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ABSTRACT
Real-world multi-agent systems are often dynamic and continuous,
where the agents co-evolve and undergo changes in their trajecto-
ries and interactions over time. For example, the COVID-19 trans-
mission in the U.S. can be viewed as a multi-agent system, where
states act as agents and daily population movements between them
are interactions. Estimating the counterfactual outcomes in such
systems enables accurate future predictions and effective decision-
making, such as formulating COVID-19 policies. However, existing
methods fail to model the continuous dynamic effects of treatments
on the outcome, especially when multiple treatments (e.g., "stay-
at-home" and "get-vaccine" policies) are applied simultaneously.
To tackle this challenge, we propose Causal Graph Ordinary Dif-
ferential Equations (CAG-ODE), a novel model that captures the
continuous interaction among agents using a Graph Neural Net-
work (GNN) as the ODE function. The key innovation of our model
is to learn time-dependent representations of treatments and incor-
porate them into the ODE function, enabling precise predictions
of potential outcomes. To mitigate confounding bias, we further
propose two domain adversarial learning-based objectives, which
enable our model to learn balanced continuous representations
that are not affected by treatments or interference. Experiments on
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two datasets (i.e., COVID-19 and tumor growth) demonstrate the
superior performance of our proposed model. 1
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1 INTRODUCTION
Many real-world multi-agent systems are dynamic and continuous,
where agents (nodes) interact and exhibit complex behaviors over
time. This results in time-evolving node trajectories and dynamic
interaction edges. An example is the spread of COVID-19 in the
U.S., where states act as agents and daily migration patterns across
states form interaction edges [14, 29]. Estimating the counterfactual
outcomes over time in such systems are crucial for various applica-
tions, such as formulating effective policies and designing medical
treatment plans [2, 3, 40]. This can achieve more accurate predic-
tions than non-causal methods by considering the influence of
1Our code implementation can be found at https://github.com/Jun-Kai-Zhang/CAG-
ODE.git.
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biased confounders. Confounders are variables that have influences
on treatments and outcomes. For example, the health status of the
residents in each state (confounders) can impact their level of adher-
ence to the state’s policies (treatments), which can influence future
confirmed cases/deaths (outcomes). Non-causal methods only learn
the statistical associations between treatments and outcomes from
observational data, which can have non-uniform treatment distri-
butions across confounder values, potentially leading to incorrect
predictions such as taking vaccines can increase the number of
confirmed cases for each state. Furthermore, causal inference for
multi-agent dynamical systems enables effective decision-making
by addressing causal questions such as "What if we remove a policy
at a specific time" or "What if we change the order of different
policies". Therefore, it serves as a promising tool for policymakers.

Traditionally, the standard approach for causal inference over
time is randomized controlled trials (RCTs) [5], which can be very
costly to obtain and can raise some ethical problems [3, 40]. Thus,
researchers have turned to using observational data and employed
methods like linear regression [35], recurrent neural networks
(RNNs) [4, 25], and Transformers [31] to estimate counterfactual
outcomes with time dependencies. However, causal inference for
multi-agent dynamical systems presents unique challenges.

One is that most existing methods [3, 40] assume that nodes are
independent, meaning their trajectories are determined solely by
their own treatments. Some [18] considers the influence of neigh-
boring nodes but only assumes static interactions among them,
which fails to capture situations such as daily population travel
patterns between states in the context of COVID-19.

In casual terms, influences of neighboring nodes can be catego-
rized into two parts: 1.) time-dependent neighborhood confound-
ing, where a node’s treatment and outcome may be confounded by
the covariates of its neighbors. For example, if cases in neighbor-
ing states rise (covariate), a state may implement a vaccine policy
(treatment) that affects future confirmed cases/deaths (outcome). 2.)
time-dependent interference, where the outcome of a node can be
influenced by the treatments of its neighbors. For example, a state
may have reduced future cases/deaths (outcome) if neighboring
states have implemented a vaccine policy (covariates), as higher
vaccination rates within the population flow network give stronger
protection. As the interaction edges evolve along with node trajec-
tories, the challenges lie in predicting the neighbors of each node
(edges) and then addressing the time-dependent neighborhood con-
founding and interference issues.

Another challenge is that current methods lack the ability to
capture the continuous and dynamic effects of multiple treatments
on such systems. For instance, the impact of a "stay-at-home" policy
may be most significant during its initial implementation, and when
a "get-vaccine" policy is subsequently introduced, the combined
effect of these policies can result in a different outcome. Existing
studies often focus on a single treatment [18, 40] or simply append
fixed multi-hot treatment representations when a node receives
them. These fixed treatment representations fail to differentiate the
influences of the same treatment administered at different times.

To tackle these challenges, we propose a novel causal inference
framework: the Causal Graph Ordinary Differential Equations
(CAG-ODE) to estimate the continuous counterfactual outcome of

a multi-agent dynamical system in the presence of multiple treat-
ments and time-varying confounding and interference. Building
upon the recent success of graph ordinary differential equations
(ODE) in capturing the continuous interaction among agents [13,
14, 17, 27], our key innovation is to learn time-dependent repre-
sentations of simultaneous treatments and incorporate them into
the ODE function to accurately account for their casual effects on
the system. As nodes and edges are jointly evolving, we utilize
two coupled treatment-induced ODE functions to account for their
respective dynamics. To mitigate confounding bias, we further de-
sign two adversarial learning losses, which enable our model to
learn balanced continuous trajectory representations unaffected by
treatments or interference. Experiments on both real and simulated
datasets demonstrate the effectiveness of our proposed model. The
primary contributions of this paper can be summarized as follows:

• Wepropose CAG-ODE to estimate continuous counterfactual
outcomes in multi-agent systems with evolving interaction
edges and multiple treatments.

• CAG-ODE features a novel treatment fusing module that
can capture the dynamic effects of treatment over time and
the combined effect of multiple treatments.

• Our method achieves the state-of-art results in counterfac-
tual estimation across varying systems, and can serve as a
promising tool for policymakers.

2 PRELIMINARIES AND RELATEDWORK
2.1 Graph Neural Networks (GNNs)
Graph Neural Networks (GNNs) are a class of neural networks that
operate on graph-structured data by passing local messages [24, 42,
43]. They have been extensively employed in various applications
such as node classification, link prediction, and recommendation
systems [12, 16]. GNNs have shown to be efficient for approximat-
ing pair-wise node interactions and achieved accurate predictions
for multi-agent dynamical systems [22, 38]. The majority of existing
studies propose discrete GNN-based simulators where they take
the node features at time 𝑡 as input to predict the node features at
time 𝑡+1. To further capture the long-term temporal dependency
for predicting future trajectories, some work utilizes recurrent neu-
ral networks such as RNN, LSTM, or self-attention mechanism to
make predictions at time 𝑡 +1 based on the historical trajectory se-
quence [10, 11, 39]. However, they restrict themselves to learning a
one-step state transition function. Therefore, when we successively
apply these one-step simulators to previous predictions in order to
generate the rollout trajectories, error accumulates and impairs the
prediction accuracy, especially for long-range prediction.

2.2 Graph Ordinary Differential Equations for
Continuous Multi-agent Dynamical Systems

The dynamics of a multi-agent system can be captured by a series
of nonlinear first-order ordinary differential equations (ODEs) [13,
15, 28, 36], which describe how the states of 𝑁 dependent variables
co-evolve over continuous time: ¤𝒛𝑡

𝑖
:= 𝑑𝒛𝑡

𝑖

𝑑𝑡
= 𝑔

(
𝒛𝑡1, 𝒛

𝑡
2 · · · 𝒛

𝑡
𝑁

)
. Here

𝒛𝑡
𝑖
∈ R𝑑 denotes the state variable for agent 𝑖 at timestamp 𝑡 and 𝑔

denotes the ODE function that drives the system to move forward.
Given the initial states 𝒛01, · · · 𝒛

0
𝑁
for all agents and the ODE function
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𝑔, a numerical ODE solver such as Runge-Kutta [32] can be used to
evaluate 𝒛𝑇

𝑖
at any desired time 𝑇 using Eqn (1):

𝒛𝑇𝑖 = 𝒛0𝑖 +
∫ 𝑇

𝑡=0
𝑔

(
𝒛𝑡1, 𝒛

𝑡
2 · · · 𝒛

𝑡
𝑁

)
d𝑡 . (1)

To model the interactions among agents, recent studies [13, 14, 34,
44] propose using a GNN as the ODE function 𝑔 which is learned
from observational data. Such GraphODE framework follows an
encoder-processor-decoder architecture. The encoder computes
latent initial states for all agents based on historical observations.
The GNN-based ODE function then predicts the latent trajectories
starting from the learned initial states. Finally, a decoder extracts
the predicted dynamic features. To regularize the generated trajecto-
ries, GraphODE frameworks often adopt a variational autoencoder
(VAE) structure [21], where the encoder samples initial states from
approximated posterior distributions. GraphODEs are promising in
making long-range predictions and can handle irregularly-sampled
observations effectively [13, 44].

2.3 Causal Inference Over Time
Time-dependent causal inference methods mainly differ in how
they deal with confounding. They differ from traditional statistical
time series analysis [1, 23, 45] which we do not discuss in this pa-
per. Traditionally, many statistical tools that are applied, such as
marginal structural models (MSMs) [35] utilize the inverse prob-
ability of treatment weighting (IPTW). Recently, representation
learning-based balancing approaches are proposed, which learn
representations that are not predictable of the treatments to ensure
unbiased outcome prediction [4, 31]. However, one major limitation
is that they are discrete methods, which can offer poor performance
on continuous systems such as the spread of COVID-19. There are a
series of works [3, 7, 9, 40] that estimate the continuous counterfac-
tual outcomes through neural ODEs or neural controlled differential
equations (CDEs). Despite their success, they assume that nodes
are independent of each other, regardless of their interactions. One
recent work [18] proposed to parameterize the ODE function with
a GNN for multi-agent settings. However, this model cannot handle
evolving graph structures and the effect of multiple treatments.

3 PROBLEM DEFINITION
We consider a dynamical system of 𝑁 agents as an evolving inter-
action graph G𝑡 = {V, E𝑡 }, where nodes V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } are
agents and E𝑡 are the weighted edges among them, denoting agents’
dynamic interaction that changes over time. Each node is associated
with time-varying causal characteristics, which we introduce in the
following along with the casual inference framework.

We follow the longitudinal causal inference setting for predict-
ing future potential outcomes as in [37]. We denote the observa-
tional data at timestamp 𝑡 as (X𝑡 ,W𝑡 ,A𝑡 ,Y𝑡 ), where X𝑡 ∈ R𝑁×𝑑1

represents the time-varying covariates (e.g., the health status of
residents) of 𝑁 agents.W𝑡 ∈ R𝑁×𝑁 represents the weighted adja-
cencymatrix, whose element𝑤𝑖→𝑗 ∈ R is the weight of the directed
edge that points from node 𝑖 to node 𝑗 and may be asymmetric.
A𝑡 ∈ {0, 1}𝑁×𝐾 are time-dependent treatments, where A𝑡

𝑘 𝑗
= 1

denotes the 𝑘𝑡ℎ treatment assigned to node 𝑖 at timestamp 𝑡 , and 𝐾

is the number of heterogeneous treatments. Y𝑡 ∈ R𝑁×𝑑2 is the time-
dependent outcome, such as the number of confirmed cases in each
state, which can be part ofX𝑡 . The historical observations up to time
𝑡 is represented as H𝑡 =

{
X
𝑡
,W

𝑡
,A
𝑡
,Y
𝑡
}
, where X

𝑡
,W

𝑡
,A
𝑡
,Y
𝑡

contain all X𝑡
−
,W𝑡− ,A𝑡

−
,Y𝑡

− (𝑡− ≤ 𝑡). We aim to predict the unbi-
ased potential outcomes E

(
Y𝑡

+ (
A𝑡

+
= 𝑎

)
|H𝑡

)
under any treatment

assignment 𝑎2. Here, 𝑎 is the dynamic treatment trajectory (e.g.
sequences of state policies). As only one of the potential outcome
trajectories is observed for each treatment assignment, we refer to
the unobserved potential outcomes as counterfactuals [4, 40].

To make potential outcomes identifiable from observational data,
we follow three standard assumptions [4, 18, 40] below:

Assumption 1: Consistency. The potential outcome is equal
to the observed factual outcome if A𝑡 = 𝑎𝑡 : Y𝑡

+ (A𝑡 = 𝑎𝑡 ) = Y𝑡
+
.

Assumption 2: Overlap. At any time point 𝑡+, there is some
positive probability of treatment assignment regardless of the his-
torical observation: 0 < 𝑃 (A𝑡+ = 𝑎 | H𝑡 ) < 1, ∀H𝑡 , 𝑡 < 𝑡+.

The last assumption defines unconfoundedness (strong ignora-
bility) in dynamical systems. We first define the interference effects
caused by neighbors’ treatments of node 𝑖 as G𝑡

𝑖
=

∑
𝑗∈N𝑖

1
|𝑁𝑖 |A

𝑡
𝑗
∈

R𝐾 , which is the proportion of treated nodes in node 𝑖’s neighbors
for each treatment type. We refer to G𝑡

𝑖
as interference summary,

which assumes that a node is only influenced by treatments of its
immediate neighbors as in previous studies [18, 19, 30].

Assumption 3: Strong Ignorability for Multi-Agent Dy-
namical Systems. Given the historical observations, the potential
outcome trajectory is independent of the treatments and interfer-
ence summary: Y𝑡

+ (A𝑡 = 𝑎) ⊥ A𝑡
+
,G𝑡

+ | H𝑡 , ∀𝑎, 𝑡 .
It ensures that it is sufficient to only condition on the historical

observations and graph sequences up to 𝑡 to block all backdoor
paths so as to estimate the potential outcome in the future. With
these three assumptions, the potential outcome trajectory can be
identified as:

E
(
Y𝑡

+
(A𝑡 = 𝑎) | H𝑡

)
= E

(
Y𝑡

+
| A𝑡

+
,G𝑡

+
,H𝑡

)
.

This enables us to estimate the potential outcomes by training
a machine learning model using observational data, and to use
the same model to predict counterfactual outcomes given new
treatment trajectories.

4 THE PROPOSED MODEL: CAG-ODE
In this section, we present Causal GraphODE (CAG-ODE) to predict
continuous counterfactual outcomes for multi-agent dynamical sys-
tems with evolving interaction edges and dynamic multi-treatment
effects. Following the framework of GraphODEs [13, 14, 18, 34, 44],
CAG-ODE adopts the encoder-ODE generative model-decoder ar-
chitecture described in Sec. 2.2 to capture the continuous interaction
among agents. As nodes and edges are jointly evolving, we utilize
two coupled ODE functions [14] for the evolution of nodes and
edges respectively. Contrary to GraphODEs, CAG-ODE can per-
form causal reasoning by injecting treatment effects into the ODE
functions, which we call treatment-induced coupled graph ODE. The
multi-treatment effects are captured by a novel treatment fusing
module that assigns temporal weights to the treatments using an
2The potential outcome can also be formalized using do operation [33]
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Treatments
Treatment


Fusing
1
2

K

…
…

Zt = Z0 + ∫
t

τ=0
GNN(Zτ, Aτ, Wτ)dτ

Wτ = fedge(Zτ)

Treatment Induced Coupled GraphODE

PredictionObservation

Treatments

Latent Representation

Encoder Decoder

Agents

Factual Outcome

Counterfactual Outcome L = L⟨Y⟩ + λ ⋅ L⟨W⟩ + α ⋅ L⟨A⟩ + β ⋅ L⟨G⟩ + γ ⋅ LKLTraining Loss:

Figure 1: Overall Framework of CAG-ODE. The encoder first computes the latent initial states. Then the treatment-induced
coupled ODE functions predict the continuous trajectories over time. Treatment representations learned through the fusing
module are incorporated into the ODE functions to enable counterfactual prediction. Finally, the decoder outputs the predicted
dynamics. Treatment and interference balancing losses are designed to ensure unbiased counterfactual predictions.

attention mechanism. As time-dependent confounders can result
in a biased distribution of treatment assignments and imbalanced
interferences due to the evolving graph structure, CAG-ODE uti-
lizes two adversarial learning losses to ensure unbiased estimations
of counterfactual outcomes. The overall framework is depicted in
Figure 1. We now discuss each module in detail.

4.1 Spatial-Temporal Initial State Encoder
The encoder of CAG-ODE infers the posterior distributions from
the historical observations and then samples the latent initial states
from them. It follows the architecture described in [14]. As the
evolution of different nodes is mutually influenced, we calculate
the initial states for all nodes simultaneously considering their
interactions over time. The initial states of edges are derived from
the initial states of nodes.

Dynamic Node Representation Learning. We construct a
graph to represent the spatial-temporal structure of multi-agent
dynamical systems, with each node corresponding to an agent’s
observation at a particular timestamp. There are two types of edges:
spatial edges at the same timestamp and temporal edges across
different timestamps. The spatial edges are formed according to the
adjacency matrices, denoted as𝑤𝑖 (𝑡 )→𝑗 (𝑡 ) . For the temporal edges,
we only consider edges from an agent’s own previous observations
to later observations, denoted as𝑤𝑖 (𝑡 )→𝑖 (𝑡 ′ ) , where 𝑡 ′ = 𝑡 + 1.

The latent representations of observations are learned from this
spatial-temporal graph through an attention mechanism approach.

The propagation among 𝐿 GNN layers is depicted in Equation(2).

𝒉𝑙
𝑖 (𝑡 ′ ) = 𝒉𝑙

𝑖 (𝑡 ′ ) + 𝜎
©­«

∑︁
𝑗 (𝑡 ) ∈N𝑖 (𝑡 ′ )

𝑒𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) ×𝑾𝑣𝒉̂

𝑙−1
𝑗 (𝑡 )

ª®¬ ,
𝑒𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) = 𝑤 𝑗 (𝑡 )→𝑖 (𝑡 ′ ) × 𝛼𝑙𝑗 (𝑡 )→𝑖 (𝑡 ′ ) ,

𝛼𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) =

(
𝑾𝑘 𝒉̂

𝑙−1
𝑗 (𝑡 )

)𝑇 (
𝑾𝑞𝒉

𝑙−1
𝑖 (𝑡 ′ )

)
· 1
√
𝑑
, (2)

𝒉̂𝑙−1
𝑗 (𝑡 ) = 𝒉𝑙−1

𝑗 (𝑡 ) + TE
(
𝑡 − 𝑡 ′

)
,

TE(Δ𝑡)2𝑖 = sin
(

Δ𝑡

100002𝑖/𝑑

)
,TE(Δ𝑡)2𝑖+1 = cos

(
Δ𝑡

100002𝑖/𝑑

)
.

Here, 𝒉𝑙
𝑖 (𝑡 ) represents the agent 𝑖 at time 𝑡 from layer 𝑙 . The at-

tention score 𝑒𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) is defined as the product of edge weights

𝑤 𝑗 (𝑡 )→𝑖 (𝑡 ′ ) and affinity score 𝛼𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) , which is computed using

the representations of the sender and receiver nodes. Additionally,
we incorporate temporal embedding, denoted as TE, into the sender
node’s representation to establish temporal distinction. Then, the
final representation is obtained from the 𝐿 layer as 𝒉𝑖 (𝑡 ) = 𝒉𝐿

𝑖 (𝑡 ) .
Sequence Representation Learning. Then, we employ self-

attention to compute the sequence representation of observed tem-
poral information for each node, where 𝒉̂𝑖 (𝑡 ) = 𝒉𝑖 (𝑡 ) + TE(𝑡).

𝒖𝑖 =
1
𝑁

𝑇∑︁
𝑡=1

(𝒂𝑇𝑖 𝒉̂𝑖 (𝑡 ) 𝒉̂𝑖 (𝑡 ) ), 𝒂𝑖 = tanh

((
1
𝑁

𝑇∑︁
𝑡=1

𝒉̂𝑖 (𝑡 )

)
𝑾𝑎

)
. (3)
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Finally, the mean and variance of the posterior distribution is
obtained through a neural network 𝑓ddist from the sequence repre-
sentation 𝒖𝑖 .

𝒛0𝑖 ∼ 𝑞𝜙 (𝒛
0
𝑖 |H

0) = N(𝝁𝑧0
𝑖
, 𝜎2

𝒛0
𝑖

), 𝝁𝒛0
𝑖
, 𝜎𝒛0

𝑖
= 𝑓dist (𝒖𝑖 ) .

Next, the latent initial state for an edge is given by 𝒛0
𝑖→𝑗

=

𝑓edge ( [𝒛0𝑖 , 𝒛
0
𝑗
]), where 𝑓edge is parameterized by a neural network

and [, ] is concatenation operation.

4.2 Treatment Fusing
To conduct causal inference with CAG-ODE, we propose to inject
the dynamic effects of multiple treatments into the ODE function.
Treatments can have time-varying effects in multi-agent dynamical
systems and they can occur simultaneously, resulting in a com-
bined effect. To model such complex behaviors, we propose a novel
treatment fusing module that assigns temporal weights to mul-
tiple treatments through an attention mechanism. The temporal
weight of treatment at timestamp 𝑡 is dependent on both the start
time of each treatment and the occurrence of other treatments as
shown in Eqn (4). Let 𝒆𝑘 ∈ R𝐾 be the one-hot representation of
treatment 𝑘 . We first add it with the temporal encoding TE[14, 41]
to account for the time elapsed since the start of the treatment 𝑡 ′.
Here A𝑡

𝑖𝑘
∈ {0, 1} is an indicator showing whether treatment 𝑘

would be applied to agent 𝑖 at timestamp 𝑡 . Therefore the computed
treatment representation 𝒐̂𝑡

𝑖𝑘
becomes zero when A𝑡

𝑖𝑘
= 0, to ensure

computational efficiency. A contraction matrix W𝑞 is then used to
transform this sparse representation into a more compact form.

𝒐̂𝑡
𝑖𝑘

= A𝑡
𝑖𝑘
𝒆𝑘 + TE

(
𝑡 − 𝑡 ′

)
1[A𝑡

𝑖𝑘
= 1], 𝒐𝑡

𝑖𝑘
= W𝑞 𝒐̂

𝑡
𝑖𝑘
,

TE(Δ𝑡)2𝑖 = sin
(
Δ𝑡/𝑀2𝑖/𝑑

)
,

TE(Δ𝑡)2𝑖+1 = cos
(
Δ𝑡/𝑀2𝑖/𝑑

)
, 𝑀 = 10000.

(4)

To account for the combined effect of simultaneous treatments,
we compute the combined treatment representation as a weighted
sum of all in-effect treatments at timestamp 𝑡 (Eqn 5). We first
compute an attention vector𝑚𝑡

𝑖
as the tanh-transformed average

of all the treatment representations, 𝒐̂𝑡
𝑖 𝑗
. Each treatment’s weight is

derived from the dot product of its representation and𝑚𝑡
𝑖
, thereby

integrating each treatment’s influence into 𝒐𝑡
𝑖
.

𝒐𝑡𝑖 =
1
𝐾

∑︁
𝑘

(
𝒎𝑡𝑖

⊤
𝒐̂𝑡
𝑖𝑘
𝒐̂𝑡
𝑖𝑘

)
,𝒎𝑡𝑖 = tanh

((
1
𝐾

∑︁
𝑘

𝒐𝑡
𝑖𝑘

)
W𝑚

)
. (5)

The fusing operation has a time complexity of 𝑂 (𝐾) if having K
treatments and therefore is able to scale up to larger systems.

4.3 Treatment-Induced GraphODE
We use two coupled ODEs to predict the latent trajectories for nodes
and edges respectively, accounting for their co-evolution [14]. We
incorporate the learned treatment representations into the ODEs to
enable counterfactual predictions in the future. Specifically, the co-
evolution of nodes and edges is depicted in Eqn 6. The co-evolution
depends on all historical information implicitly as Z𝑡 embeds the
trajectories up to time 𝑡 . W̃𝑡

𝐴
= D−1W𝑡

𝐴
is the normalized ad-

jacency matrix and D is the diagonal degree matrix defined as

D𝑖𝑖 =
∑
𝑗 W𝑡

𝐴𝑖 𝑗
. 𝑓𝑒 , 𝑓self, 𝑓edge2value are all implemented as Multi-

Layer Perceptrons (MLPs). To incorporate the treatment effect into
the function, we use a linear transformation W to merge the latent
states of nodes Z𝑡 and the treatment representation 𝑶𝑡 . In this way,
the latent trajectories of agents are affected not only by their own
past trajectories and treatments but also by the trajectories and
treatments of their interacting agents.

dZ𝑡

d𝑡
= 𝜎

(
W̃𝑡
𝐴W[Z𝑡 ,O𝑡 ]

)
− Z𝑡 + Z0,

d𝒛𝑡
𝑖→𝑗

d𝑡
= 𝑓𝑒

( [
𝒛𝑡𝑖 , 𝒛

𝑡
𝑗

] )
+ 𝑓self

(
𝒛𝑡𝑖→𝑗

)
,

W𝑡
𝐴𝑖 𝑗

= 𝑓edge2value
(
𝒛𝑡𝑖→𝑗

)
, W̃𝑡

𝐴 = D−1W𝑡
𝐴 .

(6)

4.4 Outcome Prediction
Given the treatment representations, the ODE functions, the latent
initial states for nodes and edges, and the latent trajectories for all
agents can be determined using any black-box ODE solver. Finally,
we compute the predicted trajectories for each agent and their
interactions based on the decoding likelihoods in Eqn (7), where
𝑓decN and 𝑓decE are node and edge decoding functions respectively.
They output the means of the normal distributions 𝑝 (𝒚𝑡

𝑖
|𝒛𝑡
𝑖
) and

𝑝 (𝒘𝑡
𝑖→𝑗

|𝒛𝑡
𝑖
), which we treat as the predicted values from our model.

𝒚𝑡𝑖 ∼ 𝑝 (𝒚
𝑡
𝑖 |𝒛

𝑡
𝑖 ) = 𝑓decN (𝒛

𝑡
𝑖 ), 𝒘

𝑡
𝑖→𝑗 ∼ 𝑝 (𝒘

𝑡
𝑖→𝑗 |𝒛

𝑡
𝑖 ) = 𝑓decE (𝒛

𝑡
𝑖 ) . (7)

We implemented all of our decoders using two-layer fully con-
nected neural networks. The node feature decoder’s input dimen-
sion matches the latent state dimension 𝑑 , while the output dimen-
sion is one, reflecting our outcome of interest. The edge decoder’s
input dimension is 2𝑑 and the output dimension is 1. The treatment
decoder also has an input dimension equal to the latent state’s di-
mension 𝑑 . However, its output dimension matches the number of
distinct treatments, predicting the probability of each treatment
being chosen. Lastly, the interference decoder’s input dimension
is the sum of the latent state dimension and the treatment embed-
ding dimension, i.e. 2𝑑 . Its output dimension mirrors the number
of treatment options. For all decoders, the latent hidden dimension
is half of their respective input dimensions.

We calculate the reconstruction loss of model predictions for
nodes 𝑌 𝑡

𝑖
and edges𝑤𝑡

𝑖→𝑗
as:

𝐿⟨𝑌 ⟩ =
1
𝑁

1
𝑇

∑︁
𝑡

∥Y𝑡 − Ŷ𝑡 ∥22, 𝐿
⟨𝑊 ⟩ =

1
𝑁 2

1
𝑇

∑︁
𝑡

∥W𝑡
𝐴 − Ŵ𝑡

𝐴∥
2
𝐹 .

4.5 Domain Adversarial Learning
In observational data, treatment assignments are not randomized
but are biased based on time-varying confounder values. This can
lead to increased variance and bias in counterfactual estimation [40].
In multi-agent dynamical systems, unbalanced interference from
neighboring agents further exacerbates this effect and alters the
state of each agent. To obtain an unbiased counterfactual predic-
tion, we need to ensure that the distribution of latent representa-
tion trajectories is invariant to treatments and interference [18].
This guarantees that the treatments cannot be inferred from the
latent trajectory representations and that the interference is not
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predictable when the treatment is combined with the latent repre-
sentation.

To achieve this, we incorporate two adversarial learning losses
into the optimization objective function and use gradient reversal
layers for the implementation.

Treatment Balancing The treatment combinations Â𝑡 can be
predicted using a decoder from the latent state 𝒛𝑡

𝑖
. Formally, Â𝑡

𝑖 · =
Φ𝐴 (𝑟 (𝒛𝑡𝑖 )), where Φ𝐴 is a neural network attempting to recover
treatments from the latent state 𝒛𝑡

𝑖
, and the gradient reversal layer,

denoted by 𝑟 , reverses the sign of gradient during back-propagation.
The treatment balancing can be expressed as the maximization of
the following loss term through the construction of min-max games:

𝐿⟨𝐴⟩ = − 1
𝑁

1
𝑇

1
𝐾

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

∑︁
𝑗∈{0,1}

1[(A𝑡
𝑖𝑘

= 𝑗)] log(Φ𝑗,𝑘
𝐴

(𝑟 (𝒛𝑡𝑖 ))),

where Φ𝑗,𝑘
𝐴

represents the logits of 𝑑𝐴 (·) for predicting 𝑗 on 𝑘-th
treatment. Note that we achieve treatment balancing by letting
the latent representations 𝒛𝑡

𝑖
not be predictable for each individual

treatment. This is because the representation of multiple treatments
is essentially a linear combination of individual treatments. If each
individual treatment is not predictable based on 𝒛𝑡

𝑖
, then it is also

impossible to use such representation to predict when multiple
treatments occur together.

Interference Balancing Similar to treatment balancing, the in-
terference prediction can be represented as Ĝ𝑡

𝑖
= Φ𝐺 (𝑟 ( [𝑍 𝑡𝑖 , 𝐴

𝑡
𝑖
])),

where 𝑑𝐺 denotes a neural network designed to estimate inter-
ference. As interference is a continuous variable, we employ con-
tinuous domain adversarial training to accomplish interference
balancing. By incorporating a gradient reversal layer, interference
balancing can be achieved by minimizing the following loss term:

𝐿⟨𝐺 ⟩ =
1
𝑁

1
𝑇

1
𝐾

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

∥Φ𝐺 (𝑟 ( [𝒛𝑡𝑖 , 𝒐
𝑡
𝑖 ])) − G𝑡𝑖 ∥

2
2 .

Overall Loss The overall training objective is defined as the
weighted summation of node reconstruction loss, edge reconstruc-
tion loss, treatment balancing loss, and interference balancing loss.
Since we follow the VAE framework, we also incorporate a KL
divergence loss to add regularization towards the sampled initial
states, which is defined as: 𝐿𝐾𝐿 = KL

[∏𝑁
𝑖=1 𝑞𝜙

(
𝒛0
𝑖
| H0

)
∥𝑝

(
Z0

) ]
.

Therefore, the overall training loss is formalized as:

𝐿 = 𝐿⟨𝑌 ⟩ + 𝜆𝐿⟨𝑊 ⟩ + 𝛼𝐿⟨𝐴⟩ + 𝛽𝐿⟨𝐺 ⟩ + 𝛾𝐿𝐾𝐿 .

5 EXPERIMENTS
5.1 Experiment Setup
5.1.1 Datasets and Experiment Configuration. We evaluate the
performance of our model using two datasets: 1.) The COVID-
19 dataset, which captures the daily COVID-19 trends of U.S.
states from April.12.2020 to Dec.31.2020. The daily population flows
among states are represented as dynamic edges. Treatments are
state-level COVID-19 policies. We ask the model to predict the
daily confirmed cases in each state. 2.) The Tumor Growth simu-
lation dataset [8], which describes the tumor growth dynamics
in different regions of patients, where they may receive differing

treatments. We aim to predict the tumor volumes in each region.
Additional details about the datasets can be found in Appendix A.

We predict trajectory rollouts across varying lengths and use
Root Mean Square Error (RMSE) as the evaluation metric. Specifi-
cally, we train our model in a sequence-to-sequence setting where
we split the trajectory of each training sample into two parts [𝑡1, 𝑡𝐾 ]
and [𝑡𝐾+1, 𝑡𝑇 ]. We condition the model on the first part of observa-
tions and predict the second part. To fully utilize the data points
within each trajectory, we generate training and validation sam-
ples by splitting each trajectory into several chunks using a sliding
window. Details can be found in Appendix B.

5.1.2 Baselines and Model Variants. We conduct a comparative
analysis of our model with three baseline models: one non-causal
continuous multi-agent baseline CG-ODE [14], and two causal mod-
els: TE-CDE [40] and COVID-POLICY [29]. TE-CDE [40] is a causal
model that employs continuous-time differential equations to cap-
ture temporal event dependencies. COVID-Policy [29] is another
causal model designed specifically for assessing the impact of pub-
lic health policies on COVID-19 outcomes. To further analyze the
performance of our model, we also compare variants of our model.
Each variant excludes a specific component to assess its individual
impact on performance. The variants include models without treat-
ment balancing, interference balancing, both components or the
attention module.

5.1.3 Training Details. We employ the AdamW optimizer, as pro-
posed in the study by Loshchilov et al. [26], to train our model. The
initial learning rate is set at 𝜂 = 0.005, and the batch size is set as 8
to accommodate memory constraints.

The Graph Neural Network (GNN) used for the encoder has a
singular layer with a hidden dimension of 64. Similarly, the GNN
that parameterizes the ODE function is also comprised of a sin-
gle layer. The dimension of the latent state is set at 20, and the
dimension for the embedded treatments is 5. We assign a weight
of 10 for both the treatment balancing term 𝛼 and the interference
balancing term 𝛽 . Additionally, the weight designated for the edge
reconstruction error 𝜆 is set at 0.5.

5.2 Performance Evaluation
We evaluate the performance of our model, CAG-ODE, as well as
the baselines using Root Mean Square Error (RMSE) across different
prediction lengths. The results are shown in Table 1 and Table 2, re-
porting the factual and counterfactual outcomes respectively. As the
COVID-19 is a real-world dataset that does not have counterfactual
outcomes, we evaluate only the Tumor Growth dataset in Table 2.
To ensure consistent comparison, we align the prediction periods
of all models with weekly intervals on the COVID-19 dataset, sim-
ilar to the statistical baselines derived from their official weekly
submissions to the CDC, as done in [14]. To assess the accuracy
of short-term and long-term predictions, the prediction lengths
for the COVID-19 and Tumor Growth datasets are set to 7, 14, 21
days and 14, 21, and 28 days, respectively. We include longer-range
predictions on the Tumor-Growth dataset in Appendix C

Factual Outcome Predictions. Table 1 shows that our model,
CAG-ODE, consistently outperforms the baseline models across
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Table 1: Root Mean Square Error (RMSE) for factual outcome evaluation across prediction lengths (the duration for which
predictions are made). For the COVID-19 dataset, we report the mean and standard deviation accuracy with multiple runs.

Dataset Covid-19 Tumor Growth
Prediction Length 7-days 14-days 21-days 14-days 21-days 28-days
CG-ODE 4063 ± 68 4454 ± 100 4659 ± 63 18.37 21.00 24.58
TE-CDE 7999 ± 212 7470 ± 289 6832 ± 243 55.45 55.38 71.23
COVID-POLICY 4008 ± 44 4128 ± 60 3963 ± 59 20.07 25.93 29.29
CAG-ODE 3710 ± 29 3925 ± 44 3933 ± 40 10.91 10.82 14.84
w/o 𝐿⟨𝐺 ⟩ 3800 ± 60 3987 ± 40 3990 ± 49 15.57 16.28 16.62
w/o 𝐿⟨𝐴⟩ 3840 ± 35 4100 ± 53 4069 ± 49 17.90 14.69 20.19
w/o 𝐿⟨𝐺 ⟩ ,𝐿⟨𝐴⟩ 3793 ± 23 4089 ± 79 3953 ± 38 17.28 16.72 24.36
w/o attention 3867 ± 61 3958 ± 31 4256 ± 55 18.91 17.55 34.45

all prediction lengths for both datasets. This underscores the ef-
fectiveness of our model in capturing the dynamic interactions
among objects, especially over longer time periods. Comparing
our model with TE-CDE, we observe a performance gap that high-
lights the benefits of incorporating interference balancing and spa-
tial correlation in the model. Additionally, our model outperforms
the COVID-POLICY model, indicating its broader generalizability
across different types of data due to modeling dynamic interactions.
Furthermore, our model exhibits proficiency in both short-term
and long-term predictions. For instance, it achieves promising re-
sults for 21-day predictions on the COVID-19 dataset and 28-day
predictions on the Tumor Growth simulation dataset. The analysis
of our model variants further emphasizes the importance of each
component in the model. Particularly, the model variant excluding
the attention module has the weakest performance, indicating the
significance of our time-embedding attention module in effectively
representing the treatment.

Counterfactual Outcome Predictions. In the context of a
multi-agent dynamical system, the total number of possible treat-
ments for all nodes is 𝑶 (𝐾 ×2𝑁 ), making it infeasible to enumerate
all treatment combinations. To assess the robustness of each model
to counterfactual treatment scenarios, we perform an experiment
where we randomly flip a certain percentage of observed treatments.
In Table 2, we evaluate the performance when 25%, 50%, and 75% of
all observed treatments in each experiment are randomly flipped.
The purpose of this experiment is to examine the robustness of the
models to counterfactual treatment scenarios, and since CG-ODE
does not incorporate causal modeling, it is excluded from this ex-
periment. CAG-ODE outperforms others by a wide margin across
all settings. These findings collectively demonstrate the superiority
of our proposed model, CAG-ODE, in capturing the dynamics of
multi-agent systems and making accurate predictions across differ-
ent time horizons. We additionally include the visualization of the
learned balanced latent representations in Section 5.4.

5.3 Case Study about COVID-19 Policies
We conduct a case study to show the impact of different treatments,
e.g., COVID-19 related policies, on the COVID-19 dataset as shown
in Figure 2. Specifically, we consider four different policy inter-
vention methods and report the resulting average changes in the
number of daily confirmed cases across all states in the U.S.

First, we focus on the removal of policies in three states that
have the highest number of announced policies during the time

frame of the COVID-19 dataset. By masking out these policies,
we observe an increase in the average number of confirmed cases
across states in the future. This increase is attributed to both in-state
disease spread and population flow to other states. The removal
of policies exacerbates the spread of COVID-19 over an extended
period, as shown in Figure 2(a), indicating that our model captures
the dynamic interference resulting from agents’ interactions.

We then explore the effect of changing the starting time of a
specific policy for all states. We changed the "No Public Gatherings"
policy starting time for each state to be 15 days earlier, 15 and 30
days later respectively. As shown in Figure 2(b) when announcing
the policy earlier, we observe a decrease in the average number of
daily confirmed cases in the future, while announcing the policy
later leads to an increase. This intuitive outcome highlights the
capability of our model to capture the causal relationships between
policy interventions and COVID-19 spread.

Next, we analyze the impact of the top three most frequent
policies across all states by removing them separately. As shown in
Figure 2(c), the "Public Gatherings" policy has the largest effect in
reducing the spread of COVID-19, even though the most frequent
policy is "Emergency Funds". This demonstrates the potential of our
model in assisting policymakers to identify the relative importance
of each policy over time.

Finally, we study the effects of different orders in policy an-
nouncements, specifically focusing on the simultaneous or closely
timed announcements of "No Public Gatherings" and "No Traveler
from Outside States" policies. We change the announcement dates
for the two policies in each state to mimic three scenarios shown
in Figure 2 (d). We found that initializing the announcement of "No
Public Gatherings" early generally contributes to a reduction in
the spread of COVID-19 compared with "No Traveler from Out-
side States". We further analyzed the daily population flow during
the given time frame and found that the majority of population
flows are within the same states, indicating that residents of each
state pose a high risk of virus transmission compared to people
from other states. These insights suggest prioritizing the earlier
announcement of the "No Public Gatherings" policy over the "No
Traveler from Outside States" policy can better mitigate the spread
of COVID-19.

These case study results demonstrate the effectiveness of our
model CAG-ODE in capturing the complex interactions between
treatments, disease spread, and population flow, providing valuable
insights for policymakers in making informed decisions.
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Table 2: Root Mean Square Error (RMSE) for counterfactual Outcome evaluation on the Tumor Growth dataset with treatment
flipping ratio. Treatment F.R. (Treatment Flipping Ratio) represents the ratio of treatments that are flipped.

Prediction Length 14-days 21-days 28-days
Treatment F.R. 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

TE-CDE 95.61 103.2 100.8 98.65 103.0 97.93 118.3 124.0 121.4
COVID-POLICY 21.32 22.37 23.31 26.63 26.83 27.00 32.01 32.16 32.21
CAG-ODE 17.23 16.98 16.96 18.64 18.84 18.85 19.91 19.88 19.87
w/o 𝐿⟨𝐺 ⟩ 20.62 20.53 20.51 19.70 19.60 19.55 21.10 21.41 21.38
w/o 𝐿⟨𝐴⟩ 22.17 22.35 22.35 20.19 20.10 20.09 20.83 21.14 21.15
w/o 𝐿⟨𝐺 ⟩ , 𝐿⟨𝐴⟩ 19.78 19.75 19.71 19.34 19.29 19.27 21.31 21.40 21.34
w/o attention 19.09 18.37 18.13 22.16 21.78 21.65 27.70 27.44 27.38

(a) Remove partial states’ policy. (b) Change policy start date. (c) Remove policy across states. (d) Change relative time of policies.

Figure 2: Case Study for changing different policies on the COVID-19 dataset.

（a) ”State-of-Emergency”
w/o. Treatment Balancing

（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

(a) "State-of-Emergency" w/o.
Treatment Balancing.（a) ”State-of-Emergency”

w/o. Treatment Balancing
（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

(b) "State-of-Emergency" with
Treatment Balancing.（a) ”State-of-Emergency”

w/o. Treatment Balancing
（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

(c) "No-Public-Gathering" w/o.
Treatment Balancing.（a) ”State-of-Emergency”

w/o. Treatment Balancing
（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

(d) "No-Public-Gathering" with
Treatment Balancing.

Figure 3: Treatment Balancing Visualization on the COVID-19 Dataset.

5.4 Visualization of Learned Balanced
Representations

To further understand the effect of treatment balancing loss in CAG-
ODE, we visualize the 2-D T-SNE projections of the latent repre-
sentations of nodes on the COVID-19 dataset, i.e. 𝒛𝑡

𝑖
as shown

in Figure 3. Specifically, we visualize the latent node representa-
tions under two different treatments: "State-of-Emergency" and "No-
Public-Gathering". Under each treatment (policy), we use different
colors to denote whether a node receives such treatment (treated)
or not (control). As shown in Figure 3(a) and (c), the distributions
of the learned representations are more distinguishable between
the two groups, compared with Figure 3(b) and (d) which have
the treatment balancing loss. This indicates that CAG-ODE indeed
learns balanced latent representations by employing the treatment
balancing loss.

6 CONCLUSION
In this paper, we introduce the causal graph ODE (CAG-ODE) as a
model for estimating continuous counterfactual outcomes in multi-
agent-dynamical systems with evolving interaction edges and dy-
namic multi-treatment effects. Our model builds upon existing

GraphODEs and incorporates causal reasoning for multi-agent dy-
namical systems. We propose a novel treatment fusing module that
captures the dynamic effects of multiple treatments occurring simul-
taneously. Through extensive experiments on both the real-world
and the simulated datasets, we demonstrate the superior perfor-
mance of our model across various prediction settings, validating
its effectiveness. Furthermore, we leverage our model to analyze
policy effects analysis on the COVID-19 dataset, providing valuable
insights for policymakers.
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A APPENDIX
A DATASET DESCRIPTION
A.1 COVID-19 Dataset
Our experiments used the dataset provided by the Johns Hopkins
Coronavirus Resource Center (JHU) 3 from April 12th to December
31st, 2020. That is, we consider 264 time points, with each point
representing one day. The dataset contains a comprehensive range
of information, but for our experiments, we focus on up to 7 specific
features. These features include the daily counts of confirmed cases,
deaths, recovered cases, active cases, incident rate (cases per 100,000
people), mortality rate (calculated as the number of recorded deaths
multiplied by 100 divided by the number of cases), and testing rate
(total test results per 100,000 people). It’s worth noting that while
the JHU dataset provides cumulative data for confirmed, deaths,
recovered, and active cases, our experiments andmodels specifically
consider the daily increases in these features (e.g., the number of
new cases reported each day).

To capture dynamic interaction edges, we use a temporal mobil-
ity flow network among a selection of 47 states based on COVID-19
USFlows [20].

The treatments are represented as statewide policies that aim to
combat the spread of COVID-19. We identify 58 different statewide
policies enacted throughout 2020, from the data given by the De-
partment of Health & Human Services 4. Each state enacted around
20 of these policies during the time period of April 2020 to Decem-
ber 2020, where the dataset provides the start and end dates of each
enacted policy. In our model, treatments are encoded such that for
each time point, the value is either 1 or 0 depending on whether
the particular policy is enacted (for a given state) at that time or
not, respectively.

Overall, the model receives input data for a total of 264 time
points, covering each of the 47 states, and includes 7 features. Along-
side this, the model is also provided with treatments and a mobility
graph. Prior to being used as input for our models, the data is nor-
malized. However, when calculating the test loss for comparison
with other baseline models, the output is unnormalized. Our goal
is to predict either the number of confirmed cases or the number
of deaths for a future period of 7, 14, or 21 days.

A.2 Tumor Growth Dataset
We extend the state-of-the-art pharmacokinetic-pharmacodynamic
(PK-PD) model of tumor growth proposed by [8] to simulate a more
complex scenario where multiple tumor regions within a single
patient interact with each other. The original model characterizes
patients suffering from non-small cell lung cancer and models the
evolution of their tumor under the combined effects of chemother-
apy and radiotherapy. For a detailed description of the original
model, we refer the readers to the original paper [8]. In our ex-
tended model, we incorporate two new terms: an interference term
and a neighborhood covariate term. The volume of the tumor in

3https://coronavirus.jhu.edu/about/how-to-use-our-data
4https://catalog.data.gov/dataset/covid-19-state-and-county-policy-orders-9408a
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where the parameters 𝐾 , 𝜌 , 𝛽𝑐 , 𝛼𝑟 , 𝛽𝑟 are sampled from the prior
distributions described in [8], and 𝑒𝑖𝑡 ∼ 𝑁 (0, 0.012) is a noise
term that accounts for randomness in the tumor growth. The prior
means for 𝛽𝑐 and 𝛼𝑟 are adjusted to create three patient subgroups
𝑆 (𝑖) ∈ {1, 2, 3} as described in [3]. The chemotherapy drug concen-
tration follows an exponential decay with a half-life of 1 day. The
time-varying confounding is introduced by modeling chemother-
apy and radiotherapy assignment as Bernoulli random variables,
with probabilities 𝑝𝑐 and 𝑝𝑟 depending on the tumor diameter. For
more details, we refer the reader to the paper [3]. For our newly
defined interference and neighborhood covariate terms, we set the
hyperparameters 𝜄𝑐 and 𝜄𝑟 to 0.01, and 𝜅 to 0.001. These values
were carefully chosen to reflect the strength of the interference
and neighborhood covariates in the dataset. The number of tumors
in each patient 𝑁𝑖 is fixed to 15, and for each tumor region, the
number of edges connected between the tumor regions is defined
randomly from the range of 22 to 45. For additional experiments
shown in Appendix C, the number of tumor regions for each pa-
tient is fixed to 5, and the number of edges ranges from 6 to 10. The
dataset is input into our model similar to the COVID-19 dataset.
Both chemotherapy and radiotherapy are encoded into 0 or 1 value
depending on whether it was applied at a specific time point. The
input data consists of 60-time points with 4 features, which include
tumor volume, patient type, and the two treatments. The data is
normalized for model input but unnormalized for test loss calcula-
tion. The model’s objective is to predict tumor volume for future
periods of 14, 21, or 28 days. We also create a longer-range dataset
with 120-time points, which is described in C.

B DATA SPLITTING
We train our model in a sequence-to-sequence setting, where we
split the trajectory of each training sample into two parts [𝑡1, 𝑡𝐾 ]
and [𝑡𝐾+1, 𝑡𝑇 ]. We condition the model on the first part of observa-
tions and predict the second part. To fully utilize the data points
within each trajectory, we generate training and validation sam-
ples by splitting each trajectory into several chunks using a sliding
window with three hyperparameters: the observation length and
prediction length for each sample, and the interval between two
consecutive chunks (samples). We summarize the procedure in
Algorithm 1, where 𝐾 is the number of trajectories and 𝑑 is the
input feature dimension. For both datasets, we set the observation
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Prediction Length 35-days 49-days 63-days
Treatment F.R. 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CAG-ODE 35.00 34.68 34.50 34.12 37.92 37.88 46.71 47.28 48.12

Table 3: Root Mean Square Error (RMSE) for counterfactual outcome evaluation on the longer-range Tumor Growth dataset
with treatment flipping ratio: 25%, 50%, 75%.

length to be 7 and the interval to be 3. We ask the model to make
predictions at varying lengths for evaluation.

Algorithm 1: Data Splitting Procedure.

Input: Original Training trajectories 𝑋input ∈ R𝐾×𝑁×𝑇×𝑑 ;
Observation length 𝑂 ; Prediction length𝑀 ; Interval 𝐼 ;
Trajectory length 𝑇 .
Output: Training samples after splitting 𝑋train.

1 sample_length = 𝑂 +𝑀 ;
2 num_chunk = (𝑇 - sample_length )//interval + 1;
3 for i in range (0,K) do
4 for j in range(0,num_chunk,I) do
5 Generate the split training sample as

𝑋input [𝑖, :, 𝑗 : 𝑗 + sample_length, :]
6 Add the training sample to the training set 𝑋train.
7 end
8 end

C LONGER-RANGE PREDICTION FOR THE
TUMOR GROWTH DATASET

In Table 3, we evaluate the performance of our model. An extended
version of the simulation dataset with a range of 120 days was used
in the experiment. The considered prediction lengths are 35, 49,
and 63 days.

As anticipated, the prediction errors exhibit a moderate increase
with longer prediction lengths, as the added duration poses a greater
challenge for accurate predictions. Note that the prediction error
remains relatively stable when the treatment flipping ratio is in-
creased from 25% to 75%. This observation suggests that the utiliza-
tion of treatment balancing and interference balancing techniques
effectively mitigates the risk of overfitting to confounding factors,
ensuring CAG-ODE’s robustness.

D MODEL IMPLEMENTATION DETAILS
We use the fourth-order Runge-Kutta method from the torchdiffeq
python package [6] as the ODE solver, for solving the ODE systems
on a time grid that is five times denser than the observed time
points. We also utilize the Adjoint method described in [6] to reduce
memory use.

E LIMITATIONS
One limitation of CAG-ODE is that when inferring the future tra-
jectories of nodes, we simply assume that all nodes are connected
and jointly infer such edge evolution. This would bring huge com-
putational costs when generalized to large-scale dynamical systems.

In the future, we will consider more efficient sampling methods
to accelerate the edge inference procedure to scale up our model.
Another line of future work would be how to model more com-
plex multiple treatment effects, including competing, hierarchical
relationships.

F BROADER IMPACTS
Our work significantly enhances the performance of causal in-
ference over multi-agent dynamical systems, which can poten-
tially benefit a wide range of fields including public health, biology,
physics, and robotics. Our work also advances the recent study of
continuous graphODE for modeling multi-agent system dynamics,
providing an efficient tool for further research on AI for science.
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