 0, ∆bt,i = 0,∆tt,i = 0
23: end if
24: end for
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3.4.2 Priority Queue

The second enhancement to HetoFedBandit involves utilizing a priority queue instead of
a FIFO queue to determine the order in which to serve clusters requesting collaboration. As
is demonstrated in (Wang et al., 2020; Li and Wang, 2022), the cumulative regret incurred
by a federated bandit algorithm is determined by the determinant ratios of the clients within

the system: ∆tt,i log
( det(Vt,i)
det(Vt,i−∆Vt,i

)
. Since the central server cannot assist all clusters at

once, determinant ratios of awaiting clients can increase as they linger in the queue. In the
original HetoFedBandit, clusters are attended based on their request order. However, an
earlier-joining cluster might have a slower regret accumulation compared to a later one with
a larger and faster growing determinant ratio. By utilizing a priority queue that serves the

clusters based on: argmaxĈk∈Ĉ
∑

i∈Ĉk
∆tt,i log(

det(Vt,i)
det(Vt,i−∆Vt,i

) the server ensures clusters are

addressed in an order that minimizes the system-wide cumulative regret.

4 Experiments

In this section, we investigate the empirical performance of HetoFedBandit andHetoFedBandit-
E, by comparing them against several baseline models on both simulated and real-world
datasets.

4.1 Baselines

In our evaluation, we compare our proposed HetoFedBandit algorithm with several
representative algorithms from both the clustered and federated bandit learning domains.
We compare against, LinUCB algorithm from (Abbasi-Yadkori et al., 2011), DisLinUCB
(Wang et al., 2020), FCLUB DC (Liu et al., 2022), and DyClu (Li et al., 2021). To ensure
compatibility with our setting, we set the number of local servers in FCLUB DC to be equal
to the number of clients.

4.2 Synthetic Dataset

We first present the results of our empirical analysis of HetoFedBandit andHetoFedBandit-
E on a synthetic dataset.

Synthetic Dataset Generation In this section, we describe the pre-processing procedure
for the synthetic dataset used in Section 4.2. We first create an action pool {xk}Kk=1 where x
is sampled from N(0d, Id). To create a set of N clients in accordance with our environment
assumptions, we first sample M cluster centers {θm}Mm=1 from N(0d, Id) that are γ+2ϵ away
from each other (enforced via rejection sampling). Then, we randomly assign each client
index i ∈ N to one of the M clusters. To generate each θi, we first sample a vector on the
unit d-sphere, then we scale it by a value uniformly sampled from [0, ϵ] with ϵ = 1/N

√
T and

add it to the cluster center θk corresponding to the cluster client i was assigned to. At each
time step t = 1, 2, ...T for each client in [N ] is presented a subset of 25 arms are sampled
from {xk}Kk=1, and shared with the client. The reward of the selected arm is generated by
the linear function governed by the corresponding bandit parameter and context. In our
experiments, we chose d = 25, K = 1000, N = 50,M = 5, and T = 3000. Since we conducted
our experiment in a synthetic environment, we utilized the known values of γ = 0.85, σ = 0.1,
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and chose λ = 0.1, δ = 0.1 for our algorithm’s hyper-parameters. Note that while we utilized
the known values for σ and γ in our experiment, these hyper-parameters can be tuned
in practice using the “doubling-trick”, where the algorithm is repeatedly run in the same
environment with increasing horizons (Auer et al., 1995; Besson and Kaufmann, 2018). We
present additional sensitivity analysis of the environmental parameters in Appendix F due
to the space limit.

Results In Figure 2a, we compare the accumulated regret of the different bandit algorithms
on the simulated dataset. HetoFedBandit and HetoFedBandit-E outperform the other
decentralized bandit baselines, with HetoFedBandit-E achieving a regret that is closest
to the state-of-the-art centralized clustering bandit algorithm, DyClu. We observe that Dis-
LinUCB experiences linear regret in our heterogeneous environment. While N-Independent
LinUCB achieves sublinear regret, its cumulative regret is higher than our HetoFedBandit
due to the absence of collaboration among similar clients. HetoFedBandit outperforms
FCLUB DC, underscoring the strength of our federated clustered bandit approach in a
heterogeneous setting. FCLUB DC’s fixed clustering schedule results in delayed cluster
identification, diminishing the quality of client collaboration. Notably, while FCLUB DC
presumes the central server aids all local client clusters concurrently at each step, HetoFed-
Bandit still excels despite adhering to a single model assumption in federated learning. We
further present an ablation study on our empirical enhancements in Appendix E.

(a) Accumulative Regret (b) Communication Cost

Figure 2: Experimental Results on Simulated Dataset

In Figure 2b, we observe that our algorithms exhibit the lowest communication cost
among baselines while achieving encouraging regret. This demonstrates the communication
efficiency of our approach, which is a critical factor in distributed systems. Notably,
HetoFedBandit-E has a higher communication cost compared to HetoFedBandit,
because the dynamic re-clustering requires the additional sharing of sufficient statistics from
clients outside the cluster that requests collaboration.
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4.3 LastFM Dataset

In this section, we present the results of our empirical analysis of HetoFedBandit and
HetoFedBandit-E on the LastFM dataset, demonstrating their effectiveness in distributed
recommender systems.

LastFM Dataset The dataset used in this experiment is extracted from the LastFM-2k
dataset, which originally contains 1892 clients (users) and 16632 items (artists) (Cantador
et al., 2011). Each “client” can be considered as an edge device serving a particular user
in a distributed recommender system. The “listened artists” of each client are treated as
positive feedback. To adapt this dataset for our experiments, we kept clients with over
350 observations, resulting in a dataset with N = 75 clients and T = 41284 interactions.
The dataset was pre-processed following the procedure in (Cesa-Bianchi et al., 2013) to
accommodate the linear bandit setting (with d = 25 and the action set K = 25). Since the
environmental parameters σ, γ are unknown for this real-world dataset, we directly tuned
the values of our test threshold υc = 0.01, T0 = 5000, and αt,i = α = 0.3 ∀i ∈ [N ], ∀t ∈ T
using a grid search.

Results We show that our models group users with similar musical preferences for collab-
orative model learning, enhancing recommendation quality compared to other distributed
bandit learning methods. In Figure 3, we present the normalized cumulative rewards and
communication costs of the federated bandit algorithms on the LastFM dataset. We observe
that HetoFedBandit-E outperforms the other decentralized bandit baselines on the real-
world dataset, achieving the highest average normalized reward. In line with observations
made using synthetic datasets, DisLinUCB’s performance is suboptimal in environments
with heterogeneous clients, demonstrated by NIndepLinUCB outperforming DisLinUCB.
Moreover, while the normalized cumulative reward of FCLUB DC shows an improving trend
over time, its prefixed-clustering schedule delays the identification of the underlying cluster
structure compared to HetoFedBandit and HetoFedBandit-E.

Notably, our basic algorithm design, HetoFedBandit, falls short of NIndepLinUCB on
real-world data due to its single-timestep cluster estimation. In a simulated environment,
where context vectors adhere closely to Assumption 3, one-time cluster estimation post-
exploration is usually sufficient. However, in real-world datasets, the distribution of context
vectors may evolve over time, leading to potential inaccuracies in the clusters initially
estimated after the exploration phase. This underlines the importance of our empirical
enhancements, which incorporates dynamic data-dependent re-clustering, demonstrating its
ability to adapt to shifts in the observed context distribution.

In Figure 3b, we observe that our algorithms once again exhibit the lowest commu-
nication cost among the compared baselines. Similar to our observations in Section 4.2,
HetoFedBandit-E has a higher communication cost compared to HetoFedBandit.

5 Conclusion

In this work, we address the challenge of heterogeneous clients in federated bandit learning by
introducing HetoFedBandit. Our approach combines the strengths of federated learning
and collaborative bandit learning, enabling efficient communication and learning among
clients with diverse objectives. We demonstrate through rigorous theoretical analysis that
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(a) Normalized Accumulated Reward (b) Communication Cost

Figure 3: Experimental Results on LastFM Dataset

participating clients achieve regret reduction compared to their independent learning across
various environmental settings, thereby motivating all clients to participate in such a
federated learning system. We also empirically demonstrate that our algorithm achieves
encouraging performance compared to existing federated bandit learning solutions on both
simulated and real-world datasets.

Our work not only addresses the limitations of existing federated bandit learning solutions,
but also opens up new possibilities for practical applications in distributed systems. Our
current approach requires that each client within the federated learning system trusts the
central server to only facilitate collaboration for social good. However, in the real world,
this “trust” is not something that should be naively assumed. To realize a truly federated
model of bandit learning, the power to decide on collaboration should be transferred to the
clients. In this regard, future research should consider viewing federated learning through
the lens of mechanism design, so that each client perceives participating in the federated
learning system as their best course of action.
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Appendix A. Technical Lemmas

In this section, we introduce the technical lemmas utilized in the subsequent proofs in this
paper.

Lemma 5 (Lemma 11 in Abbasi-Yadkori et al. (2011)) Let {Xt}∞t=1 be a sequence
in Rd, V is a d× d positive definite matrix and define V̄t = V +

∑t
s=1XsX

⊤
s , where V = λI.

Additionally we have that λmin(V ) ≥ max(1, L2) and ∥Xt∥2 ≤ L for all t, then

log

(
det(V̄n)

det(V )

)
≤

T∑
t=1

∥Xt∥2V̄ −1
t−1

≤ 2 log

(
det(V̄n)

det(V )

)
. (5)

Lemma 6 (Theorem 1 of Abbasi-Yadkori et al. (2011)) Let {Ft}∞t=0 be a filtration.
Let {ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft-measurable, and ηt follows
conditionally zero mean R-sub-Gaussian for some R ≥ 0. Let {Xt}∞t=1 be an Rd-valued
stochastic process such that Xt is Ft−1-measurable. Assume that V is a d×d positive definite
matrix. For any t > 0, define

Vt = V +

t∑
τ=1

XτX
⊤
τ St =

t∑
τ=1

ητXτ .

Then for any δ > 0, with probability at least 1− δ,

||St||V −1
t

≤ R

√
2 log

det(Vt)1/2

det(V )1/2δ
, ∀t ≥ 0.

Lemma 7 (Determinant-Trace Inequality) Suppose X1, X2, ..., Xt ∈ Rd and for any
1 ≤ τ ≤ t, ∥Xτ∥2 ≤ L, Let Vt = λI +

∑t
τ=1XτX

⊤
τ for some λ > 0. Then,

det(Vt) ≤ (λ+ tL2/d)d.

Lemma 8 (Lemma 12 from (Li et al., 2021)) When the underlying bandit parameters
θ∗i and θ∗j of two observation sequence Ht−1,i and Ht−1,j from client i and j are not the
same, the probability that the cluster identification phase clusters them together corresponds
to the type-II error probability given in Lemma 10, which can be upper bounded by:

P
(
S(Ht−1,i,Ht−1,j) ≤ υc

∣∣∥θ∗i − θ∗j∥ > ϵ
)
≤ F (υc; d, ψd),

under the condition that both λmin(
∑

(xk,yk)∈Ht−1,i
xkx

⊤
k ) and λmin(

∑
(xk,yk)∈Ht−1,2

xkx
⊤
k ) are

at least 2ψdσ2

γ2
.

Lemma 9 (Lemma B1 from Li and Wang (2022)) Denote the number of observations
that have been used to update {Vi,t, bi,t} as τi, i.e., Vi,t = λI +

∑τi
s=1 xsx

⊤
s . Then under

Assumption 3, with probability at least 1− δ, we have:

λmin(Vi,t) ≥ λ+
λcτi
8
,

∀τi ∈ {τmin, τmin + 1, . . . , T}, i ∈ [N ], where τmin = ⌈ 64
3λc

log(2NTdδ )⌉.
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Lemma 10 Lemma 3 from Li et al. (2021) When X1 and X2 are rank-sufficient, the type-II
error probability can be upper bounded by,

P
(
s(Ht−1,1,Ht−1,2) ≤ υ | ∥θ1 − θ2∥ > ϵ

)
≤ F

(
υc; d,

||θ∗1 − θ∗2 ||2/σ2

1/λmin(X⊤
1 X1) + 1/λmin(X⊤

2 X2)

)
.

Appendix B. Proof of Theorem 1

In this section, we provide the full proof of Theorem 1, which states that utilizing our
homogeneity test with threshold υc ≥ F−1(1 − δ

N2 ; df, ψ
c), after the exploration phase of

length T0 = 16ψdσ2

λcγ2
, the clusters Ĉ = {Ĉ1, Ĉ2, ..., ĈM̂} estimated by HetoFedBandit match

the ground-truth clusters of the environment C = {C1, C2, ..., CM}.
The homogeneity test statistic s(Ht−1,1,Ht−1,2) follows a non-central χ2 distribution

s(Ht−1,1,Ht−1,2) ∼ χ2(df, ψ), where the degree of freedom

df = rank(X1) + rank(X2)− rank
([
X1X2

])
,

and the non-centrality parameter

ψ =
1

σ2
[
X1θ1X2θ

∗
2

]⊤ [
It1+t2 −

[
X1X2

] (
X⊤

1 X1 +X⊤
2 X2

)− [
X⊤

1 X⊤
2

]] [
X1θ1X2θ

∗
2

]
(Li et al., 2021).

Based on the definition and properties of the test statistic, we next prove two corollaries.
First we will prove that with high probability C ⊆ Ĉ. Then we will prove that Ĉ ⊆ C. As
a result, the conjunction of these events holding simultaneously demonstrates that Ĉ = C,
proving that our estimated clusters are correct with a high probability.

B.1 Lower Bounding P (C ⊆ Ĉ)

Recall that based on our cluster definition presented in Assumption 1, all clients that belong
to the same cluster are within ϵ of each other. We denote the ground-truth client graph
G∗ as the graph where ∃e(i, j) ∈ G∗ ∀i, j ∈ N where ∥θ∗i − θ∗j∥ ≤ ϵ. By Assumption 2,
we know that clients that do not belong to the same cluster are separated by γ, so that
the ground-truth clusters C are the maximal cliques of G∗. Thus, in order to prove that
P (C ⊆ Ĉ), we need to show that the set of edges in the ground-truth client graph G∗ is a
subset of the edges in the estimated client graph G. To achieve this, we need to prove an
upper-bound of the type-I error probability of the homogeneity test, which corresponds to
the probability that our algorithm fails to cluster two clients together when the underlying
bandit parameters ∥θ∗i − θ∗j∥ ≤ ϵ.

Lemma 11 The type-I error probability of the test can be upper bounded by:

P
(
s(Ht−1,1,Ht−1,2) > υ | ∥θ∗1 − θ∗2∥ ≤ ϵ

)
≤ 1− F (υ; df, ψc),

where F (υ; df, ψc) denotes the cumulative density function (CDF) of distribution χ2(df, ψc)
evaluated at υ, and ψc := 1

σ2 denotes its non-centrality parameter.
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Proof Denote ζ = θ∗2 − θ∗1. Then θ
∗
2 = θ∗1 + ζ. When ∥ζ∥ ≤ ϵ, the non-centrality parameter

ψ becomes:

ψ =
1

σ2

[
X1θ

∗
1

X2(θ
∗
1 + ζ)

]⊤ [
It1+t2 −

[
X1

X2

](
X⊤

1 X1 +X⊤
2 X2

)−1 [
X⊤

1 X⊤
2

]] [ X1θ
∗
1

X2(θ
∗
1 + ζ)

]
,

σ2ψ =

[
X1θ

∗
1

X2θ
∗
1

]⊤ [
It1+t2 −

[
X1

X2

]([
X⊤

1 X⊤
2

] [X1

X2

])−1 [
X⊤

1 X⊤
2

]] [
X1θ

∗
1

X2θ
∗
1

]

+

[
X1θ

∗
1

X2θ
∗
1

]⊤ [
It1+t2 −

[
X1

X2

]([
X⊤

1 X⊤
2

] [X1

X2

])−1 [
X⊤

1 X⊤
2

]] [
0

X2ζ

]

+

[
0

X2ζ

]⊤ [
It1+t2 −

[
X1

X2

]([
X⊤

1 X⊤
2

] [X1

X2

])−1 [
X⊤

1 X⊤
2

]] [
X1θ

∗
1

X2θ
∗
1

]

+

[
0

X2ζ

]⊤ [
It1+t2 −

[
X1

X2

]([
X⊤

1 X⊤
2

] [X1

X2

])−1 [
X⊤

1 X⊤
2

]] [
0

X2ζ

]
.

Since

[
X1θ

∗
1

X2θ
∗
1

]
is in the column space of

[
X1

X2

]
, the first term in the above result is zero. The

second and third terms can be shown equal to zero as well using the property that matrix
product is distributive with respect to matrix addition, which leaves us only the last term.
Therefore, by substituting ζ = θ∗2 − θ∗1 back, we obtain:

ψ =
1

σ2
(θ∗1 − θ∗2)

⊤X⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1(θ
∗
1 − θ∗2),

≤ 1

σ2
∥θ∗1 − θ∗2∥2λmax(X

⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1),

≤ ϵ2

σ2
λmax(X

⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1).

The first inequality uses the Rayleigh-Ritz theorem, and the second inequality is a result
of Assumption 1. Furthermore, we can use the relation Y(X+Y)−1X = (X−1 +Y−1)−1,
where X and Y are both invertible matrices, to further simplify our upper bound for ψ. This
relation can be derived by taking inverse on both sides of the equation X−1(X+Y)Y−1 =
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X−1XY−1 +X−1YY−1 = Y−1 +X−1. This gives us the following:

ψ =
ϵ2

σ2
λmax

((
(X⊤

1 X1)
−1 + (X⊤

2 X2)
−1

)−1
)
,

≤ ϵ2

σ2
1

λmin((X⊤
1 X1)−1 + (X⊤

2 X2)−1)
,

≤ ϵ2

σ2
1

λmin((X⊤
1 X1)−1) + λmin((X⊤

2 X2)−1)
,

≤ ϵ2

σ2
1

1
λmax(X⊤

1 X1)
+ 1

λmax(X⊤
2 X2)

,

=
ϵ2

σ2
λmax(X

⊤
1 X1)× λmax(X

⊤
2 X2)

λmax(X⊤
1 X1) + λmax(X⊤

2 X2)
,

≤ ϵ2

σ2
max{λmax(X

⊤
1 X1), λmax(X

⊤
2 X2)}.

The last inequality holds because

λmax(X
⊤
1 X1)

λmax(X⊤
1 X1) + λmax(X⊤

2 X2)
≤ 1 and

λmax(X
⊤
2 X2)

λmax(X⊤
1 X1) + λmax(X⊤

2 X2)
≤ 1.

Denote the number of observations in Xi as τi. Furthermore, since ∥xt,i∥ ≤ 1, we know that
λmax(X

⊤
i Xi) ≤ τi. Thus we can further upper bound

ψ ≤ ϵ2

σ2
max{λmax(X

⊤
1 X1), λmax(X

⊤
2 X2)},

≤ ϵ2

σ2
max{τi, τj},

≤ ϵ2

σ2
T.

Assumption 1 tells us that ϵ = 1
N
√
T

for (i, j) in the same cluster Ck.

ψ ≤ T

σ2N2T
≤ 1

σ2
:= ψc.

Therefore, when ∥θ∗1 − θ∗2∥ < ϵ, the test statistic s(Ht−1,1,Ht−1,2) ∼ χ2(df, 0, ψc). The
type-I error probability can be upper bounded by P

(
s(Ht−1,1,Ht−1,2) > υ

∣∣ ∥θ∗1 − θ∗2∥
)
≤

1− F (υ; df, ψc), which concludes the proof of Lemma 11.

Corollary 12 Under the condition that we set the threshold υ to υc ≥ F−1(1− δ
N2 , df, ψ

c),

we have P (C ⊆ Ĉ) ≥ 1− δ.
Proof In our setting (Assumption 1), all users who are within ϵ = 1

N
√
T
of each other belong

to the same ground-truth cluster. Our algorithm uses the pairwise homogeneity test to assess
whether each pair of clients is within ϵ of each other. As we showed in Lemma 11, the type-I
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error probability of our pairwise neighbor identification is upper-bounded by 1− F (υ; df, ψc).
Therefore, to achieve a type-I error probability of δ/N2 between two individual clients, we
can solve for the required threshold υc

δ

N2
≤ 1− F (υ; df, ψc),

⇒ F (υ; df, ψc) ≤ 1− δ

N2
,

⇒ F−1(1− δ

N2
, df, ψc) ≤ υc.

Taking the union bound over all N2 pairwise tests proves the that the set of edges in the
ground-truth client graph G∗ is a subset of the edges estimated client graph G. Therefore the
corollary is proven.

B.2 Lower Bounding P (Ĉ ⊆ C)

In this section, we prove that with high probability P (Ĉ ⊆ C). To achieve this, we demonstrate
that the set of edges in the estimated client graph G is a subset of the ground-truth edges
in G∗. To achieve this, we utilize the type-II error probability upper-bound to ensure that
with high probability clients with different underlying parameters are not clustered together.
Using this type-II error probability, we follow similar steps in Lemma 13 of (Li et al., 2021)
to prove:

Lemma 13 If the cluster identification module clusters observation history Ht−1,i and
Ht−1,j together, the probability that they actually have the same underlying bandit parameters
is denoted as P

(
∥θ∗i − θ∗j∥ ≤ ϵ|s(Ht−1,i,Ht−1,j) ≤ υc

)
.

P
(
∥θ∗i − θ∗j∥ ≤ ϵ|s(Ht−1,i,Ht−1,j) ≤ υc

)
≥ F (υc; df, ψc),

under the condition that both λmin

(∑
(xk,yk)∈Ht−1,i

xkx
⊤
k

)
and λmin

(∑
(xk,yk)∈Ht−1,j

xkx
⊤
k

)
are at least 2ψdσ2

γ2
, where ψd = F−1

( (1−F (υc;d,ψc))
M−1 ; d, υc

)
.

Proof

Compared with the type-I and type-II error probabilities given in Lemma 11 and 8, the
probability P (∥θ∗i − θ∗j∥ ≤ ϵ|S(Ht−1,i,Ht−1,j) ≤ υc) also depends on the population being
tested on.

Denote the events
{
∥θ∗i − θ∗j∥ > ϵ

}
∩
{
S(Ht−1,i,Ht−1,j) > υc

}
as True Positive (TP ),{

∥θ∗i − θ∗j∥ ≤ ϵ
}
∩
{
S(Ht−1,i,Ht−1,j) ≤ υc

}
as True Negative (TN),

{
∥θ∗i − θ∗j∥ ≤ ϵ

}
∩{

S(Ht−1,i,Ht−1,j) > υc
}
as False Positive (FP ), and

{
∥θ∗i −θ∗j∥ > ϵ

}
∩
{
S(Ht−1,i,Ht−1,j) ≤

υc
}

as False Negative (FN) of cluster identification, respectively. We can rewrite the
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probabilities in Lemma 11, 8 and 13 as:

P
(
S(Ht−1,i,Ht−1,j) > υc|∥θ∗i − θ∗j∥ ≤ ϵ

)
=

P (FP )

P (TN + FP )
≤ 1− F (υc; df, ψc),

P
(
s(Ht−1,i,Ht−1,j) ≤ υc|∥θ∗i − θ∗j∥ > ϵ

)
=

P (FN)

P (FN + TP )
≤ F (υc; df, ψd),

P
(
∥θ∗i − θ∗j∥ ≤ ϵ|s(Ht−1,i,Ht−1,j) ≤ υc

)
=

P (TN)

P (TN + FN)
>

1

1 + P (FN)
P (TN)

.

We can upper bound P (FN)
P (TN) by:

P (FN)

P (TN)
≤ P (TP + FN)

P (TN + FP )
· F (υ

c; df, ψd)

F (υc; df, ψc)
,

where TP+FN
TN+FP denotes the ratio between the number of positive instances (∥θ∗i − θ∗j∥ > ϵ)

and negative instances (∥θ∗i − θ∗j∥ ≤ ϵ) in the population. We can upper bound this ratio for

any pair (i, j) uniformly sampled from [N ], since we need to run the test on all N2 pairs.

First we note that P (TP+FN)
P (TN+FP ) =

P (∥θ∗i −θ∗j ∥>ϵ)
P (∥θ∗i −θ∗j ∥≤ϵ)

. We upper-bound this ratio by giving a lower

bound on the probability of two randomly sampled clients belonging to the same cluster as
P (∥θ∗i − θ∗j∥ ≤ ϵ) with

P (∥θ∗i − θ∗j∥ ≤ ϵ) =

M∑
k=1

|Ck|
N

× |Ck| − 1

N − 1
,

>
M∑
k=1

( |Ck| − 1

N − 1

)2
,

>

M∑
k=1

1

M2
,

=
1

M
.

The second inequality is true because the probability that two uniformly sampled clients
belonging to the same cluster is minimized when the clusters are all of equal sizes. Therefore
we have

P (∥θ∗i − θ∗j∥ > ϵ)

P (∥θ∗i − θ∗j∥ ≤ ϵ)
≤

1− 1
M

1
M

=M − 1.

It is worth noting that in the event that M = 1, the ratio can trivially be upper bounded by
1. With this upper bound of P (FN)

P (TN) , we can now write:

P
(
∥θ∗i − θ∗j∥ ≤ ϵ|S(Ht−1,i,Ht−1,j) ≤ υc

)
≥ 1/

(
1 + (M − 1) · F (υ

c; df, ψd)

F (υc; df, ψc)

)
.
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Then by setting ψd = F−1
( (1−F (υc;df,ψc))

(M−1) ; df, υc
)
, we have:

P
(
∥θ∗i − θ∗j∥ ≤ ϵ|S(Ht−1,i,Ht−1,j) ≤ υc

)
≥ 1/

(
1 + (M − 1) · F (υ

c; df, ψd)

F (υc; df, ψc)

)
= F (υc; df, ψc),

and the lemma is proven.

Corollary 14 Under the condition that we set the threshold υc ≥ F−1(1− δ
N2 , df, ψ

c), with

an exploration phase length of T0 = min{ 64
3λc

log(2Tdδ ), 16ψ
dσ2

λcγ2
}, we have P (Ĉ ⊆ C) ≥ 1− δ.

Proof

Under Assumption 3, and with exploration length T0 = min{ 64
3λc

log(2Td/δ), 16ψ
dσ2

λcγ2
}, the

application of Lemma 9 from (Li and Wang, 2022) gives with probability 1− δ that

λmin(X
⊤
i Xi) ≥

λcT0
8

=
2ψdσ2

γ2
.

As a result, we can apply Lemma 13, which gives

P
(
∥θ∗i − θ∗j∥ ≤ ϵ|s(Ht−1,i,Ht−1,j) ≤ υc

)
≥ F (υc; df, ψc).

Using the same steps as shown in Corollary 12, we can see our choice of test statistic
threshold υc ≥ F−1(1 − δ

N2 ; df, ψ
c) results in this event occurring with probability 1 − δ

N2 .
Because our algorithm conducts this pairwise homogeneity test across all pairs of clients, a
union bound over all N2 pairwise tests proves the corollary.

The combination of Corollaries 12 and 14 prove that based on our choice of υc and T0,
Ĉ = C with probability 1− δ.

Appendix C. Proof of Lemma 2

In this section, we present the complete proof of the confidence ellipsoids, following similar
steps to the proof of Theorem 2 in (Abbasi-Yadkori et al., 2011).

Before we begin the proof, we will introduce a couple of useful notations to prevent
clutter. Recall from Section 3.1 that the design matrix of client i, denoted as Xi, only
contains the observations made by client i through timestep t and does not include aggregated
observations from other clients. In this proof, we assume without loss of generality, that client
i is a member of ground-truth cluster Ck and is therefore collaborating with clients j ∈ Ck.

As a result, we can denote V
−1
t,i = λI +

∑
j∈Ck

X⊤
j Xj and bt,i =

∑
j∈Ck

X⊤
j (Xjθ

∗
j + ηj) due

to the sharing of sufficient statistics among clients in Ck (line 21 in Alg. 3), where we denote
ηj = (η1,j , η2,j , ..., ηt,j)

⊤. Note that in this proof, we only focus on the case where client i is
collaborating with members of its ground-truth cluster, because in Theorem 1, we already
prove with high probability C = Ĉ. In our subsequent regret analysis in Theorem 3, we
demonstrate that the regret incurred when C ̸= Ĉ is upper bounded by a constant.
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Proof

θ̂t,i = V
−1
t,i bt,i,

= V
−1
t,i

∑
j∈Ck

X⊤
j (Xjθ

∗
j + ηj),

= V
−1
t,i

[ ∑
j∈Ck

X⊤
j Xjθ

∗
j +

∑
j∈Ck

X⊤
j ηj

]
,

= V
−1
t,i

[ ∑
j∈Ck

X⊤
j Xjθ

∗
i +

∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i ) +

∑
j∈Ck

X⊤
j ηj

]
,

= V
−1
t,i

[
(λI +

∑
j∈Ck

X⊤
j Xj)θ

∗
i − λθ∗i +

∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i ) +

∑
j∈Ck

X⊤
j ηj

]
,

= V
−1
t,i V t,iθ

∗
i − λV

−1
t,i θ

∗
i + V

−1
t,i

∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i ) + V

−1
t,i

∑
j∈Ck

X⊤
j ηj .

As a result, we have,

θ̂t,i − θ∗i = V
−1
t,i

∑
j∈Ck

X⊤
j ηj − λV

−1
t,i θ

∗
i + V

−1
t,i

∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i ).

Applying the self-normalized bound gives:∥∥θ∗i − θ̂t,i
∥∥
V t,i

≤
∥∥ ∑
j∈Ck

X⊤
j ηj

∥∥
V

−1
t,i

+
√
λ
∥∥θ∗i ∥∥V −1

t,i
+

∥∥∥∥ ∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i )

∥∥∥∥
V

−1
t,i

,

≤
∥∥ ∑
j∈Ck

X⊤
j ηj

∥∥
V

−1
t,i

+
√
λ∥θ∗i ∥2 +

∥∥∥∥ ∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i )

∥∥∥∥
V

−1
t,i

,

where we used that ∥θ∗∥2
V

−1
t,i

≤ 1
λmin(V t,i)

∥θ∗∥2 ≤ 1
λ∥θ∗∥

2.

The application of Lemma 6 and using ∥θ∗i ∥2 ≤ 1 give:

∥θ∗i − θ̂t,i∥V t,i

≤ σ

√
2 log

(
det(V t,i)1/2 det(λI)−1/2

δ

)
+
√
λ+

∥∥∥∥ ∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i )

∥∥∥∥
V

−1
t,i

:= βt,i,

with probability at least 1− δ. Then with a union bound over all N clients applied to the
inequality above, we prove that ∥θ∗i − θ̂t,i∥V t,i

≤ βt,i, ∀i, t with probability at least 1−Nδ.

Appendix D. Proof of Theorem 3

In this section we present the full proof of our algorithm’s cumulative regret and commu-
nication upper bounds. Before proving the theorem, we will need to prove the following
lemmas.
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Lemma 15 (Heterogeneity Term Bound) Under the condition that the homogeneity
test threshold υc is set to be greater than F−1(1− δ

N2 , df, ψ
c), and with an exploration phase

length of T0 = min{ 64
3λc

log(2Tdδ ), 16ψ
dσ2

λcγ2
} we have with probability 1− δ:∥∥∥∥ ∑

j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i )

∥∥∥∥
V

−1
t,i

≤ 1.

Proof

∥
∑

j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i )∥V −1

t,i
≤

∑
j∈Ck\{i}

∥X⊤
j Xj(θ

∗
j − θ∗i )∥V −1

t,i
,

=
∑

j∈Ck\{i}

√
(θ∗j − θ∗i )

⊤X⊤
j Xj(λI +

∑
i∈Ck

X⊤
i Xi)−1X⊤

j Xj(θ∗j − θ∗i ),

≤
∑

j∈Ck\{i}

√
(θ∗j − θ∗i )

⊤X⊤
j Xj(X⊤

j Xj)−1X⊤
j Xj(θ∗j − θ∗i ),

≤
∑

j∈Ck\{i}

∥θ∗j − θ∗i ∥
√
λmax(X⊤

j Xj),

≤
∑

j∈Ck\{i}

∥θ∗j − θ∗i ∥
√
t,

≤
∑

j∈Ck\{i}

∥θ∗j − θ∗i ∥
√
T ,

where the first inequality is given by the triangle inequality. The second inequality holds
because the sum over all clients V t,i =

∑
i∈Ck

X⊤
i Xi necessarily includes X⊤

j Xj , hence

V t,i ≥ X⊤
j Xj . Additionally, X

⊤
j Xj is positive semi-definite so that V

−1
t,i ≤ (X⊤

j Xj)
−1. The

third inequality is given by the Rayleigh-Ritz Theorem. We have the last inequality because
we know that since ∥xt,i∥ ≤ 1, λmax(X

⊤
i Xi) ≤ τi ≤ T .

Theorem 1 shows that by setting υc ≥ F−1( δ
N2 , df, ψ

c) and T0 = min{ 64
3λc

log(2Tdδ ), 16ψ
dσ2

λcγ2
},

with probability 1− δ we have Ĉ = C. Therefore, since i, j belong to the same ground-truth
cluster Ck, we have by Assumption 1, ∥θ∗j − θ∗i ∥ ≤ ϵt =

1
N
√
t
. As a result, we can further

upper bound the heterogeneity term by∥∥∥∥ ∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i )

∥∥∥∥
V

−1
t,i

≤
∑

j∈Ck\{i}

√
T

N
√
T

≤ 1.

Lemma 16 We define the single step pseudo regret rt,i = ⟨θ∗i , x∗t,i − xt,i⟩ where x∗t,i =
argmaxx∈At,i

⟨x, θ∗t,i⟩. With probability 1−Nδ, rt,i is bounded by

rt,i ≤ 2

(
σ

√
2 log

(
det(V t,i)1/2 det(λI)−1/2

δ

)
+
√
λS +O(1)

)
∥xt,i∥V −1

t,i
= O

(
σ

√
d log

T

δ

)
∥xt,i∥V −1

t,i
.

(6)
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Proof Assume without loss of generality θ∗i ∈ Ck. Then,

rt,i = ⟨θ∗i , x∗t,i⟩ − ⟨θ∗i , xt,i⟩,
≤ ⟨θ̃t,i, xt,i⟩ − ⟨θ∗i , xt,i⟩,
= ⟨θ̃t,i − θ∗i , xt,i⟩,
= ⟨θ̃t,i − θ̂t,i, xt,i⟩+ ⟨θ̂t,i − θ∗i , xt,i⟩,
≤ ∥θ̃t,i − θ̂t,i∥V t,i

∥xt,i∥V −1
t,i

+ ∥θ̂t,i − θ∗i ∥V t,i
∥xt,i∥V −1

t,i
,

≤ 2

(
σ

√
2 log

(
det(V t,i)1/2 det(λI)−1/2

δ

)
+
√
λS +

∥∥∥∥ ∑
j∈Ck\{i}

X⊤
j Xj(θ

∗
j − θ∗i )

∥∥∥∥
V

−1
t,i

)
∥xt,i∥V −1

t,i
.

(7)

The first inequality is because ⟨θ̃t,i, xt,i⟩ is optimistic. Applying Lemma 15 to upper bound
the heterogeneity term gives

RHS of Eq.(7) ≤ 2

(
σ

√
2 log

(
det(V t,i)1/2 det(λI)−1/2

δ

)
+
√
λS +O(1)

)
∥xt,i∥V −1

t,i
,

= O

(
σ

√
d log

T

δ

)
∥xt,i∥V −1

t,i
.

Now we are equipped to prove Theorem 3.
Proof The cumulative regret of our system can be decomposed into three components.
The first component is the regret accumulated under our exploration stage. During these
timesteps we can trivially upper bound the instantaneous regret by two. The second
component considers the regret during timesteps in which our estimated clusters are correct.
The third component considers the regret accumulated during the timesteps in which our
estimated clusters are incorrect, which we can also upper bound the instantaneous regret by
two, yielding

RT ≤
T0∑
t=0

N∑
i=1

2 +

T∑
t=T0+1

M̂∑
k=1

∑
i∈Ĉk

rt,i · 1{Ĉ = C}+
T∑

t=T0+1

M̂∑
k=1

∑
i∈Ĉk

2 · 1{Ĉ ̸= C}.

Note that because our cluster estimation is non-parametric the number of estimated clusters
M̂ is not a hyper-parameter to our clustering algorithm.

According to Theorem 1, if we select υc ≥ F−1(1 − δ
N2 , df, ψ

c) and T0 = 16ψdσ2

λcγ2
, the

probability that Ĉ = C is 1− δ. Therefore, by setting δ = 1
N2T

, the regret contributed by
the rightmost term is of the order O(1). As a result, our high-probability regret bound is
given by:

RT ≤ 32Nψdσ2

λcγ2
+

T∑
t=T0+1

M̂∑
k=1

∑
i∈Ĉk

rt,i · 1{Ĉ = C}+O(1).
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In the subsequent steps, we will focus on the regret accumulated when Ĉ = C. This means
we only need to examine the instances when the estimated number of clusters and their
compositions exactly match the actual clusters. Consequently, in subsequent discussions
M̂ =M and Ĉk = Ck for all k ∈ [M ].

Now we prove Theorem 3 following the steps in the proof of Theorem 4 in Wang et al.
(2020). We consider the case where Eq.(6) holds because with the same choice of δ = 1

N2T
,

the expected instantaneous regret resulting during timesteps when Eq.(6) does not hold is
O(1).

In our communication protocol, for each cluster Ck, there will be a number of epochs
separated by communication rounds. We denote |Ck| denotes the number of clients in cluster
Ck. If there are Pk epochs within cluster Ck, then VPk

will be the matrix with all samples
from Ck included. Similarly we denote the last globally shared V to the clients in Ck in
epoch p as Vp.

From Lemma 7, we have det(V0) = λd. det(VP,k) ≤
(
tr(Vp)
d

)d
≤

(
λ+ |Ck|T

d

)d
. Therefore

by the pigeonhole principle,

log
det(Vp)

det(V0)
≤ d log

(
1 +

|Ck|T
λd

)
.

It follows that for all but R := d log
(
1 + |Ck|T

λd

)
epochs,

1 ≤ det(Vj)

det(Vj−1)
≤ 2. (8)

In these “good epochs” where Eq (8) is satisfied, we can follow Theorem 4 from
Wang et al. (2020) and treat all of the |Ck|T observations from cluster k as observa-
tions from an imaginary single agent in a round-robin manner. We similarly use Ṽt,i =
λI +

∑
{(p,q):(p<t)∨(p=t∧q<i)} xp,qx

⊤
p,q to denote the V t,i this agent calculates before seeing xt,i.

If xt,i is in a good epoch, then:

1 ≤ det(Ṽt,i)

det(V t,i)
≤ det(Vj)

det(Vj−1)
≤ 2.

We similarly denote Bp,k as the set of (t, i) pairs that belong to epoch p and Pgood,k as
the set of good epochs in cluster k. In that event, we can use the regret bound for a single
agent which gives
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Rgood =
T∑

t=T0+1

M∑
k=1

∑
i∈Ck

rt,i,

≤
M∑
k=1

√
|Ck|T

∑
p∈Pgood,k

∑
(t,i)∈Bp,k

r2t,i,

≤
M∑
k=1

O

(√
d|Ck|T log(T/δ)

∑
p∈Pgood,k

∑
(t,i)∈Bp,k

min(∥xt,i∥2Ṽ −1
t,i

, 1)

)
,

≤
M∑
k=1

O

(√√√√d|Ck|T log(T/δ)
∑

p∈Pgood,k

log

(
det(Vp)

det(Vp−1)

))
,

≤
M∑
k=1

O

(√
d|Ck|T log(T/δ) log

(
det(Vp)

det(V0)

))
,

≤
M∑
k=1

O

(
d
√

|Ck|T log(|Ck|T )
)
.

Now we must analyze the regret caused by the bad epochs, of which there are R =
O(d log(|Ck|T )) within each cluster Ck ∈ C. This part of the analysis differs from the proof
in Theorem 4 of (Wang et al., 2020) due to the fact that in our protocol, clusters that have
requested collaboration may have to wait in the queue until they are served in the event
that multiple clusters have requested collaboration at the same timestep.

Consider the regret for a particular cluster Ck ∈ C during this bad epoch. Suppose that
the bad epoch starts at time t0 and lasts n timesteps. We denote the time tq when the
cluster k is added to the queue awaiting collaboration. We can decompose the regret of this
cluster during the bad epoch into two parts, corresponding to the timesteps before and after
Ck has been added to the queue:

REGbad(k) =

tq−1∑
t=t0

rt,i +

n∑
t=tq

rt,i.

Based on our algorithm design, we can see in line 13 of Algorithm 3 that a cluster is only
added to the queue when at least one client in that cluster has exceeded its communication
threshold Dk. Therefore we know that before tq, we can upper bound the regret of the
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cluster k from t0 to tq − 1 as:

tq−1∑
t=t0

rt,i ≤ O

(√
d log

T

δ

) ∑
i∈Ck

tq−1∑
t=t0

∥xt,i∥V −1
t,i
,

≤ O

(√
d log

T

δ

) ∑
i∈Ck

√
(tq − 1− t0) log

det(Vtq−1,i)

det(Vtq−1,i −∆Vtq−1,i)
,

≤ O

(√
d log

T

δ

)
|Ck|

√
Dk.

Once cluster k is added to the queue at timestep tq, it may have to wait to be served by
the central server based on how many clusters have requested collaboration before it. Recall
that our queue is a FIFO queue (line 19 in Algorithm 3), and we have M total clusters.
Therefore the maximum time cluster Ck could have to wait in the queue is M timesteps.
Each timestep the cluster is waiting in the queue, a client in this cluster will miss |Ck|
observations. For each of these missed observations, we can upper bound the regret incurred
by 2, giving

n∑
t=tq

rt,i ≤ 2(M + 1)|Ck|2.

Combining our results, we have the following bound on the regret of cluster Ck during a
bad epoch:

REGbad(k) ≤ O

(√
d log

T

δ

)
|Ck|

√
Dk + 2(M + 1)|Ck|2.

As we know we have at most R = O(d log(|Ck|T )) bad epochs, we can further bound it by

REGbad(k) ≤ O

(√
Dk|Ck|d1.5 log1.5(|Ck|T ) + 2d|Ck|2(M + 1) log(|Ck|T )

)
.

with the choice of Dk =
T log |Ck|T
d|Ck| , our regret becomes:

REGbad(k) ≤ O

(
d
√

|Ck|T log2(|Ck|T ) + 2d|Ck|2M log(|Ck|T )
)
.

The summation over all M clusters gives the regret for all clusters in all of the bad
epochs:

REGbad ≤
M∑
k=1

O

(
d
√

|Ck|T log2(|Ck|T ) + 2d|Ck|2M log(|Ck|T )
)
.
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Combining the regret from the exploration phase, good epochs, and bad epochs gives a
final cumulative regret upper bound of:

RT ≤ 32Nψdσ2

λcγ2
+

M∑
k=1

O

(
d
√

|Ck|T log(|Ck|T )
)
,

+
M∑
k=1

O

(
d
√

|Ck|T log2(|Ck|T ) + 2d|Ck|2M log(|Ck|T )
)
+O(1).

This can be further simplified with,

RT ≤ O

(
Nψdσ2

λcγ2
+

M∑
k=1

d
√
|Ck|T log2(|Ck|T ) + 2d|Ck|2M log(|Ck|T )

)
.

D.1 Communication cost

The cumulative communication cost CT of our algorithm can be divided into two parts. The
first is the communication cost associated with the pure exploration and cluster estimation
phase. During the pure exploration phase, no clients communicate with the central server,
so that the communication cost associated with that phase is trivially 0. At the end of the
exploration phase, all i ∈ [N ] clients share with server their sufficient statistics VT0,i and
bT0,i, each of which are d× d and d× 1 respectively. Therefore, the communication cost of
the cluster estimation is Ccluster est = N(d2 + d) = O(Nd2).

Next, we characterize the communication cost of the second phase, the federated clustered
bandit phase. In our communication protocol, for each cluster Ck, there will be a number
of epochs separated by communication rounds. Denote the length of an epoch as α, so
that there can be at most ⌈Tα ⌉ epochs with length longer than α. For an epoch with less
than α time steps, similarly, we denote the first time step of this epoch as ts and the last
as te, i.e., te − ts < α. Therefore, log det(Vte )

det(Vts )
> Dk

α . Following the same argument as in

the regret proof, the number of epochs with less than α time steps is at most ⌈RαDk
⌉. Then

Cfed cluster(k) = |Ck| · (⌈Tα ⌉+ ⌈RαDk
⌉), because at the end of each epoch, the synchronization

round incurs 2|Ck| communication cost. We minimize Cfed cluster(k) by choosing α =
√

DkT
R ,

so that Cfed cluster(k) = O(|Ck| ·
√

TR
D ). With our choice of Dk =

T log |Ck|T
d|Ck| , we have

Cfed cluster(k) = O(|Ck| ·

√√√√ TR
T log |Ck|T
d|Ck|

),

= O(|Ck| · d
√

|Ck|).

Combining our communication cost from our two phases together gives:

CT = O(Nd2) +
M∑
k=1

O(d3|Ck|1.5).
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Appendix E. Additional Empirical Enhancement Evaluation

In this work, we demonstrate the effectiveness of our empirical enhancements on two
synthetic datasets. In Section 4.2, we analyzed the performance of both HetoFedBandit
and HetoFedBandit-E on a balanced synthetic dataset that was generated following
the procedure described in Section 4.2. In this section, we evaluate our models on an
imbalanced synthetic dataset to emphasize the distinct contributions of our priority queue
and data-dependent re-clustering enhancements.

Dataset In this imbalanced dataset, we deliberately vary the distribution of clients and
the sizes of clusters. We establish N = 50 clients and M = 13 ground-truth clusters. Instead
of randomly assigning clients to clusters like we did in Section 4.2, we manually assigned 26
clients to cluster C1, and the remaining 24 clients were assigned in pairs to the remaining 12
cluster centers. After being assigned to a cluster center, we follow the same procedure from
Section 4.2 to generate the client parameters within ϵ of the cluster centers. For the other
environment settings, we used d = 25, K = 1000, γ = 0.85 and T = 2500.

Models In order to evaluate the contributions of each enhancement proposed in Sec-
tion 3.4, we implemented two additional enhanced algorithms of HetoFedBandit. In
HetoFedBandit-PQ, we replace the server’s FIFO queue with a priority queue that selects a
cluster to collaborate with based on their determinant ratios. HetoFedBandit-DR performs
data-dependent clustering at each collaboration round. HetoFedBandit-E, as described in
Algorithm 5, is our fully enhanced algorithm, where both a priority queue and data-dependent
clustering are employed.

Results In Figure 4a, we conducted an empirical evaluation of the individual enhancements
proposed in Section 3.4. A comparison between HetoFedBandit-DR and HetoFedBandit
demonstrates that the use of data-dependent clustering significantly improved performance on
our imbalanced synthetic dataset. By employing a data-dependent clustering threshold, our
algorithm facilitated greater collaboration among clients with similar observation histories
during the early rounds. Although this enhancement incurred additional communication
cost, the cost remained sub-linear and comparable to that of DisLinUCB.

Comparing HetoFedBandit with HetoFedBandit-PQ, our observations suggest that the
utilization of a priority queue yielded modest improvements in cumulative regret, particularly
in the initial rounds when multiple clients simultaneously requested collaboration, leading
to queue congestion. In this imbalanced environment, we observed significant delays for the
larger cluster C1 when using a FIFO queue. The larger size of cluster C1 resulted in a higher
value of the cluster determinant ratio, indicating its potential for greater regret reduction in
the federated learning system. However, due to the FIFO queue, several smaller clusters
that that benefited less from collaboration were served ahead of C1. Nevertheless, as the
algorithm progressed, the frequency of communication among clients decreased, resulting in
reduced queue congestion. As a result, HetoFedBandit and HetoFedBandit-PQ exhibited
similar performance in the later rounds.
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(a) Accumulative Regret (b) Communication Cost

Figure 4: Experimental Results on Imbalanced Synthetic Dataset

Appendix F. Sensitivity Analysis

According to our regret analysis, the performance of HetoFedBandit depends on three
key environment parameters: the number of ground-truth clusters M , and the number of
clients N , and the cluster separation parameter γ. In this experiment, we analyze their
influence on HetoFedBandit and baselines by varying these parameters while keeping the
others fixed. The accumulated regret under different settings are reported in Table 1. As
suggested by our theoretical analysis, a larger client to cluster ratio N

M leads to higher regret
of both HetoFedBandit (HFB) and HetoFedBandit-E (HFB-E) as shown in setting 1,
2 and 3, since observations are split into more clusters with smaller size each. Lastly, as
shown in settings 4 and 5, 6, decreasing the environment separation introduces a higher
regret of HetoFedBandit since a longer exploration period is required to discern which
clients are safe for collaboration. Additionally, the decreased cluster separation in setting 5
leads to an increase in regret for HetoFedBandit-E, as well as DyClu due to the increased
likelihood of a clustering error when the clusters are closer together.

Table 1: Comparison of accumulated regret under different environment settings.

N M γ T NIndep-
LinUCB

DisLinUCB FCLUB DC DyClu HFB HFB-
E

1 30 1 0.85 3000 772.03 59.20 648.22 48.77 576.31 173.89
2 30 4 0.85 3000 784.80 23776.10 784.01 227.18 669.17 443.89
3 30 30 0.85 3000 781.35 25124.46 791.19 776.86 883.51 822.24
4 30 4 0.65 3000 777.73 20129.05 788.12 231.57 699.89 461.54
5 30 4 0.05 3000 787.79 23823.61 771.04 269.45 916.73 582.21
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