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Abstract

Large language models (LLMs) are primar-
ily evaluated by overall performance on var-
ious text understanding and generation tasks.
However, such a paradigm fails to comprehen-
sively differentiate the fine-grained language
and cognitive skills, rendering the lack of suffi-
cient interpretation to LLMSs’ capabilities. In
this paper, we present FAC2E, a framework for
Fine-grAined and Cognition-grounded LLMs’
Capability Evaluation. Specifically, we formu-
late LLMs’ evaluation in a multi-dimensional
and explainable manner by dissociating the
language-related capabilities and the cognition-
related ones. Besides, through extracting the
intermediate reasoning from LLMs, we further
break down the process of applying a specific
capability into three sub-steps: recalling rele-
vant knowledge, utilizing knowledge, and solv-
ing problems. Finally, FAC2E evaluates each
sub-step of each fine-grained capability, provid-
ing a two-faceted diagnosis for LLMs. Utiliz-
ing FAC2E, we identify a common shortfall in
knowledge utilization among models and pro-
pose a straightforward, knowledge-enhanced
method to mitigate this issue. Our results
not only showcase promising performance en-
hancements but also highlight a direction for
future LLM advancements.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020), especially instruction-tuned LLMs (Ouyang
et al.,, 2022; Bai et al., 2022; Touvron et al.,
2023b; Chiang et al., 2023) revolutionized natu-
ral language processing and have surpassed human
performance on tasks that require nontrivial rea-
soning (Guo et al., 2023; Malinka et al., 2023),
while showing great potential in applications from
conversational assistants (OpenAl, 2022; Achiam
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et al., 2023) to expertise problem-solving (Nori
et al., 2023; Zhou et al., 2023; Suzgun and Kalai,
2024). However, despite the impressive perfor-
mance, LLMs also show poor robustness on com-
plex tasks (Ullman, 2023) and significantly incon-
sistent evaluation results under different settings,
such as binary preference (Xu et al., 2023) and auto-
matic metrics (Gudibande et al., 2023). Therefore,
it is crucial to attain an overarching understanding
of the capabilities and limitations of LLMs.

To address this challenge, most prior studies
have assessed the performance of LLMs on dif-
ferent tasks based on independent benchmarks
from various dimensions (Liang et al., 2022; Sri-
vastava et al., 2023; Gao et al., 2023), such as
knowledge (Hendrycks et al., 2020) and reason-
ing (Zellers et al., 2019). Recently, motivated by
building LLM-based Al assistants, some studies
propose highly curated benchmarks with instance-
level fine-grained annotations, such as difficulty
and required skills (Mialon et al., 2023; Ye et al.,
2023), for holistic evaluation of LLMs.

However, the existing studies overlook a crucial
distinction between language and cognition (Monti
et al., 2012; Blank et al., 2014), rendering the in-
sufficient understanding of a model’s true capabil-
ities and effectiveness in tasks. For instance, in
the context of generative question answering, a
model adept at extracting information but strug-
gling to form a coherent understanding may ex-
hibit similar overall performance to another model
with profound cognitive insights but difficulties
in articulating accurate responses. We argue that
a multi-dimensional and interpretable understand-
ing of LLMs’ capabilities can not only accurately
unveil their inherent limitations, but also help us
to better identify why one model outperforms the
other and how the different capabilities correlate.
Additionally, such insights allow us to provide tai-
lored guidance to improve training efficiency or
facilitate more advanced model development.



Capability

Description

Skill Example

Encoding grammatical concepts support

agreements, licensing, long-distance dependencies,

LINGUISTIC A . . . Grammaticality:
KNOWLEDGE linguistic operations regarding word meanings and garden-path effects.
and their combinatorial processing. Semantics: synonymy, antonymy, and hypernymy.
FORMAL Conducting word-based formal reasoning Mechanism: deductive, inductive, and analogical.
KNOWLEDGE  through understanding shallow semantics. Skill: numeric, logic, and manipulation.
WORLD Understanding text based on given context Remember: factual knowledge, context, and commensense.
MODELING and associating it with world knowledge. Understand: narrative structure and discourse comprehension.
. . . . olite deceits, irony, maxims of conversation,
SociAL Infering mental state behind text and intended Pragmatics: p S LB
. . metaphor, indirect speech, and humor.
MODELING | meaning beyond literal content.

Theory-of-mind

unexpected content and unexpected transfer tasks.

Table 1: Formulation of cognition-grounded LLMs’ capabilities. See Section 2.1 for details.

In this paper, we propose FAC?E, a fine-grained
capability evaluation framework for LLMs. Specif-
ically, FAC?E dissociates the language-related and
cognition-related capabilities of LLMs and orga-
nizing them into four distinct axes: LINGUISTIC
KNOWLEDGE, FORMAL KNOWLEDGE, WORLD
MODELING, and SOCIAL MODELING. This cat-
egorization is grounded in neuroscience evidence
manifesting that language processing and cognitive
processes, like memory and reasoning, operate dif-
ferently in the brain. Drawing from this insight, we
adapt a range of existing benchmarks into a uni-
fied question-answering format. We then develop
specific instructions for each capability, allowing
FACZE to evaluate LLMs through a method known
as few-shot instruction-following.

Furthermore, we break down the application of a
specific capability into three sub-steps: knowledge
recall, knowledge utilization, and problem-solving,
by iteratively drawing out the model’s intermediate
reasoning. After evaluating each sub-step, FAC’E
can reveal the quality of knowledge encoded in
the model, and effectiveness in applying relevant
knowledge to solve practical problems, offering a
more comprehensive evaluation than a single per-
formance metric could.

Our findings reveal a notable gap in capabilities
between open-source and proprietary models, espe-
cially for cognition-related capabilities. Addition-
ally, we found that many models have difficulties
in applying knowledge effectively. To address this,
we suggest a knowledge-enhance remedy by incor-
porating relevant knowledge text as additional in-
put. Experimental results show that it can help the
backbone model achieve about 90% performance
compared to its instruction-tuned counterparts.

2 Methodology

In this section, we introduce FAC?E framework,
designed for fine-grained and cognition-grounded
LLMs’ capability evaluation. Specifically, we first

define the taxonomy for LLMs’ capabilities based
on the distinction between language and cogni-
tion, which is drawn upon insights from neuro-
science (Fedorenko and Varley, 2016; Mahowald
et al., 2023). Based on this, we transform a variety
of existing benchmarks into the unified question-
answering format, design capability-specific in-
struction, and frame FACZE via few-shot instruction-
following. Furthermore, we break down the evalu-
ation process for each capability into a three-step
reasoning approach. This involves identifying the
knowledge pertinent to the input, examining how
the model applies this knowledge in practical con-
texts, and assessing the effectiveness of its problem-
solving. By evaluating each of these steps, FAC?2E
provides a comprehensive overview of the model’s
performance, offering a more nuanced understand-
ing of LLMs’ intrinsic capabilities.

2.1 Formulation of LLMs’ Capabilities

Human language processing has been investigated
for a long time in cognitive science and neuro-
science, which robustly attribute language and rea-
soning to different brain areas, namely “language
network” and “multi-demand network™ (Duncan,
2010; Scott et al., 2017). The former is sensitive
to linguistic regularities and formal operations, and
damage to the language network leads to linguistic
deficits. The latter responds actively to a broader
range of cognitively demanding processes, such as
reasoning and memory. Motivated by this separated
relationship, we define the LLMs’ capabilities as
a 4-dimensional schema as shown in Table 1. We
then proceed to explain each capability and under-
line the specific skills they encompass.

LINGUISTIC KNOWLEDGE. For LLMs to ef-
fectively generate language, they must first grasp
text at a basic linguistic level, which includes under-
standing both grammaticality and semantics. Gram-
maticality encompasses the rules that govern lan-
guage structure, spanning from the sounds (phono-



logical) and words (lexical) to the arrangement of
words in phrases and sentences. To capture this
grammatical structure as comprehensively as pos-
sible, especially given the challenges conventional
models face in benchmarks like BLIMP (Warstadt
etal., 2020), we focus on four key skills: agreement
(anaphor and subject-verb relationships), licensing
(negative polarity items and reflexive pronouns),
managing long-distance dependencies (filler-gap
constructions and cleft sentences), and navigating
garden-path sentences, which can mislead readers’
initial interpretations. Semantics, on the other hand,
while more closely related to high-level cognitive
understanding, within the context of LINGUISTIC
KNOWLEDGE, pertains to the meanings of indi-
vidual words or lexical semantics. This aspect is
distinct from general conceptual knowledge, which
falls under other dimensions of LLM capabilities,
highlighting the meaning-related understanding,
such as synonymy, antonymy, and hypernymy.
FORMAL KNOWLEDGE. Beyond encoding lin-
guistic structures and word meanings, an essen-
tial aspect of language capability involves under-
standing formal operations among words, or word-
based reasoning. This means LLMs should be ca-
pable of recognizing relationships between words
and deducing missing elements in a given pattern,
such as completing analogies (e.g. “man:woman ::
king:_”). FAC?E includes three types of reasoning
mechanisms—deductive, inductive, and analogical
reasoning—between words (Bang et al., 2023). It
also includes three categories of symbol-based for-
mal skills: numeric (dealing with numbers), logic
(applying logical operations), and manipulation (al-
tering the inputs in a rule-based manner). An exam-
ple task is concatenating the last letters of a word
list (“think, machine, learning” — “keg”).
WORLD MODELING. To step towards cogni-
tive capabilities, well-grounded comprehension
of factual and commonsense knowledge is re-
quired. Precisely, we decompose this capability
into two primary mechanisms: remember and un-
derstand, respectively modeling the retrieval-based
and comprehension-based capability (Sugawara
et al., 2020; Wang et al., 2022a). Considering the
versatility of knowledge sources, we instantiate
the remember sub-capability as recalling factual
knowledge (open-ended facts), reading comprehen-
sion (facts in context), and applying commonsense
reasoning. Based on the multiple granularities of
text comprehension and hierarchy of input text, we
characterize the understand sub-capability as two

skills: understanding narrative or event structure
(paragraph-level), and discourse comprehension
(document-level).

SOCIAL MODELING. The utility of human lan-
guage lies in not only the understanding of the
text itself but also the social context and mental
states underlying communication, i.e.serving as
a medium for information exchange between in-
dividuals. As suggested by research of cognitive
science (Adolphs, 2009), the human brain has dedi-
cated machinery, namely “theory of mind network”,
for processing social information and understand-
ing somebody’s mental state. Besides, since there
are a lot of phenomena about non-literal language
comprehension in daily life, such as jokes, sarcasm,
and indirect speech, successful LLMs should be
capable of applying social inference skills to attain
the intended meaning beyond the literal content. In
this paper, we incorporate two kinds of social mod-
eling into FAC?E, encompassing pragmatics and
theory of mind (ToM) reasoning. Pragmatics is
evaluated by six kinds of dialogue, including polite
deceits, irony, maxims of conversation, metaphor,
indirect speech, and humor, while ToM is based on
the “unexpected tasks” devised by Kosinski (2023).

2.2 FACZE

Based on the formulation of LLMs’ capabili-
ties, we collect input and output pairs from var-
ious benchmarks and modify collected instances,
yielding a unified question-answering (QA) for-
mat. After that, following the widely adopted
few-shot in-context learning (ICL) (Brown et al.,
2020), we devise capability-specific instruction and
frame FAC’E via instruction following (Ouyang
et al., 2022). We further leverage chain-of-thought
(CoT) (Wei et al., 2022a,b) style prompting to elicit
two intermediate reasoning steps from the model,
namely crystallized step and fluid step. The terms
“crystallized” and “fluid” are borrowed from Cat-
tel’s theory (Cattell, 1963), a foundational building
block of cognitive science about the source of intel-
ligence. Cattel’s theory delineates that crystallized
intelligence is semantic knowledge from past expe-
riences, fluid intelligence is the ability to navigate
novel situations, and problem-solving uses both.
Therefore, we add two intermediate steps to oper-
ationalize the two kinds of mechanisms, and aim
to measure how well the model recalls and applies
knowledge. Last, we compare the intermediate
results with the reference answers to score the rea-
soning sub-steps, hence providing an assessment of



Linguistic Knowledge

Capability-specific Instruction

Model Response

(Crystallized step) Thought1: “listen" and "hear" are related
in some way.

Action1: Follow-up Question[By what relationship "listen"
implies "hear"?]

Answerl (rq): “listen" is the process that leads to "hearing".
(Fluid step) Thought2: To conduct analogical reasoning, |
need to find words that are related to "drop" in a similar
cause-effect relationship.

Action2: Follow-up Question[What is an effect of "drop"?]
Answer2 (r,): The result or outcome of "drop" is that the
object moving downward due to the force of gravity.
(Problem-solving step) Thought3: “drop" can imply "fall*,
"descend”, or "tumble" by the same cause-effect
relationship as "listen : hear”.

wﬂ Title and task description [...]

/Q Demonstration Question: throw : fly :: aspire : ?
(Crystallized step) Thought1: “throw" and "fly" are related in
some way.

Formal Knowledge Actionl: Follow-up Question[By what relationship "throw"

O =~ implies "fly"?]

o~ Answerl: "throw" is the action that leads to flying "fly“.

|:| @ (Fluid step) Thought2: To conduct analogical reasoning

bfeftweenI wordsr,] thehwolrgsbimplieddby ”é:\spire" in the cause-
i effect relationship should be considered.
World Modeling Action2: Follow-up Question[What is an effect of "aspire" ?]

O Answer2: The result or outcome of "aspire" is to attain or
achieve the desired goal.

(Problem-solving step) Thought3: "aspire" can imply "attain"
by the same relationship as "throw : fly".

Social Modeling Action3: Finish( ]
Answer3: attain.

== Input Question: listen : hear :: drop : ?

& 8

(Instruction Decomposition)

Action3: Finish[ ].
Answer3 (r3): descend.

R: This pair of words is about cause-effect relationship.
R,: The act of dropping causes the effect of the object falling

due to gravity.
Stepwise Evaluation

R3: descend.

Figure 1: Tllustration of FAC2E pipeline. The input question is decomposed into two intermediate follow-up questions,
which are used to help the model talk with itself to elicit reasoning sub-steps. FAC?E evaluates each sub-step to
reveal crystallized performance, fluid performance, and corresponding problem-solving performance. The content
in the round parentheses is purely illustrative and is not part of the model input. The instruction has been omitted
here for clarity. Please refer to Appendix B for full version example.

the crystallized performance and fluid performance
as well as problem-solving performance.

As depicted in Figure 1, the pipeline FAC2E can
be divided into three steps, including capability-
specific instruction design, instruction decom-
position, and stepwise evaluation. Specifically,
we devise natural instruction for each capability-
related task. Borrowing the widely used tem-
plate schema of instruction-following (Wang et al.,
2022b; Mishra et al., 2022), the capability-specific
instruction Z,. is comprised of three parts: title, task
description and few-shot demonstrations. Precisely,
the title defines a given QA task in high-level nat-
ural language and highlights the associated skills,
while the task description not only presents a com-
plete clarification of how an input text is expected
to be mapped to final output, but also define the
output of reasoning sub-steps through instruction
decomposition. After that, following the given task
description, a few in-context demonstrations are
provided to better steer the response generation. At
last, we collect the response results for each reason-
ing sub-steps, denoted as {r; }5_,, and respectively
evaluate them with the reference answer, denoted
as {R;}3_,, which are directly extracted or manu-
ally constructed from corresponding benchmarks.
Formally, the procedure can be represented as:

{riYi, = M(Z.) (1)
s; = Criterion; (r;, R;) (2)

where M denotes the examined LLM, while
Criterion; and s; represent the employed automatic
metric and corresponding score, respectively.

Instruction decomposition. Motivated by build-
ing explainable evaluation methods for machine

reading comprehension (MRC) (Ray Choudhury
et al., 2022), which extracts relevant text spans and
validates reasoning path, we propose to evaluate in-
termediate steps when LLMs apply a specific capa-
bility to solve practical problems. Specifically, we
decompose the capability-specific instruction and
add two intermediate steps, including crystallized
and fluid steps. In practice, we leverage CoT-like it-
erative prompting strategy to elicit the intermediate
reasoning from the model. Differing from the stan-
dard CoT that outputs a continuous rationale before
the final answer, we first decompose the given ques-
tion as follow-up sub-questions. After that, these
sub-questions are used to help the model talk with
itself to respectively discover (i) what knowledge
this question is about, (ii) how to apply relevant
knowledge to the given instance, and (iii) the final
answer. In other words, FAC?E convert the CoT
continuous rationale into easily parseable multi-
step rationales, which externalizes reasoning of the
model (Shwartz et al., 2020; Zhou et al., 2022b) and
enables the evaluation of crystallized performance
and fluid performance. Formally, as depicted in the
demonstrations of Figure 1, we expect that the the
model outputs as: [Thought], [Action], [Answer]
, where [Thought] can reason about the current
situation, [Action] can be either (1) [Follow-up
Question], which returns a sub-question, or (2)
[Finish], and [Answer] is extracted as the reason-
ing result of a sub-step.

Stepwise evaluation. Given the reasoning results
of three sub-steps, i.e. {r;}?_,, we engage auto-
matic metrics as the criterion to evaluate them.
Specifically, 1 and 7y are free-form rationales
for intermediate reasoning steps. Considering



Capability Benchmark QA type
Agreements BLiMP (Warstadt et al., 2020) M
Licensing Marvin and Linzen (2018) M
Long-distance dependency Wilcox et al. (2019) M
Garden-path effects Futrell et al. (2018) M
Lexical semantics Petersen and Potts (2023) M
Deductive Bang et al. (2023) M
Inductive Bang et al. (2023) M
Analogical ‘Webb et al. (2023) G
Numeric MAWPS (Koncel-Kedziorski et al., 2016) G
Logic Tian et al. (2021) G
Manipulatation Wei et al. (2022b) G
Factual Knowledge LAMA (Petroni et al., 2019) G
Reading Comprehension Dua et al. (2019) M
Commonsense Talmor et al. (2019) M
Discourse Wang et al. (2023c) G
Narrative Xu et al. (2022) G
Pragmatics Hu et al. (2023) M
Theory of mind Ullman (2023) G

Table 2: Breakdown statistics on source benchmarks and
re-formulation types of the evaluation data employed
by FAC2E, where “G” and “M” stand for generative QA
and multiple-choice QA, respectively.

the diversity of rationale generation, we resort to
BARTScore-Recall (Yuan et al., 2021), one of the
most superior metrics for natural language gen-
eration to evaluate the quality of generated ratio-
nale automatically. BARTScore-Recall gauges how
many semantic content units from reference texts
are covered by the generated candidates, and will
not penalize the redundant and instance-specific
information in the model response. For the last
response 73, since it is expected to be the final
answer for the given question, it is evaluated by
the BARTScore-Recall (Yuan et al., 2021) or accu-
racy for generative QA re-formulation and multiple
choice QA re-formulation, respectively.

3 Experiments

Evaluation data construction. As summarized
in Table 2, we collect a total of 17 English bench-
marks and modify the corresponding input-output
pairs into a unified QA format, i.e. generative QA
or multiple-choice QA. The reference answers of
the benchmarks are directly used as the final an-
swer R3, while the reference rationales (R; and
R») for the intermediate reasoning steps are con-
structed manually. Specifically, on the one hand,
Ry, i.e. the reference rationale for the first reason-
ing step is based on the metadata analysis about
subset division of the employed benchmarks. For
example, when we evaluate the grammaticality re-
garding negative polarity item (NPI) licensing, we
manually write “The word *any’, in their most com-
mon uses, are negative polarity items: they can only
be used in an appropriate syntactic-semantic envi-
ronment—to a first approximation, in the scope of
negation.” as the reference rationale R; for the

Model Model size Pre-training Fine-tuning
T5 11B 1.0T tokens X
Flan-T5 11B as above IT
Flan-Alpaca 11B as above IT
LLaMA 7B 1.4T tokens X
Alpaca 7B as above IT
Vicuna 7B as above 1T
TULU 1 7B,13B,30B,65B as above IT
LLaMA 2 7B 2T tokens X
LLaMA 2-Chat 7B as above IT+RLHF
GPT-3.5 175B - IT+RLHF
InstructGPT 175B - IT+RLHF
Bard 137B - IT+RLHF

Table 3: Statistics of examined LLMs, including model
size, pre-training data scale, and fine-tuning techniques
indicating whether the model is built with instruction
tuning (IT) and reinforcement learning with human feed-
back (RLHF) or not.

whole “any”-based NPI licensing subset, other sub-
set will substitute the “any” with corresponding
licensing contexts or trigger words, such as “ever”
and “even”. On the other hand, R, i.e.the ref-
erence rationale for the second reasoning step is
built on the instance-wise annotations of human
evaluation publicly released by the authors of cor-
responding benchmarks, which annotates necessary
explanations as well as final answer R3 for a given
question. Although this will leave few benchmarks
available and lead to a limited number of evaluation
data, it provides relatively reliable references and
especially enables re-producible evaluation.

Examined models. As summarized in Table 3,
the examined LLMs can be categorized into pub-
licly available open-source models and proprietary
ones whose responses are provided through pri-
vate APIs. On the one hand, open-source mod-
els include three backbone models, i.e. TS5 (Raffel
et al., 2020), LLaMA (Touvron et al., 2023a) and
LLaMA 2 (Touvron et al., 2023b), which are pre-
trained on large scale corpus and not applied to any
fine-tuning. Initialized with TS5, Flan-T5 (Long-
pre et al., 2023) and Flan-Alpaca (Chia et al.,
2023) are instruction-tuned on Flan V2 (Long-
pre et al., 2023) and Alpaca (Taori et al., 2023),
respectively. Built on LLaMA, Alpaca (Taori
et al., 2023) and Vicuna (Chiang et al., 2023)
are instruction-tuned with responses generated by
GPT-3.5, while TULU 1 (Wang et al., 2023d) are
instruction-tuned with a mixture of both manually
curated and distilled dataset. Based on LLaMA 2,
LLaMA 2-Chat (Touvron et al., 2023b) is firstly
instruction-tuned with high-quality collected an-
notations, and then aligned with human prefer-
ences for the chat use case. Besides, to per-



LINGUISTIC KNOWLEDGE

FORMAL KNOWLEDGE

WORLD MODELING

SOCIAL MODELING

Model
S1 52 53 S1 52 53 S1 52 53 S1 52 53

T5 83.99 26.39 47.39 77.97 28.10 33.26 74.61 24.74 26.53 66.79 18.31 19.16
Flan-T5 84.96 42.50 64.12 80.10 3522 42.58 74.82 36.13 34.64 67.73 27.23 21.27
Flan-Alpaca 85.25 39.41 60.15 79.88 34.99 41.72 75.54 37.42 36.57 68.38 28.74 23.82
LLaMA 85.34 31.36 53.77 80.02 31.18 40.04 75.57 27.46 30.47 67.54 20.14 20.75
Alpaca 86.02 45.78 68.39 82.03 38.10 53.85 77.30 41.91 49.42 69.93 29.61 32.96
Vicuna 85.23 47.45 72.66 84.35 40.10 57.07 75.33 43.38 44.37 65.68 26.87 30.63
TULU 1 84.14 45.84 70.72 82.32 39.29 51.21 75.90 43.30 40.80 69.73 26.77 27.02
LLaMA 2 83.19 34.56 57.89 82.19 34.18 46.15 77.48 34.84 40.92 68.22 24.74 24.20
LLaMA 2-Chat 87.04 48.95 74.46 84.05 43.21 57.13 78.43 46.09 44.46 71.06 28.89 29.59
GPT-3.5 87.91 5391 82.72 85.93 45.20 70.47 81.53 53.18 67.68 77.23 36.34 40.56
InstructGPT 88.52 55.50 85.19 85.12 44.18 67.48 80.34 51.78 65.16 74.17 39.90 45.95
Bard 87.74 52.37 86.16 86.97 46.08 71.62 79.30 49.09 61.31 78.64 38.27 42.53

Table 4: Quantitative results in terms of four capability dimensions. As stated in Section 2.2, s, So, and s3 refer to
crystallized performance, fluid performance, and problem-solving performance, respectively. The shade of the red

and blue text highlight the orders of s3 in open-source and proprietary models, respectively.

form a fair comparison w.r.t instruction-tuning
dataset, we also evaluate LLaMA checkpoints fine-
tuned on other datasets, such as Flan V2 (Long-
pre et al., 2023) (human-written), Alpaca (model-
generated) (Taori et al., 2023), ShareGPT ! (user
prompt with model response). On the other hand,
proprietary models consist of OpenAl’'s GPT-3.5
(gpt-3.5-turbo) (OpenAl, 2022), OpenATI’s In-
structGPT (gpt-3.5-turbo-instruct) (Ouyang
et al., 2022) and Google’s Bard (Google, 2023).
Please refer to Appendix A for checkpoint details.

3.1 Main results

The difference in problem-solving performance
between open-source and proprietary models
is significantly greater than the difference in
their crystallized performance. On the one hand,
in terms of problem-solving performance (s3), as
shown in Table 4, open-source models usually un-
derperform the proprietary ones across various ca-
pabilities, especially cognition-related ones, such
as world modeling and social modeling. For ex-
ample, one of the most competitive open-source
model Alpaca achieves a 49.42 accuracy in the
world modeling dimension, while GPT-3.5 pro-
duces a performance of 67.68, excelling Alpaca
by a substantial margin (around 36%). A simi-
lar conclusion can also be drawn from the other
dimensions, such as the best problem-solving per-
formance of proprietary models exceeds that of
open-source models by about 16%, 25%, and 40%
in linguistic knowledge, formal knowledge, and
social modeling, respectively. On the other hand,
in terms of crystallized performance (s;), there
is a rather smaller gap between open-source and
proprietary models compared to problem-solving
accuracy. For example, the maximal difference of
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Figure 2: Pairwise correlation of problem-solving per-
formance (s1) among different capabilities. Please refer
to Table 1 for full label names.

N |l'°

51 in the world modeling among all the examined
models is about 9%, i.e. GPT-3.5’s 81.53 vs. T5’s
74.61, while their difference of s3 is GPT-3.5’s
67.68 vs. T5’s 26.53. This kind of inconsistency
between s; and s3 can also be observed in other ca-
pability dimensions, potentially showing that either
pre-training or supervised fine-tuning of LLMs can
encode sufficient knowledge into the model, but
the final task performance does not just depend on
the amount or quality of knowledge.

Language-related capabilities show a rela-
tively weak correlation with cognitive capa-
bilities.  Figure 2 presents the correlation re-
sults between different capabilities.  Despite
all showing strong correlations (Pearson’s r >
0.7 (Krippendorff, 2004)), both the language-
related and cognition-related capabilities exhibit
stronger intra-dimension correlation (e.g. world
modeling vs.social modeling) when compared to
inter-dimension correlation (e.g. world modeling
vs. formal knowledge). This indicates that excel-
lence in language processing does not necessarily
equate to a similar level of cognitive capability.
This result can also be observed from Table 4. For
example, the model LLaMA 2-Chat achieves better
results in terms of problem-solving performance
of linguistics knowledge than Alpaca, i.e. LLaMA
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Figure 3: Bar diagram illustrating the relationship be-
tween problem-solving performance (s3) and intermedi-
ate performance ((s1 + s2)/2). Each bar of intermediate
performance is divided into two stacked segments, the
lower one denotes s1, while the upper one denotes s5.

2-Chat’s 74.46 vs. Alpaca’s 68.39, but it fails to
surpass Alpaca in world modeling (44.46 vs. 49.42)
and social modeling (29.59 vs. 32.96). This pattern
also applies to other models, such as Bard vs. In-
structGPT, further demonstrating the reasonability
of disassociating language-related capabilities and
cognition-related ones to better evaluate LLMs.

A possible reason behind it could be that dedi-
cated structures of the model or subsets of parame-
ters are highly correlated with language, whereas
others serve as cognition, and they are optimized at
different training stages and function as different
mechanisms during inference, which has been veri-
fied by recent studies on knowledge locating and
editing of LLMs. For example, Zhao et al. (2023)
and Chen et al. (2023) respectively found core lin-
guistic regions and language-independent knowl-
edge neurons in LLMs, and Dai et al. (2022); Meng
et al. (2022) proposed to explicitly edit knowledge
neurons to improve performance, potentially pro-
viding a feasible approach to strengthening LLMs
capability without fine-tuning, i.e. editing their pa-
rameters or architectures directly.

The crystallized step impacts problem-solving
more than the fluid step. Figure 3 illustrates
the relationship between problem-solving perfor-
mance (s3) and sum of crystallized (s;) and fluid
(s2) performance. Both s; and sy make a differ-
ence to the final s3, showing that problem-solving
not only depends on the amount or quality of stored
knowledge but also is reflective of the effectiveness
of knowledge utilization. For example, LLaMA
2 underperforms LLaMA 2-Chat in terms of s3

—»— TULU 7B
80— 2 TULU 13B
—=— TULU 30B
—— TULU 65B
60 —e— GPT-3.5
%)
40 '

20

. el 8. M
L'\nQ-G\"_?ng g}?\f\‘a\ \i\ec a\ﬁ\é\r or\d\%‘sc\a\ P“‘%\a\m

Figure 4: Problem-solving performance of instruction-
tuned LLaMA with different model sizes.
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Figure 5: Problem-solving performance of LLaMA on
different instruction-tuning datasets.

across various capabilities. When taking a closer
look at the intermediate results, we can observe that
both the models do well in crystallized step, but
LLaMA 2 shows an worse result in fluid step, lead-
ing the worse problem-solving performance than
LLaMA 2-Chat. Besides, all of the open-source
models exhibit relatively poor fluid performance
w.r.t. GPT-3.5, especially those that are pre-trained
but not instruction-tuned, such as T5 and LLaMA 2.
This implies a solution to improve problem-solving
performance, i.e. boosting the efficacy of knowl-
edge utilization. Section 3.2 devise a knowledge-
enhanced method to demonstrate this solution.

Both the model size and the quality of fine-
tuning dataset affect the capabilities of LLMs.
Firstly, backbone models play a critical role in
building superior models. For example, as shown
in Table 4, fine-tuned on the same dataset, LLaMA-
based Alpaca performs better than T5-based Flan-
Alpaca, and the larger scale proprietary models
show a greater advantage over other open-source
models. In addition, scaling open-source models
does improve both language and cognitive capabil-
ity. As shown in Figure 4, problem-solving per-
formance across various capabilities increases as
the model size increases, and TULU-65B achieves
the best performance. In particular, the level of for-
mal knowledge of TULU-65B are close to that of
GPT-3.5. Last, but not least, there is no significant
performance difference among various open-source
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Figure 6: Comparisons between knowledge-enhanced
baselines (b) M+R; and (c) M+R;+R> and original
setting (a).

instruction-tuning datasets whether it is comprised
of human-written instruction or not. As illustrated
in Figure 5, there is not a single best instruction
tuning dataset across all tasks, indicating different
datasets bring different benefits to LLMs’ capabili-
ties. This finding is consistent with the recent suc-
cess of a mixture of instruction-tuning datasets or
expert LLMs (Jiang et al., 2024; Xia et al., 2024).

3.2 Boosting LLMs with Injected Knowledge

Based on the above analysis showcasing the limi-
tations of the crystallized performance of existing
LLMs, as illustrated in Figure 6, we propose to a
knowledge-enhanced approach. Specifically, for
each given instance with question and answer, the
first baseline, denoted as M+R;, append the first
reference rationale, i.e. R;, to the input question
with string concatenation. Then the augmented in-
put is fed into the model with the same instruction
as the examined model. Note that we also remove
the first triplet of ( [thought], [action], [answer]
) in the input demonstrations for the M+R; base-
line because we have provided the corresponding
reference rationale. As a comparison, following a
similar procedure, we also construct another base-
line by incorporating both R; and Rp into the
model, denoted as M+R1+R>.

Taking LLaMA 2, performing moderately in Ta-
ble 4, as the backbone model, the multifaceted
results are summarized in Figure 7. We can
observe that explicit injected rationales both R;
and Ry can substantially improve the problem-
solving performance, and Rs results in more im-
provements than R;. Specifically, R; contributes
slightly to language-related capabilities, such as
linguistic semantics and formal skills, while Ra
brings about significant improvements to cognition-
related ones, especially social modeling. Overall,
the knowledge-enhanced LLaMA 2 baseline can
achieve approximately 90% performance compared
to the corresponding instruction-tuned variant.

4 Related Works

Evaluation of LLMs. LLMs are initially assessed
on various understanding (Wang et al., 2018, 2019)

—— LLaMA 2

LLaMA 2+R;
LLaMA 2+R1+R;
LLaMA 2-Chat

Formal.Mech.

Formal8kill

World.Rem.

Social.Prag.

Figure 7: A 8-dimensional capability map of LLaMA 2
model when augmented with different knowledge text.
The score is re-scaled through max-min normalization
among each capability for clarity.

and generation tasks (Pilault et al., 2020; Thomp-
son and Post, 2020). With the increasing emphasis
on the trustworthiness of models, dedicated bench-
marks are proposed to evaluate robustness (Yang
et al., 2022; Wang et al., 2023b), hallucination (Li
et al., 2023), bias (Zhong et al., 2023), and gener-
alizability (Wang et al., 2023a). In a more unified
form, recent-emerged works aim to evaluate LLMs
on holistic benchmark (Mialon et al., 2023; Rein
et al., 2023). Chia et al. (2023) conduct evaluation
from problem-solving, writing, and human align-
ments, while Ye et al. (2023) annotates a single
instance with a set of skills, including logical think-
ing, background knowledge, problem handling, and
user alignment. Although they provide fine-grained
analysis of LLMs’ capability, they quantify each ca-
pability only using the performance metric, hence
suffering from issues of interpretability.
Cognition-inspired intelligence evaluation. How
to define and evaluate intelligence is widely investi-
gated by both cognitive science and Al benchmark
design (Cattell, 1963; Rogers et al., 2023). Taking
MRC as the target, Chollet (2019) describes intel-
ligence as skill-acquisition efficiency, while Sug-
awara et al. (2020) and Ray Choudhury et al. (2022)
respectively propose to benchmark MRC based
on reasoning skills and steps a system would be
“reading slowly”. As for the evaluation of LLMs,
Mahowald et al. (2023) summarize lots of neu-
roscience evidence for dissociating language and
thought, largely motivating the design of FACZE.

5 Conclusion

We present FACE, defining a fine-grained capabil-
ity evaluation framework for LLMs by dissociating
language and cognition. FAC2E decomposes each
capability into sub-steps to assess performance
of knowledge recalling and utilization as well as



problem-solving. FACZE reveals the inherent limi-
tations of existing LLMs in knowledge utilization
and provides a knowledge-enhanced remedy for it.
Empirical results demonstrate its effectiveness.

Limitations

Our work proposes a fine-grained and cognition-
grounded capability evaluation framework for
LLMs, namely FAC2E, which is based on the dis-
sociated relationship of language and cognition,
and evaluating the intermediate reasoning steps of
LLMs. The limitations are two-fold, including data
quality and domain generalizability.

On the other hand, motivated by a variety of
empirical evidence from both neuroscience and
probing experiments of LLMs, we formulate FAC?E
as four capability dimensions, then re-formulate
instances from multiple existing benchmarks and
conduct stepwise evaluation. Although we try to
ensure that the employed datasets are as consis-
tent and targeted with the defined dimensions as
possible, the kind of evaluation data construction
might not reflect the required skills accurately. For
example, an instance can cover more than one lan-
guage or cognition capabilities As discussed in
Section 3.1, different capabilities are correlated to
each other to some extent, Besides, the reference
rationales, i.e. the gold standard of the intermedi-
ate reasoning step, are based on the human anno-
tations from original benchmarks, leading to the
inconsistency of reference answers and a limited
number of available data, which might bias the
evaluation results. One remedy to these incidental
issues could be building a new holistic benchmark
with fine-grained annotations following our pro-
posed schema. We regard it as our future work and
deem designing a new annotation specification a
promising direction.

On the other hand, our FAC%E only examined
LLMs on general domains and English input, ignor-
ing the domain-specific and multilingual applica-
tion. In particular, the reasoning process of LLMs
may expose social bias encoded in these models,
such as race and gender (Lucy and Bamman, 2021).
Therefore, additional evaluation protocols consid-
ering potential risks to user safety are left for our
future work.

Ethics Statement

We introduce FAC?E, a fine-grained and cognition-
grounded capability evaluation framework for

LLMs, and conduct evaluation experiments on pub-
licly available datasets which are widely used in
related research. Although LL.Ms have the poten-
tial to cause harm at the individual and societal lev-
els (Gonen and Goldberg, 2019), our FACZE aims
to provide a deep understanding of the capabilities
and limitations of LLMs, potentially making the
risks from the LL.Ms more predictable.
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A Implementation Details

All of the examined open-source models are based
on HuggingFace Transformers package (Wolf et al.,
2020). Their model cards, i.e. checkpoints consist
of:

TS5 (t5-11b),

* Flan-T5 (google/flan-t5-xxl),

* Flan-Alpaca (declare-lab/flan-alpaca-xxl),
+ LLaMA 2,

* Alpaca and LLaMA on Alpaca (allenai/open-
instruct-stanford-alpaca-13b),

* Vicuna (Imsys/vicuna-7b-v1.1),

« TULU 1 (allenai/tulu-7b, allenai/tulu-13b,
allenai/tulu-30b, allenai/tulu-65b),

e LLaMA on Flan V2 (allenai/open-instruct-
flan-v2-13b),

* LLaMA on ShareGPT (allenai/open-instruct-
sharegpt-13b),

e LLaMA 2 (meta-llama/Llama-2-7b-hf),

LLaMA 2-Chat (meta-llama/Llama-2-7b-
chat-hf)

For the response generation of each target model,
as suggested by Wei et al. (2022b); Zhou et al.
(2022a), we employ 4-shot instruction-following
settings, i.e. 4 in-context demonstrations in the in-
put prompt, set the temperature to 0.7 and set the
max length of generated sequences as 1024. For
automatic metrics, we leverage the official imple-
mentation of BARTScore (Yuan et al., 2021).

After collecting instances from various bench-
marks as summarized in Table 2, we remove those
instances where the input length is longer than
2048, maximal context length during training ex-
cept TS, Flan-T5, and Flan-Alpaca,

We conduct evaluation experiments on 2 A100
GPUs and report the average results of a total of
ten runs for each model on each benchmark. For
the capabilities involving multiple benchmarks, the
overall score are calculated as the arithmetic mean
of crystallized performance (s;), fluid performance
(s32), or problem-solving performance (s3).

2h'ctps ://huggingface.co/docs/transformers/
main/en/model_doc/1lama

B Instruction Design

See Figure 8 and Figure 9 for full version example
of capability-specific instruction when evaluating
the analogical reasoning and grammaticality.
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Instruction: Solve a question-answering task by conducting analogical reasoning between words.

Given three words, i.e. A, B, and C in a format of A:B::C:?, which means that A implies B by some relationship, reason
with this relationship and predict a word D such that C implies D by the same relationship. In other words, A:B is a
reference pair in some relationship, complete the pair of C:D in the same relationship as A:B.

Please solve the task by interleaving Thought, Action, and Answer steps. Thought can reason about the current situation,
and Action can be the following two types:

(1) Follow-up Question[question], which returns a sub-question with a single answer that helps solve the original
question.

(2) Finish[], which means no more sub-questions. The final answer should be generated in the following line.
[Demonstration Question]: throw:fly::aspire:?

[Thought 1]: "throw" and "fly" are related in some way.

[Action 1]: Follow-up Question[By what relationship "throw" implies "fly"?]

[Answer 1]: "throw" is the action that leads to flying "fly".

[Thought 2]: To conduct analogical reasoning between words, the words implied by "aspire" in the cause-effect
relationship should be considered.

[Action 2]: Follow-up Question[What is an effect of "aspire"?]

[Answer 2]: The result or outcome of "aspire" is to attain or achieve the desired goal.

[Thought 3]: "aspire”" can imply "attain" by the same relationship as "throw:fly".

[Action 3]: Finish[]

[Answer 3]: attain.

[More Demonstration Questions] [...]

[Input Question]: listen:hear::drop:?

Figure 8: Full version example of the capability-specific instruction.

Instruction: Solve a question-answering task judging which one of the minimal pairs is acceptable and grammatical.
The minimal pairs consist of two sentences that differ by a few words, one of them is grammatical, but another is
ungrammatical.

Please solve the task by interleaving Thought, Action, and Answer steps. Thought can reason about the current situation,
and Action can be the following two types:

(1) Follow-up Question[question], which returns a sub-question with a single answer that helps solve the original
question.

(2) Finish[], which means no more sub-questions. The final answer should be generated in the following line.
[Demonstration Question]: Which sentence of the following two sentences is grammatical?

FirstSentence[No author that no senators liked has had any success.]

SecondSentence[The author that no senators liked has had any success.]

[Thought 1]: Both of the two sentences use the word "any". in their most common uses, they can only be used in an
appropriate syntactic-semantic-environment.

[Action 1]: Follow-up Question[In what syntactic-semantic-environment can the word "any" be used?]

[Answer 1]: To a first approximation, they can be only in the scope of negation.

[Thought 2]: If a sentence does not contain a negation structure to match the word "any", it will be ungrammatical.
[Action 2]: Follow-up Question[Which sentence does not contain a negation structure?]

[Answer 2]: SecondSentence. Although it contains a negation structure of "no senators" in the subordinate clause, it
does not contain a negation structure in the main clause to match the word "any" in the main clause.

[Thought 3]: The SecondSentence of minimal pairs lacks a negation structure, so it is ungrammatical.

[Action 3]: Finish[]

[Answer 3]: FirstSentence is grammatical and SecondSentnce is ungrammatical.

[More Demonstration Questions] [...]

[Input Question]:

Figure 9: Full version example of the capability-specific instruction.
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