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Abstract

Quantum Annealers are presented as quantum computers that
with high probability can optimize certain quadratic functions on
Boolean variables in constant time. These functions are basically the
Hamiltonian of Ising models that reach the ground energy state, with a
high probability, after an annealing process. They have been proposed
as a way to solve SAT in some preliminary works.

These Hamiltonians can be seen as Max2XOR problems, i.e. as
the problem of finding an assignment that maximizes the number of
XOR clauses of at most 2 variables that are satisfied. In this paper,
we focus on introducing several gadgets to reduce SAT to Max2XOR.
We show how they can be used to translate SAT instances to initial
configurations of a quantum annealer.

Keywords: Maximum Satisfiability; Quantum Annealers; Satisfiability

1 Introduction

Quantum Annealers

Quantum Computation exploits some particularities of quantum mechanics,
such as superposition, interference, and entanglement to solve some hard
problems such as the ones we face in Artificial Intelligence. Current quantum
computers are still too small to compete with classical computers, but the
rapid increase in their number of qubits could replace them in some of these
hard problems. Most research in quantum computing is focused on the model
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of quantum circuits, where gates are quantum operators that act on a qubit
or a superposition of them.

An alternative and equivalent Aharonov et al. (2007) model is Quantum
Annealing. D-Wave Systems Inc.1 has constructed some computers based on
this model of computation with more than 5000 qubits, surpassing (in the
number of qubits) the rest of the manufacturers of quantum computers. In
these machines, we can only decide the coupling factor Jij between certain
pairs of qubits i and j, and the biases hi of each qubit i. From an initial
situation described by the Hamiltonian H =

∑

i σ
x
i , the system evolves into

a system described by an Ising Hamiltonian

HIsing =
∑

i∈VG

hiσ
z
i +

∑

(i,j)∈EG

Jij σ
z
i σ

z
j

where σz
i are the z-Pauli operator acting on qubit i and G = (VG, EG) is a

graph describing the architecture of the machine. During the process, the
system is tried to be kept in the lowest-energy eigenstate, thus at the end,
ideally, we get the lowest-energy eigenstate of the Ising model that encodes
a minimization problem. This final state is classical, without superpositions.
The probability of success depends on the difference of energy between the
lowest-energy state and the next energy level. The Landau-Zener model
describes the probability of success (finishing in the minimal energy state)
for a two-states system with one 1/2-spin particle with energy gap ∆ under

the action of a varying external magnetic field at rate c as p = 1 − e
−π ∆2

4c .
Mehta et al. (2022) argue that, although the quantum annealers are more
complicated systems, the probability can be approximated by this two-level
system.

In order to increase the probability of finding this minimum, the experi-
ment is repeated many times. The ranges of biases and couplings depend on
the particular model of the quantum annealer.2 In this paper, for simplicity,
we assume that all of them are in the range hi ∈ [−1, 1] and Jij ∈ [−1, 1],
being our conclusions easily adapted for other ranges. The structure of the
machine also depends on the model. For our purposes, we simply assume
that G is an undirected sparse graph. In other words, we will idealize quan-
tum annealers as devices that are able to solve –in constant time and with
high probability 3 that depends exponentially on the difference between the
minimal solution and the next state– a quadratic function where only some
quadratic terms are allowed.

1https://www.dwavesys.com/.
2For old Chimera-base D-Wave 2000 series, they were hi ∈ [−2, 2] and Jij ∈ [−1, 1]. In

more modern models they are hi ∈ [−4, 4] and Jij ∈ [−2, 1].
3Here we use high probability in the mathematical sense, as a non-zero probability.

2

https://www.dwavesys.com/


In this paper, we will show that (obviating some technical details) a
quantum annealer can be seen as a Max2XOR solver with constraint weights
in the reals [0, 1]. Therefore, we focus on the problem of finding gadgets
to reduce the satisfiability of a CNF formula (SAT) to the satisfiability of
the maximum number of 2XOR constraints (Max2XOR) and analyze which
(theoretical) features of the gadgets are desirable for quantum annealers. In
some sense, a subproduct of our contribution could be seen as one more step
to assess the maturity and potential of quantum annealers to solve the SAT
problem.

Max2XOR, QUBO and Ising model

Exclusive OR (XOR), here written ⊕, may be an alternative to the use
of traditional OR to represent propositional formulas. In practice, many ap-
proaches combining SAT and XOR reasoning have been presented Li (2000a,b);
Baumgartner and Massacci (2000); Li (2003); Heule and van Maaren (2004);
Heule et al. (2004); Chen (2009); Soos et al. (2009); Laitinen et al. (2012);
Soos (2010); Laitinen et al. (2011, 2012); Soos and Meel (2019). By writing
clauses x1 ⊕ · · · ⊕ xk as constraints x1 ⊕ · · · ⊕ xk = 1 or x1 ⊕ · · · ⊕ xk = 0,
where 1 means true and 0 false, we can avoid the use of negation, because
¬x⊕C = k is equivalent to x⊕C = 1− k. The equivalent to the resolution
rule for XOR constraints, called XOR resolution rule, is

x⊕ A = k1
x⊕ B = k2

A⊕ B = k1 ⊕ k2

where A and B are clauses. In the particular case of A = B = ∅ and
k1 6= k2, this rule concludes the contradiction 0 = 1, that we represent as .
The proof system containing only this rule allows us to produce polynomial
refutations for any unsatisfiable set of XOR constraints, using Gaussian elim-
ination. Therefore, unless P = NP , we cannot polynomially translate any
propositional formula into an equivalent conjunction of XOR constraints.4

However, the SAT problem can be reduced to the Max2XOR problem, i.e.,
the problem of maximizing the number of 2XOR constraints that can be
satisfied simultaneously.

4We can translate any OR clause x1∨· · ·∨xk into the set of weighted XOR constraints:
⋃

S⊆{1,...,k}{(1/2k−1)

⊕

i∈S xi = 1} This translation allows us to reduce SAT to MaxXOR.
However, the reduction is not polynomial, because it translates every clause of size k into
2k − 1 constraints. In Section 4, we describe a polynomial reduction that avoids this
exponential explosion on expenses of introducing new variables.
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Formally, a Max2XOR problem is a set of pairs

{(w1)C1 = k1, . . . ,(wn) Cn = kn},

where wi are positive rational numbers (we can also consider the special case
of natural weights or the generalization to positive real weights) representing
the penalty for violating the constraint, Ci are clauses form by one variable or
the XOR disjuntion (or sum modulo two) of two variables, and ki are either
0 or 1, representing false and true, respectively. A solution is an optimal
assignment that maximizes the sum of the weights of satisfied constraints.
For example, {(1/2) x = 1, (1/2) y = 1, (1/2) x + y = 1} is a Max2XOR prob-
lem where the set of solutions (optimal assignments) are exactly the set of
solutions of the SAT formula {x∨y}, i.e. the assignments that assign x, or y,
or both, to one. All these three optimal assignments satisfy two constraints
with a total weight equal to one.

A Quadratic Unconstrained Binary Optimization (QUBO) problem is a
minimization problem:

min
xi∈{0,1}

∑

i

aixi +
∑

i<j

bijxixj

Notice that any Max2XOR problem Γ may be translated into an equivalent
QUBO problem, taking:

ai =
∑

(w) xi=0∈Γ

w −
∑

(w) xi=1∈Γ

w +
∑

(w) xi+y=0∈Γ

w −
∑

(w) xi+y=1∈Γ

w

bij = −2
∑

(w) xi+xj=0∈Γ

w + 2
∑

(w) xi+xj=1∈Γ

w

Conversely, any QUBO problem may be easily translated into a Max2XOR
problem (where all weights w are positive, whereas ai and bij may be nega-
tive).

Any QUBO problem can be translated into an Ising formulation

min
zi∈{−1,+1}

∑

i

hizi +
∑

i<j

Jijzizj

via the bijection hi = 1
2
ai +

1
4

∑

j bij , Jij = 1
4
bij , and similarly for any

Max2XOR problem Γ via hi =
1
2
(
∑

(w) xi=0∈Γ w −
∑

(w) xi=1∈Γ w) and Jij =
1
2
(
∑

(w) xi+xj=1∈Γ w −
∑

(w) xi+xj=0∈Γ w). Therefore, Max2XOR, QUBO, and

Ising model annealing are three NP-complete equivalent problems. For ex-
ample,
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• the Max2XOR problem {(1) x1 = 0, (1) x1 + x2 = 0},

• the QUBO problem minx1,x2∈{0,1} 2x1 + x2 − 2x1x2 and

• the Ising problem minz1,z2∈{−1,+1}
1
2
z1 −

1
2
z1z2

are all of them equivalent. In all these problems we can multiply all weights/coefficients
by the same constant, obtaining an equivalent problem. However, we define
the transformations to preserve the energy gap between the lowest-energy
state and the next classical state.

We can see quantum annealers as hardware to try to some this problem
in any of these three presentations. In this paper, to formalize the reduction
from SAT to Max2XOR (or equivalently to QUBO or Ising) we will use
gadgets.

Gadgets

Traditionally, the word ”gadget” is used to denote a finite combinatorial
structure that allows translating constraints of one problem to constraints of
another. In Trevisan et al. (2000), the notion is formalized, defining a (α, β)-
gadget as a function from a family of constraints F1 to another family F2 that
translate every constraint f(~x) in F1 to a set of β constraints {gi(~x,~b)}i=1,...,β

in F2, where the b’s are (fresh) auxiliary variables such that, when f(~x) is
satisfied for some assignment of the x’s, we can find an assignment to the
b’s that satisfy α constraints g(~x,~b). Conversely, when f(~x) is falsified, no

assignment for the b’s satisfy strictly more than α− 1 constraints g(~x,~b). If,
additionally, when f(~x) is falsified, some assignment for the b’s satisfy exactly

α− 1 constraints g(~x,~b), we say that the gadget is strict. This definition can
be generalized to weighted constraints, where the weights are real numbers.5

Then, instead of the number of satisfied constraints, we talk about the sum
of the weights of satisfied constraints.

There is a long tradition of the use of gadgets. For instance, the (k −
2, k − 2)-gadget:

x1 ∨ · · · ∨ xk →























x1 ∨ x2 ∨ b1,
¬b1 ∨ x3 ∨ b2,
· · · ,
¬bk−4 ∨ xk−2 ∨ bk−3,
¬bk−3 ∨ xk−1 ∨ xk

(1)

5Although a more detailed analysis would show that we can restrict them to be rational
numbers.
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reduces kSAT to 3SAT. The following (weighted) (3.5, 4)-gadget Trevisan et al.
(2000) reduces 3SAT to Max2SAT:

x1 ∨ x2 ∨ x3 →















(1/2) x1 ∨ x3, (1/2) ¬x1 ∨ ¬x3,

(1/2) x1 ∨ ¬b, (1/2) ¬x1 ∨ b,

(1/2) x3 ∨ ¬b, (1/2) ¬x3 ∨ b,

(1) x2 ∨ b

(2)

In Ansótegui and Levy (2021) new gadgets reducing SAT to Max2SAT
are introduced. The authors show, formally and empirically, that the new
reduction allows solving efficiently the Pigeon Hole Principle, i.e. they prove
that there exists a polynomial MaxSAT resolution proof Bonet et al. (2007)
and that a general purpose MaxSAT solvers can solve the resulting Max2SAT
formula.

Defining Opt(P ) as the maximal number of satisfied constraints of a
problem P , Cost(P ) as the minimal number of falsified constraints, and
Weight(P ) the number of constraints in P , we have that, if P is translated
into P ′ using a (α, β)-gadget, then

Opt(P ′) ≤ (α− 1)Weight(P ) +Opt(P )
Cost(P ′) ≥ (β − α)Weight(P ) + Cost(P )

with equalities if the gadget is strict. This allows us to obtain an algorithm
to maximize P , using an algorithm to maximize P ′.

When α = β we preserve the cost, hence the satisfiability. Then, given a
decision algorithm for P ′, we get a decision algorithm for P .

Moreover, when we have a p-approximation algorithm for P ′ we can get
an (1 − α(1 − p))-approximation algorithm for P . Therefore, traditionally,
we were interested in gadgets with minimal α in order to minimize the error
in the approximation.

If the algorithm is based on deriving empty clauses, i.e. that prove lower
bounds for the cost, we will be interested in gadgets that minimize β − α.
Notice that in the case that P is a decision problem, then we can say that P
is unsatisfiable if, and only if, Cost(P ′) ≥ (β − α)Weight(P ) + 1.

In this paper, we are interested in maximizing another feature of gadgets,
that we will call energy gap, and will be introduced later. We will also discuss
on the number of auxiliary variables the gadget introduces and how flexible
is the structure itself of the gadget.

Related Work

Santra et al. Santra et al. (2014) experimentally study the performance of one
of the first quantum annealers, with 108 qubits, on random Max2SAT prob-
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lems. Despite the small size of tested instances, they observe that the proba-
bility of obtaining a correct answer decreases with the clause density (when
we increase the number of clauses while keeping the number of variables fixed).
This is explained by the decrease in the energy gap between the ground
state and the first excited state. They find that success probability decreases
around the critical clause density. However, it is not correlated with the time
required by classical MaxSAT solvers (they compare akmaxsat) to find a so-
lution. More in detail, they identify every Boolean variable xj with a qubit
j, the value true with the eigenstate 1 of the Pauli spin operator σz

j acting
on qubit j, and false with the eigenstate −1, i.e. σz

j |xj=true〉 = |xj=true〉
and σz

j |xj=false〉 = − |xj=false〉. To avoid the problem with not con-
nectivity between all pairs of qubits, they only consider Max2SAT formulas
where clauses only contain pairs of variables whose corresponding qubits can

be coupled. Using the Hamiltonian H =
∑

(s·xi∨s′·xj)∈Γ
I−s·σz

i

2

I−s′·σz
j

2
, where

s, s′ ∈ {1,−1} represent the sign of the variable in the clause, we get an
energy penalty of 1 for every clause violated by an assignment (the energy
in an observed state is equal to the number of clauses violated by the as-
signment it represents). This Hamiltonian can be encoded with the biases
hi = −1/4

∑

(s·xi∨s′·xj)∈Γ
s and couplings Jij = 1/4

∑

(s·xi∨s′·xj)∈Γ
s · s′. To

ensure that all of them are in the range [−1, 1], we have to re-scale the
Hamiltonian, multiplying by 1/max{maxi hi,maxi,j Jij}. In the best case,
when the density of clauses is low, this factor is 4 which results in an energy
penalty of 4 for every violated clause. But, for high clause densities, the
factor is smaller which results in a lower precision in the method.

Chancellor et al. Chancellor et al. (2016) study the translation of kSAT
and parity problems to quantum annealing. They observe that x1 ∨ x2 ∨ x3

can be reduced to x1 + x2 + x3 − x1x2 − x1x3 − x2x3 + x1x2x3, or in general,
x1∨· · ·∨xk to 1+

∑

S⊆{1,...,k}(−1)|S|+1
∏

i∈S xi. There is no problem with linear
and quadratic terms, representing variables as qubits. For terms of bigger
size, they use a new qubit to encode their value. However, this method has
two disadvantages, one, generate couplings between all pairs of qubits, and
second, the number of additional qubits grow exponentially with k.

Nüßlein et al. Nüßlein et al. (2023) evaluate the performance of some
methods to solve/translate 3SAT problems with/to quantum annealing. They
also propose a new reduction and conclude that their method is better than
Chancellor et al. Chancellor et al. (2016), and also than Choi Choi (2010).
However, they do not compare with Bian et al. Bian et al. (2017, 2020) and
the new gadgets presented in this paper.

Douglass et al. Douglass et al. (2015) explores the use of a quantum an-
nealer for the construction of SAT filters. In this case, the encoding involves
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the translation of MaxCUT, Not-all-equal 3-SAT, 2-in-4-SAT into a Hamil-
tonian. This translation is almost direct. The authors already remarked that
the translation of SAT would involve the use of auxiliary variables, which are
called ancillary variables.

Bian et al. Bian et al. (2017, 2020) already using a 2048 qubits quan-
tum annealer, explore the feasibility of solving SAT, without limitation on
the size of clauses. The basic idea is to decompose any clause (or other
subformulas) into constraints of at most 3 variables using the traditional
Tseitin encoding. Like in the case of gadgets, this requires the introduction
of auxiliary variables. For instance, we can decompose x1 ∨ x2 ∨ x3 ∨ x4 as
{b1 ↔ x1 ∨ x2, b2 ↔ x3 ∨ x4, b1 ∨ b2}. Then, each one of these constraints
or subformulas contributes to the Hamiltonian. For instance, b1 ↔ x1 ∨ x2

contributes by adding 5/2 + 1/2x1 + 1/2x2 − b1 + 1/2x1x2 − x1b1 − x2b1
6

to the Hamiltonian. Below, we will see that this decomposition can in fact
be interpreted as a gadget, although the authors do not mention the notion
of a gadget in their paper. To ensure that the coupling factors are in the
range [−1, 1], in some cases they have to re-normalize the entire Hamiltonian,
dividing all factors by a constant. Moreover, they have to use several qubits
to represent the same variable, when there are several occurrences of a vari-
able in a formula. Then, they have to ensure that there is a path of coupled
qubits that connect all these occurrences. They present some heuristics to
find these paths.

Choi Choi (2010) analyzes the problem of allocating variables into qubits
and models it as a variant of graph embedding where in the process some
transformations are allowed, basically the contractions of paths into edges.
Bian et al. Bian et al. (2014) also analyze some methods with the same pur-
pose.

2 Preliminaries

A k-ary constraint function is a Boolean function f : {0, 1}k → {0, 1}. A con-
straint family is a set F of constraint functions (with possibly distinct arities).
A constraint, over variables V = {x1, . . . , xn} and constraint family F , is a
pair formed by a k-ary constraint function f ∈ F and a subset of k variables,
noted f(xi1 , . . . , xik), or f(~x) for simplicity. A (weighted) constraint problem
or (weighted) formula P , over variables V and constraint family F , is a set of
pairs (weight, constraint) over V and F , where the weight is a positive ratio-
nal number, denoted P = {(w1) f1(x

1
i1 , . . . , x

1
ik1

), . . . ,(wm) fm(x
m
i1 , . . . , x

m
ikm

)}.

6Abusing from the notation, we identify the variable (that takes Boolean values 0 or 1)
with the qubit representing it (that takes values +1 or -1 when measured).
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The weight of a problem is Weight(P ) = w1 + · · ·+ wm.
An assignment is a function I : {x1, . . . , xn} → {0, 1}. We say that an as-

signment I satisfies a constraint f(xi1 , . . . , xik), if I(f(~x)) =def f(I(xi1), . . . , I(xik)) =
1. The value of an assignment I for a constraint problem P = {(wi) fi(~x)}i=1,...,m,
is the sum of the weights of the constraints that this assignment satisfies, i.e.
I(P ) =

∑m
i=1wi I(fi(~x)). We also define the sum of weights of unsatisfied

clauses as I(P ) =
∑m

i=1wi (1− I(fi(~x))). An assignment I is said to be opti-
mal for a constraint problem P , if it maximizes I(P ). We define this optimum
as Opt(P ) = maxI I(P ). We also define Cost(P ) = minI I(P ), i.e. the mini-
mum sum of weights of falsified constraints, that fulfills Opt(P )+Cost(P ) =
Weight(P ).

Many optimization problems may be formalized as the problem of finding
an optimal assignment for a constraint problem. In the following, we define
some of them:

1. MaxkSAT is the constraint family defined by the constraint functions
of the form f(x1, . . . , xr) = l1 ∨ · · ·∨ lr, where every li may be either xi

or ¬xi and r ≤ k.

2. MaxkXOR is the constraint family defined by the constraint functions
f(x1, . . . , xr) = x1 ⊕ · · · ⊕ xr and f(x1, . . . , xr) = x1 ⊕ · · · ⊕ xr ⊕ 1,
where r ≤ k.

In this paper, we are interested in the problem Max2XOR, which has got
very little attention in the literature, probably because it is quite similar to
MaxCUT.

Next, we define gadgets as a transformation from constraints into sets of
weighted constraints (or problems). These transformations can be extended
to define transformations of problems into problems.

Definition 1. Let F1 and F2 be two constraint families. A (α, β)-gadget
from F1 to F2 is a function that, for any constraint f(~x) over F1 returns a

weighted constraint problem P = {(wi) gi(~x,
~b)}i=1,...,m over F2 and variables

{~x} ∪ {~b}, where ~b are auxiliary variables distinct from ~x, such that β =
∑m

i=1wi and, for any assignment I : {~x} → {0, 1}:

1. If I(f(~x)) = 1, for any extension of I to I ′ : {~x} ∪ {~b} → {0, 1},
I ′(P ) ≤ α and there exist one of such extension with I ′(P ) = α.

2. If I(f(~x)) = 0, for any extension of I to I ′ : {~x} ∪ {~b} → {0, 1},
I ′(P ) ≤ α − 1 and if, additionally, there exists one of such extension
with I ′(P ) = α− 1 we say the gadget is strict.
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Lemma 2. The composition of a (α1, β1)-gadget from F1 to F2 and a (α2, β2)-
gadget from F2 to F3 results into a (β1 (α2 − 1) + α1, β1β2)-gadget from F1

to F3.

Proof. The first gadget multiplies the total weight of constraints by β1, and
the second by β2. Therefore, the composition multiplies it by β = β1β2.

For any assignment, if the original constraint is falsified, the optimal
extension after the first gadget satisfies constraints with a weight of α1 − 1,
and falsifies the rest β1 − (α1 − 1). The second gadget satisfies constraints
for a weight of α2 − 1 of the falsified plus α2 of the satisfied. Therefore, the
composition satisfies constraints with a total weight (α2−1)(β1− (α1−1))+
α2(α1 − 1) = β1(α2 − 1) + α1 − 1.

If the original constraint is satisfied, the optimal extension after the first
gadget satisfies α1 and falsifies the rest β1 −α1. After the second gadget the
weight of satisfied constraints is (α2 − 1)(β1 − α1) + α2α1 = β1(α2 − 1) + α1.

The difference between both situations is one, hence the composition is a
gadget, and α = β1(α2 − 1) + α1.

3 Quantum Annealers as Max2XOR Solvers

As we mention in the introduction, a quantum annealer can be seen as a
Max2XOR solver. Roughly speaking, it is able to reach the state that min-
imizes the energy of the Ising Hamiltonian H =

∑

i hiσ
z
i +

∑

(i,j)∈E Jijσ
z
i σ

z
j ,

where σz
i is the z-Pauli operator acting on qubit i. For every linear term hiσ

z
i

of this Hamiltonian, we can get a 2XOR constraint (2hi) xi = 0, when hi > 0,
or (−2hi) xi = 1, when hi < 0. Similarly, for each quadratic term Jijσ

z
i σ

z
j , we

get a constraint (2Jij) xi ⊕ xj = 1, when Jij > 0, or (−2Jij) xi ⊕ xj = 0, when
Jij < 0. Conversely, any Max2XOR problem may be mapped into an Ising
Hamiltonian.

In the following, we review with further detail the related work on con-
structing Hamiltonians for SAT and MaxSAT from the perspective of gad-
gets.

When in Santra et al. (2014) they say that every 2SAT clause xi ∨ xj

contributes to the Hamiltonian as
I−σz

i

2

I−σz
j

2
= 1

4
I − 1

4
σz
i −

1
4
σz
j +

1
4
σz
i σ

z
j , they

are implicitly defining a (1, 3/2)-gadget from 2SAT to 2XOR:

xi ∨ xj →







(1/2) xi = 1,

(1/2) xj = 1,

(1/2) xi ⊕ xj = 1
(3)

In the following, we only describe the translation of clauses x1 ∨ · · · ∨ xk

where all variables are positive. We can easily generalize the transformation
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when any of the variables x is negated, simply by recalling that ¬x ⊕ y = k
is equivalent to x⊕ y = 1− k, and ¬x⊕ ¬y = k is equivalent to x⊕ y = k.

Notice also that we normalize the weights to ensure that the gap between
the sum of weights when the original constraint is falsified (α−1) and the sum
when it is satisfied (α) is just one. Later, when from the Max2XOR problem
we construct the Hamiltonian, we can multiply the weights for the maximal
value that still allows biases and couplings to be inside their corresponding
ranges [−1, 1], while we try to maximize this gap. For example, in the case
of the previous gadget {(1/2) x1 = 1, (1/2) x2 = 1, (1/2) x1 ⊕ x2 = 1}, when we
transform it into a Hamiltonian −1

4
σz
1 −

1
4
σz
2 +

1
4
σz
1σ

z
2 we could multiply all

weights by 4 and still getting all coefficients in the range [−1, 1]. This allows
us to enlarge the energy gap between the lowest-energy state and the next
classical state to 4. We call this quantity the energy gap of the gadget, noted
∆E. Remark that, as defined below, this energy gap only corresponds to the
minimal difference of energy levels when we consider the translation of just
one clause. When more clauses are involved, if we want to keep biases and
coupling inside their corresponding ranges, the situation is more complicated,
obtaining smaller energy differences when normalizing. However, what we
define as energy gap is a good indicator of how good the gadget is, as it has
been experimentally observed in Rodriguez et al. (2024).

Formally,

Definition 3. Given a gadget P to Max2XOR or, in general, a Max2XOR
problem P , we define energy gap as

∆E = min

{

min
i

1

|hi|
,min

i,j

1

|Jij|

}

where, remember that

hi =
1
2
(
∑

(w) xi=0∈P w −
∑

(w) xi=1∈P w)

Jij =
1
2
(
∑

(w) xi⊕xj=1∈P w −
∑

(w) xi⊕xj=0∈P w)

Assuming that the problem P is simplified, i.e. contains a unique constraint
of the form xi = 0 or xi = 1, and a unique constraint of the form xi⊕xj = 0
or xi ⊕ xj = 1, this simplifies to

∆E = min
(w) C∈P

2

w

As we mentioned, Nüßlein et al. Nüßlein et al. (2023) propose two ways to
reduce Max3SAT to QUBO and compare them with previous methods. Here,
we will only discuss the reduction that they callNüsslein

n+m, for which they
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1̂

x1 x2

x3b

1

1/2

1 1

1/2 1/2

(1) x1 ⊕ x2 = 1

(1) x1 ⊕ b = 0

(1) x2 ⊕ b = 0

(1/2) x3 ⊕ b = 1

(1/2) x3 = 1

(1/2) b = 1

Figure 1: Graphic representation of the (5/2, 9/2)-gadget with ∆E = 2 from
3SAT to Max2XOR proposed by Nüßlein et al. Nüßlein et al. (2023). Blue
edges represent equal-one constraints, and red dashed edges are equal-zero
constraints.

report the best results (the other ones make use of more additional variables).
In this reduction, each clause x1 ∨ x2 ∨ x3 contributes to the QUBO problem
as:

2x1x2 − 2x1b− 2x2b+ x3b− x3 + b

Formalized as a contribution to an Ising Hamiltonian, this is:

H =
z1z2
2

−
z1b

2
−

z2b

2
+

z3b

4
−

z3
4
−

b

4

We can formalize it as the (5/2, 9/2)-gadget with ∆E = 2 from 3SAT to
Max2XOR represented in Figure 1. Notice that the weights in the 2XOR
constraints correspond to the coefficients of the Hamiltonian multiplied by 2.
In the rest of the paper, we will use this graphical representation where solid
blue lines between x and y represent x⊕y = 1 and red dashed lines represent
x ⊕ y = 0. Constraints x = 0 and x = 1 are graphically represented using
lines to a special node 1̂.

Chancellor et al. Chancellor et al. (2016) propose a method to translate
kSAT to QUBO. It is based on the equivalence of the kSAT constraints
x1 ∨ · · · ∨ xk and the polynomial 1+

∑

S⊆{1,...,k}(−1)|S|+1
∏

i∈S xi and the use
of a new qubit to represent terms of size bigger than two. There are still
different ways to select the coupling factors. For a convenient election, we
can get the gadget represented in Figure 2.

Bian et al. Bian et al. (2017, 2020) propose a method that can be used to
reduce kSAT (or even more general formulas) to Max2XOR. It is based on
the translation of each constraint of the form x1 ∨ x2 ↔ x3 as a contribution
of

z1z2
2

− z1z3 − z2z3 +
z1
2
+

z2
2
− z3 +

5

2
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1̂

x1 x2

x3

b

1/2

1/2 1/2

1/2

1/2 1/2

1/2

1/2 1/2

1/2

(1/2) x1 ⊕ x2 = 1

(1/2) x1 ⊕ x3 = 1

(1/2) x2 ⊕ x3 = 1

(1/2) x1 ⊕ b = 1

(1/2) x2 ⊕ b = 1

(1/2) x3 ⊕ b = 1

(1/2) x1 = 1

(1/2) x2 = 1

(1/2) x3 = 1

(1/2) b = 1

Figure 2: Graphic representation of the (3, 5)-gadget with ∆E = 4 from
3SAT to Max2XOR obtained with the method proposed by Chancellor et
al. Chancellor et al. (2016).

to the Hamiltonian of a Ising model. Implicitly, it defines the non-strict
(3, 9/2)-gadget with ∆E = 2:

(x1 ∨ x2 ↔ b) →































(1/2) x1 = 0

(1/2) x2 = 0

(1) b = 1

(1/2) x1 ⊕ x2 = 1

(1) x1 ⊕ b = 0

(1) x2 ⊕ b = 0

(4)

Notice that the values of the polynomial coefficients correspond to the weights
of the constraints in the gadget. The independent term 5/2 is only introduced
in order to ensure that the ground-state energy is zero. Recall that this is
just a convention, and the values of this term are not restricted to any range.

The application of the Tseitin encoding also can be seen as a gadget. For
instance, the (2, 2)-gadget to reduce 3SAT

x1 ∨ x2 ∨ x3 →

{

x1 ∨ x2 ↔ b
b ∨ x3

(5)

The composition of this gadget (5) with both (3) and (4), results in the (4, 6)-
gadget with ∆E = 1 from 3SAT to Max2XOR used in Bian et al. (2020) to
translate 3SAT clauses into Hamiltonian components, and represented here
in Figure 3.
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1̂

x1 x2

x3b

1/2

1/2

1/2

1/2

1 1

3/2 1/2

(1/2) x1 = 0

(1/2) x2 = 0

(1/2) x3 = 1

(3/2) b = 1

(1/2) x1 ⊕ x2 = 1

(1) x1 ⊕ b = 0

(1) x2 ⊕ b = 0

(1/2) x3 ⊕ b = 1

Figure 3: Graphic representation of the (4, 6)-gadget with ∆E = 4/3
obtained by Tseitin encoding of a 3SAT clause, as proposed by Bian et
al. Bian et al. (2017, 2020).

1̂

x1

x3

x2

b
1/2

1/2

1/21/2

1/2 1/2 (1/2) x1 ⊕ x3 = 1

(1/2) x1 ⊕ b = 0

(1/2) x3 ⊕ b = 0

(1/2) x2 ⊕ b = 1

(1/2) b = 1

(1/2) x2 = 1

Figure 4: Graphical representation of the (2, 3)-gadget with ∆E = 4 reduc-
ing Max3SAT to Max2XOR and based on Trevisan’s Trevisan et al. (2000)
gadget from Max3SAT to Max2SAT.

4 New Gadgets From SAT to Max2XOR

As we have seen in the previous section, the construction of Hamiltonians
to solve a problem P with a quantum annealer is basically the search for a
gadget from the constraints in P to Max2XOR. In general, there are three
aspects that we would like to optimize in this gadget. First, we want to
reduce the number of auxiliary variables (or ancillary variables in quantum
terminology) because they imply using more qubits. Second, we want to relax
the structure of the gadget, and in general avoid using gadgets with a dense
structure (such as cliques), because there are limitations in the architecture
of the quantum annealer, i.e., the graph of allowed couplings. Third, we want
to maximize the energy gap, because this reduces the probability of errors.
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4.1 A Gadget from 3SAT to Max2XOR

An easy way to reduce SAT to Max2XOR is to reduce SAT to 3SAT, using
the gadget (1), this to Max2SAT, using the gadget (2) Trevisan et al. (2000);
Ansótegui and Levy (2021), and this to Max2XOR, using the gadget (3).

The concatenation of the gadget (2) and the gadget (3) results into the
(2, 3)-gadget with ∆E = 4 described in Figure 4. This gadget is similar to
the gadgets described in Figures 1, 2 and 3. However, this gadget is optimal
in terms of minimizing α, β, ∆E and the number of auxiliary variables.

However, when we concatenate gadget (1) with the gadget in Figure 4
to obtain a reduction from kSAT to Max2XOR, for k ≥ 4, we get a (2(k −
2), 3(k − 2))-gadget with 2k − 5 auxiliary variables and ∆E = 4. This one
is not optimal, in the sense that, as we will see below, there exist other
gadgets that introduce fewer variables with the same ∆E, and smaller α and
β parameters.

In our experience, in general, if we concatenate two gadgets, even if both
are optimal (in some parameter), the resulting gadget can be suboptimal (in
that parameter). Therefore, it is usually better to compute direct gadgets.
In the following, we describe direct and better reductions (for some of the
parameters) from SAT to Max2XOR.

4.2 A Regular-Like Gadget

Here, we present a new gadget inspired by the Refined-Regular gadget from
SAT to Max2SAT introduced in Ansótegui and Levy (2021). The reduction
is based on a function T 0 that takes as parameters a SAT clause and a
variable. The use of this variable is for technical reasons, to make simpler
the recursive definition and proof of Lemma 5. Later (see Theorem 6), it will
be replaced by the constant one.

Definition 4. Given a SAT clause x1 ∨ · · · ∨ xk and an auxiliary variable b,
define the Max2XOR problem T 0(x1 ∨ · · · ∨ xk, b) recursively as follows:

T 0(x1 ∨ x2, b) =







(1/2) x1 ⊕ x2 = 1

(1/2) x1 ⊕ b = 0

(1/2) b⊕ x2 = 0

for binary clauses, and

T 0(x1 ∨ · · · ∨ xk, b) = T 0(x1 ∨ · · · ∨ xk−1, b
′) ∪







(1/2) b
′ ⊕ xk = 1

(1/2) b
′ ⊕ b = 0

(1/2) b⊕ xk = 0
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x1

b1

x2

b2

x3

bk−2

1̂

xk

· · ·

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Figure 5: Graphical representation of T 0(x1 ∨ · · · ∨ xk, 1̂), defining a (k −
1, 3/2(k − 1)-gadget with ∆E = 4 form kSAT to Max2XOR that introduces
k − 2 variables. For k = 3, this gadget corresponds to the one in Figure 4.

for k ≥ 3.

Lemma 5. Consider the Max2XOR problem T 0(x1∨· · ·∨xk, bk−1). We have:

1. For any assignment I : {x1, . . . , xk} → {0, 1}, the extension of the
assignment as I ′(bi) = I(xi+1), for i = 1, . . . , k − 1, maximizes the
number of satisfied 2XOR constraints, that is 2 (k − 1).

2. For any assignment I : {x1, . . . , xk, bk−1} → {0, 1} satisfying I(bk−1) =
1, the extension of the assignment as

I ′(bi) =

{

1 if I(xi+2) = · · · = I(xk) = 0

I(xi+1) otherwise

for i = 1, . . . , k − 2, maximizes the number of satisfied 2XOR con-
straints, that is 2 (k − 2), if I(x1) = · · · = I(xk) = 0, or 2 (k − 1)
otherwise.

Proof. See Lemma 8, where a more general result is proved.

Theorem 6. The translation of every clause x1 ∨ · · · ∨ xk into T 0(x1 ∨
· · · ∨ xk, 1̂) defines a (k− 1, 3/2(k− 1))-gadget from kSAT to Max2XOR that
introduces k − 2 auxiliary variables and has ∆E = 4.

Proof. The soundness of the reduction is based on the second statement of
Lemma 5. Assume that we force the variable 1̂ to be interpreted as one,
i.e. I(1̂) = 1, or that, alternatively, we simply replace it by the constant 1.
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x1 x2 x3 x4 x5 x6

x7b1 b2 b3

b4 b5

1̂

Figure 6: A graphical representation of a Tree-like gadget for 7SAT. All
constraints have weight 1/2.

Any assignment satisfying the clause can extend to satisfy at least 2(k − 1)
2XOR constraints from T 0(x1∨· · ·∨xk, 1̂), with a total weight equal to k−1.
Any assignment falsifying it can only be extended to satisfy at most 2(k− 2)
2XOR constraints, with a total weight k− 2. Hence, α = k− 1. The number
of 2XOR constraints is 3(k − 1), all of them with weight 1/2. Therefore,
β = 3/2(k − 1).

4.3 A Tree-Like Gadget

In this section, we describe the Tree-like gadget, which is a generalization of
the Regular-like gadget. Before describing the new gadget, we introduce an
example for the clause x1 ∨ · · · ∨ x7, in Figure 6.

Definition 7. Given a clause x1∨· · ·∨xk and an auxiliary variable b, define
the Max2XOR problem T t(x1∨· · ·∨xk, b) recursively and non-deterministically
as follows:

T t(x1∨· · ·∨xk, b) =



























































{x1 ⊕ x2 = 1, x1 ⊕ b = 0, x2 ⊕ b = 0} if k = 2

T t(x1 ∨ · · · ∨ xk−1, b′) ∪
{b′ ⊕ xk = 1, b′ ⊕ b = 0, xk ⊕ b = 0}

if k ≥ 3

T t(x2 ∨ · · · ∨ xk, b′) ∪
{b′ ⊕ x1 = 1, b′ ⊕ b = 0, x1 ⊕ b = 0}

if k ≥ 3

T t(x1 ∨ · · · ∨ xr, b′) ∪
T t(xr+1 ∨ · · · ∨ xk, b′′) ∪
{b′ ⊕ b′′ = 1, b′ ⊕ b = 0, b′′ ⊕ b = 0}

if k ≥ 4, where
2 ≤ r ≤ k − 2

where all XOR constraints have weight 1/2.

Notice that the definition of T t is not deterministic. When k = 3 we have
two possible translations (applying the second or third case), and when k ≥ 4
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we can apply the second, third, and fourth cases, with distinct values of r,
getting as many possible translations as possible binary trees with k leaves.

Notice also that the definition of T 0 corresponds to the definition of T t

where we only apply the first and second cases. Therefore, T t is a generaliza-
tion of T 0.

Lemma 8. Consider the set of 2XOR constraints of T t(x1∨· · ·∨xk, b) without
weights. We have:

1. There are 3(k − 1) constraints.

2. Any assignment satisfies at most 2(k − 1) of them.

3. Any assignment I : {x1, . . . , xk} → {0, 1} can be extended to an optimal
assignment satisfying I(b) = I(x1 ∨ · · · ∨ xk) and 2(k − 1) constraints.

4. Any assignment I satisfying I(x1 ∨ · · · ∨ xk) = 0 and I(b) = 1 can be
extended to an optimal assignment satisfying 2(k − 2) constraints.

Proof. The first statement is trivial.
For the second, notice that for, each one of the k−1 triangles of the form

{a⊕ b = 1, a⊕ c = 0, b⊕ c = 0}, any assignment can satisfy at most two of
the constraints of each triangle.

The third statement is proved by induction. The base case, for binary
clauses, is trivial. For the induction case, if we apply the second or third
options of the definition of T , the proof is similar to Lemma 5. In the
fourth case, assume by induction that there is an assignment extending I :
{x1, . . . , xr} → {0, 1} that verifies I(b′) = I(x1∨· · ·∨xr) and satisfies 2(r−2)
constraints of T t(x1∨· · ·∨xr, b

′). Similarly, there is an assignment extending
I : {xr+1, . . . , xk} → {0, 1} that verifies I(b′′) = I(xr+1∨· · ·∨xk) and satisfies
2((k− r)− 2) constraints of T t(xr+1 ∨ · · · ∨ xk, b

′′). Both assignments do not
share variables, therefore, they can be combined into a single assignment.
This assignment can be extended with I(b) = b′ ∨ b′′. This ensures that it
will satisfy two of the constraints from {b′ ⊕ b′′ = 1, b′ ⊕ b = 0, b′′ ⊕ b = 0}.
Therefore, it verifies I(b) = I(x1 ∨ · · · ∨ xk) and satisfies 2(r − 2) + 2((k −
r) − 2) + 2 = 2(k − 1) constraints of T t(x1 ∨ · · · ∨ xk, b). Since this is the
maximal number of constraints we can satisfy, this assignment is optimal.

The fourth statement is also proved by induction. The base case, for
binary clauses, is trivial. For the induction case, consider only the application
of the fourth case of the definition of T (the other cases are quite similar).
We have to consider 3 possibilities:

If we extend I(b′) = I(b′′) = 1, by induction, we can extend I to satisfy
2(r − 2) constraints of T t(x1 ∨ · · · ∨ xr, b

′) and 2((k − r)− 2) constraints of
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T t(xr+1 ∨ · · · ∨ xk, b
′′). It satisfies 2 constraints from {b′ ⊕ b′′ = 1, b′ ⊕ b =

0, b′′ ⊕ b = 0}, hence a total of 2(k − 3) constraints.
If we extend I(b′) = I(b′′) = 0, by the third statement of this lemma,

we can extend I to satisfy 2(r − 1) constraints of T t(x1 ∨ · · · ∨ xr, b
′) and

2((k − r) − 1) constraints of T t(xr+1 ∨ · · · ∨ xk, b
′′). It does not satisfy any

constraints from {b′ ⊕ b′′ = 1, b′ ⊕ b = 0, b′′ ⊕ b = 0}, hence a total of 2(k− 2)
constraints.

Finally, If we extend I(b′) = 1 and I(b′′) = 0 (or vice versa), by induction,
we can extend I to satisfy 2(r− 2) constraints of T t(x1 ∨ · · · ∨ xr, b

′) and by
the third statement 2((k − r) − 2) constraints of T t(xr+1 ∨ · · · ∨ xk, b

′′). It
also satisfy 2 constraints from {b′ ⊕ b′′ = 1, b′ ⊕ b = 0, b′′ ⊕ b = 0}, hence a
total of 2(k − 2) constraints.

Theorem 9. The translation of every clause x1 ∨ · · · ∨ xk into T t(x1 ∨ · · · ∨
xk, 1̂) defines a (k − 1, 3/2(k − 1))-gadget from kSAT to Max2XOR that in-
troduces k − 2 auxiliary variables, with ∆E = 4.

Proof. The theorem is a direct consequence of the two last statements of
Lemma 8.

If we compare Theorems 6 and 9, we observe that both establish the
same values for α = k− 1 and β = 3/2(k− 1) in the (α, β)-gadget, and both
introduce the same number (k−2) of auxiliary variables. Therefore, a priory,
the parallel translation is a generalization of the sequential translation, but
it does not have a clear (theoretical) advantage.

However, in the context of quantum annealers, we recall that not all
possible couplings are allowed, only the ones in the graph defined by the
architecture. To circumvent this issue the typical approach is to make copies
(using extra qubits) of the variables involved in the Max2XOR constraint
whose coupling is not allowed. In other words, if we have a constraint (w) xi⊕
xj = 1 in the Max2XOR problem, but (i, j) 6∈ E, we have to find a path and
replace the constraint by {(1) xi⊕xk1 = 0, . . . ,(1) xkr−1⊕xr = 0,(w) xr⊕xj = 1}

In this sense, the more flexible structure of the parallel translation can
help to fit more easily (i.e. with fewer extra qubits) the Max2XOR constraints
generated by the gadget into the architecture of the quantum annealer.

4.4 A Clique-Like Gadget

The previous gadgets have an energy gap ∆E = 4, but they are not optimal
with respect to the number of auxiliary variables. We can obtain gadgets
that only require O(log k) auxiliary variables, on expenses of decreasing the
energy gap and increasing the density of constraints. Therefore, there is a
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· · ·

1̂

x1 x5

b1 b2

1/2

5/6
5/6 2/3

2/3

5/6

1/2 1/2

2/3 5/6

(1/2) xi = 1

(2/3) b1 = 1

(5/6) b2 = 1

(1/2) xi ⊕ xj = 1

(5/6) xi ⊕ b1 = 1

(2/3) xi ⊕ b2 = 1

(5/6) b1 ⊕ b2 = 1

where i, j = 1, . . . , 5
and i 6= j

Figure 7: Graphic representation of the clique-like (10, 52/3)-gadget from
5SAT to Max2XOR, with ∆E = 12/5, and optimal number of 2 auxiliary
variables.

trade-off between optimizing the energy gap and the number of auxiliary
variables.

Definition 10. Given a clause x1 ∨ · · · ∨ xk, where k is a power of 2, define
the Max2XOR problem T c(x1 ∨ · · · ∨ xk) as follows:

T c(x1 ∨ · · · ∨ xk) =































(1/2) xi = 1 i = 1, . . . , k

(2j−1) bj = 1 j = 1, . . . , log k − 1

(1/2) xi ⊕ xj = 1 1 ≤ i < j ≤ k

(2i+j−1) bi ⊕ bj = 1 1 ≤ i < j ≤ log k − 1

(2j−1) xi ⊕ bj = 1 i = 1, . . . , k
j = 1, . . . , log k − 1

Theorem 11. The transformation of every clause x1 ∨ · · · ∨ xk into T c(x1 ∨
· · · ∨ xk) defines a (α, β)-gadget from kSAT to Max2XOR that introduces
log k − 1 auxiliary variables, with

α =
1

2
k (k − 1)

β =
11 k2 − 15 k + 4

12
∆E = 25 k−2

Proof. The intuition for the construction of the gadget is: apart from the
variables xi (with weight 1), we add auxiliary variables bj with weight 2j and
a constant 0̂ with weight 1. The sum of all weights is 2k − 1. The weight
of every constraint x ⊕ y = 1 is equal to one-half of the weight of x by the
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weight of y. No matter how x’s are assigned, if at least one is assigned to one,
we can assign the b’s such that the weight of variables assigned to one is k
and the weight of the assigned to zero is k−1, or vice versa. This maximizes
the weight of satisfied assignments that is k(k − 1)/2 = α. Conversely, if all
x’s are assigned to zero, the best we can do is assign all b’s to one, which
results in weight (k + 1)(k − 2)/2 = α− 1 for the satisfied constraints.

More formally, let I be an assignment satisfying x1 ∨ · · · ∨ xk. Let r =
∑k

i=1 I(xi) ∈ [1, k]. We extend I such that I(bi) is the ith bit of the binary

representation of the number k − r. Therefore,
∑log k−1

i=1 I(bi) 2
i is either

k − r or k − r − 1. And the sum of weights of variables assigned to one,

w1
def
=

∑log k−1
i=1 I(bi) 2

i+
∑k

i=1 xi is either k or k−1. For the ones assigned to

zero (including 0̂) we have w0
def
=

∑log k−1
i=1 (1−I(bi)) 2

i+
∑k

i=1(1−I(xi))+1 =
2k−1−w1. Therefore, the sum of satisfied constraints is w1w0/2 = k(k−1)/2.

If I falsifies the clause, we can set I(bi) = 1 and get w1 =
∑log k−1

i=1 2i =
k − 2 and w0 = k + 1. In this case, we get satisfied constraints for a total
weight (k + 1)(k − 2)/2 = k(k − 1)/2− 1.

When k is not a power of 2, the gadget with a minimal number of auxiliary
variables is not straightforward to generalize. In Figure 7, we represent the
gadget for k = 5 with 2 auxiliary variables.

5 Computing Gadgets Automatically

As in Ansótegui and Levy (2021), we have created a Mixed Integer Program-
ming model to compute automatically gadgets from SAT to Max2XOR with
the MIP solver Gurobi.

Given a kSAT clause and a set of new auxiliary variables bj the MIP
program explores the subsets of weighted XOR clauses of length at most 2
that can be constructed with the k input variables and the bj variables. The
weights of the XOR clauses are represented with continuous variables in the
interval [0, 1].

The MIP model incorporates constraints to ensure that the selected sub-
set of XOR clauses fulfills the definition of a (α, β)-gadget, and the objective
function maximizes the energy gap ∆E. The MIP model is solved to opti-
mality.

In the following table, we report the α, β and ∆E values found with the
MIP program for some combinations of k and number of auxiliary variables:
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Number of aux. vars.
1 2 3

k=3
α = 2
β = 3
∆E = 4

k=4
α = 6
β = 10
∆E = 2

α = 3
β = 9/2
∆E = 4

k=5 -
α = 10
β = 52/3
∆E = 12/5

α = 4
β = 6
∆E = 4

As we can see, the gadgets found by the MIP program presented in the
diagonal of the table have the same values as the Tree-like gadget, while the
gadgets under the diagonal have the same values as the Clique-like gadget,
certifying that, for small values of k, they are optimal respect to the energy
gap and the number of auxiliary variables, respectively.

6 Conclusions

Quantum annealers may offer in the future an alternative to solve the SAT
problem more efficiently. To take maximum advantage of this new compu-
tation architecture, we need to take into account several aspects, such as
the number of qubits that needs our reformulation of the SAT problem, the
energy gap, and how adaptable is our encoding to the graph describing the
allowed couplings of the qubits in the quantum annealer (what may incur
into the use of additional auxiliary variables).

Tree-like gadgets help us to maximize the energy gap using a linear num-
ber of auxiliary variables and are rather flexible to adapt them efficiently to
different graph architectures. On the other hand, Clique-like gadgets require
a logarithmic number of auxiliary variables, (i.e. fewer qubits), but with a
lower energy gap, and may use additional qubits to accommodate the dense
structure of the gadget to the architecture of the quantum annealer.
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