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Abstract

While there exists a rich array of matrix column subset selection problem (CSSP) algorithms
for use with interpolative and CUR-type decompositions, their use can often become prohibitive
as the size of the input matrix increases. In an effort to address these issues, the authors in
[1] developed a general framework that pairs a column-partitioning routine with a column-
selection algorithm. Two of the four algorithms presented in that work paired the Centroidal
Voronoi Orthogonal Decomposition (CVOD) and an adaptive variant (adaptCVOD) with the
Discrete Empirical Interpolation Method (DEIM) [2]. In this work, we extend this framework
and pair the CVOD-type algorithms with any CSSP algorithm that returns linearly independent
columns. Our results include detailed error bounds for the solutions provided by these paired
algorithms, as well as expressions that explicitly characterize how the quality of the selected
column partition affects the resulting CSSP solution.

1 Introduction

Interpretable dimension reduction continues to be an important and active field of research. The
primary motivation stems from the fact that the popular techniques, such as principal component
analysis (PCA) and methods based on the singular value decomposition (SVD), return transformed
points that are linear combinations of potentially all of the singular vectors used in the projection.
Any physical meaning and/or attributes (e.g., non-negativity or sparsity) present in the original
samples is lost [3]. Tools like the interpolative (ID) and CUR decompositions [4] [5] address these
issues by constructing matrix factorizations that utilize carefully selected rows/columns from the
original data matrix. The difficulty in forming such factorizations resides in determining which
rows/columns to select, an issue referred to as the column-subset selection problem (CSSP) [6].
A diverse collection of deterministic and probabilistic algorithms exist for this task. However, for
many of these, especially those reliant on the SVD, their use becomes prohibitive as the problem
size becomes large [5]. To address this issue, the authors of [1] developed a general framework for
subdividing/distributing the CSSP task into a collection of smaller sub-tasks. By first partition-
ing the columns of a matrix and then applying an existing CSSP algorithm to each piece, one is
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able to reduce the problem to a more manageable form that is well-suited for parallelization. The
partitioning algorithms considered therein include the Centroidal Voronoi Orthogonal Decompo-
sition (CVOD) [7] and Vector Quantized Principal Component Analysis (VQPCA), [8] [9] [10] as
well as adaptive versions of each. The Discrete Emprical Interpolation Method (DEIM) [2] is used
to form the final CSSP solution. In the analysis presented in [1], it is unclear how the quality of
the resulting partition affects the resulting CSSP solution. Moreover, the algorithms considered
are all in terms of DEIM. The objective of this paper is to extend the CVOD-type framework to
be paired with any CSSP algorithm that yields linearly independent columns, and investigate the
relationship between the CSSP reconstruction error and the optimality of the corresponding parti-
tioning algorithm. Our focus will be solely on pairing CVOD and the adaptive variant adaptCVOD
developed in [1] with other CSSP routines. Our new frameworks will be referred to as CVOD+CSSP

and adaptCVOD+CSSP respectively. The remainder of the article is organized as follows. We begin
with a review of the CSSP problem and several of the algorithms designed for its solution. The
section following covers the partitioned-based CSSP methods outlined in [1]. This is followed by
our analysis of the partition/CSSP relationship and a conclusion.

2 The Column-Subset Selection Problem (CSSP)

Given A ∈ R
m×n with rank(A) = ρ and a positive integer 0 < r ≤ ρ, the goal of the column-subset

selection problem (CSSP) [6] is to form a matrix C ∈ R
m×r using columns from A that minimizes

‖(Im − CC†)A‖ξ.

Here, C† denotes the Moore-Penrose pseudoinvers of C and ξ is usually taken to be 2 or F . The
factor C†A is referred to as the interpolative decomposition (ID) of A with target rank r [5]. We
will refer to ‖(Im − CC†)A‖F as the ID error and CSSP error interchangeably.

Determining solutions to the CSSP problem is a non-trivial task [11], and several approaches
exist that are devoted to its solution. These include methods that sample columns probabilistically,
for example via probabilities built using the norm of each column and leverage scores which use
information from an SVD ([12] [13] [14] [15][16][3]). Others select columns based on information from
the pivot elements that arise in classical matrix factorizations. These include the LU factorization
with partial pivoting (LUPP) [17] and column-pivoted QR decomposition (CPQR) [18]. The DEIM
algorithm also falls in this category, but avoids explicity performing row operations [2].

3 CVOD-based CSSP

A number of the CSSP algorithms mentioned in the previous section become prohibitive as the
problem size increases [5],[14]. This is especially true of the SVD-based methods (e.g., DEIM and
leverage scores [19]). The authors in [1] attempt to address this issue by partitioning the columns
of the data matrix into Voronoi sets [20]. This is followed by applying a CSSP algorithm to each
piece and combining the results. Two of the partitioning routines used in that paper include the
Centroidal Voronoi Orthogonal Decomposition (CVOD) and a data-driven variant, adaptCVOD. The
next two sections are devoted reviewing CVOD and adaptCVOD. We then present our new post-
processing algorithm PartionedCSSP, which determines a CSSP solution given a column-partition
of a matrix and a user-prescribed CSSP algorithm.
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Notation: Given a set S ⊂ R
m containing n elements, we may also interpret S as an m×n matrix

with the n elements set as columns. Whether S is interpreted as a set or a matrix will be clear from
the context. For a ∈ R, a > 0, we let ⌈a⌉ denote the smallest integer that exceeds a, and ⌊a⌋ denote
the largest integer that does not exceed a. The identity on R

m will be written as Im or Im×m.
We also let ΩB denote the set of columns for a matrix B. Lastly, if Bi ∈ R

m×ni , i = 1, . . . , k is a
collection of matrices, we write diag(Bi) to denote the block-diagonal matrix of size km×

∑k
i=1 ni:




B1

. . .

Bk




3.1 CVOD

Introduced by Du et al., the Centroidal Voronoi Orthogonal Decomposition (CVOD) [7] was origi-
nally conceived as a model-order reduction algorithm that combines elements of Centroidal Voronoi
Tessellation theory with the well-known Proper Orthogonal Decomposition (POD) [21] technique
1. For a data matrix A ∈ R

m×n, positive integers r, k and a multi-index d = (d1, . . . , dk)
T ∈ N

k,
the CVOD optimization problem is given by

min
{(Vi,Θi)}k

i=1

G1 such hat

Θ2
i = Θi, rank(Θi) = di i = 1, . . . , k,

where the energy functional, G1, is defined as

G1 =

k∑

i=1

∑

x∈Vi

‖(Im −Θi)x‖
2
2.

Here, the Vi ⊂ ΩA form a partition of the columns of A. Solutions are found by using the gen-
eralized Lloyd method [23] [24], which performs alternating minimization. Given an initial parti-
tion, {Vi}ki=1, one begins by determining the centroids, {Θi}ki=1. These are given by the matrices
Ui ∈ R

m×di that contains the top left singular vectors of Vi. The next step is to update the Vi

(hereafter referred to as Voronoi sets) using the rule

x ∈ Vi ⇐⇒ ‖(Im − UiU
T
i )x‖22 < ‖(Im − UsU

T
s )x‖22 i 6= s.

In the event ties occur, points are assigned to the Voronoi set with the smallest index. Once
these two steps are complete, the process repeats. We stop the algorithm once the improvement in
the energy functional value falls below a user-defined threshold, although other mechanisms can be
used; see Algorithm CVOD. When applied to the columns of a data matrix, A, CVOD will return
an optimal column partitioning, {Vi}ki=1, and low-dimensional subspaces for each Vi.

1Also referred to as the Karhunen-Loeve expansion [22]
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Algorithm: CVOD

Data: A matrix A ∈ R
m×n, with rank(A) = ρ, a positive integer r < ρ, a positive integer 0 <

k ≤ m, a multi-index of dimensions, d = {di}ki=1 with
∑k

i=1 di = r, and a positive tolerance
parameter, ǫ

Result: A collection, {Vi, Ui}ki=1, consisting of a column partitioning of A, and a set of lower
dimensional representations of each partition.

{Vi}ki=1 ← Randomly partition the columns of A
j ← 1
∆j−1 ← ǫ+ 1

while ∆j−1 > ǫ do
({Ui}ki=1, k)← UpdateCentroidsFixed

(
{Vi}ki=1, d

)

{Vi}ki=1 ← FindVoronoiSets
(
{Vi}ki=1, {Ui}ki=1

)

Gj ←
∑k

i=1

∑
x∈Vi
‖(Im − UiU

T
i )x‖22

if j < 2 then

∆j ← ∆j−1

end

else

∆j ← Gj−1 − Gj

end

j ← j + 1
end

return {Vi, Ui}ki=1

3.2 Adaptive CVOD

The adaptCVOD algorithm presented in [1] is a data-driven version of CVOD. As we show below,
the difference between the two is in how they perform centroid updates. Using the same inputs as
CVOD except without the multi-index, the adaptCVOD optimization problem is given by

min
{(Vi,Θi)}k

i=1

G1 such that

Θ2
i = Θi,

k∑

i=1

rank(Θi) = r,

k⋃

i=1

Vi = ΩA.

The energy functional is the same for both algorithms. However, the constraint,
∑k

i=1 rank(Θi) = r,
differs from that in CVOD and reflects the global approach to minimizing G1. Recall that CVOD

performs a series of local minimizations

min
θi∈R

m×di

‖(Im −Θi)Vi‖F , Θ2
i = Θi, i = 1, . . . , k.

The adaptive variant instead solves

min
Φ
‖diag(Vi)− Φdiag(Vi)‖

2
F s.t. Φ2 = Φ ∈ R

km×km

rank(Φ) = r,
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which is optimal [25].

Subroutine: FindVoronoiSets

Data: A data matrix A ∈ R
m×n, with rank(A) = ρ, and a set of generalized centroids, {Ui}ki=1.

Result: {Vi}ki=1, where the Vi form an updated partition of the columns of A.

Ω←set of column vectors of A
k←Number of centroids, Ui

Vi ← ∅, i = 1, . . . , k
for x ∈ Ω do

for i = 1, . . . , k do

di ← ‖x− UiU
T
i x‖22

end

Assign x to Vi with di < dj i 6= j
end

return {Vi}ki=1

The solution to this problem is diag(UiU
T
i ), where Ui contains the left singular vectors of Vi

that make up part of the rank-r SVD of diag(Vi). Minus this change, the minimization steps are
exactly the like those for CVOD.

The data-driven componenet of adaptCVOD appears when one or more of the Vi have no left
singular vectors that contribute to the dominant r-dimensional column space of diag(Vi). For
example, we may have a situation where the rank-r left singular matrix for diag(Vi) looks like




U1U
T
1

. . .

Uk−1U
T
k−1

0




Should this happen, the number of Voronoi sets, k, is reduced to match the number of cen-
troids involved in this subspace. This change allows the dimension and number of Voronoi sets to
adjust to the data. The CVOD pseudocode can be modified to suit adaptCVOD by replacing the
UpdateCentroidsFixed routine with UpdateCentroidsAdapt.

Subroutine: UpdateCentroidsFixed

Data: A column partition, {Yi}ki=1 of a matrix A ∈ R
m×n with rank(A) = ρ and a multi-index

d = (d1 . . . dk).
Result: {Ui}ki=1, k, where the Ui form an updated set of k generalized centroids and k is the

number of Voronoi sets.
for i = 1, . . . , k do

ŨΣWT ← SVD(Yi)

Ui ← Ũ(:, 1 : di)
end

return ({Ui}ki=1, k)
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3.3 Partitioned CSSP with Adaptive Column Selection

The CVOD and adaptCVOD algorithms each return a partitioning, {Vi}ki=1 of the columns of the
data matrix A and {Ui}ki=1, which represent low-dimensional subspaces for each Vi. In [1], the Par-

tionedDEIM algorithm applies DEIM to each Vi and returns a combined result. The PartionedCSSP

algorithm presented here extends this last algorithm by allowing one to use any CSSP algorithm
(including DEIM) that returns linearly independent columns. These new, combined algorithms will
be referred to as CVOD+CSSP and adaptCVOD+CSSP.

We represent the selected CSSP algorithm as a mapping

MCSSP : Rm×n × {1, . . . , n} → {1, . . . , n}.

For example, if A ∈ R
m×n and 0 < r < ρ = rank(A), then MCSSP(A, r) = J ⊂ {1, . . . , n} where

J has cardinality r and contains the selected column indices of A. PartionedCSSP processes the
Voronoi sets, Vi, in a sequential fashion in order to ensure that the returned matrix C ∈ R

m×r has
full column rank. First, we sort the Vi in ascending order by the ranks of their centroids; i.e,

{V1, . . . , Vk} ⇐⇒ rank(Ui) ≤ rank(Ui+1).

Subroutine: UpdateCentroidsAdapt

Data: A column partition, {Yi}
k
i=1 of a matrix A ∈ R

m×n, with rank(A) = ρ, and a positive integer
r ≤ ρ.

Result: ({Ui}k̃i=1, k̃), where the Ui form an updated set of k̃ generalized centroids

for i = 1, . . . , k do

U
(0)
i Σ

(0)
i W

(0)
i ← SVD(Yi)

Si ← singular values of Σi

U
(1)
i ← ∅

end

S ← Top r singular values of diag(Σi)

k̃ ← 0
for σ ∈ S do

for i = 1, . . . , k do

if σ ∈ Si then

U
(1)
i ←Append corresponding column from U

(0)
i

k̃ ← k̃ + 1
end

end

end

return
(
{U

(1)
i }

k̃
i=1, k̃

)

Next, we runMCSSP on V1 to select d1 = rank(U1) columns from v1:

J1 =MCSSP(V1, d1), C = V (:, J1).
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To select columns from V2, we first project onto the nullspace of C

J2 =MCSSP(Im − CC†)V2, d2), C2 = V2(:,J2),

and select d2 = rank(U2) columns from V2. The resulting columns are appended to the matrix C
and the process repeats until C has r columns. As shown later, the final matrix C ∈ R

m×r will
have full column rank.

Algorithm: PartitionedCSSP

Data: A column partition, {Vi}
k
i=1 of a matrix A ∈ R

m×n, with rank(A) = ρ, a positive integer
r < ρ, a collection, {Ui}ki=1, of m× di matrices containing the top di left singular vectors of

each Vi with
∑k

i=1 di = r, and a CSSP algorithm,MCSSP.
Result: C ∈ R

m×r̃, r̃ ≤ r, such that ‖A− CC†A‖F is small.

{Vi}ki=1 ← Sort Vi by rank(Ui) ≤ rank(Ui+1)
C1 ←MCSSP(V1, d1)
C ← C1

for i = 2, . . . , k do

Qi−1Ri−1 ← qr(C) ; // QR-decomposition

Ṽi ← (Im −Qi−1Q
T
i−1)Vi

Ji ←MCSSP(Ṽi, di)
Ci ← Vi(:,Ji)
C ← [C1 . . . Ci]

end

return C

4 Analysis

Our goal in this section is to construct an explicit relationship between the partitioned-based CSSP
solution and the corresponding partition. To clarify the problem, we first present the lemma and
theorem from [1] that characterize the column ID and CUR reconstruction errors resulting from
the CVOD+DEIM/adaptCVOD+DEIM algorithms. The proofs can be found in [1].

Lemma 1. Let A ∈ R
m×n with rank(A) = ρ, and let 0 < r < ρ be a desired target rank. Let

C ∈ R
m×r be the matrix resulting from any of the partition-based DEIM algorithms with an initial

column partition of size k and multi-index d = (d1 . . . dk), with di = ⌊r/k⌋. If {Vi}k̃i=1 is the final
column partition with k̃ ≤ k, then

‖(Im − CC†)A‖F ≤

√
k̃γC‖A−Ar‖F ,

where γC = maxi ‖(Im − CiC
†
i )Vi‖2Fσ

−2
ρ and σ1 ≥ σ2 ≥ . . . ≥ σρ > 0 are the singular values of A,

Ci ∈ R
m×d̃i contains the columns of C selected from Vi, and Ar ∈ R

m×n denotes the best rank r
approximation to A given by the truncated SVD.

Theorem 1. Let A ∈ R
m×n with rank(A) = ρ, and let 0 < r < ρ be a desired target rank. Suppose

C ∈ R
m×r and R ∈ R

r×n are the result from applying any of the partition-based DEIM algorithms on

7



A and AT respectively, each with an initial partition of size k and multi-index defined as in Lemma
1. If {Vi}

k1

i=1 and {Wj}
k2

j=1 denote the respective final column and row partitions with k1, k2 ≤ k,
then

‖A− CUR‖F ≤
(√

k1γC +
√
k2γR

)
‖A−Ar‖F ,

where
γC = max

i
‖(Im − CiC

†
i )Vi‖

2
Fσ

−2
ρ , γR = max

i
‖Wj(In −R†

jRj)‖
2
Fσ

−2
ρ

are from Lemma 1 and Ar ∈ R
m×n denotes the best rank r approximation to A given by the truncated

SVD.

The main issue here is that the results are, with the exception of the γC and γR terms, partition-
agnostic. In other words, the results are valid given any partitioning of the columns of A. What
we require is a result inherently tied to the choice of partitioning algorithm. This will be the focus
of our work below. We begin by presenting several results that will help with our proofs later on.
The next goal will be to place the column ID reconstruction error in terms of the energy functional
from the corresponding partitioning strategy. Following this, we will bound the energy functional
value at termination by objects related to the data matrix under discussion. This last will allow us
to combine the results and form a more-informative bound on the column ID reconstruction error.

In what follows, the matrix under discussion will be A ∈ R
m×n with rank(A) = ρ and target

rank 0 < r < ρ. The number of Voronoi sets will be denoted by k.

4.1 Preliminaries

In this section we cover helpful lemmas etc. that will be used for the detailed analysis that follows.
We begin with a modification of a subspace distance theorem from [18]. This result will allow us
to relate the local reconstruction errors of each point due to the CVOD/adaptCVOD routines to the
best r-dimensional reconstruction error of the data matrix A.

Theorem 2. Suppose
W = [W1︸︷︷︸

k

| W2︸︷︷︸
n−k

], Z = [ Z1︸︷︷︸
k

| Z2︸︷︷︸
n−k

],

are n× n orthogonal matrices. Then

‖W1W
T
1 − Z1Z

T
1 ‖F = ‖WT

1 Z2‖F = ‖ZT
1 W2‖F .

Proof. Following the approach from [18], observe that

‖W1W
T
1 − Z1Z

T
1 ‖

2
F = ‖WT (W1W

T
1 − Z1Z

T
1 )Z‖

2
F

=

∥∥∥∥
[

0 WT
1 Z2

−WT
2 Z1 0

]∥∥∥∥
2

F

Now note that the matrices WT
2 Z1 and WT

1 Z2 are submatrices of the n× n orthogonal matrix

Q =

[
Q11 Q12

Q21 Q22

]
=

[
WT

1 Z1 WT
1 Z2

WT
2 Z1 WT

2 Z2

]
= WTZ.
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We need to show that ||Q21||F = ||Q12||F . Since Q has orthogonal columns, we have

∥∥∥∥
[

Q11

Q21

]∥∥∥∥
2

F

= k = ‖Q11‖
2
F + ‖Q21‖

2
F ⇒ ‖Q21‖

2
F = k − ‖Q11‖

2
F .

Similarly, using QT , which is also orthogonal, we have

∥∥∥∥
[

QT
11

QT
12

]∥∥∥∥
2

F

= k = ‖QT
11‖

2
F + ‖QT

12‖
2
F

= ‖Q11‖
2
F + ‖Q12‖

2
F

⇒ ‖Q12‖
2
F = k − ‖Q11‖

2
F

Thus ‖WT
2 Z1‖F = ‖WT

1 Z2‖F and the proof is complete.

Our next result bounds the discrepancy between the dominant r-dimensional column space of
a matrix and that of a linearly independent subset of columns (from the same matrix) of size r.

Lemma 2. Let A ∈ R
m×n have rank ρ, and let Ar = UrΣrW

T
r , r < ρ, be its truncated SVD. If

C ∈ R
m×r is built using columns from A and has full column rank, then

‖UrU
T
r − CC†‖F ≤ ‖A−Ar‖F‖C

†‖2.

Proof. Since C has full column rank, we may write C = QR, where Q ∈ R
m×r has orthonormal

columns and R ∈ R
r×r is upper triangular and nonsingular. Then, CC† = QQT . Let Ūr ∈ R

m×n−r

have as columns the left singular vectors of A not contained in Ur. These objects and theorem 2
imply

‖UrU
T
r − CC†‖F = ‖UrU

T
r −QQT ‖F

= ‖ŪT
r Q‖F

= ‖ŪrCR−1‖F

≤ ‖ŪrC‖F ‖R
−1‖2

= ‖ŪTUΣWTSc‖F‖R
−1‖2

where UΣWT = A is the SVD of A and Sc ∈ R
n×r is the column selection matrix for C; i.e.,

C = ASc. We have
ŪTUΣWT = Σ̄W̄T

where Σ̄ ∈ R
ρ−r×ρ−r contains the ρ− r smallest singular values of A and W̄ ∈ R

n×ρ−r contains the
corresponding right singular vectors. Thus, ‖ŪTUΣWTSc‖F ≤ ‖A−Ar‖F . The lemma follows by
recognizing that C† = R−1QT .

For our last result in this section, we show that the output from the PartionedCSSP algorithm
has full column rank.
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Lemma 3. Let A ∈ R
m×n with rank(A) = ρ, and let MCSSP be any CSSP algorithm that returns

linearly independent columns. Let C ∈ R
m×r be the result from applying PartionedCSSP with

MCSSP on the size k column partition {Vi}ki=1 of A with target rank 0 < r < ρ, and a multi-index
d = (d1 . . . dk). Then C has full column rank.

Proof. Let {Vi}k̃i=1 denote the column partition that results when the partition algorithm completes,
and assume they have been ordered as in PartitionCSSP. We may write C = [C1 . . . Ck̃], where
Ci ∈ R

m×di contains those columns of C that belong to Vi. Since C1 results from applyingMCSSP

to V1, we know that it has full column rank. Proceeding by induction, suppose C = [C1 . . . Cs],
1 < s < k̃ has been constructed and has full column rank. We next consider B = (Im−QQT )Vs+1 ∈
R

m×ds+1, where QR = C is the QR-decomposition of C. Let Ts+1 = In×n(:,Js+1) ∈ R
ns+1×ds+1 ,

where Js+1 = MCSSP(B, ds+1). Then BTs+1 has full column rank, and each column is linearly
independent with respect to the columns of C. Now suppose that Vs+1Ts+1 does not have full
column rank. Then there exists x 6= 0 in R

ds+1 such that Vs+1Ts+1x = 0. But this implies

‖Bx‖2 = ‖(Im −QQT )Vs+1x‖2 ≤ ‖Vs+1Ts+1x‖2 = 0,

a contradiction. Thus, the Vs+1Ts+1 has full column rank.

4.2 Error Bounds

The first goal of this section is to bound the ID error in terms of the energy functional value that
CVOD or adaptCVOD achieves when run to completion. The next goal will be to construct an upper
bound on the CVOD (adpatCVOD) energy at termination in terms of objects related to the input
data matrix, A. Once complete, these two results will be combined to give an overall bound on the
ID reconstruction error.

Our first theorem states that the ID reconstruction error that results from either CVOD+CSSP or
adaptCVOD+CSSP is on the order of the CVOD/adaptCVOD energy functional value at termination.

Theorem 3. Let A ∈ R
m×n, rank(A) = ρ, and 0 < r < ρ, 0 < k < n be integers. If C ∈ R

m×r is
the output from CVOD+CSSP (adaptCVOD+CSSP), then

‖(Im − CC†)A‖F ∼ O (G∗)

where G∗ is the energy value of CVOD (adaptCVOD) at completion.

Proof. For each i = 1, . . . , k, let Ci ∈ R
m×di be the submatrix of C whose columns belong to Vi,

and let QiRi = Ci be its QR-decomposition. Define Ûi ∈ R
m×di , i = 1, . . . , k, to be the matrix

10



whose columns contain the top di left singular vectors of Vi i.e., the centroid of Vi. Then

‖(Im − CC†)A‖2F =

k∑

i=1

‖(Im − CC†)Vi‖
2
F

≤
k∑

i=1

‖(Im − CiC
†
i )Vi‖

2
F

=

k∑

i=1

‖(Im −QiQ
T
i )Vi‖

2
F

=

k∑

i=1

‖(Im − ÛiÛ
T
i + ÛiÛ

T
i −QiQ

T
i )Vi‖

2
F

≤
k∑

i=1

(
‖(Im − ÛiÛ

T
i )Vi‖F + ‖(ÛiÛ

T
i −QiQ

T
i )Vi‖F

)2

≤
k∑

i=1

(
‖(Im − ÛiÛ

T
i )Vi‖F + ‖(ÛiÛ

T
i −QiQ

T
i )‖F ‖Vi‖2

)2

≤
k∑

i=1

(
‖(Im − ÛiÛ

T
i )Vi‖F + ‖C†

i ‖2‖Vi − Vi,di
‖F ‖Vi‖2

)2

The last line follows from invoking lemma 2, where Vi,di
∈ R

m×ni denotes the best rank di
approximation to Vi given by its truncated SVD. Since ‖(I − ÛiÛ

T
i )Vi‖F = ‖Vi − Vi,di

‖F , this last
gives

‖(Im − CC†)A‖2F ≤
k∑

i=1

‖(Im − UiU
T
i )Vi‖

2
F (1 + ‖C

†
i ‖2‖Vi‖2)

2

≤ ζ2
k∑

i=1

‖(Im − UiU
T
i )Vi‖

2
F

where ζ ≡ maxi

(
1 + ‖C†

i ‖2‖Vi‖2
)
. Since this last result bounds the reconstruction error by a

constant times the CVOD energy, the proof is complete.

We remark that the ζ term characterizes the local performance of the selected CSSP algorithm
in terms of the conditioning of the selected columns. This term could be used to guide the choice of
CSSP algorithm to use; e.g., its form is similar to expressions found with strong rank-revealing QR-
factorizations [21]. We also note that the result is independent of the size of the column partition
of A.

Our next theorem constructs an upper bound on the CVOD (adpatCVOD) energy at termination
in terms of objects related to the input data matrix, A.

Theorem 4. Let {(Vi, Ûi)}ki=1 denote the Voronoi sets and centroids resulting from running either
the CVOD or adpatCVOD algorithm on a matrix A ∈ R

m×n with target rank 0 < r < rank(A). Let

11



d = {di}ki=1 denote the centroid dimensions at termination. Then

k∑

i=1

∑

x∈Vi

‖(Im − ÛiÛ
T
i )x‖22 ≤ ‖A− Ar‖

2
F +

(
1−

1

L∗

)
‖Ar‖

2
F

where L∗ = sup{⌈ r
di
⌉ | i = 1, . . . , k} and Ar ∈ R

m×n denotes the best rank-r approximation to A
given by the truncated SVD.

Proof. Let Ur ∈ R
m×r be the matrix containing the top r left singular vectors of the matrix A.

Since each Ûi has rank di, we may partition the columns of Ur as

Ur = [Ur,i1 · · · Ur,iLi
],

where rank(Ur,is) ≤ di for each il, l = 1, . . . , Li, where Li = ⌈
r
di
⌉. Since Ûi 6= Ur,il for every l, we

have
‖(Im − ÛiÛ

T
i )Vi‖

2
F ≤ ‖(I − Ur,ilU

T
r,il

)Vi‖
2
F , for every l.

And since UT
r,il

Ur,il = I, for each l, this implies that

‖ÛiÛ
T
i Vi‖

2
F ≥ ‖Ur,ilU

T
r,il

Vi‖
2
F for each l.

Thus,
Li∑

l=1

‖ÛiÛ
T
i Vi‖

2
F = Li‖ÛiÛ

T
i Vi‖

2
F ≥

Li∑

l=1

‖Ur,ilU
T
r,il

Vi‖
2
F = ‖UrU

T
r Vi‖

2
F .

Note that we can repeat this construction for each Vi, i = 1, . . . , k. Let L∗ = sup{Li | i =
1, . . . , k}. Then the previous shows L∗‖ÛiÛ

T
i Vi‖2F ≥ ‖UrU

T
r Vi‖ ∀i. As a result, we have

k∑

i=1

‖(Im − ÛiÛ
T
i )Vi‖

2
F =

k∑

i=1

(
‖Vi‖

2
F − ‖ÛiÛ

T
i Vi‖

2
F

)

= ‖A‖2F −
k∑

i=1

‖ÛiÛ
T
i Vi‖

2
F

≤ ‖A‖2F −
1

L∗

k∑

i=1

‖UrU
T
r Vi‖

2
F

= ‖A‖2F −
1

L∗
‖UrU

T
r A‖2F

= ‖A‖2F −
1

L∗
‖Ar‖

2
F

= ‖A‖2F − ‖Ar‖
2
F −

1

L∗
‖Ar‖

2
F + ‖Ar‖

2
F

= ‖A−Ar‖
2
F +

(
1−

1

L∗

)
‖Ar‖

2
F
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By combining Theorem 3 and 4, we arrive at the following ID reconstruction error bounds.

Theorem 5. Let A ∈ R
m×n, rank(A) = ρ, and 0 < r < ρ, 0 < k < n be integers. Define L∗

as in Theorem 4 and ζ as the proof of Theorem 3. If C ∈ R
m×r is the output from CVOD+CSSP

(adaptCVOD+CSSP), then

‖(Im − CC†)A‖F ≤ ζ

(
‖A−Ar‖

2
F +

(
1−

1

L∗

)
‖Ar‖

2
F

)1/2

.

Remark: Although this result has not been optimized, it still presents an interesting bound. In
particular, it consists of two terms that bring together elements from the CSSP algorithm and the
data matrix, A. The ζ term, as mentioned earlier, quantifies the local performance of the chosen
CSSP algorithm in terms of the conditioning of the columns selected from each Vi. The remaining
term relates the ideal r-dimensional reconstruction error of A to the partitioning algorithm’s energy
functional value at termination. Of note is that the bound is independent of k, the number of final
Voronoi sets.

5 Conclusion

In this work, we present generalizations of the CVOD+DEIM/adaptCVOD+DEIM algorithms in-
troduced in [1] designed to address the column subset selection problem (CSSP). Referred to as
CVOD+CSSP/adaptCVOD+CSSP, these new frameworks pair CVOD/ adaptCVOD with any column-
selection algorithm whose output gives linearly independent columns. We establish a quantitative
relationship between the final CSSP solution and the optimality of the partitioning algorithm. Fur-
thermore, we develop bounds on the CVOD/adaptCVOD energy functional values at termination in
terms of objects from the parent data matrix. This last may be of independent interest in the model
order reduction community [7], [26]. These results allow one to interpret the CSSP error in terms of
the partition quality and the local performance of the chosen CSSP method. This result reflects the
belief that the ID reconstruction error resulting from a partitioned-based CSSP procedure should
improve with the quality of the underlying partition.

Topics for future work include developing analogous generalizations using the VQPCA and
adaptVQPCA partitioning algorithms, as well as conducting a numerical study that investigates
the performance of CVOD+CSSP/adaptCVOD+CSSP when paired with several well-known column-
selection methods.
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