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QUANTITATIVE HOMOGENIZATION FOR LOG-NORMAL

COEFFICIENTS

NICOLAS CLOZEAU, ANTOINE GLORIA, AND SIGUANG QI

Abstract. We establish quantitative homogenization results for the popular log-normal
coefficients. Since the coefficients are neither bounded nor uniformly elliptic, standard
proofs do not apply directly. Instead, we take inspiration from the approach developed
for the nonlinear setting by the first two authors and capitalize on large-scale regularity
results by Bella, Fehrmann, and Otto for degenerate coefficients in order to leverage
an optimal control (in terms of scaling and stochastic integrability) of oscillations and
fluctuations.
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1. Main results

1.1. Degenerate coefficients in stochastic homogenization. Quantitative stochastic
homogenization for linear elliptic PDEs with bounded and uniformly elliptic coefficients is
by now well-established, either based on functional calculus and nonlinear concentration
of measure [29, 30, 31, 25, 24, 15, 14, 26, 27, 18, 17, 19, 13] or based on renormalization
and linear concentration of measure [6, 5, 3, 28, 4, 2]. In both cases, the theory assumes
non-degeneracy of the coefficients. Whereas there is no doubt the theory should extend to
mildly degenerate coefficients, only quantitative homogenization on the percolation cluster
[1, 12] and for rigid inclusions [16] has been established so far.

In geology (and more precisely for applications to oil or water recovery, and CO2 storage),
permeability can range over more than 8 orders of magnitude. Such permeability fields are
often modelled using log-normal distributions (that is, they are obtained as the exponential
of a Gaussian random field – failing boundedness and uniform ellipticity). When one is
interested in the behavior of the system at the scale of the correlation-length, this is the
realm of expansions à la Karhunen-Loève, see e. g. [7, 11]. When one is interested in the
large-scale behavior of the system, this is the realm of (numerical) homogenization. It is
not a coincidence that the very first article on numerical homogenization [34] in the applied
mathematics community (which triggered a long-lasting activity in multiscale modeling and
simulations, e. g. [20]) deals with log-normal coefficients. Although the numerical analysis
of such methods for random coefficients was the main motivation to develop a quantitative
stochastic homogenization theory in [29, 30, 22, 25, 23], the case of degenerate coefficients
was not covered. The aim of this article is to fill this gap, and extend the quantitative
homogenization theory based on functional calculus and nonlinear concentration of measure
to log-normal coefficients. The results of this work were announced in the plenary talk of
the second author at the SIAM conference on Mathematical Aspects of Materials Science
(MS21), and extend [32] to higher dimensions.

Quantitative homogenization starts with regularity theory – like the perturbative Mey-
ers’ estimate (which provides a higher integrability result). For bounded and uniformly
elliptic coefficients, such estimates are standard and deterministic. For degenerate coeffi-
cients however, one cannot hope for a deterministic version of these estimates, and we only
expect large-scale versions – that is, such estimates only hold at a random scale onwards.
Our strategy to get around this problem is inspired by the work [10] of the first two au-
thors on the homogenization of genuinely nonlinear monotone operators. In this setting
the linearized equation is an elliptic equation with coefficients that involve the nonlinear
corrector gradient, and therefore are unbounded (and thus degenerate in the usual sense
of the word in homogenization). In [10] we established large-scale Meyers’ estimates using
quantitative homogenization itself (and in particular the decay of spatial averages of cor-
rectors). In the present work, the problem is somehow simpler because the degeneracy of
the coefficients is a given datum rather than an unknown of the problem (as opposed to
the integrability of the nonlinear correctors in [10]). The main insight of the present work
are the large-scale Meyers estimates we establish in Theorem 1.3 and the control of correc-
tors in Theorem 1.8, that we prove following the strategy laid out in [10] for a nonlinear
problem. From there, we capitalize on [8] and on by-now standard methods to leverage a
complete quantitative homogenization theory, that we state for completeness with precise
references to the literature. In particular, we give a complete description of fluctuations of
observables of the (random) solution, in the spirit of uncertainty quantification.
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For simplicity of the exposition, we consider the coefficient field a(x) Id where a(x) =
exp(G(x)) is a scalar field obtained as the exponential of a Gaussian field G (this specific
form is not essential, and encapsulates the main difficulty of unboundedness and degener-
acy). We further assume that this Gaussian field has integrable covariance (this is essential
for the upcoming proof). Since our strategy is based on functional calculus and nonlin-
ear concentration, one can also treat Poissonian models. A typical example would be as
follows: consider a Poisson point process, and the associated Voronoi tessellation of Rd.
Define the random coefficients as a(x) Id, where a(x) denotes the diameter of the Voronoi
cell containing x – we have inf a = inf a−1 = 0. Since a satisfies a multiscale spectral
gap inequality (with exponential weight) in the sense of [15, 14], our strategy still holds
with minor modifications (see e.g. [25, 24] where both Gaussian and Poissonian fields are
considered).

To conclude, let us comment on the interest of multiscale functional inequalities in the
sense of [15, 14] in this context. Quantitative stochastic homogenization requires two
ingredients on the coefficient field: a rate for the convergence of spatial averages to their
expectation, and concentration of measures (that is, the stochastic integrability). Whereas
(nonlinear) concentration depends little on the covariance function when the coefficient field
satisfies a functional inequality, (linear) concentration degrades very fast with correlations
when it is obtained by (linear) mixing conditions (such as alpha-mixing). In particular, as
soon as one is interested in coefficient fields whose correlations (in a suitable mixing sense)
do not decay at a super-algebraic rate, functional inequalities seem unavoidable.

In this article we shall consider the following class of coefficient fields.

Hypothesis 1.1. Let G : Rd → R be a Gaussian field with integrable covariance function
C which is 2γ-Hölder continuous at 0 for some 0 < γ < 1

2 . We set a(x) := exp(G(x)). ♦

All the upcoming results assume Hypothesis 1.1.

1.2. Perturbative large-scale regularity. We start by defining a scale at which the
log-normal field behaves like a uniformly and elliptic coefficient field.

Proposition 1.2. Let a be as in Hypothesis 1.1. Set p⋄ = d+1. There exists a stationary
1
8 -Lipschitz field r⋄ such that for all x ∈ R

d and r ≥ r⋄(x)

1
2E
[

ap⋄ + a−p⋄
]

≤
 

Br(x)
ap⋄ + a−p⋄ ≤ 2E

[

ap⋄ + a−p⋄
]

,

and which satisfies

E

[

exp(
1

C
log2(1 + r⋄))

]

≤ 2, (1.1)

for some C > 0. In what follows, for all x ∈ R
d we set B⋄(x) := Br⋄(x)(x).

Let 0 < ε ≤ 1, we define for all R ≥ 1

r♣(R) :=
(

R− ε
2 sup

BR

(a+ a−1)
)2

.

There exists C > 0 (depending on ε) such that

sup
R≥1

E

[

exp(
1

C
log2(1 + r♣(R)))

]

≤ 2. (1.2)

♦
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Based on this (which we prove in the appendix), we shall establish the following large-
scale Meyers estimate.

Theorem 1.3 (Quenched Meyers’ estimates). There exists κ > 0 (depending on d) such
that for all 2 ≤ p ≤ 2 + κ, and all functions u, h satisfying in the weak sense in R

d

−∇ · a∇u = ∇ · √ah,

we have
ˆ

Rd

(

 

B⋄(x)
a|∇u|2

)
p
2
dx .p

ˆ

Rd

(

 

B⋄(x)
|h|2
)

p
2
dx. (1.3)

♦

A consequence of the proof of the Meyers estimates is the following large-scale hole-filling
estimate.

Corollary 1.4 (Hole-filling estimate in the large). There exists 0 < β ≤ d with the
following property. Let R ≥ r⋄, and let u satisfy

−∇ · a∇u = 0 in BR.

Then for all r⋄ ≤ r ≤ R, we have
 

Br

a|∇u|2 . (R
r
)d−β

 

BR

a|∇u|2. (1.4)

♦

Since by Proposition 1.2 the stationary field r⋄ has finite super-algebraic moments, one
may upgrade the above into annealed estimates, following an argument of [19].

Theorem 1.5 (Annealed Meyers’ estimate). There exists κ > 0 such that for all |p −
2|, |m− 2| ≤ κ and 0 < δ ≤ 1

2 , and all functions u, h satisfying in the weak sense in R
d

−∇ · a∇u = ∇ · √ah,

we have

ˆ

Rd

E

[

(

 

B(x)
a|∇u|2

)
p
2

]
m
p

dx .p δ−
1
4 | log δ| 12

ˆ

Rd

E

[

(

 

B(x)
|h|2
)

p(1+δ)
2

]
m

p(1+δ)

dx.

♦

These results are proved in Section 2.

1.3. Minimal radius and bounds on correctors. Based on these perturbative large-
scale regularity estimates and a buckling argument making use of the CLT scaling, we es-
tablish bounds on correctors, which are defined in this degenerate context in [8, Lemma 1].

Lemma 1.6. There exist two tensor fields {φi}1≤i≤d and {σijk}1≤i,j,k≤d with the following
properties. The gradient fields are stationary, have bounded moments, and are of vanishing
expectation: E [∇φi] = E [∇σijk] = 0 and for all 1 ≤ p < ∞,

d
∑

i=1

E
[

a|∇φi|2
]

+

d
∑

i=1

E

[

|∇φi|
2p
p+1

]

p+1
2p

+

d
∑

i,j,k=1

E

[

|∇σijk|
2p
p+1

]

p+1
2p

. E
[

ap + a−p
]

.
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The field σ is skew-symmetric in its last two indices, that is,

σijk = −σikj.

Furthermore, for E [·]-a.e. a we have

−∇ · a(∇φi + ei) = 0, (1.5)

and1

qi := a(∇φi + ei) = E [qi] ei +∇ · σi,
together with the gauge equation

−△σijk = [∇× qi]jk := ∂jqik − ∂kqij. (1.6)

Finally, the homogenized coefficient āei := E [a(∇φi + ei)] is uniformly elliptic in the sense

that for K := E
[

ad+1 + a−(d+1)
]

and for all ξ ∈ R
d,

1

K
|ξ|2 ≤ ξ · āξ and |āξ| ≤ K|ξ|.

♦

An output of [8, Lemma 1] is that ∇φi and ∇σijk are uniquely defined. We are in
position to introduce the minimal radius.

Definition 1.7. Recall p⋄ = d+ 1. We define the stationary field r̃⋆ : R → R+ via

r̃⋆ : x 7→ inf
r≥r⋄(x)

{

∀ρ ≥ r,
1

ρ

(

 

Bρ

∣

∣

∣
(φ, σ)−

 

Bρ

(φ, σ)
∣

∣

∣

2p⋄
p⋄−1

)
p⋄−1
2p⋄ ≤ 1

C

}

, (1.7)

and we denote by r⋆ the smallest 1
8 -Lipschitz field larger or equal to r̃⋆ (which is also

stationary). In what follows, for all x ∈ R
d we set B⋆(x) := Br⋆(x)(x). ♦

Our first quantitative result is the following bound on the growth of the correctors.

Theorem 1.8. For all x ∈ R
d,

(

 

B(x)

∣

∣

∣
(φ, σ) −

 

B(0)
(φ, σ)

∣

∣

∣

2p⋄
p⋄−1

)
p⋄−1
2p⋄ ≤ Cxµd(|x|), (1.8)

where

µd(t) :=







√
t+ 1 : d = 1,

log(t+ 2)
1
2 : d = 2,
1 : d > 2,

(1.9)

and where Cx is a random variable that satisfies for some 0 < C < ∞

E

[

exp(
1

C
log2(1 + Cx))

]

≤ 2 (1.10)

♦

We also have the following control of the minimal radius.

Theorem 1.9. There exists 0 < C < ∞ such that the minimal radius r⋆ satisfies

E

[

exp(
1

C
log2(1 + r⋆))

]

≤ 2.

♦

1the divergence is taken wrt the last index
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These results are proved in Section 3. As shown in dimension d = 1 in [32], the stochastic
integrability in the above results is optimal.

1.4. Non-perturbative large-scale regularity. The following non-perturbative large-
scale regularity results are post-processings of [8] using Theorem 1.9. (See Section 4 for
the necessary adaptations.)

Proposition 1.10 (Large-scale Schauder estimates). If u, f, g satisfy in the weak sense in
BR for some R ≥ r⋆

−∇ · a(∇u+ g) = ∇ · h,
then we have for all 0 < α < 1

sup
r∈[r⋆,R]

 

Br

(∇u+ g) · a(∇u+ g) .

 

BR

(∇u+ g) · a(∇u+ g)

+ sup
r∈[r⋆,R]

(

R
r

)2α
 

Br

(

(

g −
 

Br

g
)

· a
(

g −
 

Br

g
)

+
(

h−
 

Br

h
)

· a−1
(

h−
 

Br

h
)

)

.

In particular, for g = h = 0, we have the following mean-value property for a-harmonic
functions (or large-scale Lipschitz property): For all r⋆ ≤ r ≤ R,

 

Br

∇u · a∇u .

 

BR

∇u · a∇u.

♦

Based on the above Lipschitz estimate, [26, Corollary 4] directly yields large-scale
Calderón-Zygmund estimates.

Theorem 1.11 (Quenched Calderón-Zygmund estimates). For all 1 < p < ∞ and for all
functions u, g, h satisfying in the weak sense in R

d

−∇ · a(∇u+ g) = ∇ · h,
we have

ˆ

Rd

(

 

B⋆(x)
∇u · a∇u

)
p
2
dx .p

ˆ

Rd

(

 

B⋆(x)
g · ag + h · a−1h

)
p
2
dx. (1.11)

♦

As in [19], one can turn the quenched CZ estimates into the following annealed CZ
estimates.

Theorem 1.12 (Annealed Calderón-Zygmund estimates). For all 1 < p,m < ∞ and
0 < δ ≤ 1

2 , and for all functions u, g, h satisfying in the weak sense in R
d

−∇ · a(∇u+ g) = ∇ · h,
we have

ˆ

Rd

E

[

(

 

B(x)
a|∇u|2

)
p
2

]
m
p

dx

.p,m δ−
1
4 | log δ| 12

ˆ

Rd

E

[

(

 

B(x)
a|g|2 + a−1|h|2

)

p(1+δ)
2

]
m

p(1+δ)

dx. (1.12)

♦
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1.5. Quantitative homogenization. We now have all the necessary tools to make ho-
mogenization quantitative. Let f ∈ L2(Rd)d, and for all ε > 0, consider the unique

Lax-Milgram solution2 uε ∈ Ḣ1(Rd) of

−∇ · a( ·
ε
)∇uε = ∇ · f, (1.13)

as well as the unique Lax-Milgram solution ū ∈ Ḣ1(Rd) of the homogenized problem

−∇ · ā∇ū = ∇ · f. (1.14)

Our first result characterizes oscillations of uε in a strong norm in form of a quantitative
two-scale expansion result.

Theorem 1.13. For all ε > 0, v ∈ L2
loc(R

d), and x ∈ R
d, set Sε(v)(x) =

ffl

Bε(x)
v, and

define the two-scale expansion ū2sε of uε as

ū2sε := Sε(ū) + εφi(
·
ε
)Sε(∂iū).

Then for all p ≥ 1 and q ≥ 1 we have

E

[

(

ˆ

Rd

(

 

Bε(x)
a|∇(uε − ū2sε )|2

)
p
2
dx
)q
]

1
pq

. εµd(
1
ε
)
(

ˆ

Rd

µd(|x|)p
(

 

Bε(x)
|f(x)|2

)
p
2
dx
)

1
p
,

where µd is defined in (1.9). ♦

The proof is the same as for [27, Proposition 1] based on Theorem 1.12 rather than [26,
Corollary 4].

The second set of results quantifies fluctuations of uε. More precisely, we study the
scaling limits of observables of the field ∇uε and flux a( ·

ε
)∇uε of the solution. To this

aim, we recall the definition of the standard homogenization commutator Ξ and of the
commutator of the solution Ξε(f), as introduced in [18, 17].

Definition 1.14. The standard homogenization commutator is the second-order tensor
defined for all 1 ≤ i ≤ d by

[Ξ]i := (a− ā)(∇φi + ei).

The homogenization commutator of the solution uε of (1.13) is defined by

Ξε(f) := (a( ·
ε
)− ā)∇uε.

♦

Our first result is a quantitative two-scale expansion at the level of observables of com-
mutators in the fluctuation scaling (the so-called pathwise theory of fluctuations), where
we understand an observable as a local average with a test function.

2Since a is degenerate, there is a small approximation argument needed to establish existence – see
e.g. Section 3.
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Theorem 1.15. Let g ∈ L2(Rd)d, and denote by v̄ the solution of (1.14) with f replaced by

g (and ā by its transpose matrix, here ā′ = ā). On the one hand, Var
[

ε−
d
2

´

Rd g · Ξε(f)
]

.

1. On the other hand, for all p ≥ 1,

E

[

(

ε−
d
2

∣

∣

∣

ˆ

Rd

g · (Ξε(f)− E [Ξε(f)])−∇v̄ · Ξ( ·
ε
)∇ū

∣

∣

∣

)p
]

1
p

. εµd(
1
ε
)‖f‖L4(Rd,µ2

d
)‖g‖L4(Rd,µ2

d
),

where µd is defined in (1.9), and L4(Rd, µ2
d) is the weighted space with measure µ2

d(x)dx. ♦

This result follows from [19, 17] using Theorems 1.8 and 1.12. A direct post-processing
of Theorem 1.15 allows to recover corresponding results for the field and the flux of the
solution (the main two quantities of interest from a physical viewpoint), see [17, (1.10) &
(1.11)].

To complete the analysis of fluctuations of observables, it remains to investigate the
scaling limit of the homogenization commutator. In the case of integrable covariance,
the limit is a colored noise, which follows from the proofs of [19, 13] using Theorems 1.8
and 1.12, on top of Malliavin calculus. We start by a convenient strengthening of the
integrability of the covariance function in Hypothesis 1.1:

Hypothesis 1.16. The covariance function C can be decomposed as C = C0 ∗ C0 where C0
satisfies for some β > d 3

|C0(x)| ≤ C0(1 + |x|)− 1
2
(d+β),

and its Fourier transform Ĉ is positive almost everywhere. ♦

The following quantitative central limit theorem combines the results of [13, Proposi-
tion 3.1, Corollary 4.5, and Theorem 1(ii)].

Theorem 1.17. Assume Hypotheses 1.1 and 1.16. For all functions F ∈ C∞
c (Rd)d×d, set

Iε(F ) := ε−
d
2

´

Rd Ξ(
·
ε
) : F . On the one hand, there exists a non-degenerate constant tensor

Q of order 4 such that for all F,F ′ ∈ C∞
c (Rd)d×d,

∣

∣

∣
Cov

[

Iε(F ); Iε(F
′)
]

−
ˆ

Rd

F (x) : Q : F ′(x) dx
∣

∣

∣

.F,F ′







ε : d > 2, β ≥ d+ 1,

ε|log ε| 12 : d = 2, β ≥ d+ 1,
εβ−d : d < β < d+ 1.

On the other hand, for all F ∈ C∞
c (Rd)d×d and ε > 0,

W2

(

Iε(F )

Var [Iε(F )]
1
2

,N
)

+ dTV

(

Iε(F )

Var [Iε(F )]
1
2

,N
)

.F
1

Var [Iε(F )]
ε

d
2 exp(C| log ε| 12 ),

3Note that this decay assumption for C0 implies the integrability of C.



QUANTITATIVE HOMOGENIZATION FOR LOG-NORMAL COEFFICIENTS 9

where W2 (·,N ) and dTV (·,N ) denote the 2-Wasserstein (see e.g. [37]) and the total vari-
ation distance to a standard Gaussian law, respectively. In particular, with σ2(F ) :=
´

Rd F (x) : Q : F (x) dx, these two estimates combine to

W2

(

Iε(F )

σ(F )
,N
)

+ dTV

(

Iε(F )

σ(F )
,N
)

.F ε
d
2 exp(C| log ε| 12 )

+







ε : d > 2, β ≥ d+ 1,

ε|log ε| 12 : d = 2, β ≥ d+ 1,
εβ−d : d < β < d+ 1.

♦

The only difference with the case of uniformly elliptic and bounded coefficients is the

error estimate for the asymptotic normality: In [13, Theorem 1(ii)], exp(C| log ε| 12 ) is
replaced by | log ε|. This comes from the optimization argument in Step 6 Proof of The-
orem 1(ii) in [13] which involves the stochastic integrability of the corrector gradient –
a similar optimization in the context of log-normal coefficients is worked out in formula
(5.20) in Step 2 of the proof of Proposition 5.4 in [32], to which we refer the interested
reader.

2. Large-scale Meyers estimates

2.1. Proof of Theorem 1.3. We follow the standard proof based on a reverse Hölder’s
inequality (using Caccioppoli’s inequality and the Sobolev embedding) and Gehring’s in-
equality.

We start with the reverse Hölder inequality.

Lemma 2.1 (Reverse Hölder). Recall that p⋄ = d + 1. For all r ≥ r⋄ and all u, h related
in B2r by

−∇ · a∇u = ∇ · √ah,

we have
 

Br

(
√
a|∇u|)2 .

 

B2r

|h|2 +
(

 

B2r

(
√
a|∇u|)α

)
2
α
,

where 1 ≤ α := 2d(d+1)
d2+d+2 < 2. ♦

Proof of Lemma 2.1. We start by establishing a Caccioppoli inequality. Let η be a smooth

cut-off for Br in B2r with sup |∇η| . r−1. Set ū :=
´

η2au
´

η2a
, and notice that 1

C

´

η2 ≤
´

η2a ≤ C
´

η2 since r ≥ r⋄. Testing the equation for u with η2(u− ū), and integrating by
parts we obtain
ˆ

η2a|∇(u− ū)|2 + 2

ˆ

ηa(u− ū)∇η · ∇(u− ū)

=

ˆ

η2
√
a∇(u− ū) · h+ 2

ˆ

η
√
a(u− ū)∇η · h.

Using Cauchy-Schwarz’ and Young’s inequalities, this entails
ˆ

η2a|∇(u− ū)|2 .

ˆ

η2|h|2 +
ˆ

|∇η|2a(u− ū)2. (2.1)
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It remains to deal with the weights on the right-hand side. We start with the control of ū.

Set Ū :=
ffl

B2r
u. We have, since

´

B2r
( 1
|B2r |

− aη2
´

aη2
) = 0,

Ū − ū :=

ˆ

B2r

(
1

|B2r|
− aη2
´

aη2
)u =

ˆ

B2r

(
1

|B2r|
− aη2
´

aη2
)(u− Ū).

Hence, by Hölder’s inequality with exponents (d+1, d+1
d

) and Poincaré-Sobolev’ inequality,
and since r ≥ r⋄

|Ū − ū| .
(

 

B2r

(u− Ū)
d+1
d

)
d

d+1
. r
(

 

B2r

|∇u|
d(d+1)

d2+d+1

)
d2+d+1
d(d+1)

. (2.2)

Inserting (2.2) into (2.1), using Hölder’s inequality with exponents (d+1, d+1
d

), and using
that r ≥ r⋄, the Poincaré-Sobolev inequality, and Jensen’s inequality, we obtain
 

Br

a|∇u|2 .

 

B2r

η2|h|2 +
(

 

B2r

|∇u|
d(d+1)

d2+d+1

)2 d2+d+1
d(d+1)

+

ˆ

|∇η|2a(u− Ū)2

.

 

B2r

η2|h|2 +
(

 

B2r

|∇u|
d(d+1)

d2+d+1

)2 d2+d+1
d(d+1)

+ r−2
(

 

B2r

|u− Ū |
2(d+1)

d

)
d+1
d

.

 

B2r

η2|h|2 +
(

 

B2r

|∇u|
2d(d+1)

d2+2(d+1)

)

d2+2(d+1)
d(d+1)

.

It remains to reintroduce a. By Hölder’s inequality with exponents (d
2+2(d+1)

d
,
d2+2(d+1)
d2+d+2

),

(

 

B2r

|∇u|
2d(d+1)

d2+2(d+1)

)

d2+2(d+1)
d(d+1)

=
(

 

B2r

a
−

d(d+1)

d2+2(d+1) |√a∇u|
2d(d+1)

d2+2(d+1)

)

d2+2(d+1)
d(d+1)

≤
(

 

B2r

a−(d+1)
)

1
d+1
(

 

B2r

|√a∇u|
2d(d+1)

d2+d+2

)
d2+d+2
d(d+1)

r≥r⋄

.
(

 

B2r

|√a∇u|
2d(d+1)

d2+d+2

)
d2+d+2
d(d+1)

,

from which the claim follows by our choice α = 2d(d+1)
d2+d+2

∈ [1, 2). �

We now recall Gehring’s inequality in a form which is convenient for our purposes (see
for instance [21, Theorem 6.38]):

Lemma 2.2 (Gehring’s lemma). Let s > 1, and let U and V be two non-negative mea-
surable functions in L

q
loc(R

d) such that there exists C > 0 for which for all r > 0 and

x ∈ R
d

(

 

Br(x)
U s
)

1
s ≤ C

(

 

B2r(x)
U +

(

 

B2r(x)
V s
)

1
s
)

.

Then, there exists s̄ > s depending on q and C such that for all r > 0 and x ∈ R
d, we have

(

 

Br(x)
U s̄
)

1
s̄
.

 

B2r(x)
U +

(

 

B2r(x)
V s̄
)

1
s̄
.

♦

We conclude this paragraph with the proof of Theorem 1.3.
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Proof of Theorem 1.3. We first prove that for all r > 0 we have
 

Br

(

 

B⋄(x)
a|∇u|2

)

dx .
(

 

B2r

(

 

B⋄(x)
a|∇u|2

)
α
2
dx
)

2
α
+

 

B2r

 

B⋄(x)
|h|2dx, (2.3)

and notice that the origin plays no role in this estimate.
If r ≤ 3r⋄(0), the first right-hand side term controls the left-hand side by a covering

argument. It remains to address the case r > 3r⋄(0). Since r⋄ is 1
8 -Lipschitz we have

 

Br

(

 

B⋄(x)
a|∇u|2

)

dx .

 

B 67
48 r

a|∇u|2,

see [10, (C7)]. We now appeal to the reverse Hölder inequality in form of
 

B 67
48 r

a|∇u|2 .

 

B 17
12 r

|h|2 +
(

 

B 17
12 r

(
√
a|∇u|)α

)
2
α
,

which, by a covering argument (see [10, (C7)] again), yields
 

B 67
48 r

a|∇u|2 .

 

B2r

 

B⋄(x)
|h|2dx+

(

 

B2r

 

B⋄(x)
(
√
a|∇u|)αdx

)
2
α
.

Using Jensen’s inequality on the second right-hand side (since α < 2), this proves (2.3).
By Lemma 2.2 applied to

U(x) :=
(

 

B⋄(x)
a|∇u|2

)
α
2
, V (x) :=

(

 

B⋄(x)
|h|2
)

α
2
, s :=

2

α
> 1,

one obtains for all r > 0 and some γ > 1
(

ˆ

Br

(

 

B⋄(x)
a|∇u|2

)γ

dx
)

1
γ
. r

d( 1
γ
−1)

ˆ

B2r

 

B⋄(x)
a|∇u|2dx+

(

ˆ

B2r

(

 

B⋄(x)
|h|2
)γ) 1

γ
.

(2.4)
The desired Meyers’ estimate follows by monotone convergence in the limit r ↑ +∞ com-
bined with the L2-energy estimate

ˆ

Rd

 

B⋄(x)
a|∇u|2dx .

ˆ

Rd

a|∇u|2 .

ˆ

Rd

|h|2.

�

2.2. Proof of Corollary 1.4. Let γ be as in (2.4). Without loss of generality we can
assume r ≥ 3r⋄ so that by [10, Lemma C.2] we have for all non-negative functions h

ˆ

Br

h .

ˆ

B2r

 

B⋄(x)
hdx,

ˆ

Br

 

B⋄(x)
hdx .

ˆ

B2r

h. (2.5)

We may also assume R ≥ 4r. By (2.5) we have
ˆ

Br

a|∇u|2 . rd
 

B2r

 

B⋄(x)
a|∇u|2dx

≤ rd
(

 

B2r

(

 

B⋄(x)
a|∇u|2

)γ

dx
)

1
γ

. r
d(1− 1

γ
)
(

ˆ

BR
2

(

 

B⋄(x)
a|∇u|2

)γ

dx
)

1
γ
.
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By (2.4) (used with h ≡ 0), this entails
ˆ

Br

a|∇u|2 . r
d(1− 1

γ
)
R

−d(1− 1
γ
)
ˆ

BR
2

(

 

B⋄(x)
a|∇u|2

)

dx,

and the claim follows from (2.5) with 0 < β = d(1 − 1
γ
) ≤ d.

2.3. Proof of Theorem 1.5. The proof is based on the quenched Meyers estimate in the
large of Theorem 1.3, on the moment bounds on r⋄ of Proposition 1.2 (which allows us
to use duality at the price of a loss of stochastic integrability), real interpolation, and a
refined dual version of the Calderón-Zygmund lemma due to Shen [38, Theorem 3.2], based
on ideas by Caffarelli and Peral [9]. Since it follows the proof of [19] almost line by line
and is identical to the proof of [10, Theorem 4.11], we leave the details to the reader.

3. Control of correctors and of the minimal radius

In this section we prove Theorems 1.8 and 1.9. We proceed using an approximation
argument, and for all M ≥ 1, we set aM := (a ∧ M) ∨ 1

M
, which is uniformly elliptic

and bounded. By [25, 24], Theorems 1.8 and 1.9 hold true for all M < ∞ (with bounds
that depend on M a priori). By uniqueness of correctors, it is an exercise to show that
E
[

|(∇φ(aM ),∇σ(aM ))− (∇φ(a),∇σ(a))|2γ
]

→ 0 for all γ < 1 as M ↑ +∞, so that
uniform moment bounds on (∇φ(aM ),∇σ(aM )) are retained by (∇φ(a),∇σ(a)) in the
limit M ↑ +∞. The control of (φ(a), σ(a)) will follow similarly from the uniform control of

(φ(aM ), σ(aM )), which in turn allows to bound r⋆. Since r⋆ is defined using L
2p⋄
p⋄−1 instead

of L2, we display the proofs for completeness.

Before we turn to the proofs, notice that Theorems 1.3 and 1.5 hold uniformly with a

replaced by aM for all M ≥ 1 (with the same constants, exponents, and random radii). In
what follows, it is therefore enough to assume

• that a is bounded and uniformly elliptic,
• that Theorems 1.8 and 1.9 hold true for some constants,

and to obtain bounds which only depend on Theorems 1.3 and 1.5 – and are therefore
uniform wrt M .

3.1. General strategy. Our main result is as follows.

Theorem 3.1 (Decay of averages of corrector gradient). There exists c > 0 depending
on C(0) such that for all g ∈ L2(Rd) and unit vectors e ∈ R

d the random field F :=
´

Rd(∇φ,∇σ) · g satisfies for all q ≥ 1

E
[

|F |2q
]
1
q ≤ ecq

ˆ

Rd

|g|2.

♦

Notice that this encodes the CLT scaling. Indeed, for gR(x) = |BR|−d
1BR

this entails

E

[

∣

∣

∣

ffl

BR
(∇φ,∇σ)

∣

∣

∣

2q
]

1
q

.q R−d. Passing from this result on averages of corrector gradients

to correctors is routine, see e.g. [24]. Passing from correctors to r⋆ is routine too, see
e.g. [10]. We thus only focus on the proof of Theorem 3.1, and follow the strategy of [10,
Section 6].
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We start with a control of averages of correctors that involves the energy density of the
corrector.

Proposition 3.2. For all 0 < θ < 1, there exists a constant c > 0 depending on C(0) such
that for all g ∈ L2(Rd) and unit vectors e ∈ R

d the random field F :=
´

Rd(∇φ,∇σ) · g
satisfies for all q ≥ 1 such that 2q′ ≤ 2 + κ (where κ is as in Theorem 1.5)

E
[

|F |2q
]
1
q ≤ ecqE

[

(

ˆ

B(0)
a(|∇φ|2 + 1)

)q(1+θ)
]

1
q(1+θ) ˆ

Rd

|g|2.

♦

Based on Proposition 3.2 itself, we shall prove moment bounds on the energy density of
the corrector.

Proposition 3.3. There exists a constant c > 0 depending on C(0) such that for all q ≥ 1,

E

[

(

ˆ

B(0)
a(|∇φ|2 + 1)

)q
]

1
q

≤ ecq, (3.1)

and

E

[

(

ˆ

B(0)
|∇σ|2

)q
]

1
q

≤ ecq. (3.2)

♦

The combination of Propositions 3.2 and 3.3 directly yields Theorem 3.1. For the proof
of Proposition 3.3, we introduce a third minimal radius, which quantifies at which scale
the energy density of the corrector behaves like a uniformly bounded function of a.

Definition 3.4. We define the minimal radius r♠ as

r♠ := max
|e|=1

inf
r=2k≥r⋄,k∈N

{

∀R ≥ r dyadic,

 

BR

a|∇φe|2 ≤ C

 

B2R

a
}

,

where φe denotes the corrector in the unit direction e, and C > 0 will be chosen in the
proof of Proposition 3.3. ♦

The core of the proof of Proposition 3.3 is a control of the level-sets of r♠ using averages
of the corrector gradient.

3.2. Proof of Proposition 3.2. Let the direction e ∈ R
d with |e| = 1, and ij be fixed,

and consider F1 :=
´

Rd ∇φ · g, and F2 :=
´

Rd ∇σij · g. For background on Malliavin
calculus and functional calculus, we refer the reader to [32, Section 2] (dimension 1) and
[13, Section 2.1] (any dimension).

Step 1. Malliavin derivatives of F1 and F2.
We claim that

DF1 =

ˆ

Rd

∇u ·Da(∇φ+ e), (3.3)

DF2 =

ˆ

Rd

(∂ivej − ∂jvei +∇w) ·Da(∇φ+ e), (3.4)
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where u, v, w solve

−∇ · a∇u = ∇ · g, (3.5)

−△v = ∇ · g, (3.6)

−∇ · a∇w = ∇ · a(∂ivej − ∂jvei). (3.7)

(Notice that these equations are all well-posed in Ḣ1(Rd) since a is uniformly elliptic
and bounded by assumption.) Indeed DF1 =

´

Rd ∇Dφ · g and, using the corrector equa-
tion (1.5), Dφ solves

−∇ · a∇Dφ = ∇ ·Da(∇φ+ e).

Using (3.5), we then obtain the representation formula (3.3). We now turn to F2. As for
F1 we have DF2 =

´

Rd ∇Dσij · g and, using (1.6), Dσij solves

−△Dσij = ∂iD(a(∇φ+ e) · ej)− ∂jD(a(∇φ+ e) · ei).
Using first (3.6), we have

DF2 =

ˆ

(∂ivej − ∂jvei) ·D(a(∇φ+ e))

=

ˆ

(∂ivej − ∂jvei) ·Da(∇φ+ e) +

ˆ

(∂ivej − ∂jvei) · a∇Dφ,

and we reformulate the last term using (3.7) to obtain (3.4).

Notice that our choice a(G(x)) = exp(G(x)) yields Dza = aδ(·−z) for all z ∈ R
d, which

we shall use in the estimates (again, the specific form is convenient but not essential).

Step 2. Application of the logarithmic-Sobolev inequality.
By LSI, Step 1, and the identity Dza = aδ(· − z), we have for all q ≥ 1,

E
[

|F |2q
]
1
q . qE

[

(

ˆ

Rd

(

ˆ

B(x)
(|∇u|+ |∇v|+ |∇w|)a(|∇φ| + 1)

)2
dx
)q

]
1
q

.

We only focus on the term involving ∇w, which is more involved since w is obtained by
solving two equations in a row. By Cauchy-Schwarz’,

(

ˆ

B(x)
|∇w|a(|∇φ| + 1)

)2
≤

ˆ

B(x)
a|∇w|2

ˆ

B(x)
a(|∇φ|2 + 1).

By duality in probability, this yields

E

[

(

ˆ

Rd

(

ˆ

B(x)
|∇w|a(|∇φ| + 1)

)2
dx
)q

]
1
q

≤ sup
X

E

[

ˆ

Rd

(

ˆ

B(x)
a(|∇φ|2 + 1)

)(

ˆ

B(x)
a|∇Xw|2

)

dx

]

,

where the supremum runs over random variables X (which are thus independent of the

space variable) such that E

[

|X|2q′
]

= 1. We then set η◦ := θ
(1+θ)(q−1) , to the effect
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that q′ > 1 + η◦ and q′

q′−(1+η◦)
= q(1 + θ), and use Hölder’s inequality with exponents

( q′

q′−(1+η◦)
, q′

1+η◦
), so that the above turns into

E

[

(

ˆ

Rd

(

ˆ

B(x)
|∇w|a(|∇φ| + 1)

)2
dx
)q
]

1
q

≤ E

[

(

ˆ

B(0)
a(|∇φ|2 + 1)

)q(1+θ)
]

1
q(1+θ)

sup
X

ˆ

Rd

E

[

(

ˆ

B(x)
a|∇Xw|2

)
q′

1+η0

]

1+η0
q′

dx,

where we used the stationarity of x 7→
´

B(x) a(|∇φ|2 + 1). For convenience, we rewrite

1 + η◦ as (1 + η)2, and apply Theorem 1.5 to (3.7), which yields provided 2q′ ≤ 2 + κ,

ˆ

Rd

E

[

(

ˆ

B(x)
a|∇Xw|2

)
q′

(1+η)2

]

(1+η)2

q′

dx . ζ(η0)

ˆ

Rd

E

[

(

ˆ

B(x)
a|∇Xv|2

)
q′

1+η

]
1+η

q′

dx,

where ζ : t 7→ t−
1
4 | log t| 12 (since for 0 < η◦ < 1

2 , ζ(η) = ζ(
√
1 + η◦ − 1) . ζ(η◦)). By

Hölder’s inequality with exponents (1+η
η

, 1+η), followed by the version of Theorem 1.5 for

the Laplacian (see for instance [10, Theorem 1.14]) applied to (3.6) (with exponent q′ . 1)
we further have

ˆ

Rd

E

[

(

ˆ

B(x)
a|∇Xv|2

)
q′

1+η

]
1+η

q′

dx ≤ E

[

a
q′

η

]
η

q′
ˆ

Rd

E

[

(

ˆ

B(x)
|∇Xv|2

)q′
]

1
q′

dx

. E

[

a
q′

η

]
η

q′

E

[

|X|2q′
]

1
q′

ˆ

Rd

|g|2

= E

[

a
q′

η

]
η

q′
ˆ

Rd

|g|2,

where we used that g is deterministic and E

[

|X|2q′
]

= 1. The desired stochastic in-

tegrability comes from a direct calculation. On the one hand, if q is large enough,
2η ∼ η0 ∼ θ

1+θ
q−1. On the other hand, using the Taylor expansion of the exponential

and Gaussianity, we have

E [ar]
1
r = exp(C(0)2 r) for any r ≥ 1. (3.8)

Finally, noticing in addition that q′ < 2, there is a c > 0 depending on θ and C(0) such
that

ζ(η0)E

[

a
q′

η

]
η

q′

= η
− 1

4
0 | log η0|

1
2 e

q′

2η ≤ ecq.

This concludes the proof of the proposition.

3.3. Proof of Proposition 3.3. Wlog we may fix a direction e. We split the proof into
four steps. For the proof of (3.1), the core of the argument is to control the moments of
r♠ in form of

E

[

r
q
♠

]

≤ ecq
2
, (3.9)
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for some c > 0. We then deduce (3.1) using that the definition of r♠ in form of
ˆ

B(0)
a(|∇φ|2 + 1) . rd♠

 

Br♠
(0)

a . rd♠,

where the latter is a consequence of r♠ ≥ r⋄. We show (3.9) in the first three steps. In the
last step, we prove that (3.2) is a consequence of (3.1).

Since r♠ = r⋄1r♠=r⋄+r♠1r♠>r⋄ and r⋄ is well-controlled by Proposition 1.2, it is enough
to focus on r♠1r♠>r⋄ . In what follows we use r♠ as a short-hand notation for r♠1r♠>r⋄ ,

and recall that we have set r♣(R) :=
(

R− ε
2 supBR

(a+ a−1)
)2

.

Step 1. Control of the level-sets of r♠.
We claim that for all 0 < µ < 1 there exists c > 0 such that for all dyadic R and all q ≥ 1,
we have

E [1(r♠ = R)] ≤ cqR−q(d−β+2(1−µ)−ε)
E

[

r♣(R)qr
q(d−β)
♠

]

+ cqRqε
E

[

r♣(R)q
(

 

BR

∣

∣

∣

 

BRµ (x)
∇φ
∣

∣

∣

2
dx
)q

]

. (3.10)

Assume that r♠ = R > r⋄. Then, by definition, we both have
 

BR

a|∇φ|2 ≤ C

 

B2R

a,

 

BR
2

a|∇φ|2 ≥ C

 

BR

a.

We now appeal to the Caccioppoli inequality (2.1) applied to the corrector equation −∇ ·
a∇φ = ∇ · ae, which we rewrite in the form,

 

BR
2

a|∇φ|2 ≤ C ′
(

 

BR

a+ inf
c

1

R2

 

BR

a|φ− c|2
)

,

for some universal constant C ′. Provided we choose C = 2C ′ (which completes Defini-
tion 3.4), this entails

inf
c

1

R2

 

BR

a|φ− c|2 &
 

BR

a & 1,

using that R ≥ r⋄.

Let 0 < µ < 1, and set cR :=
ffl

BR

ffl

BRµ(x)
φ. By definition of r♣, we have

1 .
1

R2

 

BR

a|φ− cR|2 ≤
√

Rεr♣(R)
1

R2

 

BR

|φ− cR|2.

By the triangle inequality,

1

R2

 

BR

|φ− cR|2 .
1

R2

 

BR

∣

∣

∣
φ−

 

BRµ (x)
φ
∣

∣

∣

2
dx+

1

R2

 

BR

∣

∣

∣

 

BRµ (x)
φ− cR

∣

∣

∣

2
.

Using Poincaré’s inequality (on domains of size Rµ for the first term, and on BR for the
second term), this yields

1

R2

 

BR

|φ− cR|2 . R2(µ−1)

 

BR

|∇φ|2 +
 

BR

∣

∣

∣

 

BRµ (x)
∇φ
∣

∣

∣

2
.
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Whereas the second right-hand side term already has the correct form, we need to put
back the weight on the first right-hand side term. For that we pay again

√

r♣(R)Rε. We
have thus proved

1 . r♣(R)Rε
(

R2(µ−1) +

 

BR

∣

∣

∣

 

BRµ (x)
∇φ
∣

∣

∣

2)

r♠=R
= r♣(R)Rε

(

R2(µ−1)−d+βr
d−β
♠ +

 

BR

∣

∣

∣

 

BRµ (x)
∇φ
∣

∣

∣

2)

.

By Markov’ inequality, this implies the claim.

Step 2. Hole-filling and control of the right-hand side of (3.10).
We claim that (3.10) entails for all 0 < θ < 1, all dyadic R and all q ≥ 1,

E [1(r♠ = R)] ≤ ecθq
2
(

R−q(d−β+2(1−µ)−ε) +R−q(dµ−ε)
)

E

[

r
q(d−β)(1+θ)3

♠

]
1

(1+θ)3
, (3.11)

for some cθ depending on θ. The first right-hand side term of (3.11) comes from the first
right-hand side term of (3.10) using Hölder’s inequality and the moment bound, for some
c > 0 and any q ≥ 1,

E [r♣(R)q] ≤ ecq
2
, (3.12)

that we deduce from (1.2). The second right-hand side term is more subtle. By Hölder’s in-
equality with exponents (1+θ

θ
, 1+θ), Jensen’s inequality, and stationarity of x 7→

ffl

BRµ (x)∇φ

we have

E

[

r♣(R)q
(

 

BR

∣

∣

∣

 

BRµ (x)
∇φ
∣

∣

∣

2
dx
)q
]

≤ E

[

r♣(R)q
1+θ
θ

]
θ

1+θ
E

[

∣

∣

∣

 

BRµ

∇φ
∣

∣

∣

2q(1+θ)
]

1
1+θ

(3.12)

≤ ecθ,1q
2
E

[

∣

∣

∣

 

BRµ

∇φ
∣

∣

∣

2q(1+θ)
]

1
1+θ

for a constant cθ,1. Then, by Proposition 3.2 applied to g = |BRµ |−1
1BRµ , we get

E

[

∣

∣

∣

 

BRµ

∇φ
∣

∣

∣

2q(1+θ)
]

1
q(1+θ)

≤ ec
′
θ,2q E

[

(

ˆ

B

a(|∇φ|2 + 1)
)q(1+θ)2

]
1

q(1+θ)2
ˆ

Rd

|g|2

= e
c′θ,2q E

[

(

ˆ

B

a(|∇φ|2 + 1)
)q(1+θ)2

]
1

q(1+θ)2

R−dµ,

for some constant c′θ,2. It remains to control
´

B
a(|∇φ|2 + 1) by r♠, and we claim that

´

B
a(|∇φ|2 + 1) . rd⋄ + r

d−β
♠ r

β
⋄ . Indeed, if r♠ < r⋄, then

ˆ

B

a(|∇φ|2 + 1) ≤
ˆ

B♠

a(|∇φ|2 + 1) .

ˆ

B♠

a . rd⋄ .

Otherwise, r♠ ≥ r⋄, and by the hole-filling estimate (1.4) in Corollary 1.4,
ˆ

B

a(|∇φ|2 + 1) . rd⋄

 

B⋄

a(|∇φ|2 + 1) . rd⋄
(r♠

r⋄

)d−β
 

B♠

a(|∇φ|2 + 1) . r
d−β
♠ rβ⋄ .
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All in all, this entails by Hölder’s inequality with exponents (1+θ
θ
, 1 + θ) and the moment

bound (1.1) on r⋄,

E

[

∣

∣

∣

 

BRµ

∇φ
∣

∣

∣

2q(1+θ)
]

1
q(1+θ)

≤ ecθ,2qR−dµ
E

[

r
q(d−β)(1+θ)3

♠

]
1

q(1+θ)3

for a constant cθ,2 and (3.11) follows in combination with (3.10).

Step 3. Buckling argument.
By expressing the moments of r♠ using its level-sets we have for all q ≥ 1, and all K ≥ 1,

E

[

r
q(d− β

K
)

♠

]

≤ 1 +

∞
∑

n=1

2nq(d−
β
K
)
E [1(r♠ = 2n)]

(3.11)

≤ 1 + ecθq
2
E

[

r
q(d−β)(1+θ)3

♠

]
1

(1+θ)3

×
∞
∑

n=1

(2−nq( β
K
+2(1−µ)−β−ε) + 2−nq(d(1−µ)+ β

K
−ε)).

We now choose our exponents. We first fix 0 < µ < 1 so that d(1 − µ) = β
2 , then set

ε := β
5d and 1

K
:= 1− 1

5d to the effect that

1

2
(2−nq( β

K
+2(1−µ)−β−ε) + 2−nq(d(1−µ)+ β

K
−ε)) ≤ 2−nq

β
5d .

With this choice, the series is summable and the above turns into

E

[

r
q(d− β

K
)

♠

]

≤ 1 + ecq
2
E

[

r
(d−β)(1+θ)3q
♠

]
1

(1+θ)3
.

We may then absorb part of the right-hand side into the left-hand side by Young’s inequality
upon choosing 0 < θ < 1 so small but independent of q that (d−β)(1+θ)3 < d− β

K
(which

is possible since K > 1), and the claimed moment bound (3.1) follows.

Step 4. Control of ∇σ.
We could control moment bounds of ∇σ by using Malliavin calculus and moment bounds
on ∇φ. Here we directly apply standard Calderón-Zygmund estimates for the Laplacian
(the scaling of the multiplicative constants follow from the Marcinkiewicz interpolation
theorem [33, Theorem 1.3.2], [36]) to (1.6): For all R ≥ 1 and q ≥ 1
(

 

BR

(

 

B(x)
|∇σ|2

)q) 1
q
. (q + q′)

((

 

B2R

 

B(x)
|∇σ|2

)q

+

 

B2R

(

 

B(x)
|a(∇φ+ e)|2

)q) 1
q
,

By ergodicity and stationarity, as R ↑ +∞, each spatial average converges almost surely
to the associated expectation, so that we derive

E

[

(

 

B(0)
|∇σ|2

)q
]

1
q

. (q + q′)
(

E
[

|∇σ|2
]q

+ E

[

(

ˆ

B(0)
a2(|∇φ|2 + 1)

)q
]

)
1
q
.

Finally, using
ˆ

B(0)
a2(|∇φ|2 + 1) ≤

(

sup
B(0)

a
)

ˆ

B(0)
a(|∇φ|2 + 1),

we obtain (3.2) from (3.1) and the local boundedness of a (see (A.5)).
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3.4. Arguments for Theorems 1.8 and 1.9. We split the proof into two steps and we
show separately Theorem 1.8 and Theorem 1.9 using the standard strategy from [26, 35].

Step 1. Proof of Theorem 1.8.
Since p⋄ = d+ 1, we have p⋄−1

2p⋄
> p⋄+1

2p⋄
− 1

d
, so that by Poincaré-Sobolev’ inequality,

(

 

B(x)

∣

∣

∣
(φ, σ)−

 

B(0)
(φ, σ)

∣

∣

∣

2p⋄
p⋄−1

)
p⋄−1
2p⋄

≤
∣

∣

∣

 

B(x)
(φ, σ) −

 

B(0)
(φ, σ)

∣

∣

∣
+
(

 

B(x)
|(φ, σ) −

 

B(x)
(φ, σ)|

2p⋄
p⋄−1

)
p⋄−1
2p⋄

.
∣

∣

∣

 

B(x)
(φ, σ) −

 

B(0)
(φ, σ)

∣

∣

∣
+
(

 

B(x)
|∇(φ, σ)|

2p⋄
p⋄+1

)
p⋄+1
2p⋄

.

Using Hölder’s inequality, we have

(

 

B(x)
|∇(φ, σ)|

2p⋄
p⋄+1

)
p⋄+1
2p⋄ ≤

(

 

B(x)
a−p⋄

)
1

2p⋄
(

 

B(x)
a(|∇φ|2 + 1)

)
1
2
+
(

 

B(x)
|∇σ|2

)
1
2
,

that has the stochastic integrability (1.10) from Proposition 3.3 and (3.8). We then follow

the standard proof to control
∣

∣

∣

ffl

B(x)(φ, σ)−
ffl

B(0)(φ, σ)
∣

∣

∣
in [35], and we show the argument

for φ only (the proof for σ follows the same way). We have the representation formula
 

B(x)
φ−

 

B(0)
φ =

ˆ

Rd

∇w · ∇φ, (3.13)

where w denotes the decaying solution of

−△w =
1

|B(0)| (1B(x) − 1B(0)).

By classical potential theory, it holds

(

ˆ

Rd

|∇w|2
)

1
2
. µd(|x|) =







√

|x|+ 1 : d = 1,

log(|x|+ 2)
1
2 : d = 2,
1 : d > 2.

Since w is deterministic, as a consequence of (3.13) and (3.1), we finally obtain (1.8).

Step 2. Proof of Theorem 1.9.
By the layer-cake formula and since r⋄ is controlled in (1.1), it is sufficient to show that
for any λ > 0

P
(

{r⋆ ≥ λ} ∩ {λ ≥ r⋄}
)

≤ ecq
2

(

µd(λ)
)q

λq
, (3.14)

for some c > 0. The estimate (3.14) is simply obtained using the Definition 1.7 of r⋆ in
form of

P
(

{r⋆ ≥ λ} ∩ {λ ≥ r⋄}
)

≤ P

(

(

 

Bλ
2

∣

∣

∣
(φ, σ) −

 

Bλ
2

(φ, σ)
∣

∣

∣

2p⋄
p⋄−1

)
p⋄−1
2p⋄

>
λ

2C

)

,

which, together with Markov’s inequality and Theorem 1.8, gives (3.14).
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4. Large-scale regularity theory

4.1. Large-scale Lipschitz estimates. The proof is based on a post-processing of [8,
Theorem 2]. Since the proof is very similar to that of [26, Corollary 3], we only highlight
the main steps of the argument. The starting point is

sup
r∈[r⋆,R]

1
r2α

Exc(∇u+ g, r) . 1
R2αExc(∇u+ g,R)

+ sup
r∈[r⋆,R]

1
r2α

 

Br

(

(

g −
 

Br

g
)

· a
(

g −
 

Br

g
)

+
(

h−
 

Br

h
)

· a−1
(

h−
 

Br

h
)

)

,

(4.1)
where the excess Exc is defined for any ρ > 0 by

Exc(∇u+ g, ρ) := inf
ξ∈Rd

 

Bρ

(

∇u− (ξ +∇φξ)
)

· a
(

∇u− (ξ +∇φξ)
)

.

The estimate (4.1) can be obtained following the lines of [26, Step 1 p. 135] that is based
on energy estimates and the excess decay [8, Theorem 2]. We can then post-process (4.1)
following the lines of [26, Step 2 p. 136] where the additional main ingredient is the
non-degeneracy of the correctors which reads : for any ρ ≥ r⋆

 

Bρ

(

∇φξ + ξ
)

· a
(

∇φξ + ξ
)

& |ξ|2. (4.2)

To see (4.2), first note that from the Definition 1.2 of r⋄ we have by Hölder and Poincaré’s
inequalities

(

 

Bρ

(

∇φξ + ξ
)

· a
(

∇φξ + ξ
)

)
1
2
&

1

ρ

(

 

Bρ

∣

∣

∣
φξ + ξ · x−

 

Bρ

φξ

∣

∣

∣

2p⋄
p⋄+1

)
p⋄+1
2p⋄

.

Then, using the triangle inequality in form of

1

ρ

(

 

Bρ

∣

∣

∣
φξ + ξ · x−

 

Bρ

φξ

∣

∣

∣

2p⋄
p⋄+1

)
p⋄+1
2p⋄ ≥

∣

∣

∣
Cd|ξ| −

1

ρ

(

 

Bρ

∣

∣

∣
φξ −

 

Bρ

φξ

∣

∣

∣

2p⋄
p⋄+1

)
p⋄+1
2p⋄
∣

∣

∣
,

for some Cd > 0, together with the definition of r⋆ in form of

1

ρ

(

 

Bρ

∣

∣

∣
φξ −

 

Bρ

φξ

∣

∣

∣

2p⋄
p⋄+1

)
p⋄+1
2p⋄ ≤ 1

ρ

(

 

Bρ

∣

∣

∣
φξ −

 

Bρ

φξ

∣

∣

∣

2p⋄
p⋄−1

)
p⋄−1
2p⋄ ≤ |ξ|

C
,

we obtain (4.2) (up to increasing the value of C).

4.2. Quenched and annealed Calderón-Zygmund estimates. The proof of Theorem
1.11 is based on the Schauder regularity theory in Proposition 1.10 and a refined dual
version of the Calderón-Zygmund lemma due to Shen [38, Theorem 3.2]. We then obtain
Theorem 1.12 as a post-processing of Theorem 1.11 using the moment bound on r⋆ in
Theorem 1.9. Since the proofs of Theorem 1.11 and Theorem 1.12 follow almost line by
line the proofs of [19, Proposition 6.4] and [19, Theorem 6.1] respectively, we leave the
details to the reader.



QUANTITATIVE HOMOGENIZATION FOR LOG-NORMAL COEFFICIENTS 21

Appendix A. Proof of Proposition 1.2

A.1. A result on stochastic integrability. We start by showing the following lemma on
the characterization of super-algebraic stochastic integrability appearing in Proposition 1.2:

Lemma A.1. Let α > 1. Given a positive random variable X, the following statements
are equivalent:

(1) There exists a constant C > 0 such that

E

[

exp(
1

C
logα(1 +X))

]

< +∞.

(2) There exists a constant C > 0 such that for x large enough,

P(X ≥ x) ≤ exp(− 1

C
logα(1 + x)).

(3) There exists a constant C > 0 such that for p large enough,

E [Xp] ≤ exp(Cp
α

α−1 ).

Here the constants C might be different. In particular, if α = 2, all the exponents are 2.

We prove (1) ⇒ (2)⇒ (3)⇒ (1).
(1) ⇒ (2): Direct application of Chebychev’s inequality.
(2) ⇒ (3): For A > 0 large enough to be chosen later, we have by a change of variable

E [Xp] ≤ Ap + p

ˆ +∞

A

P(X > x)xp−1dx

. Ap + p

ˆ +∞

A

exp

(

− 1

C
logα(1 + x)

)

xp−1dx

. Ap + p

ˆ +∞

logα(1+A)
e−

1
C
tept

1
α
dt.

We then choose A so large that for any t > A one has − 1
C
t+ pt

1
α < − 1

2C t. Since α > 1,

we can take A = e(2Cp)
1

α−1
. Hence by changing the constant C,

E [Xp] . Ap + pC ≤ eCp
α

α−1
.

(3) ⇒ (1): Denote by C ′ the constant in (3). By Chebychev’s inequality with power pn
yet to be chosen,

E

[

exp(
1

C
logα(1 +X))

]

=

ˆ +∞

0
P(exp(

1

C
logα(1 +X)) > t)dt

=

ˆ 1

0
1dt+

(

∑

n∈N

ˆ en+1

en

)

P(X > exp
(

(C log t)
1
α

)

)dt

≤ 1 +
∑

n∈N

ˆ en+1

en
P(X > exp

(

(C log t)
1
α

)

)dt

≤ 1 +
∑

n∈N

en+1 exp
(

−C
1
α pnn

1
α

)

exp(C ′p
α

α−1
n ).
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With pn = n1− 1
α and C large enough, the sum converges, and the claim follows.

A.2. Proof of Proposition 1.2. We split the proof into two steps. We first estimate r⋄,
and then turn to r♣.

Step 1. Estimate of r⋄.
We first introduce a stationary random radius r̃⋄ defined by

r̃⋄(x) := inf
r≥1 dyadic

{

∀ρ ≥ r dyadic,

1
Cd

E
[

ap⋄ + a−p⋄
]

≤
 

Br(x)
ap⋄ + a−p⋄ ≤ CdE

[

ap⋄ + a−p⋄
]

}

,

where Cd will be chosen later. For all r > 0, we set

Xr : =

 

Br

ap⋄ + a−p⋄.

The Malliavin derivative of Xr is DXr = p⋄|Br|−1(ap⋄ + a−p⋄)1Br . Hence the moment
bound for all q ≥ 1

E [|X − EX|q]
1
q .

√
qE
[

‖DX‖q
L2(Rd)

]
1
q

(A.1)

(which is a consequence of the logarithmic-Sobolev inequality) combined with Minkowski’s
inequality implies

E [|Xr − EXr|q]
1
q .

√
qE
[

‖DX‖q
L2(Rd)

]
1
q
.

√
q|Br|−

1
2E [ap⋄q]

1
q .

By definition of the random field a, E [ap] = exp(C(0)2 p2), so for suitable positive constants
c and C (depending on p⋄),

E [|Xr − EXr|q] ≤ Cqqq|Br|−
q
2 exp(

1

2
p2⋄q

2) ≤ r−
d
2
q exp(cq2).

Since the definition of r̃⋄ only involves dyadic radii, we have

P(r̃⋄ > x) ≤
∑

r=2n>x

P
(

|Xr − EXr| > (1− C−1
d )EXr

)

.

By applying Chebychev’s inequality with power qn = d log 2
4c n to each term in the sum, we

obtain

P(r̃⋄ > x) .
∑

n>log2 x

2−
d
2
nqn exp(cq2n) .

∑

n>log2 x

exp(−cn2) ≤ e−c log2 x,

here the constant c varies but only depends on d and p⋄. This implies the claimed stochastic
integrability of r̃⋄ by Lemma A.1.

To pass from dyadic radii to general radii, it suffices to multiply r̃⋄ by 2. In fact, for a
radius r ∈ [r0, 2r0],

 

Br

∣

∣ap⋄ + a−p⋄ − E
[

ap⋄ + a−p⋄
]
∣

∣ ≤ 2d
 

Br0

∣

∣ap⋄ + a−p⋄ − E
[

ap⋄ + a−p⋄
]
∣

∣
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As a result, for any r > 2r̃⋄ ≥ 2⌈log2 r̃⋄⌉, by comparing the integral with the average on the
ball with the nearest dyadic radius (larger than r⋄),

 

Br

∣

∣ap⋄ + a−p⋄ − E
[

ap⋄ + a−p⋄
]
∣

∣ ≤ (1− C−1
d )2d

 

Br

∣

∣ap⋄ + a−p⋄ − E
[

ap⋄ + a−p⋄
]
∣

∣ . (A.2)

We then pick

r⋄(x, ǫ) = inf
y
r̃⋄(y, ǫ) +

1

8
|x− y|,

with

r̃⋄(x, ǫ) := inf

{

r : ∀ρ > r,

 

Bρ(x)

∣

∣(ap⋄ + a−p⋄)− E
[

ap⋄ + a−p⋄
]
∣

∣ ≤ ǫE
[

ap⋄ + a−p⋄
]

}

.

By construction, r⋄ is the maximal 1
8 -Lipschitz field smaller than r̃⋄, so r⋄(x, ǫ) ≤ r̃⋄(x, ǫ).

If r⋄(x, ǫ) ≤ R, by definition there is a y ∈ R
d such that |y − x| ≤ 8R and r̃⋄(y, ǫ) ≤ R.

This implies that for any ρ > R, Bρ(x) ⊂ B9ρ(y). Thus
 

Bρ(x)

∣

∣(ap⋄ + a−p⋄)− E
[

ap⋄ + a−p⋄
]∣

∣ ≤ 9d
 

B9ρ(x)

∣

∣(ap⋄ + a−p⋄)− E
[

ap⋄ + a−p⋄
]∣

∣

≤ 9dǫE
[

ap⋄ + a−p⋄
]

.

Again by definition, r̃⋄(x, 9
dǫ) ≤ R, which yields r̃⋄

(

x, 9dǫ
)

≤ r⋄(x, ǫ). So if we define r⋄ to

be the minimal 1
8 -Lipschitz random field with the desired large scale regularity property,

since r̃⋄(x,
1
2 ) ≤ r⋄(x,

1
29

−d) and the latter one is 1
8 -Lipschitz, by minimality

r⋄(x) ≤ r⋄(x,
1

2
9−d) ≤ r̃⋄(x,

1

2
9−d).

As a result, in view of (A.2), if we pick Cd such that (1−C−1
d )2d = 1

29
−d, r⋄ will have the

desired stochastic integrability.

Step 2. Estimate of r♣.
Since the laws of a and a−1 are the same, it is enough to treat positive powers of a. We
first claim that it suffices to control r♣(1). In fact, if

E

[

exp

(

1

C
log2(1 + r♣(1))

)]

< +∞

holds, then since one can cover BR with cdR
d balls Bi of radius 1, by stationarity of a

P(r♣(R) > r) ≤ P

(

∃1 ≤ i ≤ cdR
d s.t. sup

Bi

a > Rεr

)

≤
cdR

d
∑

i=1

P

(

sup
Bi

a > Rεr

)

. cdR
d exp(− 1

C
log2(1 +Rεr))

. cdR
d exp(− 1

C
log2(Rε)) exp(− 1

C
log2(1 + r))

. exp(− 1

C
log2(1 + r))
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since R 7→ Rd exp(− 1
C
log2(Rε)) is bounded on R+. This entails the claimed stochastic

integrability of r♣(R) by Lemma A.1.

We now estimate r♣(1). Under the hypothesis that the covariance function C is 2γ-
Hölder continuous at 0, we have the following regularity estimate: for a constant c, and all
q ≥ 1,

E [|a(x)− a(y)|q] . |x− y|γqecq2 . (A.3)

Indeed, by the triangle inequality and the growth of moments of Gaussian variables,

E [|a(x)− a(y)|q]
1
q = E

[

eqG(y)
∣

∣

∣
1− eG(x)−G(y)

∣

∣

∣

q] 1
q

≤ E

[

e2qG(y)
]

1
2q

(

+∞
∑

n=1

1

n!
E
[

|G(x)−G(y)|2nq
]

1
2q

)

. eq
+∞
∑

n=1

1

n!
(2nq)

n
2E
[

|G(x) −G(y)|2
]
n
2

≤ eq
+∞
∑

n=1

([
n

2
]!)−1(4q)

n
2 (2− 2C(x− y))

n
2

. eq
+∞
∑

n=1

(n!)−1(cq)n|x− y|nγ ≤ ecq|x− y|γ ,

where c is a constant only depending on the Hölder continuity of C.
It remains to control r♣(1) by a Kolmogorov criterion-type argument. We now work in the
unit cube Q1 for convenience. Denote

(

(Qn
k),1≤k≤2nd

)

n∈N
the family of coverings of Q1 by

disjoint dyadic cubes of side length 2−n such that Q1 = Q0
1. For Q1, Q2 ∈ (Qn

k )n∈N,1≤k≤2n

with Q1 ⊂ Q2, by (A.3) and the Minkowski inequality we have

E

[
∣

∣

∣

∣

 

Q1

a−
 

Q2

a

∣

∣

∣

∣

q] 1
q

≤ E

[
∣

∣

∣

∣

 

Q1

 

Q2

|a(x)− a(y)|dxdy
∣

∣

∣

∣

q] 1
q

. ecq(diamQ2)
γ ,

which implies, by replacing the first sup by a sum,

E

[

sup
Qn

·

sup
k : Qn+1

k
⊂Qn

·

∣

∣

∣

∣

∣

 

Qn
·

a−
 

Qn+1
k

a

∣

∣

∣

∣

∣

q] 1
q

. ecq2−n(γ− d
q
)
. (A.4)

For all n, approximate a by its local averages an at scale 2−n, that is,

an :=

2n
∑

k=1

1Qn
k

 

Qn
k

a.

For q such that γ − d
q
> 0, (A.4) implies that an is a Cauchy sequence in Lq(dP, L∞(Q1)).

Since an converges to a almost surely almost everywhere by the Lebesgue differentiation
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theorem, we obtain

E

[(

sup
Q1

a

)q] 1
q

≤
∞
∑

n=1

E

[

sup
Q1

|an − an+1|q
]

1
q

+ E

[

sup
Q1

|a0|q
]

1
q

.

+∞
∑

n=0

ecq2
−n(γ− d

q
)
+ E

[
∣

∣

∣

∣

 

Q1

a

∣

∣

∣

∣

q] 1
q

≤ ecq. (A.5)

For all q > 2d
γ

, this yields a moment bound, which, according to Lemma A.1, entails the

claimed stochastic integrability of r♣(1).
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