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An indispensable ingredient for pair density wave (PDW) superconductivity is the presence of
an attractive pairing interaction at finite momentum. Here, we show how this condition can be
met with straightforward electron-density interactions in multiband systems. The electron-density
interaction, when projected to the band basis, acquires form factors with nontrivial momentum
dependence and thereby exhibits a potential tendency to a finite-momentum pairing instability. By
applying a mean field analysis to two simple multiband models, the checkerboard lattice and three-
band Hubbard model, we find that PDW order can indeed become the leading instability if a strong
nearest-neighbour attraction is present. Moreover, the condition for the transition from a uniform
superconductor to a PDW superconductor is shown via a simple quantum geometric argument.

I. INTRODUCTION

Pair density wave (PDW) superconductors are com-
prised of Cooper pairs with finite center-of-mass (COM)
momenta. This constitutes an exotic superconducting
phase in which the order parameter acquires periodic
spatial modulation and vanishes on average [1], thereby
breaking translational symmetry on top of the expected
U(1) symmetry of a generic superconductor. Unlike uni-
form superconductivity, PDW pairing is not typically
considered a weak coupling instability since the bare pair-
ing susceptibility at finite momentum does not diverge
logarithmically. Exceptions can arise when the Fermi
surface is nested in the pairing channel [2–8], or in two di-
mensional systems tuned to the vicinity of a higher order
Van Hove singularity such that the bare finite-momentum
pairing susceptibility is promoted to a power-law diver-
gence [9, 10]. On generic grounds, however, PDW or-
der is viewed as an intermediate coupling phenomenon.
Attempts to elucidate its microscopic mechanism have
proven challenging.

The first example of finite-momentum superconductiv-
ity was discussed in the context of superconductors ex-
posed to strong magnetic fields, where the opposite-spin
pairs inevitably possess finite total momentum due to
the strong Zeeman splitting of the spin-up and spin-down
Fermi surfaces [11, 12]. This is the FFLO (Fulde-Ferrell-
Larkin-Ovchinnikov) phase. Modern interest in the PDW
state, which is distinguished from FFLO physics by the
absence of a magnetic field, was revitalized by a pro-
posal suggesting its existence in under-doped cuprates
[13–22]. Indeed, recent experiments in two La-based
cuprates seem to confirm its existence [23], although a
satisfactory microscopic mechanism is still lacking from
a theoretical point of view. Besides the cuprates, an in-
creasing number of experimental results recently point to
PDW states manifesting in a variety of materials, includ-
ing heavy-fermion UTe2 [24–26], iron-based superconduc-
tor EuRbFe4As4 [27] and kagome metal CsV3Sb5 [28–31].
From a theoretical perspective, the PDW ground state
is inherently interesting on account of the fact that it

can give rise to different vestigial orders, such as charge-
density-wave and charge-4e superconductivity through
the process of partial melting [32–36]. Therefore, un-
derstanding the microscopic mechanism of PDW beyond
weak coupling theory contributes to our understanding of
strongly-correlated systems with competing orders more
broadly.

The difficulty of proposing a microscopic mechanism
for PDW formation is due, in part, to a lack of consis-
tent evidence from a wide range of experiments that one
would ideally leverage to establish the correctness of any
particular perspective. The rarity of the PDW state can
be understood as a consequence of the stringent require-
ments for a finite-momentum pairing instability. Such an
instability requires attractive BCS pairing interaction at
nonzero momentum, and the interaction strength must
surpass a threshold value. Although the latter condi-
tion can be satisfied in strongly-interacting systems, the
first condition is met with greater difficulty. One natural
solution is to consider systems with large pair-hopping
interactions [37–40]. This type of interaction depends
naturally on the Cooper pair COM momentum q, and
can therefore lead to a PDW instability if it becomes
sufficiently attractive at some finite q. Systems of this
kind can be realized in, e.g., the BEC limit of strong
pairing systems [41], the strong-coupling limit of the
Holstein-Hubbard model [42], the strong-coupling limit
of the Kondo-Heisenberg model [43–45], and in twisted
bilayer semiconductors if one of the two layers supplies
charge-2e excitons for mediating the electron-electron in-
teraction in the other layer [46, 47].

In contrast, in systems where the electron-density in-
teraction dominates, the Cooper channel interaction usu-
ally does not depend on the COM momentum q. How-
ever, as we will show in this paper, this is not true for
multiband models. In such systems, the electron-density
interaction picks up momentum-dependent form factors
upon transforming from the lattice basis to the band ba-
sis. Although the bare interaction is itself independent
of the COM q, the unitary transformation form factors
generically depend on q, and as a result so too does the
band-projected pairing interaction.
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In this paper, we supply a mean field theory of PDW
superconductivity in multiband systems, with implemen-
tation on two typical lattice models: the extended Hub-
bard model on a checkerboard lattice and the extended
three-band Hubbard model on a square lattice. By de-
composing the interaction in different channels, we ob-
tain phase diagrams illustrating the competition between
various charge, spin, and pairing orders. Our work high-
lights the importance of the q-dependent form factors in
multiband systems for inducing a PDW instability; this
explains, in part, why in some recent works a PDW state
is claimed to exist in multiband systems [48–51], such
as the three-band Hubbard model [52] and a spinless
Honeycomb-lattice model with nearest-neighbour and
next-nearest-neighbour interactions [53].

In Sec. II, we begin by outlining a general prescrip-
tion for analysing competing orders in multiband sys-
tems. Later, in Sec. III, we present numerical evidence
for a leading PDW instability in the checkerboard and
three-band Hubbard models. In Sec. IV we discuss how
the local curvature of the quantum metric can be tuned to
favour PDW formation over uniform SC, and offer some
concluding remarks in Sec.V.

II. MEAN FIELD THEORY OF COMPETING
ORDERS IN MULTIBAND SYSTEM

We begin with a discussion of competing orders in
multiband extended Hubbard models, with the aim of
identifying a general scheme for favouring PDW forma-
tion. The Hamiltonian for a generic multiband lattice
model can be written as the sum of a tight-binding part
(H0) and an interacting part (Hint), where

H0 =
∑

ij;ab;α
hα

ij;abc
†
iaαcjbα,

Hint =
∑
i,a

Uania↑nia↓ + 1
2
∑

⟨ia,jb⟩

Vabnianjb

(1)

Here, i, j denote Bravais lattice sites; a, b represent sub-
lattice degrees of freedom (assuming s-orbitals on each
site for simplicity); and nia is the density operator for
sublattice a at site i, defined as nia ≡

∑
α niaα =∑

α c
†
iaαciaα, with α =↑, ↓ representing the spin degrees

of freedom. We introduce nearest-neighbour interaction
V in addition to the onsite Hubbard U .

For a given realization of the lattice, one can rewrite
the Hamiltonian in the momentum basis and subse-
quently project into the band basis. This procedure
is effected by the unitary transformation caα(k) =∑

n uan(k)ψnα(k), with the operator ψnα(k) creating a
fermion with spin α and momentum k in band n. In this
new basis, the single-particle Hamiltonian is diagonal:
H0 =

∑
n,k εn(k)ψ†

n,kψn,k. The interaction, meanwhile,

transforms as:

Hint =
∑

ab,αβ

∑
nn′,mm′

∫
q,p,k

Vab(q) (2)

× u∗
naα(k)u∗

mbβ(p)um′bβ(p − q)un′aα(k + q)

× ψ†
nα(k)ψ†

mβ(p)ψm′bβ(p − q)ψn′aα(k + q)

Through this projection, the interaction has acquired the
form factors {una(k)}, resulting in a nontrivial momen-
tum dependence of the effective interaction.

We now make some simplifying assumptions. First,
we assume that the bands are well-separated from each
other; this allows us to focus on the sole band crossing the
Fermi level. This consideration is valid in the low energy
limit where the interaction strength does not exceed the
band gap. Henceforth we will drop the band indices, and
set n = n′ = m = m′ in Eq.2. Furthermore, will assume
that H0 is spin-degenerate, so that the form factors do
not depend on the spin index. This analysis can be easily
generalized to systems with spin polarization.

In order to discuss the relevant symmetry-breaking or-
ders, we need to decompose Hint into charge, spin, and
pairing channels. Such a decomposition is justified if we
assume the transfer momentum, q, is a small deviation
from the ordering vector. We first express Hint in the
direct and exchange channels, and then use the SU(2)
completeness relation to further separate the exchange
channel into its charge and spin contributions. After a
straightforward manipulation, we obtain

Hc
int =

∫
q,p,k

V c
q (k,p)

(∑
α

ψ†
α(k − q/2)ψα(k + q/2)

)

×

∑
β

ψ†
β(p + q/2)ψβ(p − q/2)


(3)

for the charge channel,

Hs
int =

∫
q,p,k

V s
q (k,p)

(∑
αγ

ψ†
α(k − q/2)σαγψγ(k + q/2)

)

×

∑
βδ

ψ†
β(p + q/2)σβδψδ(p − q/2)


(4)

for the spin channel, and

Hp
int =

∫
q,p,k

V p
q (k,p)ψ†

↑(k + q/2)ψ†
↓(−k + q/2))

× ψ↓(−p + q/2)ψ↑(p + q/2)
(5)

for the pairing channel. The corresponding interactions
in the charge, spin, and pairing channels, respectively,
are given by

V c
q (k,p) = V di

q (k,p) − 1
2V

ex
q (k,p)

V s
q (k,p) = −1

2V
ex

q (k,p),
(6)
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and

V p
q (k,p) =

∑
ab

Vab(k − p)u∗
am(k + q/2)u∗

bm(−k + q/2)

× uam(p + q/2)ubm(−p + q/2),
(7)

where the interactions in the direct and exchange chan-
nels are given by

V di
q (k,p) =

∑
ab

Vab(q)u∗
am(k − q/2)u∗

bm(p + q/2)

× uam(k + q/2)ubm(p − q/2),

V ex
q (k,p) =

∑
ab

Vab(p − k)u∗
am(k − q/2)u∗

bm(p + q/2)

× uam(p − q/2)ubm(k + q/2).
(8)

Note that all the band-projected interactions, V τ
q (k,p)

(with τ = c,s,p), satisfy V τ
q (p,k) = V τ

q
∗(k,p); that is

to say, we can view V τ
q (k,p) as the (k,p)-th entry of a

Hermitian matrix V τ
q . This permits us to decompose the

interaction into its eigenbasis,

V τ
q (k,p) =

∑
j

vτ
q,j(k)λτ

q,jv
τ
q,j

∗(p), (9)

where λτ
q,j is the j-th real eigenvalue of V τ

q , and vτ
q,j(k) is

its corresponding eigenvector. After diagonalizing V τ
q in

this way, the interaction Hamiltonian can be compactly
expressed as

Hτ =
∑

j

∫
q

λτ
q,j

(∫
k

vτ
q,j(k)(...)k,q

)(∫
p

vτ
q,j

∗(p)(...)p,q

)
(10)

Here, (...)k,q and (...)p,q represent the various fermion
bilinears from Eqs.(3), (4) and (5). In our convention,
negative λτ

q,j < 0 signifies attraction.
Since the j sectors are decoupled, one can investigate

symmetry breaking in different j-channels separately. We
introduce a Hubbard-Stratonovich (HS) field ∆τ

j (q) to
decouple the four-fermion interaction, and then integrate
out the fermions to arrive at an effective action for the
bosonic HS field. The quadratic term in the static limit
is given by

|λτ
q,j |−1(1 ± λτ

q,jΠτ
j (q))|∆τ

j (q)|2 (11)

The + sign corresponds to the pairing channel, while
the − sign is reserved for the charge and spin channels.
Πτ

j (q) is the static susceptibility for the j-th channel.
When considering charge or spin orders, this quantity is
given by

Πj
τ=(c,s)(q) =

∫
k

vτ
q,j(k)vτ

q,j
∗(k)

× nF [ξm(k − q/2)] − nF [ξm(k + q/2)]
ξm(k − q/2) − ξm(k + q/2) tr (Λτ · Λτ )

(12)

Here, ξm(k) = ϵm(k) − µ is the m-th band dispersion
measured from the chemical potential µ, and nF (T ) is
the Fermi distribution function at temperature T . The
Λτ matrices are Λc

αβ = δαβ and Λs
αβ = σαβ , which means

that spin summation in the charge channel yields a factor
of 2, whereas the spin channel picks up a factor of 6 (2
if the spin SU(2) symmetry is broken down to U(1)). In
the pairing channel, the susceptibility is given by

Πp
j (q) =

∫
k

vp
q,j(k)vp

q,j
∗(k)

× 1 − nF [ξm(−k + q/2)] − nF [ξm(k + q/2)]
ξm(−k + q/2) + ξm(k + q/2) .

(13)

In our convention, the particle-hole bubble Πc,s
j (q) is

dominantly negative (it reduces to −ν0 in the q → 0 limit
where ν0 is the density-of-states at the Fermi level), while
the particle-particle bubble Πp

j (q) remains positive.
One can now easily read off the conditions for super-

conducting or density wave ordering, whether at finite
or zero COM q. The onset of a phases is determined
by a transition temperature, Tc, at which the product
λτ

q,j × Πτ
q,j = −1. While spin, charge, and supercon-

ducting orders may all co-exist, the dominant order is
determined by the one with the highest Tc; this is the
Stoner criterion. We schematize this logic in Figure 1.
By invoking special Fermi surface physics, one can engi-

PDW
Uniform SC
Charge order

Spin order

log T

 (s
ol

id
 li

ne
)

| Π
|

 (dashed line)
1/ |λ |

 SCTc

 PDWTc

 SDWTc

FIG. 1. A schematic demonstrating how contributions from
the form factor may lead to a Stoner-type instability towards
PDW order. Solid lines are the static susceptibilities cor-
responding to the PDW (blue), uniform SC (purple), spin
(green), and charge (orange) channels. Dashed horizontal
lines represent the inverse effective interaction, 1/|λτ

j,q|. In
this example, the PDW has the highest Tc, and is therefore
the leading instability in this system.

neer situations in which PDW order competes with uni-
form SC down to T → 0. This is possible, for example,
in the presence of higher-order Van Hove singularities,
where all the bare susceptibilities diverge in a power-law
manner [9]. However, we stress that our result does not
depend on any special behaviour of the static pair sus-
ceptibility, which as T → 0 generically diverges for Πp

q=0,
or saturates at some finite value for Πp

q ̸=0 and Πc,s
q .
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FIG. 2. (Left) Checkerboard lattice. (Middle) Band structure obtained using t = 1, t′
1 = −0.5, t′

2 = 0.9, ϕ = π/8, and a C4
symmetry breaking term ∆σz with ∆ = 5. (Right) Contour plot at 1/10 filling. The Fermi surface is identified in red.

III. RESULTS

In this section, we discuss the application of this mean
field scheme to some concrete lattice examples: extended
Hubbard model on a checkerboard lattice and a three-
band extended Hubbard model. All hopping and inter-
action parameters are given in units of t.

A. Checkerboard lattice

The checkerboard lattice is a commonly studied two-
band lattice model, recently attracting attenton for its
tunable topological properties [54, 55]. Physical plat-
forms for its realization include optical lattices [56, 57]
and monolayer Cu2N [58]. Here, we use the model pro-
posed in [55]. Each unit cell of the checkerboard lat-
tice is composed of two sub-lattices, marked A and B
in Fig.2. In momentum space, the Hamiltonian is given
by H = −

∑
k γ

†
kH(k)γk, where γk = (Ak, Bk) is a two-

component spinor. H is a 2 × 2 matrix:

H =
[
(t′1 + t′2)(cos kx + cos ky)

]
σ0

+ 4t cosϕ
(

cos kx

2 cos ky

2

)
σx + 4t sinϕ

(
sin kx

2 sin ky

2

)
σy

+
[
(t′1 − t′2)(cos kx − cos ky) + ∆

]
σz (14)

The operator A†
k (B†

k) creates an electron on the A (B)
sublattice. Next-nearest-neighbour hopping is parame-
terized by t′1 on the shaded square plaquette and by t′2
on the blank plaquette. The system possesses four-fold
rotational symmetry, with a rotation center located at
the center of the plaquettes. This C4 symmetry, in com-
bination with time-reversal symmetry (TRS), protects
a quadratic band crossing point at M = (π, π). This
quadratic band touching point can be viewed as a com-
bination of two Driac points, and thus hosts 2π Berry
flux. If, in addition, t′1 + t′2 = 0, the system has addi-
tional particle-hole symmetry. In Fig.2, we plot the band

Pairing Charge

q y

−π

π

qx−π π

0.2
0.4
0.6
0.8
1.0

0.0
|λΠ |

Spin
UA(B)

V A
B

2−2 1
−8

−7

−6

−5  PITc
 PDW Tc(π, π)  SCTc

DATA NOT FINISHED COLLECTING YET

0.15

0.55

0.35

0.25

0.45

0.07

0.12

0.09
0.08

0.11
0.10

0.13

0.6

1.1

0.8
0.7

1.0
0.9

1.2

−1

FIG. 3. (Top) Phase diagram for the parameters specified in
the main text. Darker shading indicates a higher transition
temperature. (Bottom) Coefficients of the pairing, charge,
and spin order parameters as a function of ordering wavevec-
tor q for VAB = −7, UA = UB = 1, V ′

AA = V ′
BB = 3.5 at

Tc = 0.27. The location in the phase diagram corresponding
to this choice of interaction strengths is marked by a pink
heart. Wavevectors in the (qx, qy) plane where the Stoner
criterion is met are marked with red dashed lines. PDW =
(π, π) pair density wave, PI = Pomarenchuk instability, SC =
uniform superconductor.

structure and Fermi surface in the presence of both a C4-
symmetry-breaking term and a time-reversal-symmetry-
breaking term, which together conspire to gap out the
band structure. The resulting bands are topologically
non-trivial with Chern number ±1 [55].

The interacting part of the Hamiltonian includes the
on-site Hubbard interaction UA and UB , which we set
equal to each other for simplicity. We also include
a nearest-neighbour interaction VAB and next-nearest-
neighbour interaction V ′

AB . For practical calculations,
we have set VAB = VBA and V ′

AB = V ′
BA.

Results for the checkerboard lattice are summarized
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tpp, Vpp
Up

Ud

0
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ky

E(k)

π−π

k y

−π

π

kx
π−π

E(k)
px
py

d

+0.20
+0.25

FIG. 4. (Left) Microscopic lattice model of the three-band Hubbard model. (Middle) Band structure of the non-interacting
part, obtained with a canonical set of parameters: tpd = 1, tpp = 0.5 and ∆pd = 3. (Right) Contour plot of the second band at
1/12 hole doping away from half-filling. The Fermi surface is identified in red.

in Fig.3, for the same choice of parameters that were
used to generate Fig.2. We schematize the phase dia-
gram as a function of interaction parameters, observing
the emergence of a PDW phase for attractive nearest-
neighbour and both repulsive and attractive on-site inter-
actions. Next-nearest-neighbour interactions are fixed to
be repulsive; we find this choice to be necessary for stabi-
lizing PDW formation against competing charge orders.
This set of parameters can be realized in a case when
strong Coulomb interaction are combined with some form
of Holstein-phonon-induced attraction. Evidence of such
nearest-neighbour attraction has been found in the 1D
cuprates [59].

The PDW phase here competes with both s-wave uni-
form superconductivity and a Pomeranchuk instability
(PI) in the charge channel. Also in Fig.3, we plot the
coefficients of the pairing, charge, and spin order param-
eters as a function of ordering wavevectors q. The cor-
responding point in parameter space is indicated with
a pink heart in the phase diagram. For this choice
of interaction strengths, we observe that only the pair-
ing channel with q = (π, π) meets the Stoner criterion
(|λτ

q,j ×Πτ
q,j | > 1), indicating a leading (π, π) PDW insta-

bility. By examining vp
q,0, the eigenvector corresponding

to the most negative eigenvalue in the pairing channel at
pairing vector q, we can identify the pairing symmetry
for this PDW superconductor; here, we find that vp

q=(π,π)
does not carry momentum dependence, so the leading in-
stability is s-wave in character.

B. Three-band extended Hubbard model

The three-band Hubbard model has been proposed as
a minimal model for capturing the essential physics of the
high-Tc cuprate superconductors [60–62]. Recent density
matrix renormalization group (DMRG) calculations of
the lightly-doped three-band Hubbard model on two-leg
square cylinders suggest a PDW ground state [52, 63] en-

hanced by nearest-neighbour attractions. In this section,
we ask if this three-band Hubbard model can engender
PDW order within the scope of the mean field scheme
described here. The model, sketched out in Fig.4, is

H0 = −tpd

∑
⟨ij⟩,σ

(
d†

iσp
x
jσ + d†

iσp
y
jσ + h.c.

)
− tpp

∑
⟨ij⟩,σ

(
px†

iσp
y
jσ + h.c.

)
+ ∆pd

∑
i

(
px†

iσp
x
σ + py†

iσp
y
σ

)
,

(15)
with interactions

Hint = Ud

∑
i

nd
i↑n

d
i↓ + Up

∑
i

(
npx

i↑ n
px

i↓ + n
py

i↑ n
py

i↓

)
+ Vpd

2
∑
⟨ij⟩

(
nd

i n
px

j + nd
i n

py

j

)
+ Vpp

2
∑
⟨ij⟩

npx

i n
py

j

+
V ′

pp

2
∑
⟨ij⟩

(
npx

i npx

j + n
py

i n
py

j

)
+ V ′

dd

2
∑
⟨ij⟩

nd
i n

d
j

(16)

Holes on copper d and oxygen px, py orbitals are cre-
ated at lattice site i with spin σ by the operators d†

iσ, p
x†
iσ ,

and py†
iσ , respectively; the corresponding density opera-

tors are nd
i ≡

∑
σ d

†
iσdiσ and npx(y)

i ≡
∑

σ p
x(y)†
iσ p

x(y)
iσ . We

use the notation ⟨ij⟩ to denote nearest-neighbour sites.
The parameters tpd and tpp control the hopping between
nearest-neighbour copper-oxygen and oxygen-oxygen or-
bitals; ∆pd ≡ εp − εd is the energy difference between
having a hole on the oxygen (εp) versus copper (εd) site;
Up and Ud are the on-site Coulomb repulsion strengths
for oxygen and copper orbitals, respectively; and Vpd and
Vpp are the nearest-neighbour copper-oxygen and oxygen-
oxygen interactions. Next-nearest-neighbour interactions
between d- (V ′

dd) and p-orbitals (V ′
pp) are also considered.

We take a canonical set of parameters, identical to
those selected in [52]: tpd = 1, tpp = 0.5, Ud = 8, Up = 3,
and ∆pd = 3. The phases of the orbitals have been fixed
such that the signs of the hopping matrix elements re-
main the same throughout the lattice and are positive,
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as in Refs.[52, 64]. The filling is set to 1/12 hole dop-
ing away from half-filling. We focus our analysis on the
second band only, since it is flatter and therefore has a
higher density of states. While the chemical potential at
this doping intersects the third band as well, the transi-
tion temperatures of any competing orders are well below
those originating in the second band [65].

Pairing Charge Spin

q y

−π

π

qx−π π

0.4

0.6

0.8

1.0

|λΠ |

Vpd

V p
p

−6.5 −6.0 −4.5 −4.0
−4.5
−4.0
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−2.0
 PITc

 CDW Tc(π/2,π/2)
 PDW Tc(π, π) FMTc

0.33

0.35

0.34

0.335

0.345

0.32

0.37
0.36

0.33

0.35

0.4

0.8
0.7

0.5
0.6 0.34

0.33

0.35

0.34

0.36

0.37

−3.5

FIG. 5. (Top) Phase diagram for the parameters specified in
the main text. Darker shading indicates a higher transition
temperature. (Bottom) Coefficients to the pairing and charge
order parameters as a function of ordering wavevector q for
Vpp = −4, Vpd = −5.5, V ′

pp = V ′
dd = 2 at Tc = 0.34. The

location in the phase diagram corresponding to this choice of
interaction strengths is marked by a pink heart. Wavevec-
tors in the (qx, qy) plane where the Stoner criterion is met
are marked with red dashed lines. PDW = (π, π) pair den-
sity wave, PI = Pomarenchuk instability, CDW = (π/2, π/2)
charge density wave, FM = ferromagnet.

Analogously to the checkerboard model, we observe
that the phase diagram of the three-band Hubbard
model, shown in Fig.5, supports a PDW only when some
form of nearest-neighbour attraction is present. These
results are similar to those recently reported on DMRG
studies of two-leg ladders [52], with both attractive Vpd

and Vpp found to be indispensable to PDW formation.
However, as with the checkerboard model, we find that
additional next-nearest-neighbour repulsive interactions
V ′

pp, V
′

dd > 0 are necessary for favouring the PDW over
competing charge orders. We show the coefficients of
the pairing and charge order parameters in Figure 5 for
Vpp = −4, Vpd = −5.5, a choice of interaction strengths
marked by a pink heart in the phase diagram. The pair-
ing channel is the dominant of the three channels consid-
ered, with a peak near q = (π, π). The pairing symmetry
here is s-wave, just like the checkerboard model.

IV. THE ROLE OF QUANTUM GEOMETRY

The quantum geometry of a band is characterized by
its quantum geometric tensor (QGT) [66],

Bij(k) ≡⟨∂iuk|∂juk⟩ − ⟨∂iuk|uk⟩⟨uk|∂juk⟩ (17)

The real part of this tensor, denoted gij(k), is identi-
fied as the quantum (or Fubini-Study) metric, a positive
semi-definite Riemannian metric that is used to distances
in amplitude between proximate quantum states. The
imaginary part of the QGT, meanwhile, corresponds to
the Berry curvature, and is therefore related to differ-
ences in phase between quantum states. Various quan-
tum transport and interaction phenomena can be related
to the QGT, such as fractional quantum Hall effect [67],
fractional Chern insulators [68, 69], and superfluidity in
a flat band [70, 71], including for multiorbital supercon-
ductors [51, 72, 73]. In the latter case, it was shown how
the total superfluid weight can become nonpositive defi-
nite due to pairing fluctuations in the presence of orbital-
dependent interactions, thus facilitating the transition of
a uniform BCS state to a PDW.

Given the key role played by the momentum-dependent
form factors {uma(k)} in supplying COM dependence q
to the interaction, one might expect signatures of the
PDW instability to appear in the QGT of the multi-
band system under consideration. In this section, we
will compare the competing tendencies towards uniform
and PDW superconducting order by presenting a set of
conditions on the quantum metric g that are sufficient—
but not necessary—for favouring finite-momentum pair-
ing interactions [74].

To this end, assume that the dominant interaction is
in the particle-particle channel, and as such the effective
coupling λp

q is attractive. Suppose we initially consider
q = (0, 0) and perturb by a small amount δq. To second
order, the interaction varies as [75]

V p
k,p(0) → V p

k,p(0)+δqµδqν

(
∂2

∂qµ
∂qν

V p
k,p(q)

)∣∣∣∣
q=0

(18)

In analogy to non-degenerate perturbation theory, the
concavity of the most negative eigenvalue at q = 0 can
be approximated by

−∂2
qµqν

|λq|q=0 =
∑
kp

v∗
0(k)

(
∂2

qµqν
V p

kp(q)
)∣∣∣

q=0
v0(p),

(19)

where v0(k) is the eigenvector of V p
k,p(q = 0) correspond-

ing to the most negative eigenvalue. If ∂2
qµqν

Vkp(q) is
negative-definite, then the concavity of λ at q = 0 is also
negative, and therefore a small variation in q will result
in a stronger effective coupling in the particle-particle
channel [76]. This is favourable for PDW formation.

If we make the simplifying assumption that the interac-
tion carries no information about the orbital dependence,
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we may express the band-projected interaction in terms
of overlaps between Bloch states:

V p
kp(q) = V (k − p)⟨uk+q/2|up+q/2⟩⟨u−k+q/2|u−p+q/2⟩

(20)
To make analytical progress, assume that V (k − p) is
sharply peaked around k ≈ p. This approximation is
valid in the limit of long-range interactions. For example,
suppose that V (k − p) can be modelled by a simple two-
dimensional Gaussian distribution centred at zero,

V (k − p) = −|V0|
2π det(Σ⃗)−1/2e− 1

2 (k−p)T Σ⃗−1(k−p),

(21)
where Σ⃗ij = ξ2

0 is a rotationally-isotropic covariance ma-
trix. The sign of V is fixed to be attractive, reflecting the
fact that we are in the superconducting phase. Because
only k ≈ p contributions are picked out by the interac-
tion, we may express the Bloch state overlaps in terms
of the quantum metric [77]. The concavity of the most
negative eigenvalue is given to leading order by

−∂2
qµqν

|λq|q=0 ∝ |V0|ξ4
0
∑

k

|v0(k)|2∂2
kµkν

Tr[G(k)],

(22)
where Gij(k) ≡ [gij (k) + gij (−k)] /2. (Under time-
reversal or inversion symmetry, then Gij(k) = gij(k)).
We can thereby conclude that the concavity of λ is de-
termined by the local concavity of the quantum met-
ric. Specifically, for attractive long-range interactions,
we find that negative concavity in the quantum metric
is favourable for PDW formation. This result joins a
growing body of work suggesting the relevance of quan-
tum geometry for promoting various density wave orders,
such as in multiorbital systems with orbital-dependent
pairing [72] and in flat band systems with quantum ge-
ometric nesting [78]. Combining these schemes, one can
envision engineering Hamiltonians with quantum geome-
tries optimally tuned for supporting PDW states.

V. CONCLUSIONS

In this work we have outlined a general mean field
scheme for eliciting PDW order from multiband physics
beyond weak coupling. The onset of PDW superconduc-
tivity requires that i) the attractive pairing interaction
persists at finite COM momentum, q, and ii) the inter-
action is strong enough to trigger the Stoner-type insta-
bility. We have shown that for a system dominated by
density-density interactions, the first condition can be
met in multiband systems where the band-projected in-
teraction naturally inherits COM q-dependence through
the form factors. Using the checkerboard lattice and a
three-band extended Hubbard model, we have explicitly
revealed how intraband PDW orders can dominate over
uniform superconductivity and other particle-hole con-
densates when nearest-neighbour attraction and next-
nearest-neighbour repulsion are present. Our mean field
results are consistent with recent DMRG works on multi-
band systems [52, 53], in which nearest-neighbour at-
traction was also found to be essential to the stability
of the PDW state. The interactions considered here are
also reminiscent of those presented in [39], where it was
found that spatially non-monotonic BCS interactions are
indispensable to PDW formation. This work highlights
the joint importance of multiband physics and nearest-
neighbour interactions in inducing an attractive pairing
interaction at finite Cooper pair momentum, thereby sta-
bilizing the resulting PDW.
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Kang, R. Klingeler, Q. Li, N. Tristan, J. S. Wen, G. Y.
Xu, Z. J. Xu, J. Zhou, and M. v. Zimmermann, Evi-
dence for unusual superconducting correlations coexist-
ing with stripe order in la1.875ba0.125cuo4, Phys. Rev. B
78, 174529 (2008).

[21] K. Yang, Detection of striped superconductors using
magnetic field modulated josephson effect, Journal of Su-
perconductivity and Novel Magnetism 26, 2741 (2013).

[22] Z. Shi, P. G. Baity, J. Terzic, B. K. Pokharel,
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[57] M. Ölschläger, G. Wirth, and A. Hemmerich, Unconven-
tional superfluid order in the f band of a bipartite optical
square lattice, Phys. Rev. Lett. 106, 015302 (2011).

[58] X. Hu, R.-W. Zhang, D.-S. Ma, Z. Cai, D. Geng, Z. Sun,
Q. Zhao, J. Gao, P. Cheng, L. Chen, K. Wu, Y. Yao, and
B. Feng, Realization of a two-dimensional checkerboard
lattice in monolayer cu2n, Nano Letters 23, 5610 (2023),
pMID: 37321211.

[59] Z. Chen, Y. Wang, S. N. Rebec, T. Jia, M. Hashimoto,
D. Lu, B. Moritz, R. G. Moore, T. P. Devereaux, and Z.-
X. Shen, Anomalously strong near-neighbor attraction in
doped 1d cuprate chains, Science 373, 1235 (2021).

[60] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Band gaps
and electronic structure of transition-metal compounds,
Phys. Rev. Lett. 55, 418 (1985).

[61] V. J. Emery, Theory of high-tc superconductivity in ox-
ides, Phys. Rev. Lett. 58, 2794 (1987).

[62] F. C. Zhang and T. M. Rice, Effective hamiltonian for
the superconducting cu oxides, Phys. Rev. B 37, 3759
(1988).

[63] H.-C. Jiang and T. P. Devereaux, Pair density wave and
superconductivity in a kinetically frustrated doped emery
model on a square lattice, Frontiers in Electronic Mate-
rials 3, 10.3389/femat.2023.1323404 (2023).

[64] S. R. White and D. J. Scalapino, Doping asymmetry and
striping in a three-orbital cuo2 hubbard model, Phys.
Rev. B 92, 205112 (2015).

[65] However, this does not discount the possibility of inter-
orbital pairing involving both the second and third bands,
which may potentially serve as a source of competing
orders to the PDW state identified here. We defer an
analysis of inter-band phenomena to future works.
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